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Abstract
Using a recent breakthrough of Smith [18], we improve the results of Fouvry and Klüners [4, 5] on the solubility of
the negative Pell equation. Let D denote the set of positive squarefree integers having no prime factors congruent
to 3 modulo 4. Stevenhagen [19] conjectured that the density of d in D such that the negative Pell equation
𝑥2 − 𝑑𝑦2 = −1 is solvable with 𝑥, 𝑦 ∈ Z is 58.1%, to the nearest tenth of a percent. By studying the distribution
of the 8-rank of narrow class groups Cl+(𝑑) of Q(

√
𝑑), we prove that the infimum of this density is at least

53.8%.
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2 Stephanie Chan et al.

1. Introduction

In recent years, much progress has been made in the study of the distribution of 2-parts of class groups of
quadratic number fields, most notably by Fouvry and Klüners [4, 5] and Smith [18]. One way to test the
robustness of new methods in this subject is to study their applications to a conjecture of Stevenhagen
[19] concerning the solvability over Z of the negative Pell equation

𝑥2 − 𝑑𝑦2 = −1. (1.1)

Here and henceforth, we take d to be a positive squarefree integer. Equation (1.1) is solvable over Z
if and only if the ordinary and narrow class groups of the quadratic field Q(

√
𝑑), denoted by Cl(𝑑) and

Cl+(𝑑), respectively, coincide. As the odd parts of Cl(𝑑) and Cl+(𝑑) are isomorphic, the frequency of
solvability of equation (1.1) is intimately related to the joint distribution of the 2-primary parts of Cl(𝑑)
and Cl+(𝑑). We note that Cl(𝑑)/2 Cl(𝑑) � Cl+(𝑑)/2 Cl+(𝑑) if and only if d is in the set

D = {𝑑 positive squarefree integer : 𝑝 | 𝑑 =⇒ 𝑝 � 3 mod 4},

which we occasionally refer to as the Pell family. As D has natural density 0 in the set of all squarefree
integers, it is more meaningful to study density questions concerning the solvability of equation (1.1)
relative to D than relative to the set of all squarefree integers.

One of the main conjectures in [19] is that

lim
𝑋→∞

|D−(𝑋) |
|D(𝑋) | = 1 − 𝛼 = 0.58057 . . . ,

where

D(𝑋) = {𝑑 ∈ D : 𝑑 ≤ 𝑋},

D−(𝑋) = {𝑑 ∈ D(𝑋) : (1.1) is solvable over Z},

and

𝛼 =
∏
𝑗 odd

(1 − 2− 𝑗 ) =
∞∏
𝑗=1

(1 + 2− 𝑗 )−1 = 0.41942 . . . .

We remark that the constant 𝛼 already appears in the work of Cremona–Odoni [3], namely as the
constant 𝜆∞. These authors studied the negative Pell equation when the number of prime divisors is
fixed, which is traditionally viewed as a simpler problem.

Until now, the best bounds in the direction of Stevenhagen’s conjecture are due to Fouvry and Klüners
[6, 7], who used the methods they developed in [5] to prove that

5
4

𝛼 ≤ lim inf
𝑋→∞

|D−(𝑋) |
|D(𝑋) | ≤ lim sup

𝑋→∞

|D−(𝑋) |
|D(𝑋) | ≤ 2

3
. (1.2)

By incorporating the methods developed by Smith [18], we can improve the lower bound.

Theorem 1.1. With D(𝑋), D−(𝑋) and 𝛼 defined as above, we have

lim inf
𝑋→∞

|D−(𝑋) |
|D(𝑋) | ≥ 𝛼𝛽,

https://doi.org/10.1017/fms.2022.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.40


Forum of Mathematics, Sigma 3

where

𝛽 =
∞∑
𝑛=0

2−𝑛(𝑛+3)/2 = 1.28326 . . . .

We note that 𝛽 > 5/4. To the nearest tenth of a percent, Stevenhagen’s conjecture states that the
density of 𝑑 ∈ D for which (1.1) is solvable over Z is 58.1%. Fouvry and Klüners proved that the lower
density is at least 52.4%, and we prove that the lower density is at least 53.8%.

For a finite abelian group G and an integer 𝑘 ≥ 1, we let rk2𝑘 𝐺 = dimF2 (2𝑘−1𝐺/2𝑘𝐺); this is
called the 2𝑘 -rank of G. The nonincreasing sequence of nonnegative integers {rk2𝑘 𝐺}𝑘 determines the
isomorphism class of the 2-primary part of G. Hence

(1.1) is solvable ⇐⇒ rk2𝑘 Cl(𝑑) = rk2𝑘 Cl+(𝑑) for all integers 𝑘 ≥ 1.

The lower bound in (1.2) comes from proving that the density of 𝑑 ∈ D such that

rk4 Cl+(𝑑) = 0

is equal to 𝛼 and the density of 𝑑 ∈ D such that

rk4 Cl(𝑑) = rk4 Cl+(𝑑) = 1 and rk8 Cl+(𝑑) = 0

is equal to 𝛼/4. We obtain our lower bound by proving that the density of 𝑑 ∈ D such that

rk4 Cl(𝑑) = rk4 Cl+(𝑑) = 𝑛 and rk8 Cl+(𝑑) = 0

is equal to 2−𝑛(𝑛+3)/2𝛼. In fact, we will prove more. Define 𝑃(𝑟 |𝑛) to be the probability that a uniformly
chosen r by r symmetric matrix with coefficients in F2 has rank 𝑟 − 𝑛 and define 𝑄(𝑛|𝑚) to be the
probability that a uniformly chosen (𝑛+1) ×𝑛 matrix with coefficients in F2 has a bottom row consisting
of all zeroes and rank 𝑛 − 𝑚.

Theorem 1.2. Let D(𝑋) and 𝛼 be as above, and, for integers 𝑛 ≥ 𝑚 ≥ 0, let

D𝑛,𝑚 (𝑋) = {𝑑 ∈ D(𝑋) : rk4 Cl(𝑑) = rk4 Cl+(𝑑) = 𝑛 and rk8 Cl+(𝑑) = 𝑚}.

Then

lim
𝑋→∞

|D𝑛,𝑚 (𝑋) |
|D(𝑋) | = 𝑄(𝑛|𝑚) · lim

𝑟→∞
𝑃(𝑟 |𝑛) = 𝛼 · 2−𝑛(𝑛+1)

∏𝑛
𝑗=𝑚+1 (2𝑛 − 2𝑛− 𝑗 )∏𝑚

𝑘=1(2𝑘 − 1)
∏𝑛−𝑚
𝑙=1 (2𝑙 − 1)

.

It is the first equality that we shall prove in Section 6. The second equality is a straightforward
computation but has the nice feature that it makes immediately visible how Theorem 1.2 implies
Theorem 1.1. We note that our proof of Theorem 1.2 gives an alternative proof of [5, Theorem 2] and
[7, Theorem 2].

The major novel difficulty with working in the Pell family is that the integers 𝑑 ∈ D have the
remarkable property that the sets

{𝑎 | 𝑑 : 𝑎 > 0, 𝑎 squarefree, (𝑎,−𝑑/𝑎) = 1}

and

{𝑏 | 𝑑 : 𝑏 > 0, 𝑏 squarefree, (𝑏, 𝑑/𝑏) = 1}

coincide, where (·, ·) denotes the Hilbert symbol. However, for Smith’s method to work, it is essential
that these spaces typically intersect trivially. For instance, this is used in [18, p.76] to argue that most
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assignments a are generic. This is not the case for the Pell family, and all the integers 𝑑 ∈ D end up in
the error term in Smith’s proof. It is therefore of utmost importance to extend Smith’s algebraic results.

We introduce a different notion of genericity in equations (6.1) and (6.2) to circumvent this. This
necessitates new algebraic results, which can be found in Section 2. These algebraic results essentially
rely on the fact that we are working with the 8-rank, which brings manipulations with Rédei symbols
into play; see [20] for an extensive treatment of Rédei symbols. Note that this approach is inspired by
Smith’s first paper [17]. However, the result in [17] assumes GRH, which we avoid by borrowing from
the ideas that Smith introduced in his breakthrough paper [18].

In Section 4, we give more direct proofs of the results that appear in [18, Section 5] and concern
the typical distribution of prime divisors of a squarefree integer. Of course, we once again adapt these
results to d coming from the Pell family D.

2. Algebraic results

We start this section by introducing the Rédei symbol, which will play a prominent role throughout the
paper. Then we prove several identities on the sum of four Rédei symbols, which serve as the algebraic
input for our analytic machinery.

2.1. Rédei symbols

We shall review the fundamental properties of Rédei symbols. Our main reference is Stevenhagen’s
recent work [20]. Fix a separable closure Qsep of Q. All our number fields are implicitly taken inside
this fixed separable closure. If K is a number field, we write 𝐺𝐾 := Gal(Qsep/𝐾) for its absolute Galois
group.

Definition 2.1. Write Ω for the collection of the places of Q. For a place v in Ω, we write (−,−)𝑣 for
the Hilbert symbol. If 𝐾/Q is a finite extension, write Δ𝐾 for the discriminant of 𝐾/Q.

Definition 2.2. Let 𝑎, 𝑏 ∈ Q∗/(Q∗)2. If a is nontrivial, write 𝜒𝑎 for the unique character 𝜒𝑎 : 𝐺Q → F2
with kernel 𝐺Q(

√
𝑎) . We say that (𝑎, 𝑏) is acceptable if we have that (𝑎, 𝑏)𝑣 = 1 for each 𝑣 ∈ Ω.

In case one of 𝑎, 𝑏 is trivial, then (𝑎, 𝑏) is clearly acceptable. Now suppose a and b are both nontrivial.
Then (𝑎, 𝑏) is acceptable if and only if there exists a Galois extension 𝐿/Q containing Q(

√
𝑎,
√

𝑏), with
Gal(𝐿/Q(

√
𝑎𝑏)) cyclic of order 4, and such that every element 𝜎 ∈ Gal(𝐿/Q) with 𝜒𝑎 (𝜎) ≠ 𝜒𝑏 (𝜎)

must be an involution: that is, 𝜎2 = id.
If 𝑎 = 𝑏, we are simply requiring 𝐿/Q to be a cyclic extension of degree 4 of Q containing Q(

√
𝑎). If

𝑎 ≠ 𝑏, we are requiring 𝐿/Q to be dihedral of degree 8 with Gal(𝐿/Q(
√

𝑎𝑏)) cyclic of order 4. When
𝑎, 𝑏 are both nontrivial and (𝑎, 𝑏) is acceptable, denote by F𝑎,𝑏 the collection of fields 𝐿/Q described
above.

Write ΓF2 (Q) := Homtop.gr.(𝐺Q, F2). For 𝜒 ∈ ΓF2 (Q), write Q(𝜒) := (Qsep)ker(𝜒) . We put
ΓF2 (Q, {𝑎, 𝑏}) := ΓF2 (Q)

〈{𝜒𝑎 ,𝜒𝑏 }〉 . Note that the set F𝑎,𝑏 is equipped with a difference, which is a map
− : F𝑎,𝑏 × F𝑎,𝑏 → ΓF2 (Q, {𝑎, 𝑏}) such that for all 𝐿1, 𝐿2, 𝐿3 ∈ F𝑎,𝑏 ,

(𝐿3 − 𝐿2) + (𝐿2 − 𝐿1) = 𝐿3 − 𝐿1

and 𝐿2 − 𝐿1 = 0 if and only if 𝐿1 = 𝐿2. Indeed, for 𝐿1, 𝐿2 ∈ F𝑎,𝑏 , we define 𝐿2 − 𝐿1 to be the unique
𝜒 ∈ ΓF2 (Q, {𝑎, 𝑏}) such that Q(𝜒) · 𝐿2 ⊇ 𝐿1.

Therefore each 𝐿 ∈ F𝑎,𝑏 induces an explicit bijection between F𝑎,𝑏 and ΓF2 (Q, {𝑎, 𝑏}). For any
subgroup 𝐻 ≤ ΓF2 (Q, {𝑎, 𝑏}), we say that 𝑆 ⊆ F𝑎,𝑏 is a H-coset if there exists some 𝑠0 ∈ 𝑆 such that
𝑆 = {𝑠 ∈ F𝑎,𝑏 : 𝑠 − 𝑠0 ∈ 𝐻}.

Now let (𝑎, 𝑏) be an acceptable pair such that a and b are not divisible by any prime congruent
to 3 modulo 4. Write 𝑎 = 𝑡𝑎

∏
𝑙 |𝑎 𝑙 and 𝑏 = 𝑡𝑏

∏
𝑙′ |𝑏 𝑙 ′, where the products run over all odd primes
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𝑙 | 𝑎 and 𝑙 ′ | 𝑏. Define Γunr
F2

(Q, {𝑎, 𝑏}) to be the subgroup of ΓF2 (Q, {𝑎, 𝑏}) generated by the set
{𝜒𝑝 : 𝑝 | 𝑎} ∪ {𝜒𝑝 : 𝑝 | 𝑏} ∪ {𝜒𝑡𝑎 , 𝜒𝑡𝑏 }. One calls an element 𝐿 ∈ F𝑎,𝑏 minimally ramified (see [20,
Definition 7.4]) if

◦ 𝐿/Q(
√

𝑎,
√

𝑏) does not ramify above any odd, finite place 𝑣 � gcd(ΔQ(√𝑎) ,ΔQ(√𝑏) );
◦ 𝐿/Q(

√
𝑎,
√

𝑏) is unramified at 2 if ΔQ(√𝑎)ΔQ(√𝑏) is odd or if one of the discriminants is 1 modulo 8;
◦ if {ΔQ(√𝑎) ,ΔQ(√𝑏) } is the set {4, 5} modulo 8, then we ask that 𝐿/Q(

√
𝑎𝑏) is 2-minimally ramified;

see [20, Definition 7.3].

We denote by Funr
𝑎,𝑏 the subset of F𝑎,𝑏 consisting of minimally ramified elements. As it is shown in [20,

Lemma 7.5], the set Funr
𝑎,𝑏 is a Γunr (Q, {𝑎, 𝑏})-coset (which in particular implies that it is nonempty).

Definition 2.3. Let (𝑎, 𝑏, 𝑐) be a triple with 𝑎, 𝑏, 𝑐 ∈ (Q∗)/(Q∗)2. We say that (𝑎, 𝑏, 𝑐) is jointly
unramified if

gcd(ΔQ(√𝑎) ,ΔQ(√𝑏) ,ΔQ(√𝑐) ) = 1.

We say that (𝑎, 𝑏, 𝑐) is admissible if all (𝑎, 𝑏), (𝑎, 𝑐), (𝑏, 𝑐) are acceptable pairs; a, b and c are not
divisible by any prime congruent to 3 modulo 4; and (𝑎, 𝑏, 𝑐) is jointly unramified.

Observe that if a triple is admissible, then so is any permutation of it.

Definition 2.4. For any admissible triple (𝑎, 𝑏, 𝑐), define the Rédei symbol [𝑎, 𝑏, 𝑐] ∈ F2 as follows.1
If any of 𝑎, 𝑏, 𝑐 is trivial, set [𝑎, 𝑏, 𝑐] := 0. Assuming 𝑎, 𝑏, 𝑐 are all nontrivial, choose 𝐿 ∈ Funr

𝑎,𝑏 and 𝔠

an integral ideal of norm |𝑐 | in the ring of integers of Q(
√

𝑎𝑏); existence of 𝔠 follows from admissibility
of (𝑎, 𝑏, 𝑐). Define

[𝑎, 𝑏, 𝑐] :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
𝐿/Q(

√
𝑎𝑏)

𝔠

]
if 𝑐 > 0[

𝐿/Q(
√
𝑎𝑏)

𝔠∞̃

]
if 𝑐 < 0,

where ∞̃ is any choice of infinite prime in Q(
√

𝑎𝑏). We identify the Artin symbol with its image under
the isomorphism Gal(𝐿/Q(

√
𝑎,
√

𝑏)) � F2.

A priori, the resulting symbol would depend on the choices of L and 𝔠, so the notation should reflect
this dependency. However, the following theorem shows in particular that the symbol does not depend
on any of the choices. For a proof, see [20, Theorem 7.7].

Theorem 2.5 (Rédei reciprocity). Let (𝑎, 𝑏, 𝑐) be an admissible triple. Then [𝑎, 𝑏, 𝑐] does not depend
on the choice of L and 𝔠. Furthermore,

[𝑎, 𝑏, 𝑐] = [𝑎, 𝑐, 𝑏] . (2.1)

As a consequence of Rédei reciprocity, the following proposition shows that the Rédei symbol is
linear in every entry.

Proposition 2.6. Let (𝑎, 𝑏, 𝑐), (𝑎, 𝑏′, 𝑐) be two admissible triples. Then (𝑎, 𝑏𝑏′, 𝑐) is also an admissible
triple, and furthermore,

[𝑎, 𝑏, 𝑐] + [𝑎, 𝑏′, 𝑐] = [𝑎, 𝑏𝑏′, 𝑐] .

Since admissibility and the Rédei symbol do not depend on the order of 𝑎, 𝑏, 𝑐 in the triple, the
corresponding statements hold for all three entries.

1We use, in contrast to [20], the convention that Rédei symbols take their values in F2, since this shall be notationally more
convenient in the rest of the paper.
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Proof. It follows from (𝑎, 𝑏)𝑣 = (𝑎, 𝑏′)𝑣 = 1 for all 𝑣 ∈ Ω and the bilinearity of Hilbert symbols that
(𝑎, 𝑏𝑏′)𝑣 = 1 for all 𝑣 ∈ Ω. Therefore (𝑎, 𝑏𝑏′) is acceptable, and similarly (𝑏𝑏′, 𝑐). Since (𝑎, 𝑏, 𝑐) or
(𝑎, 𝑏′, 𝑐) are jointly ramified, we have

gcd(ΔQ(√𝑎) ,ΔQ(√𝑏)ΔQ(√𝑏′) ,ΔQ(√𝑐) ) =
gcd(ΔQ(√𝑎) ,ΔQ(√𝑏) ,ΔQ(√𝑐) ) gcd(ΔQ(√𝑎) ,ΔQ(√𝑏′) ,ΔQ(√𝑐) ) = 1.

Observe thatΔ
Q(

√
𝑏𝑏′) | ΔQ(√𝑏)ΔQ(√𝑏′) . Hence (𝑎, 𝑏𝑏′, 𝑐) is jointly unramified. It follows that (𝑎, 𝑏𝑏′, 𝑐)

is an admissible triple.
Now the desired identity follows from Theorem 2.5 and the linearity of the last entry. �

We need a final fact that will be crucial in the proof of Theorem 2.10. We thank Professor Stevenhagen
for showing us this fact.

Proposition 2.7. Let (𝑎, 𝑏, 𝑐) be an admissible triple such that 𝑎, 𝑏 > 0 and

gcd(ΔQ(√𝑎) ,ΔQ(√𝑏) ) = 1.

Then (𝑎, 𝑏,−𝑎𝑏𝑐) is also admissible and

[𝑎, 𝑏, 𝑐] = [𝑎, 𝑏,−𝑎𝑏𝑐] .

Proof. Assume that 𝑎, 𝑏 are both nontrivial; otherwise, the statement is immediate.
We first show that (𝑎, 𝑏,−𝑎𝑏) is admissible. The condition of being jointly unramified follows

immediately from the assumption that ΔQ(√𝑎) and Δ
Q(

√
𝑏) are coprime. Since (𝑎,−𝑎) and (𝑏,−𝑏) are

always acceptable and (𝑎, 𝑏) is acceptable by assumption, we conclude that (𝑎, 𝑏,−𝑎𝑏) is admissible.
We claim that [𝑎, 𝑏,−𝑎𝑏] = 0. Let us pick L in Funr

𝑎,𝑏 . Since gcd(ΔQ(√𝑎) ,ΔQ(√𝑏) ) = 1, it follows that
𝐿/Q(

√
𝑎𝑏) is unramified at all odd, finite places. At the prime 2, we use that 𝑎 > 0 and admissibility

to deduce that ΔQ(√𝑎) is never 4 modulo 8. Then we see that 2 | ΔQ(√𝑎) implies that Δ
Q(

√
𝑏) is odd by

our coprimality condition and hence 1 modulo 8, since otherwise (𝑎, 𝑏) is not acceptable. We conclude
that we are always in the second case in the definition of minimally ramified, and we conclude that
𝐿/Q(

√
𝑎𝑏) is also unramified at 2.

Furthermore, 𝐿/Q(
√

𝑎𝑏) is a cyclic degree 4 extension. On the other hand, the principal ideal (
√

𝑎𝑏)
generates the kernel of the natural surjection Cl+(Q(

√
𝑎𝑏)) � Cl(Q(

√
𝑎𝑏)). The extension 𝐿/Q(

√
𝑎𝑏)

is totally real if and only if this kernel acts trivially on L via the Artin map. Therefore[
𝐿/Q(

√
𝑎𝑏)

(
√

𝑎𝑏)

]
=

[
𝐿/Q(

√
𝑎𝑏)

∞̃

]
.

Hence [𝑎, 𝑏,−𝑎𝑏] = 0. By Proposition 2.6, we have that (𝑎, 𝑏,−𝑎𝑏𝑐) is also admissible and

[𝑎, 𝑏, 𝑐] = [𝑎, 𝑏, 𝑐] + [𝑎, 𝑏,−𝑎𝑏] = [𝑎, 𝑏,−𝑎𝑏𝑐]

as desired. �

2.2. Reflection principles

We begin by recalling the connection between Rédei symbols and 8-rank pairings. Throughout this
subsection, D is a positive squarefree integer with no prime divisors 3 modulo 4.

Recall that Cl+(𝐷) [2] is generated by the primes above the rational primes ramifying in Q(
√

𝐷)/Q.
For each positive 𝑏 | 𝐷, we define 𝔅𝐷 (𝑏) to be the unique integral ideal of O

Q(
√
𝐷) having norm equal

to b. If 𝑏 < 0, we instead put 𝔅𝐷 (𝑏) := 𝔅𝐷 (|𝑏 |) · (
√

𝐷). Recall that 𝔅𝐷 (𝑏) ∈ 2 Cl+(𝐷) [4] if and only
if (𝑏, 𝐷) forms an acceptable pair: that is, (𝑏, 𝐷)𝑣 = 1 for all 𝑣 ∈ Ω.
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We now define the dual class group Cl+(𝐷)∨ = Hom(Cl+(𝐷),Q/Z). Then recall that Cl+(𝐷)∨[2] is
generated by the characters 𝜒𝑝 with p a prime dividing D. There is precisely one relation among these
characters, which comes from the fact that 𝜒𝐷 is the trivial character when restricted to Q(

√
𝐷). For a

positive divisor 𝑎 | 𝐷, we have that 𝜒𝑎 ∈ 2 Cl+(𝐷)∨[4] if and only if (𝑎,−𝐷) is an acceptable pair: that
is, (𝑎,−𝐷)𝑣 = 1 for all 𝑣 ∈ Ω.

Since D is not divisible by any primes congruent to 3 mod 4, we have for any positive 𝑎 | 𝐷 that
(𝑎, 𝐷)𝑣 = (𝑎,−𝐷)𝑣 . In particular, we have for any positive 𝑎 | 𝐷

𝜒𝑎 ∈ 2 Cl+(𝐷)∨[4] if and only if 𝔅𝐷 (𝑎) ∈ 2 Cl+(𝐷) [4] . (2.2)

Now let 𝑎, 𝑏 | Δ
Q(

√
𝐷) such that 𝜒𝑎 ∈ 2 Cl+(𝐷)∨[4] and 𝔅𝐷 (𝑏) ∈ 2 Cl+(𝐷) [4]. Then for all cyclic

degree 4 extensions 𝐿/Q(
√

𝐷) unramified at all finite places and containing Q(
√

𝑎,
√

𝐷), the Artin
symbol [ 𝐿/Q(

√
𝐷)

𝔅𝐷 (𝑏) ] always lands in the unique cyclic subgroup of order 2 of Gal(𝐿/Q(
√

𝐷)), since
𝔅𝐷 (𝑏) ∈ Cl+(𝐷) [2]. Furthermore, for a fixed a, the value of the symbol does not depend on the choice
of L, since 𝔅𝐷 (𝑏) ∈ 2 Cl+(𝐷) [4]. In this statement, we are implicitly identifying any two groups of
size 2 in the unique possible way. The value of this symbol is by definition

〈𝜒𝑎, 𝑏〉𝐷 ,

and we shall refer to it as the Artin pairing between 𝜒𝑎 and b. The two crucial features of this pairing
are that it can be computed using Rédei symbols and that it determines 4 Cl+(𝐷) [8] and 4 Cl+(𝐷)∨[8]
(namely, they are respectively the right and the left kernel of the pairing).

Proposition 2.8. Let (𝑎, 𝑏) be a pair with 𝑎, 𝑏 ∈ Q∗/(Q∗)2 and such that ΔQ(√𝑎) ,ΔQ(√𝑏) are coprime.
Furthermore, assume that 𝑎, 𝑏 > 0 are not divisible by any prime congruent to 3 modulo 4. Let c
be a squarefree divisor of Δ

Q(
√
𝑎𝑏) , not necessarily positive. Assume that 𝜒𝑎 ∈ 2 Cl+(𝑎𝑏)∨[4] and

𝔅𝑎𝑏 (𝑐) ∈ 2 Cl+(𝑎𝑏) [4]. Then the triple (𝑎, 𝑏, 𝑐) is admissible, and we have that

〈𝜒𝑎, 𝑐〉𝑎𝑏 = [𝑎, 𝑏, 𝑐] .

Proof. Observe that (𝑎, 𝑏) and (𝑎𝑏, 𝑐) are acceptable since 𝜒𝑎 ∈ 2 Cl+(𝑎𝑏)∨[4] and 𝔅𝑎𝑏 (𝑐) ∈
2 Cl+(𝑎𝑏) [4].

We claim that (𝑎, 𝑐) is acceptable. A similar argument shows that (𝑏, 𝑐) is acceptable. Firstly, 𝑎 > 0
implies (𝑎, 𝑐)∞ = 1. Now we check that (𝑎, 𝑐)𝑣 = 1 for all 𝑣 ∈ Ω finite and odd. If 𝑣 � 𝑎𝑐, we trivially
have (𝑎, 𝑐)𝑣 = 1. If v divides only a but not c, we have that (𝑎, 𝑐)𝑣 = (𝑎𝑏, 𝑐)𝑣 = 1. If v divides only c but
not a, we have that (𝑎, 𝑐)𝑣 = (𝑎, 𝑎𝑏)𝑣 = 1. Now assume that v divides both a and c. SinceΔQ(√𝑎) ,ΔQ(√𝑏)
are coprime, we must have 𝑣 � 𝑏. Also, by assumption, 𝑣2 cannot divide a or c, so (𝑏, 𝑎𝑐)𝑣 = 1. Therefore

(𝑎, 𝑐)𝑣 = (𝑎, 𝑎𝑐)𝑣 = (𝑎𝑏, 𝑎𝑐)𝑣 .

Since (𝑎, 𝑏) and (𝑎𝑏, 𝑐) are acceptable, we have

(𝑎, 𝑎𝑏)𝑣 = (𝑎, 𝑏)𝑣 = (𝑎𝑏, 𝑐)𝑣 = 1,

so (𝑎𝑏, 𝑎𝑐)𝑣 = 1, as required. The remaining case 𝑣 = 2 follows from Hilbert reciprocity. This shows
that (𝑎, 𝑐) and similarly (𝑏, 𝑐) are acceptable pairs.

Since 𝑎, 𝑏 are coprime and not divisible by any prime congruent to 3 mod 4, we conclude that
gcd(ΔQ(√𝑎) ,ΔQ(√𝑏) ,ΔQ(√𝑐) ) = 1. Therefore the triple (𝑎, 𝑏, 𝑐) is admissible. Now observe that any
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𝐿 ∈ Funr
𝑎,𝑏 gives a cyclic degree 4 extension of Q(

√
𝑎𝑏) that is unramified at all finite places and contains

Q(
√

𝑎,
√

𝑏). Therefore

〈𝜒𝑎, 𝑐〉𝑎𝑏 =
[
𝐿/Q(

√
𝑎𝑏)

𝔅𝑎𝑏 (𝑐)

]
= [𝑎, 𝑏, 𝑐]

as was to be shown. �

We are now ready to prove our main algebraic results.

Theorem 2.9. Let 𝑑 ∈ D. Let 𝑝1, 𝑝2, 𝑞1, 𝑞2 be primes that are 1 modulo 4 and coprime to d. Let a be a
positive divisor of d, and let b be any (possibly negative) divisor of d. Assume that

𝔅𝑝𝑖𝑞 𝑗𝑑 (𝑏) ∈ 2 Cl+(𝑝𝑖𝑞 𝑗𝑑) [4] for all 𝑖, 𝑗 ∈ {1, 2}.

1. Suppose

𝜒𝑎 ∈ 2 Cl+(𝑝𝑖𝑞 𝑗𝑑)∨[4] for all (𝑖, 𝑗) ∈ 𝑖, 𝑗 ∈ {1, 2}.

Then

〈𝜒𝑎, 𝑏〉𝑝1𝑞1𝑑 + 〈𝜒𝑎, 𝑏〉𝑝1𝑞2𝑑 + 〈𝜒𝑎, 𝑏〉𝑝2𝑞1𝑑 + 〈𝜒𝑎, 𝑏〉𝑝2𝑞2𝑑 = 0. (2.3)

2. Suppose instead

𝜒𝑝𝑖𝑎 ∈ 2 Cl+(𝑝𝑖𝑞 𝑗𝑑)∨[4] for all (𝑖, 𝑗) ∈ 𝑖, 𝑗 ∈ {1, 2}.

Then the triple (𝑝1 𝑝2, 𝑞1𝑞2, 𝑏) is admissible and

〈𝜒𝑝1𝑎, 𝑏〉𝑝1𝑞1𝑑 + 〈𝜒𝑝1𝑎, 𝑏〉𝑝1𝑞2𝑑 + 〈𝜒𝑝2𝑎, 𝑏〉𝑝2𝑞1𝑑 + 〈𝜒𝑝2𝑎, 𝑏〉𝑝2𝑞2𝑑 = [𝑝1 𝑝2, 𝑞1𝑞2, 𝑏] . (2.4)

Proof. (i) By Proposition 2.8, we obtain that the four triples (𝑎, 𝑝1𝑞1
𝑑
𝑎 , 𝑏), (𝑎, 𝑝1𝑞2

𝑑
𝑎 , 𝑏), (𝑎, 𝑝2𝑞1

𝑑
𝑎 , 𝑏)

and (𝑎, 𝑝2𝑞2
𝑑
𝑎 , 𝑏) are all admissible and the left-hand side of (2.3) equals[

𝑎, 𝑝1𝑞1
𝑑

𝑎
, 𝑏

]
+
[
𝑎, 𝑝1𝑞2

𝑑

𝑎
, 𝑏

]
+
[
𝑎, 𝑝2𝑞1

𝑑

𝑎
, 𝑏

]
+
[
𝑎, 𝑝2𝑞2

𝑑

𝑎
, 𝑏

]
.

By Proposition 2.6, this sum equals

[𝑎, 𝑞1𝑞2, 𝑏] + [𝑎, 𝑞1𝑞2, 𝑏] = 0.

(ii) By Proposition 2.8, we know that the triples (𝑝1𝑎, 𝑞1
𝑑
𝑎 , 𝑏), (𝑝1𝑎, 𝑞2

𝑑
𝑎 , 𝑏), (𝑝2𝑎, 𝑞1

𝑑
𝑎 , 𝑏) and

(𝑝2𝑎, 𝑞2
𝑑
𝑎 , 𝑏) are all admissible and that the left-hand side of (2.4) equals[

𝑝1𝑎, 𝑞1
𝑑

𝑎
, 𝑏

]
+
[
𝑝1𝑎, 𝑞2

𝑑

𝑎
, 𝑏

]
+
[
𝑝2𝑎, 𝑞1

𝑑

𝑎
, 𝑏

]
+
[
𝑝2𝑎, 𝑞2

𝑑

𝑎
, 𝑏

]
.

Applying Proposition 2.6, we find that (𝑝1𝑎, 𝑞1𝑞2, 𝑏) and (𝑝2𝑎, 𝑞1𝑞2, 𝑏) are also admissible and this
sum equals

[𝑝1𝑎, 𝑞1𝑞2, 𝑏] + [𝑝2𝑎, 𝑞1𝑞2, 𝑏] .

Another application of Proposition 2.6 shows that (𝑝1 𝑝2, 𝑞1𝑞2, 𝑏) is admissible and the above sum is
[𝑝1 𝑝2, 𝑞1𝑞2, 𝑏], completing the proof. �
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We remark that it is possible to prove Proposition 2.6 without using Rédei reciprocity. It is precisely
this approach that works in the generality of [18, Theorem 2.8]. The resulting argument is substantially
more involved, so for brevity, we opted to use the proofs with Rédei reciprocity. Note that Theorem
2.10, Theorem 2.11 and Theorem 2.12 have no analogues in [18].

Theorem 2.10. Let 𝑑 ∈ D. Take primes 𝑝1, 𝑝2, 𝑞1, 𝑞2 that are 1 modulo 4 and coprime to d. Let a be a
positive divisor of d. We assume that

𝔅𝑝𝑖𝑞 𝑗𝑑 (𝑝𝑖𝑎) ∈ 2 Cl+(𝑝𝑖𝑞 𝑗𝑑) [4] for all 𝑖, 𝑗 ∈ {1, 2}.

Then we have

𝜒𝑝𝑖𝑎 ∈ 2 Cl+(𝑝𝑖𝑞 𝑗𝑑)∨[4] for all 𝑖, 𝑗 ∈ {1, 2}.

Moreover, the triple (𝑝1 𝑝2, 𝑞1𝑞2, 𝑝1 𝑝2) is admissible and

〈𝜒𝑝1𝑎, 𝑝1𝑎〉𝑝1𝑞1𝑑 + 〈𝜒𝑝1𝑎, 𝑝1𝑎〉𝑝1𝑞2𝑑 + 〈𝜒𝑝2𝑎, 𝑝2𝑎〉𝑝2𝑞1𝑑 + 〈𝜒𝑝2𝑎, 𝑝2𝑎〉𝑝2𝑞2𝑑 = [𝑝1 𝑝2, 𝑞1𝑞2, 𝑝1 𝑝2] .
(2.5)

Proof. By equation (2.2), 𝔅𝑝𝑖𝑞 𝑗𝑑 (𝑝𝑖𝑎) ∈ 2 Cl+(𝑝𝑖𝑞 𝑗𝑑) [4] implies that 𝜒𝑝𝑖𝑎 ∈ 2 Cl+(𝑝𝑖𝑞 𝑗𝑑)∨[4] for
each 𝑖, 𝑗 ∈ {1, 2}.

By Proposition 2.8, we conclude that (𝑝1𝑎, 𝑞1
𝑑
𝑎 , 𝑝1𝑎), (𝑝1𝑎, 𝑞2

𝑑
𝑎 , 𝑝1𝑎), (𝑝2𝑎, 𝑞1

𝑑
𝑎 , 𝑝2𝑎) and

(𝑝2𝑎, 𝑞2
𝑑
𝑎 , 𝑝2𝑎) are all admissible, and furthermore that the left-hand side of (2.5) is[

𝑝1𝑎, 𝑞1
𝑑

𝑎
, 𝑝1𝑎

]
+
[
𝑝1𝑎, 𝑞2

𝑑

𝑎
, 𝑝1𝑎

]
+
[
𝑝2𝑎, 𝑞1

𝑑

𝑎
, 𝑝2𝑎

]
+
[
𝑝2𝑎, 𝑞2

𝑑

𝑎
, 𝑝2𝑎

]
.

Using Proposition 2.6, we have that (𝑝1𝑎, 𝑞1𝑞2, 𝑝1𝑎) and (𝑝2𝑎, 𝑞1𝑞2, 𝑝2𝑎) are admissible triples, and
the sum becomes

[𝑝1𝑎, 𝑞1𝑞2, 𝑝1𝑎] + [𝑝2𝑎, 𝑞1𝑞2, 𝑝2𝑎] .

Next, since 𝑝1𝑎, 𝑞1𝑞2 are coprime and 𝑝2𝑎, 𝑞1𝑞2 are coprime, Proposition 2.7 implies that
(𝑝1𝑎, 𝑞1𝑞2,−𝑞1𝑞2) and (𝑝2𝑎, 𝑞1𝑞2,−𝑞1𝑞2) are admissible, and the above sum is

[𝑝1𝑎, 𝑞1𝑞2,−𝑞1𝑞2] + [𝑝2𝑎, 𝑞1𝑞2,−𝑞1𝑞2] .

By Proposition 2.6, (𝑝1 𝑝2, 𝑞1𝑞2,−𝑞1𝑞2) is admissible, and the above sum is

[𝑝1 𝑝2, 𝑞1𝑞2,−𝑞1𝑞2] .

Since 𝑝1 𝑝2, 𝑞1𝑞2 are coprime, applying Proposition 2.7 again shows that (𝑝1 𝑝2, 𝑞1𝑞2, 𝑝1 𝑝2) is admis-
sible and

[𝑝1 𝑝2, 𝑞1𝑞2,−𝑞1𝑞2] = [𝑝1 𝑝2, 𝑞1𝑞2, 𝑝1 𝑝2],

which gives the desired result. �

Theorem 2.11. Let 𝑑 ∈ D. Let 𝑝1, 𝑝2, 𝑞1, 𝑞2 be distinct primes that are 1 modulo 4 and coprime to d.
Let 𝑎, 𝑏 be a positive divisors of d. We assume that

𝔅𝑝𝑖𝑞 𝑗𝑑 (𝑏),𝔅𝑝𝑖𝑞 𝑗𝑑 (𝑝𝑖𝑎) ∈ 2 Cl+(𝑝𝑖𝑞 𝑗𝑑) [4] for all 𝑖, 𝑗 ∈ {1, 2}.

https://doi.org/10.1017/fms.2022.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.40


10 Stephanie Chan et al.

Then we have that

𝜒𝑏 , 𝜒𝑝𝑖𝑎 ∈ 2 Cl+(𝑝𝑖𝑞 𝑗𝑑)∨[4] for all 𝑖, 𝑗 ∈ {1, 2}.

Furthermore, we have that ∑
𝑖, 𝑗∈{1,2}

〈𝜒𝑝𝑖𝑎, 𝑏〉𝑝𝑖𝑞 𝑗𝑑 + 〈𝜒𝑏 , 𝑝𝑖𝑎〉𝑝𝑖𝑞 𝑗𝑑 = 0.

Proof. The first assertion follows from equation (2.2). By Proposition 2.8, (𝑝𝑖𝑎, 𝑑𝑎 𝑞 𝑗 , 𝑏) and
(𝑏, 𝑑𝑏 𝑝𝑖𝑞 𝑗 , 𝑎𝑝𝑖) are admissible for all choices of 𝑖, 𝑗 in {1, 2}. Therefore the sum of the pairings in
this proposition can be rewritten as∑

𝑖, 𝑗∈{1,2}

[
𝑝𝑖𝑎,

𝑑

𝑎
𝑞 𝑗 , 𝑏

]
+
[
𝑏,

𝑑

𝑏
𝑝𝑖𝑞 𝑗 , 𝑎𝑝𝑖

]
.

Applying Proposition 2.6, we can rewrite this as

[𝑝1𝑎, 𝑞1𝑞2, 𝑏] + [𝑝2𝑎, 𝑞1𝑞2, 𝑏] + [𝑏, 𝑞1𝑞2, 𝑎𝑝1] + [𝑏, 𝑞1𝑞2, 𝑎𝑝2] = [𝑝1 𝑝2, 𝑞1𝑞2, 𝑏] + [𝑏, 𝑞1𝑞2, 𝑝1 𝑝2] = 0.

The first equality follows from Proposition 2.6, and the last equality follows from applying
Theorem 2.5. �

Theorem 2.12. Let 𝑑 ∈ D. Let 𝑝1, 𝑝2, 𝑞1, 𝑞2 be distinct primes that are 1 modulo 4 and coprime to d.
Let 𝑎, 𝑏 be positive divisors of d. We assume that

𝔅𝑝𝑖𝑞 𝑗𝑑 (𝑞 𝑗𝑏),𝔅𝑝𝑖𝑞 𝑗𝑑 (𝑝𝑖𝑎) ∈ 2 Cl+(𝑝𝑖𝑞 𝑗𝑑) [4] for all 𝑖, 𝑗 ∈ {1, 2}.

Then we have that

𝜒𝑞 𝑗𝑏 , 𝜒𝑝𝑖𝑎 ∈ 2 Cl+(𝑝𝑖𝑞 𝑗𝑑)∨[4] for all 𝑖, 𝑗 ∈ {1, 2}.

In addition, the triple (𝑝1 𝑝2, 𝑞1𝑞2,−1) is admissible and∑
𝑖, 𝑗∈{1,2}

〈𝜒𝑝𝑖𝑎, 𝑞 𝑗𝑏〉𝑝𝑖𝑞 𝑗𝑑 + 〈𝜒𝑞 𝑗𝑏 , 𝑝𝑖𝑎〉𝑝𝑖𝑞 𝑗𝑑 = [𝑝1 𝑝2, 𝑞1𝑞2,−1] . (2.6)

Proof. The first assertion follows as usual. By Proposition 2.8, we have that the triples
(𝑝𝑖𝑎, 𝑑𝑎 𝑞 𝑗 , 𝑞 𝑗𝑏), (𝑞 𝑗𝑏, 𝑑𝑏 𝑝𝑖 , 𝑝𝑖𝑎) are admissible for each choice of 𝑖, 𝑗 in {1, 2}, and the left-hand side
of equation (2.6) equals ∑

𝑖, 𝑗∈{1,2}

[
𝑝𝑖𝑎,

𝑑

𝑎
𝑞 𝑗 , 𝑞 𝑗𝑏

]
+
[
𝑞 𝑗𝑏,

𝑑

𝑏
𝑝𝑖 , 𝑝𝑖𝑎

]
.

By Proposition 2.6, we can rewrite this sum of Rédei symbols as[
𝑝1 𝑝2,

𝑑

𝑎
𝑞1, 𝑏𝑞1

]
+
[
𝑝1 𝑝2,

𝑑

𝑎
𝑞2, 𝑏𝑞2

]
+
[
𝑞1𝑞2,

𝑑

𝑏
𝑝1, 𝑎𝑝1

]
+
[
𝑞1𝑞2,

𝑑

𝑏
𝑝2, 𝑎𝑝2

]
.
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One readily checks that 𝑝𝑖
𝑑
𝑏 is coprime to 𝑞1𝑞2 and 𝑞 𝑗

𝑑
𝑎 is coprime to 𝑝1 𝑝2. Therefore, we can apply

Proposition 2.7 to each of the terms in the above sum to obtain[
𝑝1 𝑝2,

𝑑

𝑎
𝑞1,−𝑑𝑎𝑏𝑝1 𝑝2

]
+
[
𝑝1 𝑝2,

𝑑

𝑎
𝑞2,−𝑑𝑎𝑏𝑝1 𝑝2

]
+
[
𝑞1𝑞2,

𝑑

𝑏
𝑝1,−𝑑𝑎𝑏𝑞1𝑞2

]
+
[
𝑞1𝑞2,

𝑑

𝑏
𝑝2,−𝑑𝑎𝑏𝑞1𝑞2

]
.

Applying Proposition 2.6, we can further simplify this and get

[𝑝1 𝑝2, 𝑞1𝑞2,−𝑑𝑎𝑏𝑝1 𝑝2] + [𝑝1 𝑝2, 𝑞1𝑞2,−𝑑𝑎𝑏𝑞1𝑞2] = [𝑝1 𝑝2, 𝑞1𝑞2, 𝑝1 𝑝2𝑞1𝑞2] .

Since 𝑝1 𝑝2 and 𝑞1𝑞2 are coprime, we can apply Proposition 2.7 and get that (𝑝1 𝑝2, 𝑞1𝑞2,−1) is
admissible and the above Rédei symbol equals [𝑝1 𝑝2, 𝑞1𝑞2,−1] as required. �

3. A combinatorial result

Let 𝑋1, . . . , 𝑋𝑚 be finite, nonempty sets, and let 𝑋 := 𝑋1 × . . . × 𝑋𝑚. Put

𝑉 := {𝐹 : 𝑋 → F2}, 𝑊 := {𝑔 : 𝑋 × 𝑋 → F2}.

Given two elements 𝑥1, 𝑥2 ∈ 𝑋 and v ∈ {1, 2}𝑚, we define v(𝑥1, 𝑥2) to be the unique element 𝑦 ∈ 𝑋
such that 𝜋 𝑗 (𝑦) = 𝜋 𝑗 (𝑥𝜋 𝑗 (v) ). Let 𝑑 : 𝑉 → 𝑊 be the linear map given by

𝑑𝐹 (𝑥1, 𝑥2) =
∑

v∈{1,2}𝑚
𝐹 (v(𝑥1, 𝑥2)).

We define A(𝑋) := im(𝑑).

Lemma 3.1. We have that

dimF2 A(𝑋) =
𝑚∏
𝑖=1

( |𝑋𝑖 | − 1).

Proof. See Proposition 9.3 of Koymans and Pagano [13]. �

Definition 3.2. Let 𝜖 > 0 be given. We say that F is 𝜖-bad if����𝐹−1 (0) − |𝑋 |
2

���� ≥ 𝜖 |𝑋 |.

We say that 𝑔 ∈ A(𝑋) is 𝜖-bad if there is 𝜖-bad F such that 𝑑𝐹 = 𝑔.

In our application, we shall be able to prove distributional properties of g by using the Chebotarev
density theorem. However, we have no direct control over F itself. Nevertheless, the following theorem
will allow us to prove the desired equidistribution for F. Note the similarity to Proposition 4.3 in Smith
[18]. Since we are dealing with the 8-rank, we shall not need the more complicated Proposition 4.4 in
Smith [18].

Theorem 3.3. Let 𝜖 > 0 be given. Then we have

|{𝑔 ∈ A(𝑋) : 𝑔 is 𝜖−bad}|
|A(𝑋) | ≤ 21+|𝑋 |−

∏𝑚
𝑖=1 ( |𝑋𝑖 |−1) · exp(−2𝜖2 |𝑋 |).

Proof. Hoeffding’s inequality shows that the proportion of F that are 𝜖-bad is at most

|{𝐹 ∈ 𝑉 : 𝐹 is 𝜖−bad}|
|𝑉 | ≤ 2 exp(−2𝜖2 |𝑋 |). (3.1)
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Define

𝑎 := |𝑋 | −
𝑚∏
𝑖=1

(|𝑋𝑖 | − 1).

By Lemma 3.1, we see that the kernel of d is an a-dimensional vector space. Combining this with
equation (3.1), we infer that

|{𝑔 ∈ A(𝑋) : 𝑔 is 𝜖−bad}|
|A(𝑋) | ≤ |{𝐹 ∈ 𝑉 : 𝐹 is 𝜖−bad}|

|A(𝑋) | ≤ 2𝑎+1 · exp(−2𝜖2 |𝑋 |),

which is the theorem. �

4. Prime divisors

In [18, Section 5], Smith proved that several properties pertaining to the spacing of prime divisors of
integers in the set {1 ≤ 𝑛 ≤ 𝑁 : 𝜔(𝑛) = 𝑟, 𝑝 | 𝑛 ⇒ 𝑝 > 𝐷} occur frequently. Using different methods,
we will obtain similar results on squarefree integers with no prime factor congruent to 3 mod 4.

Define 𝑆(𝑁) := {1 ≤ 𝑛 < 𝑁 : 𝑝 | 𝑛 ⇒ 𝑝 � 3 mod 4, 𝑛 squarefree}, 𝑆𝑟 (𝑁) := {𝑛 ∈ 𝑆(𝑁) :
𝜔(𝑛) = 𝑟} and 𝜇 := 1

2 log log 𝑁 . A classical result by Landau [14] shows that

Φ(𝑁) := |𝑆(𝑁) | = 𝐶𝑁√
log 𝑁

+ 𝑜

(
𝑁√

log 𝑁

)
for some constant 𝐶 > 0. We recall the prime number theorem for arithmetic progressions

|{𝑝 ≤ 𝑁 : 𝑝 ≡ 1 mod 4}| = 1
2

Li(𝑁) + 𝑂
(
𝑁 exp

(
−𝑐

√
log 𝑁

))
.

Write Φ𝑟 (𝑁) := |𝑆𝑟 (𝑁) |. Then following the proof of the Sathé–Selberg theorem [16], one can deduce
that there exists a constant 𝐴 > 0 such that for all 𝑟 < 10𝜇 and all 𝑁 ≥ 𝐴,

𝐴−1𝑁

log 𝑁

(
1
2 log log 𝑁

)𝑟−1

(𝑟 − 1)! ≤ Φ𝑟 (𝑁) ≤ 𝐴𝑁

log 𝑁

(
1
2 log log 𝑁

)𝑟−1

(𝑟 − 1)! . (4.1)

We can easily bound the number of integers with more than, say, 10𝜇 prime divisors by computing the
average number of divisors. Then by standard bounds for the tail of the Poisson distribution, it follows
that

|{𝑛 ∈ 𝑆(𝑁) : |𝜔(𝑛) − 𝜇 | > 𝜇2/3}|
|𝑆(𝑁) | � exp

(
−1

3
𝜇1/3

)
. (4.2)

In the following, for any 𝑛 ∈ 𝑆(𝑁), write 𝑟 = 𝜔(𝑛) and list the distinct prime factors of n as
𝑝1 < 𝑝2 < · · · < 𝑝𝑟 . We will prove that almost all 𝑛 ∈ 𝑆𝑟 (𝑁) have three particular types of spacing.

Theorem 4.1. Let 𝜖 > 0. Take 𝑦1 > 3 and 𝜂 > 1. Assume

|𝑟 − 𝜇 | < 𝜇2/3. (4.3)

Then

1. other than �𝜖 Φ𝑟 (𝑁)
(
(log 𝑦1)−1 + (log 𝑥)−1/2+𝜖 ) exceptions, all 𝑛 ∈ 𝑆𝑟 (𝑁) are comfortably spaced

above 𝑦1: 2𝑦1 < 𝑝𝑖 < 𝑝𝑖+1/2 for any 𝑝𝑖 > 𝑦1;
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2. other than � Φ𝑟 (𝑁) exp(−𝑘𝜂) exceptions, where k is an absolute constant, all 𝑛 ∈ 𝑆𝑟 (𝑁) are
𝜂-regularly spaced: ����12 log log 𝑝𝑖 − 𝑖

���� < 𝜂1/5 max{𝑖, 𝜂}4/5 for all 𝑖 <
1
3

𝑟;

3. other than �𝜖 Φ𝑟 (𝑁) exp
(
−(log log log 𝑁)1/3−𝜖 ) exceptions, all 𝑛 ∈ 𝑆𝑟 (𝑁) are extravagantly

spaced:

log 𝑝𝑖 ≥ (log log 𝑝𝑖)2 · log log log 𝑁 ·
𝑖−1∑
𝑗=1

log 𝑝 𝑗 for some
1
2

𝑟1/2 < 𝑖 <
1
2

𝑟.

4.1. Some estimates

4.1.1. Upper bound for rough numbers
Mertens’ theorem shows that there exist constants 𝑐, 𝑀 > 0 such that for any 𝑁 > 2,∑

𝑝≤𝑁
𝑝�3 mod 4

1
𝑝
=

1
2

log log 𝑁 + 𝑀 + 𝑂
(
exp

(
−𝑐

√
log 𝑁

))
.

Fixing some large enough absolute constant 𝐵1 > 0, we have for any 𝑁 > 2

1
2

log log 𝑁 − 𝐵1 ≤
∑
𝑝≤𝑁

𝑝�3 mod 4

1
𝑝
≤ 1

2
log log 𝑁 + 𝐵1.

For any set of primes E, define

𝐸 (𝑁) :=
∑
𝑝≤𝑁
𝑝∈𝐸

1
𝑝

.

We also define 𝜔𝐸 (𝑛) to be the number of prime divisors of n that are in E. We will apply the following
theorem by Tudesq [21, Theorem 2].

Theorem 4.2. There exists an absolute constant 𝐵2 > 0 such that

|{𝑛 ≤ 𝑁 : 𝜔𝐸 𝑗 (𝑛) = 𝑘 𝑗 for 0 ≤ 𝑗 ≤ 𝑙}| � 𝑁 exp ���−
𝑙∑
𝑗=0

𝐸 𝑗 (𝑁)���
𝑙∏
𝑗=0

(
𝐸 𝑗 (𝑁) + 𝐵2

) 𝑘 𝑗
𝑘 𝑗 !

for all 𝑁 ≥ 1, 𝑙 ≥ 0, 𝐸 𝑗 pairwise disjoint sets of primes, 𝑘 𝑗 ≥ 0.

In our application, we will take 𝐸0 to be the set of primes congruent to 3 mod 4 and 𝐸0, 𝐸1, . . . , 𝐸𝑙
to be pairwise disjoint sets of primes so that ∪𝑙𝑗=0𝐸 𝑗 contains all primes. Also take 𝑘0 = 0 and
𝑘1 + · · · + 𝑘𝑙 = 𝑟 . Then

|{𝑛 ∈ 𝑆𝑟 (𝑁) : 𝜔𝐸 𝑗 (𝑛) = 𝑘 𝑗 , 1 ≤ 𝑗 ≤ 𝑙}| � 𝑁

log 𝑁

𝑙∏
𝑗=1

(
𝐸 𝑗 (𝑁) + 𝐵2

) 𝑘 𝑗
𝑘 𝑗 !

.

We set 𝐵 := max(𝐵1 + 𝐵2, 100), where 𝐵2 is the absolute constant from Theorem 4.2.
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4.1.2. Upper bound for smooth numbers
Define

Ψ𝑟 (𝑁, 𝑦) := {𝑛 ∈ 𝑆𝑟 (𝑁) : 𝑝 | 𝑛 ⇒ 𝑝 < 𝑦},

so that |Ψ𝑟 (𝑁, 𝑦) | is the size of the set of y-smooth numbers in 𝑆𝑟 (𝑁).
We will need an upper bound for smooth numbers for small 𝑢 := log 𝑁/log 𝑦. There are works

treating the number of prime factors of smooth numbers [1, 10, 11], but none of them explicitly give a
formula for the range of small u we are interested in. We prove an upper bound here that is sufficient for
our application, although more work could be done to obtain a more precise estimate.

Lemma 4.3. Fix some 𝜖 ∈ (0, 1). There exists some large enough 𝐴 > 0 such that the following holds.
Take 𝑁 > 𝑦 > 2 and some integer 𝑘 ≥ 1 such that 1

2 𝑘 < 1
2 log log 𝑦 < 2𝑘 and 𝑢 := log 𝑁

log 𝑦 < (log 𝑁)1−𝜖 ,
and assume 𝑢 > 𝐴. Then

Ψ𝑘 (𝑁, 𝑦) ≤ 𝑢−𝑢𝑁

log 𝑦
·
( 1

2 log log 𝑦)𝑘−1

(𝑘 − 1)! .

Proof. We have

(log 𝑁)Ψ𝑘 (𝑁, 𝑦) =
∑

𝑛∈Ψ𝑘 (𝑁 ,𝑦)
log 𝑛 +

∑
𝑛∈Ψ𝑘 (𝑁 ,𝑦)

log
𝑁

𝑛
. (4.4)

We first treat the first term, which is the main contribution. Factoring each 𝑛 ∈ Ψ𝑘 (𝑁, 𝑦) gives∑
𝑛∈Ψ𝑘 (𝑁 ,𝑦)

log 𝑛 ≤
∑

𝑚∈Ψ𝑘−1 (𝑁 ,𝑦)

∑
𝑝<min{ 𝑁

𝑚 ,𝑦}
𝑝�3 mod 4

log 𝑝. (4.5)

Indeed, for every 𝑛 ∈ Ψ𝑘 (𝑁, 𝑦) and every prime divisor p of n, we see that the pair (𝑛/𝑝, 𝑝) contributes
log 𝑝 to the sum on the RHS of equation (4.5) so that the total contribution of n is log 𝑛. Now, taking
any 0 < 𝜎 < 1, we have ∑

𝑝<min{ 𝑁
𝑚 ,𝑦}

𝑝�3 mod 4

log 𝑝 � min
{

𝑁

𝑚
, 𝑦

}
≤

(
𝑁

𝑚

)𝜎
𝑦1−𝜎 .

Then, writing 1
𝑚 =

∏
𝑝 |𝑚

1
𝑝 , equation (4.5) becomes

∑
𝑛∈Ψ𝑘 (𝑁 ,𝑦)

log 𝑛 � 𝑁𝜎𝑦1−𝜎
∑

𝑚∈Ψ𝑘−1 (𝑁 ,𝑦)

1
𝑚𝜎

� 𝑁𝜎𝑦1−𝜎

(𝑘 − 1)!

�����
∑
𝑝<𝑦

𝑝�3 mod 4

1
𝑝𝜎

�����
𝑘−1

.

Take 𝜎 = 1− log(𝑢 log𝑢)
log 𝑦 , which is positive and tends to 1 since 𝑢 < (log 𝑁)1−𝜖 . Then 𝑁𝜎 = 𝑁

(𝑢 log𝑢)𝑢 and
𝑦1−𝜎 = 𝑢 log 𝑢. Noting that Li(𝑡) = 𝑡

log 𝑡 + 𝑂 ( 𝑡
(log 𝑡)2 ) and Ei(1/𝑡) = − log 𝑡 + 𝑂 (1) as 𝑡 → ∞, we have∫

𝑒<𝑡<𝑦

𝑑𝑡

𝑡𝜎 log 𝑡
= Li(𝑢 log 𝑢) − Ei

(
log(𝑢 log 𝑢)

log 𝑦

)
= log log 𝑦 + 𝑢

(
1 + 𝑂

(
log log 𝑢

log 𝑢

))
.
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Therefore, evaluating the Stieltjes integral
∫
𝑡<𝑦

𝑑𝜋 (𝑡)
2𝑡𝜎 gives∑

𝑝<𝑦
𝑝�3 mod 4

1
𝑝𝜎

=
1
2

log log 𝑦 + 1
2

𝑢

(
1 + 𝑂

(
log log 𝑢

log 𝑢

))
.

Putting the above together, we obtain

∑
𝑛∈Ψ𝑘 (𝑁 ,𝑦)

log 𝑛 � 𝑁

(𝑢 log 𝑢)𝑢−1 ·

(
1
2 log log 𝑦 + 1

2 𝑢
(
1 + 𝑂

(
log log𝑢

log𝑢

))) 𝑘−1

(𝑘 − 1)! .

The second sum in equation (4.4) is at most

𝑁𝜎

𝜎

∑
𝑛∈Ψ𝑘 (𝑁 ,𝑦)

1
𝑛𝜎

≤ 𝑁𝜎

𝜎 · 𝑘!

�����
∑
𝑝<𝑦

𝑝�3 mod 4

1
𝑝𝜎

�����
𝑘

� 𝑁

(𝑢 log 𝑢)𝑢 ·

(
1
2 log log 𝑦 + 1

2 𝑢
(
1 + 𝑂

(
log log𝑢

log𝑢

))) 𝑘
𝑘!

.

Since log log 𝑦/2𝑘 is bounded, putting back in equation (4.4) yields

Ψ𝑘 (𝑁, 𝑦) � 1
(𝑢 log 𝑢)𝑢−1 · 𝑁

log 𝑁
·

(
1
2 log log 𝑦 + 1

2 𝑢
(
1 + 𝑂

(
log log𝑢

log𝑢

))) 𝑘−1

(𝑘 − 1)! .

We have(
1
2

log log 𝑦 + 1
2

𝑢

(
1 + 𝑂

(
log log 𝑢

log 𝑢

))) 𝑘−1
=

(
1
2

log log 𝑦

) 𝑘−1
·
(
1 + 𝑢

log log 𝑦

(
1 + 𝑂

(
log log 𝑢

log 𝑢

))) 𝑘−1
.

Since 𝑘 < log log 𝑦, we get that this is at most(
1 + 𝑢

log log 𝑦

(
1 + 𝑂

(
log log 𝑢

log 𝑢

))) log log 𝑦
≤ 𝑒

𝑢
(
1+𝑂

(
log log𝑢

log𝑢

))
.

Because

𝑒
𝑢
(
1+𝑂

(
log log𝑢

log𝑢

))
(𝑢 log 𝑢)𝑢−1 � 𝑢−𝑢+1 = 𝑢−𝑢 · log 𝑁

log 𝑦

for sufficiently large u, this implies that

Ψ𝑘 (𝑁, 𝑦) � 𝑢−𝑢 · 𝑁

log 𝑦
·

(
1
2 log log 𝑦

) 𝑘−1

(𝑘 − 1)!

as desired. �

4.2. Proof of Theorem 4.1

4.2.1. Proof of Theorem 4.11
The number of 𝑛 ∈ 𝑆𝑟 (𝑁) for which

𝑦1 < 𝑝 < 2𝑦1 for some 𝑝 | 𝑛 or 𝑦1 < 𝑞 < 𝑝 < 2𝑞 for some 𝑝𝑞 | 𝑛
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is bounded by

∑
𝑦1<𝑝𝑖<2𝑦1
𝑝≡1 mod 4

Φ𝑟−1

(
𝑁

𝑝

)
+

∑
𝑦1<𝑞<

√
𝑁

𝑞≡1 mod 4

∑
𝑞<𝑝<2𝑞
𝑝≡1 mod 4

Φ𝑟−2

(
𝑁

𝑝𝑞

)
.

Split the sum into the cases 𝑝 < 𝑁1/4 and 𝑝 > 𝑁1/4. First, bound the sum 𝑝 < 𝑁1/4 and assume
𝑦1 < 𝑁1/4; otherwise the sum is zero. Using equation (4.1), we see that the sum is bounded by

� Φ𝑟 (𝑁)
∑

𝑦1<𝑝<2𝑦1
𝑝≡1 mod 4

1
𝑝
+Φ𝑟 (𝑁)

∑
𝑦1<𝑞<

√
𝑁

𝑞≡1 mod 4

∑
𝑞<𝑝<2𝑞
𝑝≡1 mod 4

1
𝑝𝑞

� Φ𝑟 (𝑁)
log 𝑦1

.

The sum 𝑝 > 𝑁1/4 is similarly bounded by

𝑁
∑

𝑦1<𝑝<2𝑦1
𝑝>𝑁 1/4

𝑝≡1 mod 4

1
𝑝
+ 𝑁

∑
𝑦1<𝑞<

√
𝑁

𝑞≡1 mod 4

∑
𝑞<𝑝<2𝑞
𝑝>𝑁 1/4

𝑝≡1 mod 4

1
𝑝𝑞

� 𝑁

log 𝑁
�𝜖

Φ𝑟 (𝑁)
(log 𝑁)1/2−𝜖 ,

completing the proof of part (i).

4.2.2. Proof of Theorem 4.12
Recall that 𝐵 = max(𝐵1 + 𝐵2, 100).

Lemma 4.4. Then there exist some 𝐴 > 0 such that the following holds. Assume r satisfies equation
(4.3), and take 1 ≤ 𝑖 ≤ 1

2𝑟 . Let max{200𝐵, 𝑖4/5} ≤ 𝜆 < 1
3𝑟 . For all 𝑁 > 𝐴,����{𝑛 ∈ 𝑆𝑟 (𝑁) :

����12 log log 𝑝𝑖 − 𝑖

���� > 𝜆

}���� � Φ𝑟 (𝑁) exp
(
− 𝜆2

100(𝑖 + 𝜆)

)
.

Proof. We apply Theorem 4.2 with 𝐸0 the set of primes that are 3 modulo 4, 𝐸1 the set of primes p
with 1

2 log log 𝑝 < 𝑖 + 𝜆 and 𝐸2 the set of primes p with 𝑖 + 𝜆 ≤ 1
2 log log 𝑝 ≤ 𝜇. We take 𝑘0 = 0, 𝑘1 < 𝑖

and 𝑘1 + 𝑘2 = 𝑟 . Then the number of 𝑛 ∈ 𝑆𝑟 (𝑁) such that 1
2 log log 𝑝𝑖 > 𝑖 + 𝜆 is at most

𝑁

log 𝑁

𝑖−1∑
𝑙=0

(𝑖 + 𝜆 + 𝐵)𝑙

𝑙!
(𝜇 − (𝑖 + 𝜆) + 𝐵)𝑟−𝑙

(𝑟 − 𝑙)! � Φ𝑟 (𝑁)
𝑖−1∑
𝑙=0

(
𝑟

𝑙

) (
𝑖 + 𝜆

𝜇

) 𝑙 (
1 − 𝑖 + 𝜆

𝜇

)𝑟−𝑙
, (4.6)

where the second inequality uses equation (4.1) and the inequality(
1 + 𝐵

𝑖 + 𝜆

) 𝑙 (
1 + 𝐵

𝜇 − (𝑖 + 𝜆)

)𝑟−𝑙
≤ exp

(
𝑖𝐵

𝑖 + 𝜆
+ 𝑟𝐵

𝜇 − (𝑖 + 𝜆)

)
≤ exp(7𝐵).

Let 𝑋1, . . . , 𝑋𝑛 be independent random variables taking values in {0, 1}. If X denotes their sum and
𝑀 = E[𝑋], then the lower tail Chernoff bound states that for any 0 ≤ 𝛿 ≤ 1,

P(𝑋 ≤ (1 − 𝛿)𝑀) ≤ 𝑒−𝛿
2𝑀/2.
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See [2, Theorem A.1.13] for a reference in a slightly different form. We warn the reader that the X there
corresponds to our 𝑋 − 𝑀 . Then we bound equation (4.6) as

Φ𝑟 (𝑁) exp

(
− 𝑟𝜇

2(𝑖 + 𝜆)

(
𝑖 + 𝜆

𝜇
− 𝑖

𝑟

)2
)
≤ Φ𝑟 (𝑁) exp

(
−1 − 𝜇−1/3

2(𝑖 + 𝜆)

(
𝑖 + 𝜆 − 𝑖

1 − 𝜇−1/3

)2
)

≤ Φ𝑟 (𝑁) exp
(
−1 − 𝜇−1/3

2(𝑖 + 𝜆)

(
𝜆 − 𝑖2/3

)2
)

≤ Φ𝑟 (𝑁) exp
(
− 𝜆2

4(𝑖 + 𝜆)

)
.

If 𝑛 ∈ 𝑆𝑟 (𝑁) satisfies 1
2 log log 𝑝𝑖 < 𝑖 − 𝜆, then certainly 𝜆 < 𝑖. Another application of Theorem 4.2

yields the bound

𝑁

log 𝑁

𝑟∑
𝑙=𝑖

(𝑖 − 𝜆 + 𝐵)𝑙

𝑙!
(𝜇 − (𝑖 − 𝜆) + 𝐵)𝑟−𝑙

(𝑟 − 𝑙)! � Φ𝑟 (𝑁)
𝑟∑
𝑙=𝑖

(
𝑟

𝑙

) (
𝑖 − 𝜆 + 𝐵

𝜇

) 𝑙 (
1 − 𝑖 − 𝜆 + 𝐵

𝜇

)𝑟−𝑙
,

where the last inequality uses that(
𝜇 − 𝑖 + 𝜆 + 𝐵

𝜇 − 𝑖 + 𝜆 − 𝐵

)𝑟−𝑙
=

(
1 + 2𝐵

𝜇 − (𝑖 − 𝜆) − 𝐵

)𝑟−𝑙
≤ exp

(
2𝐵(𝑟 − 𝑙)

𝜇 − 𝑖 + 𝜆 − 𝐵

)
≤ exp(4𝐵).

We now apply the upper tail Chernoff bound

P(𝑋 ≥ (1 + 𝛿)𝑀) ≤ 𝑒−𝛿
2𝑀/(2+𝛿)

with (1 + 𝛿)𝑀 = 𝑖. In case 𝛿 ≤ 1, the computation proceeds among the same lines as before. If instead
𝛿 > 1, we use that

𝛿2

2 + 𝛿
≥ 1 + 𝛿

6

so we have exp(−𝑖/6). Since 𝛿 > 1 implies that 𝜆 > 𝑖
3 , this finishes the proof. �

We are now ready to prove part (ii). The theorem is trivial when 𝜂 > 2𝑟 , so assume 𝜂 < 2𝑟 . Take
𝜂 = 1

6 𝜂 so that 𝜂 < 1
3𝑟 , and apply Lemma 4.4 with 𝜆 = 𝜂1/5 max{𝑖, 𝜂}4/5 for every i between 1 to 1

3𝑟 .
We get that the number of 𝑛 ∈ 𝑆𝑟 (𝑁) such that����12 log log 𝑝𝑖 − 𝑖

���� > 𝜂1/5 max{𝑖, 𝜂}4/5 > 𝜂1/5 max{𝑖, 𝜂}4/5 for some 𝑖 <
1
3

𝑟

is bounded by

Φ𝑟 (𝑁)
� 1

3 𝑟 �∑
𝑖=1

exp
(
− 𝜂2/5 max{𝑖, 𝜂}8/5

100(𝑖 + 𝜂1/5 max{𝑖, 𝜂}4/5)

)
� Φ𝑟 (𝑁) exp

(
− 𝜂

200

)
= Φ𝑟 (𝑁) exp

(
− 𝜂

1200

)
when 𝜂 > 200𝐵.
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4.2.3. Proof of Theorem 4.13
Fix 𝜅 > 2

3 . We will show that other than �𝜖 Φ𝑟 (𝑁) exp
(
−(log 𝜇)1−𝜅 (1+𝜖 ) ) exceptions, we have

max
1
2
√
𝑟<𝑖< 1

2 𝑟
log log 𝑝𝑖 − log���

𝑖−1∑
𝑗=1

log 𝑝 𝑗
��� − 2 log log log 𝑝𝑖 > (3𝜅 − 1) log log 𝜇 − 2.

First, remove 𝑛 ∈ 𝑆𝑟 (𝑁) for which����12 log log 𝑝𝑖 − 𝑖

���� > 𝑖4/5 for some
1
2
√

𝑟 < 𝑖 <
1
2

𝑟.

For each i with 1
2
√

𝑟 < 𝑖 < 1
2𝑟 , we apply Lemma 4.4 with 𝜆 = 𝑖4/5 to deduce that there are at most

Φ𝑟 (𝑁) exp
(
− 1

200 𝑖3/5
)

such n. Summing over 1
2
√

𝑟 < 𝑖 < 1
2𝑟 gives

� Φ𝑟 (𝑁) exp
(
− 1

400
𝜇3/10

)
.

The remaining 𝑛 ∈ 𝑆𝑟 (𝑁) satisfy����12 log log 𝑝𝑖 − 𝑖

���� < 𝑖4/5 for every
1
2
√

𝑟 < 𝑖 <
1
2

𝑟. (4.7)

Let 𝑚 = � 1
2
√

𝑟� − 1 and 𝑘 = � 1
2𝑟� − 1, so 𝑝1 · · · 𝑝𝑘 ≤

√
𝑁 . We first bound the number of 𝑛 ∈ 𝑆𝑟 (𝑁) for

which 𝑝𝑖 < 𝑝𝑖+1 ≤ 𝑝𝑎𝑖𝑖 for all 𝑚 ≤ 𝑖 < 𝑘 , where 𝑎𝑖 = (𝑖 + 1)2(log 𝜇)2𝜅 . Apply Theorem 4.2 with the set
𝐸1 containing the primes less than 𝑝𝑚 and 𝐸2 containing the primes greater than 𝑝𝑘 and on numbers
up to 𝑁

𝑝𝑚 ·... ·𝑝𝑘 . We let T be the set of tuples (𝑝𝑚, . . . , 𝑝𝑘 ) all consisting of primes not congruent to
3 modulo 4 such that 𝑝𝑖 < 𝑝𝑖+1 ≤ 𝑝𝑎𝑖𝑖 for all 𝑚 ≤ 𝑖 < 𝑘 . Then the number of 𝑛 ∈ 𝑆𝑟 (𝑁) for which
𝑝𝑖 < 𝑝𝑖+1 ≤ 𝑝𝑎𝑖𝑖 for all 𝑚 ≤ 𝑖 < 𝑘 is at most

� 𝑁

log 𝑁

∑
(𝑝𝑚 ,..., 𝑝𝑘 ) ∈T

1
𝑝𝑚 · · · 𝑝𝑘

·

(
𝜇 − 1

2 log log 𝑝𝑘 + 𝐵
)𝑟−𝑘

(𝑟 − 𝑘)! ·

(
1
2 log log 𝑝𝑚 + 𝐵

)𝑚−1

(𝑚 − 1)! .

Now, fixing some 𝑚 ≤ 𝑖 < 𝑘 , we obtain by partial summation on 1
𝑝𝑖+1

and the prime number theorem that

∑
𝑝𝑖<𝑝𝑖+1≤𝑝

𝑎𝑖
𝑖

𝑝𝑖+1�3 mod 4

1
𝑝𝑖+1

(
1
2 log log 𝑝𝑖+1

)𝑟−𝑖−1

(𝑟 − 𝑖 − 1)!

=

(
1
2 log log 𝑝𝑖 + 1

2 log 𝑎𝑖

)𝑟−𝑖
(𝑟 − 𝑖)! −

(
1
2 log log 𝑝𝑖

)𝑟−𝑖
(𝑟 − 𝑖)! + 𝑂

(
exp(−𝑐

√
log 𝑝𝑖)

)
.
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Hence we deduce

∑
𝑝𝑖<𝑝𝑖+1≤𝑝

𝑎𝑖
𝑖

𝑝𝑖+1�3 mod 4

1
𝑝𝑖+1

(
𝜇 − 1

2 log log 𝑝𝑖+1 + 𝐵
)𝑟−𝑖−1

(𝑟 − 𝑖 − 1)!

=

(
𝜇 − 1

2 log log 𝑝𝑖 + 𝐵
)𝑟−𝑖

(𝑟 − 𝑖)! −

(
𝜇 − 1

2 log log 𝑝𝑖 − 1
2 log 𝑎𝑖 + 𝐵

)𝑟−𝑖
(𝑟 − 𝑖)! + 𝑂

(
exp(−𝑐

√
log 𝑝𝑖)

)
=

(
𝜇 − 1

2 log log 𝑝𝑖 + 𝐵
)𝑟−𝑖

(𝑟 − 𝑖)!
���1 −

(
1 −

1
2 log 𝑎𝑖

𝜇 − 1
2 log log 𝑝𝑖 + 𝐵

)𝑟−𝑖��� + 𝑂
(
exp(−𝑐

√
log 𝑝𝑖)

)
.

Furthermore, we have the lower bound(
1 −

1
2 log 𝑎𝑖

𝜇 − 1
2 log log 𝑝𝑖 + 𝐵

)𝑟−𝑖
≥ 𝑎

− 1
2−2𝜇−1/5

𝑖 .

Applying this repeatedly for 𝑖 = 𝑘 − 1, 𝑘 − 2, . . . , 𝑚, we obtain the upper bound

Φ𝑟 (𝑁)
∏
𝑚≤𝑖<𝑘

(
1 − 1

((𝑖 + 1) · (log 𝜇)𝜅 )1+4𝜇−1/5

)
�𝜖 Φ𝑟 (𝑁) exp

(
−(log 𝜇)1−𝜅 (1+𝜖 )

)
.

It follows that other than �𝜖 Φ𝑟 (𝑁) exp
(
−(log 𝜇)1−𝜅 (1+𝜖 ) ) exceptions, we have

𝑝
𝑖2 (log 𝜇)2𝜅

𝑖−1 < 𝑝𝑖 for some
1
2
√

𝑟 < 𝑖 <
1
2

𝑟. (4.8)

For the remaining 𝑛 ∈ 𝑆𝑟 (𝑁), we have equations (4.7) and (4.8), which implies

max
1
2
√
𝑟<𝑖< 1

2 𝑟
log log 𝑝𝑖 − log log 𝑝𝑖−1 − 2 log log log 𝑝𝑖 > 2𝜅 log log 𝜇 − 2.

It remains to remove 𝑛 ∈ 𝑆𝑟 (𝑁) for which there exists some 1
2
√

𝑟 ≤ 𝑖 < 1
2𝑟 such that 𝑝𝑎𝑖𝑖 < 𝑝𝑖+1 and

𝑖∑
𝑗=1

log 𝑝 𝑗 > (log 𝜇)1−𝜅 log 𝑝𝑖 .

Rewrite the second condition as 𝑝𝑢𝑖 < 𝑝1 · · · 𝑝𝑖−1, where 𝑢 := (log 𝜇)1−𝜅 − 1. We wish to bound∑
𝑝𝑖≡1 mod 4

(4.7)

∑
𝑝1< · · ·<𝑝𝑖
𝑝1 · · ·𝑝𝑖−1>𝑝

𝑢
𝑖

𝑝 𝑗�3 mod 4

∑
𝑝
𝑎𝑖
𝑖 <𝑝𝑖+1< · · ·<𝑝𝑟
𝑝𝑖+1 · · ·𝑝𝑟< 𝑁

𝑝1 ···𝑝𝑖
𝑝 𝑗�3 mod 4

1

� 𝑁

log 𝑁

∑
𝑝𝑖≡1 mod 4

(4.7)

(
𝜇 − 1

2 log log 𝑝𝑖 − 1
2 log 𝑎𝑖 + 𝐵

)𝑟−𝑖
𝑝𝑖 (𝑟 − 𝑖)!

∑
𝑝1< · · ·<𝑝𝑖
𝑝1 · · ·𝑝𝑖−1>𝑝

𝑢
𝑖

𝑝 𝑗�3 mod 4

1
𝑝1 · · · 𝑝𝑖−1

. (4.9)
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Fix a given 𝑝𝑖 with
�� 1
2 log log 𝑝𝑖 − 𝑖

�� < 𝑖4/5, and fix x with 𝑝𝑢𝑖 < 𝑥 < min{𝑝𝑖−1
𝑖 , 𝑁}. By Lemma 4.3, we

have ∑
𝑝1< · · ·<𝑝𝑖−1<𝑝𝑖
𝑥<𝑝1 · · ·𝑝𝑖−1≤2𝑥
𝑝 𝑗�3 mod 4

1
𝑝1 · · · 𝑝𝑖−1

≤ 1
𝑥
|Ψ𝑖−1(2𝑥, 𝑝𝑖) | �

𝑣−𝑣

log 𝑝𝑖
·
( 1

2 log log 𝑝𝑖)𝑖−1

(𝑖 − 1)! ,

where 𝑣 := log 𝑥/log 𝑝𝑖 . To deal with final part of the sum in equation (4.9), split (𝑝𝑢𝑖 , 𝑝𝑖−1
𝑖 ) into dyadic

intervals of the form (𝑥, 2𝑥]; then∑
𝑝1< · · ·<𝑝𝑖
𝑝1 · · ·𝑝𝑖−1>𝑝

𝑢
𝑖

𝑝 𝑗�3 mod 4

1
𝑝1 · · · 𝑝𝑖−1

� 1
log 𝑝𝑖

·
( 1

2 log log 𝑝𝑖)𝑖−1

(𝑖 − 1)!
∑
𝑘≥0
𝑥=2𝑘 𝑝𝑢𝑖

𝑣−𝑣

�
( 1

2 log log 𝑝𝑖)𝑖−1

(𝑖 − 1)!

∫
𝑣>𝑢

𝑣−𝑣𝑑𝑣 � 𝑢−𝑢

(
1
2 log log 𝑝𝑖

) 𝑖−1

(𝑖 − 1)! .

Therefore, equation (4.9) becomes

� 𝑁𝑢−𝑢

log 𝑁

∑
𝑝𝑖≡1 mod 4

(4.7)

1
𝑝𝑖

·

(
𝜇 − 1

2 log log 𝑝𝑖

)𝑟−𝑖
(𝑟 − 𝑖)! ·

( 1
2 log log 𝑝𝑖)𝑖−1

(𝑖 − 1)!

(
1 −

1
2 log 𝑎𝑖

𝜇 − 1
2 log log 𝑝𝑖 + 𝐵

)𝑟−𝑖

� 𝑁

log 𝑁
· 𝑢−𝑢

𝑎
1/2+2𝜇−1/5

𝑖

∑
𝑝𝑖≡1 mod 4

(4.7)

1
𝑝𝑖

·

(
𝜇 − 1

2 log log 𝑝𝑖

)𝑟−𝑖
(𝑟 − 𝑖)! ·

( 1
2 log log 𝑝𝑖)𝑖−1

(𝑖 − 1)! � 𝑢−𝑢Φ𝑟 (𝑁)
𝑎

1/2+2𝜇−1/5

𝑖

.

Summing over 1
2
√

𝑟 < 𝑖 < 1
2𝑟 , the total number of such n is

� Φ𝑟 (𝑁) exp
(
−2(log 𝜇)1−𝜅

) ∑
1
2 𝑟

1/2<𝑖< 1
2 𝑟

1
𝑖
� Φ𝑟 (𝑁) exp

(
−(log 𝜇)1−𝜅

)
,

which completes the proof of the theorem.

5. Equidistribution of Legendre symbol matrices

We will use the two following propositions from Section 6 of Smith [18].

Proposition 5.1. Suppose 𝐿/Q is Galois of degree d and 𝐾/Q is an elementary abelian extension,
and gcd(Δ𝐿 ,Δ𝐾 ) = 1. Let 𝐾0 be a quadratic subfield of K with maximal discriminant |Δ𝐾0 |. Let
𝐺 := Gal(𝐾𝐿/Q) be a 2-group. Take 𝐹 : 𝐺 → [−1, 1] to be a class function with average 0 over G.
Then there exists an absolute constant 𝑐 > 0 such that∑

𝑝≤𝑥
𝐹

((
𝐾𝐿/Q

𝑝

))
log 𝑝 � 𝑥𝛽 |𝐺 | + 𝑥 |𝐺 | (𝑑2 log |𝑥Δ𝐾0Δ𝐿 |)4 exp

(
−𝑐𝑑−4 log 𝑥√

log 𝑥 + 3𝑑 log |Δ𝐾0Δ𝐿 |

)
for 𝑥 ≥ 3, where 𝛽 is the maximal real zero of any Artin L-function defined for G.

Proof. This follows from the Chebotarev density theorem; see [18, Proposition 6.5]. �
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Proposition 5.2. Let 𝑋1 and 𝑋2 be disjoint sets of odd primes with its elements bounded by 𝑡1 and 𝑡2,
respectively. Then for any 𝜖 > 0, we have∑

𝑥1∈𝑋1

����� ∑
𝑥2∈𝑋2

(
𝑥1
𝑥2

)����� �𝜖 𝑡1𝑡3/4+𝜖
2 + 𝑡2𝑡3/4+𝜖

1 .

Proof. This is an easy consequence of the large sieve inequality stated in the work of Jutila
[12, Lemma 3]; see Proposition 6.6 in Smith [18]. �

We shall not work with all squarefree integers simultaneously but instead work with more restricted
sets of squarefree integers that have extra combinatorial structure. In our next definition, we define this
combinatorial structure, which we call preboxes.

Definition 5.3. Take a sequence of real numbers

0 < 𝑠1 < 𝑡1 < 𝑠2 < 𝑡2 < · · · < 𝑠𝑟 < 𝑡𝑟 .

Take 𝑃, 𝑋1, . . . , 𝑋𝑟 to be disjoint sets of primes not congruent to 3 mod 4 so that 𝑋𝑖 ⊂ (𝑠𝑖 , 𝑡𝑖). Define
𝑋 := 𝑋1 × · · · × 𝑋𝑟 . We call the pair (𝑋, 𝑃) a prebox.

The goal of this section is to prove a weak equidistribution statement regarding matrices of Jacobi
symbols associated to each 𝑥 ∈ 𝑋 . To make sense of this, we first need to define how we attach a matrix
of Jacobi symbols to each 𝑥 ∈ 𝑋 , which we shall do now. We will often implicitly identify F2 with {±1}
in this section. We use � to denote disjoint union and [𝑟] to denote the set {1, . . . , 𝑟}.

Definition 5.4. Let (𝑋, 𝑃) be a prebox. Take M ⊆ {(𝑖, 𝑗) : 1 ≤ 𝑖 < 𝑗 ≤ 𝑟} and N ⊆ 𝑃 × [𝑟]. Define
𝑀 : 𝑋 → FM�N

2 as follows:

𝑀 (𝑥1, . . . , 𝑥𝑟 ) : M �N → {±1} 𝑀 (𝑥1, . . . , 𝑥𝑟 ) (m) =
⎧⎪⎪⎨⎪⎪⎩
(
𝑥𝑖
𝑥 𝑗

)
if m = (𝑖, 𝑗) ∈ M(

𝑝
𝑥 𝑗

)
if m = (𝑝, 𝑗) ∈ N.

Denote N 𝑗 := {(𝑝, 𝑗) ∈ N : 𝑝 ∈ 𝑃}. Let 𝑀 𝑗 : 𝑋 𝑗 → F
N 𝑗

2 be the function defined by

𝑀 𝑗 (𝑥 𝑗 ) : N 𝑗 → {±1} 𝑀 𝑗 (𝑥 𝑗 ) (𝑝, 𝑗) =
(

𝑝

𝑥 𝑗

)
.

For any 𝑎 : M �N → {±1}, define

𝑋 (𝑎) := {𝑥 ∈ 𝑋 : 𝑀 (𝑥) = 𝑎}

and 𝑋 𝑗 (𝑎, 𝑃) := {𝑥 𝑗 ∈ 𝑋 𝑗 : 𝑀 𝑗 (𝑥 𝑗 ) = 𝑎 �N 𝑗 }, where � is restriction of functions. Let 𝑌 ⊆ 𝑋 be a
subset, let 𝑆 ⊆ [𝑟], and let 𝑄 ∈

∏
𝑖∈𝑆 𝑋𝑖 . We put

𝑌 (𝑄) := {𝑦 ∈ 𝑌 : 𝜋𝑆 (𝑦) = 𝑄}.

We shall slightly abuse notation by writing 𝑋 (𝑎, 𝑄) for 𝑋 (𝑎) (𝑄).

Ideally, we would like to prove that 𝑋 (𝑎) is of the expected size: that is,

|𝑋 (𝑎) | = |𝑋 |
2 |M |+ |N | .

Instead, we shall prove a weaker equidistribution statement that allows for permutations of the first few
rows and columns.
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Definition 5.5. Let P(𝑟) denote the set of permutations of [𝑟]. For any 𝜎 ∈ P(𝑟), any prebox (𝑋, 𝑃)
and any 𝑎 : M �N → {±1}, define

𝑋 (𝜎, 𝑎) = {𝑥 ∈ 𝑋 : 𝑀 (𝜎(𝑥)) = 𝑎},

where 𝜎(𝑥) = 𝜎(𝑥1, . . . , 𝑥𝑟 ) = (𝑥𝜎 (1) , . . . , 𝑥𝜎 (𝑟 ) ).

Finally, there is the well-known problem of Siegel zeroes that we need to take care of. This prompts
the following definition.

Definition 5.6. For 𝑐 > 0, take S(𝑐) to be the set of (possibly negative) squarefree integers d so that

𝐿(𝑠, 𝜒𝑑) = 0 for some 1 − 𝑐

log(|𝑑 | + 4) ≤ 𝑠 ≤ 1.

List the elements in S(𝑐) as |𝑑1 | ≤ |𝑑2 | ≤ · · · . By Landau’s theorem, fix an absolute c sufficiently small
so that 𝑑2

𝑖 ≤ |𝑑𝑖+1 | for all 𝑖 ≥ 1. We say that a prebox (𝑋, 𝑃) is Siegel-less above t if⎧⎪⎪⎨⎪⎪⎩𝜖
∏
𝑖∈𝑆

𝜋𝑖 (𝑥)
∏
𝑝∈�̃�

𝑝 : 𝑥 ∈ 𝑋, 𝜖 ∈ {±1}, �̃� ⊆ 𝑃, 𝑆 ⊆ [𝑟],

������𝜖 ∏
𝑖∈𝑆

𝜋𝑖 (𝑥)
∏
𝑝∈�̃�

𝑝

������ > 𝑡

⎫⎪⎪⎬⎪⎪⎭ ∩ S(𝑐) = ∅.

We are now ready to prove our first proposition, which shows that 𝑋 (𝑎) is of the expected size for
sufficiently regular preboxes (𝑋, 𝑃) and sufficiently nice M and N. It is directly based on Proposition
6.3 in Smith [18].

Proposition 5.7. Fix positive constants 𝑐1, . . . , 𝑐6 such that 𝑐2𝑐3 + 2𝑐4 + 𝑐5 < 1
4 and 𝑐6 > 3. Take

𝛿 > 0 satisfying 2𝛿 < 1
4 − 𝑐2𝑐3 − 2𝑐4 − 𝑐5; then the following holds for any large enough 𝐷1. Let

(𝑋, 𝑃) be a prebox with parameters 𝐷1 < 𝑠1 < 𝑡1 < 𝑠2 < 𝑡2 < · · · < 𝑠𝑟 < 𝑡𝑟 . Take 1 ≤ 𝑘 ≤ 𝑟 . Let
M ⊆ {(𝑖, 𝑗) : 1 ≤ 𝑖 < 𝑗 ≤ 𝑟} and N ⊆ 𝑃 × {𝑘 + 1, . . . , 𝑟}. Suppose that

𝑋 𝑗 := {𝑥 𝑗 ∈ (𝑠 𝑗 , 𝑡 𝑗 ) prime : 𝑥 𝑗 ≡ 1 mod 4, 𝑀 𝑗 (𝑥 𝑗 ) = 𝑎 �N 𝑗 } if 𝑗 > 𝑘.

Assume

1. (𝑋, 𝑃) is Siegel-less above 𝐷1;
2. |𝑃 | ≤ log 𝑡𝑖 − 𝑖 for all 1 ≤ 𝑖 ≤ 𝑟 and 𝑝 ∈ 𝑃 implies 𝑝 < 𝑠1;
3. log 𝑡𝑘+1 > max{(log 𝑡1)𝑐6 , 𝐷𝑐1

1 } if 𝑘 < 𝑟 , and log 𝑡𝑘 < 𝑡𝑐2
1 ;

4. |𝑋𝑖 | ≥ 𝑒𝑖𝑡𝑖 (log 𝑡𝑖)−𝑐3 for all 1 ≤ 𝑖 ≤ 𝑟;
5. 𝑟 < 𝑡𝑐4

1 ;
6. for each 1 ≤ 𝑖 ≤ 𝑟 , 𝑗𝑖 := 1 + 𝑖 + �𝑐5 log 𝑡𝑖� satisfy 𝑗1 > 𝑘 , and log 𝑡 𝑗𝑖 > (log 𝑡𝑖)𝑐6 if 𝑗𝑖 ≤ 𝑟 .

Then for all 𝑎 : M �N → {±1},���|𝑋 (𝑎) | − 2−|M | |𝑋 |
��� ≤ 𝑡−𝛿1 · 2−|M | |𝑋 |.

Proof. Let 𝜅 := 𝑐4 + 𝛿. Since 𝑟 < 𝑡𝑐4
1 , it suffices to show that���|𝑋 (𝑎) | − 2−|M | |𝑋 |

��� ≤ 𝑟𝑡−𝜅1 · 2−|M | |𝑋 |.

We proceed by induction on r. Define

𝑋 𝑗 (𝑎, 𝑥1) :=
{
𝑥 𝑗 ∈ 𝑋 𝑗 :

(
𝑥1
𝑥 𝑗

)
= 𝑎(1, 𝑗) if (1, 𝑗) ∈ M

}
.
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First consider (1, 𝑗) ∈ M, where 𝑗 > 𝑘 . Apply Proposition 5.1 to

𝐾 = Q(
√
−1,

√
𝑝 : 𝑝 ∈ 𝑃), 𝐿 = Q(

√
𝑥1)

and

𝐹 : 𝜎 ↦→
{

1 − 2−|𝑃 |−2 if 𝜎 =
(
𝐾𝐿/Q
𝑥 𝑗

)
for some 𝑥 𝑗 ∈ 𝑋 𝑗 (𝑎, 𝑥1),

−2−|𝑃 |−2 otherwise.

Notice that
(
𝐾𝐿/Q
𝑥 𝑗

)
is independent of the choice 𝑥 𝑗 ∈ 𝑋 𝑗 (𝑎, 𝑥1). By Siegel’s theorem, for 𝐷1 sufficiently

large, we have 1 − 𝛽 > 𝐷−𝑐1/6
1 if 𝛽 is an exceptional real zero of 𝐿(𝑠, 𝜒𝑑) with |𝑑 | < 𝐷1. Then

𝑡
𝛽
𝑗 < 𝑡 𝑗 exp

(
−(log 𝑡 𝑗 )5/6

)
.

We have the bounds

log |Δ𝐾0Δ𝐿 | � |𝑃 | log 𝑡1 ≤ (log 𝑡1)2 � (log 𝑡 𝑗 )
2
𝑐6

and

| Gal(𝐾𝐿/Q) | = 2 |𝑃 |+2 ≤ 21+log 𝑡1 < 𝑡1 < exp
(
(log 𝑡 𝑗 )

1
𝑐6

)
.

Since 𝑐6 > 3, we have by a double application of Proposition 5.1 and partial summation������ ∑
𝑠 𝑗<𝑝<𝑡 𝑗

𝐹

((
𝐾𝐿/Q

𝑝

))������ ≤ 𝑡 𝑗 exp
(
−(log 𝑡 𝑗 )1/3

)
for sufficiently large 𝐷1. Repeating this for the field 𝐾/Q, we get after possibly enlarging 𝐷1����|𝑋 𝑗 (𝑎, 𝑥1) | −

1
2
|𝑋 𝑗 |

���� ≤ 2𝑡 𝑗 exp
(
−(log 𝑡 𝑗 )1/3

)
< 𝑡−1

1 |𝑋 𝑗 |.

Next consider (1, 𝑗) ∈ M, where 𝑗 ≤ 𝑘 . Note that 1
4 − 𝑐2𝑐3 − 𝑐5 − 2𝜅 > 0 by assumption, so we can

fix a positive constant 𝜖 such that 2𝜖 < 1
4 − 𝑐2𝑐3 − 𝑐5 − 2𝜅. The large sieve in Proposition 5.2 gives

∑
𝑥1∈𝑋1

������ ∑𝑥 𝑗 ∈𝑋 𝑗

(
𝑥1
𝑥 𝑗

)������ �𝜖 𝑡 𝑗 𝑡
3/4+𝜖
1 .

From the identity

|𝑋 𝑗 (𝑎, 𝑥1) | =
1
2

∑
𝑥 𝑗 ∈𝑋 𝑗

(
𝑎(1, 𝑗)

(
𝑥1
𝑥 𝑗

)
+ 1

)
=

𝑎(1, 𝑗)
2

∑
𝑥 𝑗 ∈𝑋 𝑗

(
𝑥1
𝑥 𝑗

)
+ 1

2
|𝑋 𝑗 |,

we deduce that for sufficiently large 𝐷1,

∑
𝑥1∈𝑋1

����|𝑋 𝑗 (𝑎, 𝑥1) | −
1
2
|𝑋 𝑗 |

���� = 1
2

∑
𝑥1∈𝑋1

������ ∑𝑥 𝑗 ∈𝑋 𝑗

(
𝑥1
𝑥 𝑗

)������ ≤ 𝑡
− 1

4+𝑐2𝑐3+𝜖
1 |𝑋1 | |𝑋 𝑗 |.
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Let 𝐵1 := 𝑐5 + 𝜅 and 𝐵2 := 𝜅 + 𝜖 ; then 𝐵1 + 𝐵2 < 1
4 − 𝑐2𝑐3 − 𝜖 . We conclude that����|𝑋 𝑗 (𝑎, 𝑥1) | −

1
2
|𝑋 𝑗 |

���� < 𝑡−𝐵2
1 |𝑋 𝑗 | for all (1, 𝑗) ∈ M and 𝑗 ≤ 𝑘

holds with at most 𝑘𝑡−𝐵1
1 |𝑋1 | exceptions 𝑥1 ∈ 𝑋 . Call the set of exceptions 𝑋bad

1 (𝑎).
We bound the size of the set of exceptions 𝑋bad(𝑎) = 𝑋 (𝑎) ∩ 𝜋−1

1 (𝑋bad
1 (𝑎)) in X. First, fix some

𝑥1 ∈ 𝑋1 and move 𝑥1 to P. Apply the induction hypothesis to

𝑋2 × 𝑋3 × · · · × 𝑋𝑘 × 𝑋𝑘+1(𝑎, 𝑥1) × · · · × 𝑋𝑟 (𝑎, 𝑥1).

Let us briefly explain the value of k to which we apply the induction hypothesis. Let 𝑘old be the current
value of k, and let 𝑘new be the value of k to which we apply the induction hypothesis. We choose 𝑘new
as the smallest integer satisfying

𝑘new ≥ 𝑘old − 1, 𝑡𝑘new+2 > max(𝑒 (log 𝑡2)𝑐6
, 𝑒𝐷

𝑐1
1 ),

and we choose 𝑘new = 𝑟 − 1 if there is no such integer.
Since 𝑡1 > 𝑟𝑐4 with 𝑐4 < 1

8 , we get

|𝑋 (𝑎) ∩ 𝜋−1
1 (𝑥1) | ≤

(
1 + 2

𝑡1

)𝑟
· 2−|M |+𝑘 |𝑋 |

|𝑋1 |
≤ 2−|M |+𝑘+1 |𝑋 |

|𝑋1 |

and hence

|𝑋bad (𝑎) | ≤ 2𝑘+1𝑘𝑡−𝐵1
1 · 2−|M | |𝑋 | < 2 𝑗1+1 𝑗1𝑡−𝐵1

1 · 2−|M | |𝑋 | < 𝑡−𝜅1 · |𝑋 |
2 |M |+1 . (5.1)

For 𝑥1 ∉ 𝑋bad (𝑎), we look at

𝑋2 (𝑎, 𝑥1) × · · · × 𝑋𝑟 (𝑎, 𝑥1).

Then we obtain

|𝑋 (𝑎) \ 𝑋bad (𝑎) | =
∑

𝑥1∈𝑋1\𝑋bad
1 (𝑎)

|𝑋 (𝑎) ∩ 𝜋−1
1 (𝑥1) |

=
∑

𝑥1∈𝑋1\𝑋bad
1 (𝑎)

| (𝑋2 (𝑎, 𝑥1) × · · · × 𝑋𝑟 (𝑎, 𝑥1)) (𝑎) |,

which lies between (
1 ± 2

𝑡1

)𝑟 (
1 ± 2

𝑡𝐵2
1

) 𝑘 (
1 ± (𝑟 − 1)𝑡−𝜅1

)
· 2−|M | |𝑋 |

by the induction hypothesis. Since 𝑟 < 𝑡𝑐4
1 < 𝑡𝜅1 , 1 − 𝑐4 > 𝜅 and 𝐵2 > 𝜅, we have(

1 + 2
𝑡1

)𝑟 (
1 + 2

𝑡𝐵2
1

) 𝑘 1 + (𝑟 − 1)𝑡−𝜅1

1 + (𝑟 − 1
2 )𝑡

−𝜅
1

=

(
1 + 2

𝑡1

)𝑟 (
1 + 2

𝑡𝐵2
1

) 𝑘 (
1 −

1
2 𝑡−𝜅1

1 + (𝑟 − 1
2 )𝑡

−𝜅
1

)
< exp

(
2𝑟𝑡−1

1 + 2𝑘𝑡−𝐵2
1 − 1

4
𝑡−𝜅1

)
< exp

(
2𝑡−(1−𝑐4)

1 + 2𝑐5𝑡−𝐵2
1 log 𝑡1 −

1
4

𝑡−𝜅1

)
< 1
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and similarly(
1 − 2

𝑡1

)𝑟 (
1 − 2

𝑡𝐵2
1

) 𝑘 1 − (𝑟 − 1)𝑡−𝜅1

1 − (𝑟 − 1
2 )𝑡

−𝜅
1

=

(
1 − 2

𝑡1

)𝑟(
1 − 2

𝑡𝐵2
1

) 𝑘(
1 +

1
2 𝑡−𝜅1

1 − (𝑟 − 1
2 )𝑡

−𝜅
1

)
> 1.

We conclude that the sum lies between(
1 ±

(
𝑟 − 1

2

)
𝑡−𝜅1

)
· 2−|M | |𝑋 |. (5.2)

Adding the contributions from equations (5.1) and (5.2) completes the inductive step. �

The condition N ⊆ 𝑃 × {𝑘 + 1, . . . , 𝑟} in Proposition 5.7 turns out to be too restrictive for us. It is,
however, not so straightforward to remove this condition. Hence we shall only prove a weaker equidis-
tribution statement that allows for permutations of the first few columns. This weaker equidistribution
statement will fall as a consequence of Proposition 5.7 and the following combinatorial proposition,
which is Proposition 6.7 of Smith [18].

Proposition 5.8. Let (𝑋, 𝑃) be a prebox. Let M = {(𝑖, 𝑗) : 1 ≤ 𝑖 < 𝑗 ≤ 𝑟} and N = 𝑃 × [𝑟]. Take
0 ≤ 𝑘0 ≤ 𝑘1 ≤ 𝑘2 ≤ 𝑟 so that

2 |𝑃 |+𝑘0+1𝑘2
1 < 𝑘2.

Let 𝜎 ∈ P(𝑟). Define

𝑆(𝜎) := {(𝑖, 𝑗) ∈ M : (𝜎(𝑖), 𝜎( 𝑗)) ∈ ([𝑘0] × [𝑘1]) ∪ ([𝑘1] × [𝑘0])} � {(𝑝, 𝑗) ∈ N : 𝜎( 𝑗) ∈ [𝑘1]}.

Let 𝑚 := |𝑆(𝜎) | = 𝑘1 |𝑃 | + 1
2 𝑘0 (𝑘0 − 1) + 𝑘0 (𝑘1 − 𝑘0). If 𝑎 : M �N → {±1}, we put

𝑋𝑆 (𝜎, 𝑎) :=
{
𝑥 ∈ 𝑋 : 𝑀 (𝜎(𝑥)) �𝑆 (𝜎)= 𝑎 �𝑆 (𝜎)

}
.

For any 𝑥 ∈ 𝑋 , define

𝑊 (𝑥, 𝑎) := {𝜎 ∈ P(𝑘2) : 𝑥 ∈ 𝑋𝑆 (𝜎, 𝑎)} = {𝜎 ∈ P(𝑘2) : 𝑀 (𝜎(𝑥)) �𝑆 (𝜎)= 𝑎 �𝑆 (𝜎) }.

Then we have ∑
𝑎∈FM�N

2

| |𝑊 (𝑥, 𝑎) | − 2−𝑚 · 𝑘2!| ≤
(

2 |𝑃 |+𝑘0+1

𝑘2

)1/2

𝑘1 · 2−𝑚+|M�N | · 𝑘2!.

Proof. Fix some 𝑥 ∈ 𝑋 , and write 𝑊 (𝑎) := 𝑊 (𝑥, 𝑎). We will show that∑
𝑎∈FM�N

2

(|𝑊 (𝑎) | − 2−𝑚 · 𝑘2!)2 ≤
2 |𝑃 |+𝑘0+1𝑘2

1
𝑘2

· 2−2𝑚+|M�N | (𝑘2!)2.

Then the proposition follows from the Cauchy-Schwarz inequality.
The average of |𝑊 (𝑎) | over a is 2−𝑚 · 𝑘2!, since |P(𝑘2) | = 𝑘2! and there are m Legendre symbol

conditions to satisfy. Now

|𝑊 (𝑎) |2 = |{(𝜎1, 𝜎2) ∈ P(𝑘2) × P(𝑘2) : 𝑀 (𝜎1 (𝑥)) �𝑆 (𝜎1)= 𝑎 �𝑆 (𝜎1) , 𝑀 (𝜎2 (𝑥)) �𝑆 (𝜎2)= 𝑎 �𝑆 (𝜎2) }|.
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We have
∑
𝑎∈FM�N

2
|𝑊 (𝑎) |2 =

∑
𝜎1 ,𝜎2∈P(𝑘2) |𝑊 (𝜎1, 𝜎2) |, where

𝑊 (𝜎1, 𝜎2) := {𝑎 ∈ FM�N
2 : 𝑀 (𝜎1 (𝑥)) �𝑆 (𝜎1)= 𝑎 �𝑆 (𝜎1) , 𝑀 (𝜎2 (𝑥)) �𝑆 (𝜎2)= 𝑎 �𝑆 (𝜎2) }.

We fix some 𝜎1, 𝜎2 ∈ P(𝑘2) and bound |𝑊 (𝜎1, 𝜎2) |. Let 𝑑 := |{𝑖 ∈ [𝑘2] : 𝜎1(𝑖) ≤ 𝑘1, 𝜎2(𝑖) ≤ 𝑘1}|.
We have

|𝑆(𝜎1) ∩ 𝑆(𝜎2) | = |{(𝑖, 𝑗) ∈ M : (𝜎1(𝑖), 𝜎1( 𝑗)), (𝜎2 (𝑖), 𝜎2( 𝑗)) ∈ ([𝑘0] × [𝑘1]) ∪ ([𝑘1] × [𝑘0])}|
+ |{(𝑝, 𝑗) ∈ N : 𝜎1( 𝑗), 𝜎2( 𝑗) ∈ [𝑘1]}| ≤ 𝑑 (|𝑃 | + 𝑘0).

Therefore the conditions fix at least 2𝑚 − 𝑑 (|𝑃 | + 𝑘0) arguments of 𝑎 ∈ 𝑊 (𝜎1, 𝜎2). Then

|𝑊 (𝜎1, 𝜎2) | ≤ 2−2𝑚+𝑑 ( |𝑃 |+𝑘0)+ |M�N | .

Given some 𝑑 ≤ 𝑘1, we bound the number of (𝜎1, 𝜎2) ∈ P(𝑘2) × P(𝑘2) that gives the same d.
There are

(𝑘2
𝑑

)
ways to pick the indices that map to [𝑘1] under 𝜎1 and 𝜎2. Then there are at most

( 𝑘1!
(𝑘1−𝑑)! (𝑘2 − 𝑑)!)2 ways to pick a pair of (𝜎1, 𝜎2) in such a way. Hence the total number is bounded by(

𝑘2
𝑑

) (
𝑘1!

(𝑘1 − 𝑑)! (𝑘2 − 𝑑)!
)2

≤ (𝑘2!)2
(

𝑘1!
(𝑘1 − 𝑑)!

)2 (𝑘2 − 𝑑)!
𝑘2!

≤ (𝑘2!)2

(
𝑘2

1
𝑘2

)𝑑
.

The average of |𝑊 (𝑎) |2 is bounded by

(𝑘2!)2
∑
𝑑≥0

(
𝑘2

1
𝑘2

)𝑑
· 2−2𝑚+𝑑 ( |𝑃 |+𝑘0) =

𝑘2

𝑘2 − 2 |𝑃 |+𝑘0 𝑘2
1
· 2−2𝑚 (𝑘2!)2.

Then the variance of |𝑊 (𝑎) | is bounded by

𝑘2

𝑘2 − 2 |𝑃 |+𝑘0 𝑘2
1
· 2−2𝑚(𝑘2!)2 − (2−𝑚 · 𝑘2!)2 =

2 |𝑃 |+𝑘0 𝑘2
1

𝑘2 − 2 |𝑃 |+𝑘0 𝑘2
1
· 2−2𝑚 (𝑘2!)2

≤
2 |𝑃 |+𝑘0+1𝑘2

1
𝑘2

· 2−2𝑚 (𝑘2!)2.

Multiplying by 2 |M�N | gives the required estimate. �

We are now ready to prove our weak equidistribution result for |𝑋 (𝑎) |, which is very similar to
Theorem 6.4 in Smith [18]. We define 𝑎(𝑖, 𝑗) := 𝑎( 𝑗 , 𝑖) in case 𝑖 > 𝑗 .

Theorem 5.9. Take positive constants 𝑐1, . . . , 𝑐8, where 𝑐2𝑐3 + 2𝑐4 + 𝑐5 < 1
4 , 𝑐6 > 3 and 𝑐8 < 𝑐7 < 1

2 .
Let (𝑋, 𝑃) be a prebox, and suppose that for all 1 ≤ 𝑗 ≤ 𝑟 ,

𝑋 𝑗 := {𝑥 𝑗 ∈ (𝑠 𝑗 , 𝑡 𝑗 ) prime : 𝑥 𝑗 ≡ 1 mod 4}.

The following holds for any large enough 𝐷1. Choose integers 0 ≤ 𝑘0 < 𝑘1 < 𝑘2 ≤ 𝑟 , and assume
𝑡𝑘0+1 > 𝐷1 and 𝑘2 > 𝐷1. Assume

1. log 𝑘1 < 𝑐8 log 𝑘2;
2. (|𝑃 | + 𝑘0) log 2 < (1 − 2𝑐7) log 𝑘2.

Further assume

1. (𝑋, 𝑃) is Siegel-less above 𝐷1;
2. |𝑃 | ≤ log 𝑡𝑖 − 𝑖 for all 𝑘0 < 𝑖 ≤ 𝑟 and 𝑝 ∈ 𝑃 implies 𝑝 < 𝑠𝑘0+1;
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3. log 𝑡𝑘1+1 > max{(log 𝑡𝑘0+1)𝑐6 , 𝐷𝑐1
1 } and log 𝑡𝑘1 < 𝑡𝑐2

1 ;
4. |𝑋𝑖 | ≥ 2 |𝑃 |𝑒𝑖𝑘𝑐7

2 𝑡𝑖 (log 𝑡𝑖)−𝑐3 for all 𝑘0 < 𝑖 ≤ 𝑟;
5. 𝑟 < 𝑡𝑐4

𝑘0+1;
6. for each 𝑘0 < 𝑖 ≤ 𝑟 , 𝑗𝑖 := 1 + 𝑖 + �𝑐5 log 𝑡𝑖� satisfy 𝑗𝑘0+1 > 𝑘1, and log 𝑡 𝑗𝑖 > (log 𝑡𝑖)𝑐6 if 𝑗𝑖 ≤ 𝑟 .

Take 𝛿1 < 𝑐7 − 𝑐8 and 2𝛿2 < 1
4 − 𝑐2𝑐3 − 3𝑐4 − 𝑐5. Then for any M and N, we have

∑
𝑎∈FM�N

2

������2−|M�N | · 𝑘2! · |𝑋 | −
∑

𝜎∈P(𝑘2)
|𝑋 (𝜎, 𝑎) |

������ ≤ (𝑘−𝛿1
2 + 𝑡−𝛿2

𝑘0+1) · 𝑘2! · |𝑋 |.

Proof. Without loss of generality, assume that M = {(𝑖, 𝑗) : 1 ≤ 𝑖 < 𝑗 ≤ 𝑟} and N = 𝑃× [𝑟], 𝑋𝑖 = {𝑥𝑖}
for 𝑖 ≤ 𝑘0. Let 𝑚 := 𝑘1 |𝑃 | + 1

2 𝑘0 (𝑘0−1) + 𝑘0 (𝑘1− 𝑘0) as in Proposition 5.8. Apply the triangle inequality
to the sum we wish to bound,

2−|M�N |
∑

𝑎∈FM�N
2

������𝑘2! · |𝑋 | − 2𝑚
∑

𝜎∈P(𝑘2)
|𝑋𝑆 (𝜎, 𝑎) |

������
+ 2−|M�N |+𝑚

∑
𝜎∈P(𝑘2)

∑
𝑎∈FM�N

2

���|𝑋𝑆 (𝜎, 𝑎) | − 2 |M�N |−𝑚 |𝑋 (𝜎, 𝑎) |
���. (5.3)

For the first sum in equation (5.3), noting that∑
𝑥∈𝑋

|𝑊 (𝑥, 𝑎) | =
∑

𝜎∈P(𝑘2)
|𝑋𝑆 (𝜎, 𝑎) |,

we obtain by Proposition 5.8 an upper bound

(
2 |𝑃 |+𝑘0+1

𝑘2

)1/2

𝑘1 · 𝑘2! · |𝑋 | < 𝑘−𝛿1
2 · 𝑘2! · |𝑋 |.

Now consider the second sum of equation (5.3). For each 𝜎 ∈ P(𝑘2), we can partition X into 2𝑚 sets
according to �̃� : 𝑆(𝜎) → {±1} as follows:

𝑋𝑆 (𝜎, �̃�) = {𝑥1} × · · · × {𝑥𝑘0 } × 𝑋𝑘0+1(�̃�, �̃�) × · · · × 𝑋𝑘1 (�̃�, �̃�) × 𝑋𝑘1+1 × · · · × 𝑋𝑟 ,

where �̃� = {𝑥1} ∪ · · · ∪ {𝑥𝑘0 } ∪ 𝑃 and 𝑋𝑖 (�̃�, �̃�) is the subset of those 𝑞 ∈ 𝑋𝑖 satisfying(
𝑞

𝑥 𝑗

)
= �̃�(𝜎−1(𝑖), 𝜎−1( 𝑗)) for 𝑗 ∈ [𝑘0] and

(
𝑞

𝑝

)
= 𝑎(𝑝, 𝜎−1 (𝑖)) for 𝑝 ∈ 𝑃.

We first bound the contribution of 𝜎 ∈ P(𝑘2) with |𝑋𝑖 (�̃�, �̃�) | < 2−|�̃� |𝑘−𝑐7
2 |𝑋𝑖 | for some �̃� : 𝑆(𝜎) →

{±1} and some 𝑘0 < 𝑖 ≤ 𝑘1 in the sum. For each 𝜎 ∈ P(𝑘2) and 𝑘0 < 𝑖 ≤ 𝑘1, we have the upper bound∑
�̃�: |𝑋𝑖 (�̃�, �̃�) |≤2−|�̃� |𝑘

−𝑐7
2 |𝑋𝑖 |

|𝑋𝑆 (𝜎, �̃�) | ≤ 𝑘−𝑐7
2 |𝑋 |.
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For each �̃�, there are 2 |M�N |−𝑚 many a satisfying 𝑎 �𝑆 (𝜎)= �̃�, so the contribution of such a is bounded
by ∑

𝜎∈P(𝑘2)

∑
𝑘0<𝑖≤𝑘1

∑
�̃�: |𝑋𝑖 (�̃�, �̃�) |≤2−|�̃� | ·𝑘−𝑐7

2 · |𝑋𝑖 |

|𝑋𝑆 (𝜎, �̃�) | ≤ 𝑘1𝑘−𝑐7
2 · 𝑘2! · |𝑋 | < 𝑘−𝛿1

2 · 𝑘2! · |𝑋 |.

For the remaining terms, we have |𝑋𝑖 (�̃�, �̃�) | ≥ 2−|�̃� |𝑘−𝑐7
2 |𝑋𝑖 | for all 𝑘0 < 𝑖 ≤ 𝑟 . Bound each summand

by Proposition 5.7 ���|𝑋𝑆 (𝜎, 𝑎) | − 2 |M�N |−𝑚 |𝑋 (𝜎, 𝑎) |
��� ≤ 𝑡−𝛿2

𝑘0+1 |𝑋𝑆 (𝜎, 𝑎) |;

then summing over 𝜎 and a gives the required estimate. �

There is a final technical proposition that will be of key importance in our next section. First we need
a definition.

Definition 5.10. Let (𝑋, 𝑃) be a prebox, and let 𝑆 ⊆ [𝑟]. If 𝑗 ∉ 𝑆, we define for a subset 𝑍 ⊆
∏
𝑖∈𝑆 𝑋𝑖

𝑋 𝑗 (𝑎, 𝑍) := 𝑋 𝑗 (𝑎, 𝑃) ∩
{
𝑥 ∈ 𝑋 𝑗 : for all 𝑖 ∈ 𝑆, 𝑄 ∈ 𝑍 we have

(
𝑥

𝜋𝑖 (𝑄)

)
= 𝑎(𝑖, 𝑗)

}
.

Note that this is a natural generalisation of 𝑋 𝑗 (𝑎, 𝑃) as defined in Definition 5.4.

Proposition 5.11. Fix positive constants 𝑐1, . . . , 𝑐6 such that 𝑐2𝑐3 + 2𝑐4 + 𝑐5 < 1
4 and 𝑐6 > 3. Take

𝛿 > 0 satisfying 2𝛿 < 1
4 − 𝑐2𝑐3 − 2𝑐4 − 𝑐5; then the following holds for any large enough 𝐷1. Take P

to be a set of prime numbers, none of them congruent to 3 modulo 4, and take 1 ≤ 𝑘 ≤ 𝑟 . Suppose
M = {(𝑖, 𝑗) : 1 ≤ 𝑖 < 𝑗 ≤ 𝑟} and N = 𝑃 × {𝑘 + 1, . . . , 𝑟}. Let (𝑋, 𝑃) be a prebox with parameters
𝐷1 < 𝑠1 < 𝑡1 < 𝑠2 < 𝑡2 < · · · < 𝑠𝑟 < 𝑡𝑟 such that

𝑋 𝑗 := {𝑥 𝑗 ∈ (𝑠 𝑗 , 𝑡 𝑗 ) prime : 𝑥 𝑗 ≡ 1 mod 4, 𝑀 𝑗 (𝑥 𝑗 ) = 𝑎 �N 𝑗 } if 𝑗 > 𝑘.

Let 𝑈,𝑉 ⊆ [𝑟] be disjoint subsets such that 𝑈 ∪𝑉 = [𝑙] for some l. Further assume

1. (𝑋, 𝑃) is Siegel-less above 𝐷1;
2. |𝑃 | ≤ log 𝑡𝑖 − 𝑖 for all 1 ≤ 𝑖 ≤ 𝑟 and 𝑝 ∈ 𝑃 implies 𝑝 < 𝑠1;
3. log 𝑡𝑘+1 > max{(log 𝑡1)𝑐6 , 𝐷𝑐1

1 } if 𝑘 < 𝑟 , and log 𝑡𝑘 < 𝑡𝑐2
1 ;

4. |𝑋𝑖 | ≥ 𝑒𝑖𝑡𝑖 (log 𝑡𝑖)−𝑐3 for all 1 ≤ 𝑖 ≤ 𝑟;
5. 𝑟 < 𝑡𝑐4

1 ;
6. for each 1 ≤ 𝑖 ≤ 𝑟 , 𝑗𝑖 := 1 + 𝑖 + �𝑐5 log 𝑡𝑖� satisfy 𝑗1 > 𝑘 and log 𝑡 𝑗𝑖 > (log 𝑡𝑖)𝑐6 if 𝑗𝑖 ≤ 𝑟;
7. 𝑐5 log 𝑡𝑢 > 𝑟 + 10 and 𝑢 > 𝑘 for all 𝑢 ∈ 𝑈.

We say that 𝑄 ∈ 𝜋𝑉 (𝑋) is poor if there is 𝑢 ∈ 𝑈 such that����|𝑋𝑢 (𝑎, 𝑄) | − |𝑋𝑢 |
2 |𝑉 |

���� > 𝑡−𝑐4−𝛿
1 |𝑉 | |𝑋𝑢 |.

Then for all 𝑎 : M �N → {±1}, ∑
𝑄∈𝜋𝑉 (𝑋 ) poor

|𝑋 (𝑎, 𝑄) | ≤ 𝑟 · 𝑡−𝑐4−𝛿
1 · |𝑋 |

2 |M | .

Proof. We proceed by induction on |𝑉 |. The case |𝑉 | = 0 is trivial. Let v be the smallest element in V.
Define �̃� to be the k from the proposition if 𝑣 = 1, and define �̃� to be r if 𝑣 ≠ 1. Fix some 𝑥 ∈ 𝑋𝑣 . Put
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𝐵1 := 𝑐4 + 𝑐5 + 𝛿 and 𝐵2 := 𝑐4 + 𝛿. Following the proof of Proposition 5.7, we get that����|𝑋 𝑗 (𝑎, 𝑥) | − 1
2
|𝑋 𝑗 |

���� < 𝑡−𝐵2
1 |𝑋 𝑗 | for all 1 ≤ 𝑗 ≤ �̃� with 𝑗 ≠ 𝑣

holds for 𝑥 ∈ 𝑋𝑣 with at most �̃� 𝑡−𝐵1
1 |𝑋𝑣 | exceptions, while for 𝑗 > �̃� , we always get����|𝑋 𝑗 (𝑎, 𝑥) | − 1

2
|𝑋 𝑗 |

���� < 𝑡−1
1 |𝑋 𝑗 |.

Just as in the proof of Proposition 5.7, define 𝑋bad
𝑣 (𝑎) to be the set of exceptions. We split the sum in

the proposition as ∑
𝑄∈𝜋𝑉 (𝑋 ) poor

|𝑋 (𝑎, 𝑄) | =
∑

𝑄∈𝜋𝑉 (𝑋 ) poor
𝜋𝑣 (𝑄)∉𝑋bad

𝑣 (𝑎)

|𝑋 (𝑎, 𝑄) | +
∑

𝑄∈𝜋𝑉 (𝑋 ) poor
𝜋𝑣 (𝑄) ∈𝑋bad

𝑣 (𝑎)

|𝑋 (𝑎, 𝑄) |

≤
∑

𝑄∈𝜋𝑉 (𝑋 ) poor
𝜋𝑣 (𝑄)∉𝑋bad

𝑣 (𝑎)

|𝑋 (𝑎, 𝑄) | +
∑

𝑄∈𝜋𝑉 (𝑋 )
𝜋𝑣 (𝑄) ∈𝑋bad

𝑣 (𝑎)

|𝑋 (𝑎, 𝑄) |. (5.4)

We first treat the latter sum in equation (5.4). In the case 𝑣 = 1, we apply Proposition 5.7 to the prebox

(𝑋2 × · · · × 𝑋𝑘 × 𝑋𝑘+1(𝑎, 𝑥) × · · · × 𝑋𝑟 (𝑎, 𝑥), 𝑃 ∪ {𝑥})

for 𝑥 ∈ 𝑋bad
1 (𝑎) and the natural restrictions of a, U, V, M and N. Then the latter sum is bounded by∑

𝑄∈𝜋𝑉 (𝑋 )
𝜋1 (𝑄) ∈𝑋bad

1 (𝑎)

|𝑋 (𝑎, 𝑄) | =
∑

𝑥∈𝑋bad
1 (𝑎)

|𝑋 (𝑎) ∩ 𝜋−1
1 (𝑥) | ≤ |𝑋bad

1 (𝑎) | · 2−|M |+𝑘+1 |𝑋 |
|𝑋1 |

.

A small computation shows that this is at most

𝑡−𝑐4−𝛿
1 · |𝑋 |

2 |M |+1

for sufficiently large 𝐷1. Now suppose that 𝑣 ≠ 1 so that 1 ∈ 𝑈. Then apply Proposition 5.7 with
𝑘 = 𝑟 − 1, the prebox

(𝑋1 × · · · × 𝑋𝑣−1 × 𝑋𝑣+1 × · · · × 𝑋𝑟 ,∅)

and the natural restrictions of a, U, V, M and N. Crucially, we have that this choice of k satisfies the
requirements of Proposition 5.7 for sufficiently large 𝐷1 due to our assumption 𝑐5 log 𝑡𝑢 > 𝑟 + 10 for all
𝑢 ∈ 𝑈. Then a similar computation shows that the latter sum is again at most

𝑡−𝑐4−𝛿
1 · |𝑋 |

2 |M |+1 .

It remains to bound the former sum in equation (5.4). We first treat the case 𝑣 = 1. Take a poor
𝑄 ∈ 𝜋𝑉 (𝑋) with 𝑥 := 𝜋1 (𝑄) ∉ 𝑋bad

1 (𝑎). Then we claim that 𝜋𝑉−{1} (𝑄) is poor for the prebox

(𝑋2 (𝑎, 𝑥) × · · · × 𝑋𝑟 (𝑎, 𝑥), 𝑃 ∪ {𝑥}).
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Suppose that 𝜋𝑉−{1} (𝑄) is not poor. Then we get for all 𝑢 ∈ 𝑈 that����|𝑋𝑢 (𝑎, 𝑄) | − |𝑋𝑢 (𝑎, 𝑥) |
2 |𝑉 |−1

���� ≤ 𝑡−𝐵2
2 (|𝑉 | − 1) |𝑋𝑢 |.

But from this, we deduce that for all 𝑢 ∈ 𝑈,����|𝑋𝑢 (𝑎, 𝑄) | − |𝑋𝑢 |
2 |𝑉 |

���� ≤ ����|𝑋𝑢 (𝑎, 𝑄) | − |𝑋𝑢 (𝑎, 𝑥) |
2 |𝑉 |−1

���� + ���� |𝑋𝑢 (𝑎, 𝑥) |
2 |𝑉 |−1 − |𝑋𝑢 |

2 |𝑉 |

����
≤ 𝑡−𝐵2

2 (|𝑉 | − 1) |𝑋𝑢 | + 𝑡−𝐵2
1 |𝑋𝑢 | ≤ 𝑡−𝐵2

1 |𝑉 | |𝑋𝑢 |,

establishing the claim. Now we can easily bound the former sum in equation (5.4) using the induction
hypothesis. Finally, we deal with the case that 𝑣 ≠ 1 so that 1 ∈ 𝑈. In this case, we apply the induction
hypothesis to the prebox

(𝑋1 (𝑎, 𝑥) × · · · × 𝑋𝑣−1(𝑎, 𝑥) × 𝑋𝑣+1(𝑎, 𝑥) × · · · × 𝑋𝑟 (𝑎, 𝑥), 𝑃 ∪ {𝑥})

with 𝑘 = 𝑟 − 1. �

As alluded to earlier, the squarefree integers play a crucial role in our analysis. It turns out to be more
convenient to work with squarefree integers with a fixed number of prime divisors, and this naturally
leads to the following definition.

We now define special preboxes that we call boxes. These boxes provide a natural way to study
distributional properties 𝑆𝑟 (𝑁), as we shall see in the coming proposition, which is based on Proposition
6.9 in Smith [18].

Definition 5.12. Suppose 0 ≤ 𝑘 ≤ 𝑟 . For any t = (𝑝1, . . . , 𝑝𝑘 , 𝑠𝑘+1, . . . , 𝑠𝑟 ) such that

1. 𝑝1 < 𝑝2 < · · · < 𝑝𝑘 < 𝐷1 is a sequence of primes not congruent to 3 mod 4,
2. 𝐷1 < 𝑠𝑘+1 < 𝑡𝑘+1 < 𝑠𝑘+2 < 𝑡𝑘+2 < · · · < 𝑠𝑟 < 𝑡𝑟 is a sequence of real numbers where

𝑡𝑖 =

(
1 + 1

𝑒𝑖−𝑘 log 𝐷1

)
𝑠𝑖 ,

we define 𝑋 (t) := 𝑋1 × · · · × 𝑋𝑟 with

𝑋𝑖 :=

{
{𝑝𝑖} if 𝑖 ≤ 𝑘,

{𝑝 ∈ (𝑠𝑖 , 𝑡𝑖) prime : 𝑝 ≡ 1 mod 4} if 𝑖 > 𝑘.

We call X a box if 𝑋 = 𝑋 (t) for some t. There is a bijection from X to a subset of 𝑆𝑟 (∞). By abuse of
notation, denote this subset by X.

Theorem 5.13. Take 𝑁 ≥ 𝐷1 ≥ 3 with log 𝑁 ≥ (log 𝐷1)2. Suppose that r satisfies equation (4.3). Let
𝑊 ⊆ 𝑆𝑟 (𝑁) be a set of comfortably spaced elements above 𝐷1 such that

| |𝑊 | −Φ𝑟 (𝑁) | < 𝜖Φ𝑟 (𝑁)

for some constant 𝜖 > 0. Let 𝑉 ⊆ 𝑆𝑟 (𝑁), and suppose that there exists some constant 𝛿 > 0 such that

| |𝑉 ∩ 𝑋 | − 𝛿 |𝑋 | | < 𝜖 |𝑋 |

for any box 𝑋 ⊆ 𝑆𝑟 (𝑁) satisfying 𝑋 ∩ 𝑊 ≠ ∅. Then there exists an absolute constant 𝐶 > 0 such that

|𝑉 | − 𝛿Φ𝑟 (𝑁) � 𝜖Φ𝑟 (𝑁) +
(
Φ𝑟 (𝑁) −Φ𝑟

(
𝑁

(
1 − 𝐶

log 𝐷1

)))
.
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Proof. Define T𝑘 = {t : 𝑋 (t) ⊆ 𝑆𝑟 (𝑁) and 𝑋 (t) ∩ 𝑊 ≠ ∅}. Our aim is to estimate |𝑉 | in terms of∫
T𝑘

|𝑉 ∩ 𝑋 (t) | 𝑑𝑝1 · · · 𝑑𝑝𝑘𝑑𝑠𝑘+1 · · · 𝑑𝑠𝑟
𝑠𝑘+1 · · · 𝑠𝑟

,

where 𝑑𝑝𝑖 is 1 if 𝑝𝑖 ≡ 1 mod 4 is prime and 0 otherwise.
Consider 𝑛 = (𝑞1, . . . , 𝑞𝑟 ) ∈ 𝑆𝑟 (𝑁) with exactly k prime factors less than 𝐷1. Then 𝑛 ∈ 𝑋 (t) if and

only if 𝑞𝑖 = 𝑝𝑖 for 1 ≤ 𝑖 ≤ 𝑘 and

𝑠𝑖 < 𝑞𝑖 <

(
1 + 1

𝑒𝑖−𝑘 log 𝐷1

)
𝑠𝑖 for 𝑘 < 𝑖 ≤ 𝑟.

If 𝑛 ∈ 𝑊 and

𝑛
𝑟∏

𝑖=𝑘+1

(
1 + 1

𝑒𝑖−𝑘 log 𝐷1

)
< 𝑁, (5.5)

then ∫
t∈T𝑘 :
𝑛∈𝑋 (t)

𝑑𝑝1 · · · 𝑑𝑝𝑘𝑑𝑠𝑘+1 · · · 𝑑𝑠𝑟
𝑠𝑘+1 · · · 𝑠𝑟

=
∫ 𝑞𝑘+1

𝑞𝑘+1

(
1+ 1

𝑒 log 𝐷1

)−1 · · ·
∫ 𝑞𝑟

𝑞𝑟

(
1+ 1

𝑒𝑟−𝑘 log 𝐷1

)−1
𝑑𝑠𝑘+1 · · · 𝑑𝑠𝑟
𝑠𝑘+1 . . . 𝑠𝑟

=
𝑟∏

𝑖=𝑘+1
log

(
1 + 1

𝑒𝑖−𝑘 log 𝐷1

)
.

If equation (5.5) does not hold or 𝑛 ∉ 𝑊 , then∫
t∈T𝑘 :
𝑛∈𝑋 (t)

𝑑𝑝1 · · · 𝑑𝑝𝑘𝑑𝑠𝑘+1 · · · 𝑑𝑠𝑟
𝑠𝑘+1 · · · 𝑠𝑟

≤
𝑟∏

𝑖=𝑘+1
log

(
1 + 1

𝑒𝑖−𝑘 log 𝐷1

)
.

There exists some constant 𝐶 > 0 such that any n that does not satisfy equation (5.5) lies in

𝑁

(
1 − 𝐶

log 𝐷1

)
≤ 𝑁

𝑟∏
𝑖=𝑘+1

(
1 + 1

𝑒𝑖−𝑘 log 𝐷1

)−1
≤ 𝑛 ≤ 𝑁,

which we bound by

Φ𝑟 (𝑁) −Φ𝑟

(
𝑁

(
1 − 𝐶

log 𝐷1

))
.

Then
∞∑
𝑘=0

𝑟∏
𝑖=𝑘+1

log
(
1 + 1

𝑒𝑖−𝑘 log 𝐷1

)−1 ∫
T𝑘

|𝑉 ∩ 𝑋 (t) | 𝑑𝑝1 · · · 𝑑𝑝𝑘𝑑𝑠𝑘+1 · · · 𝑑𝑠𝑟
𝑠𝑘+1 · · · 𝑠𝑟

is bounded above by |𝑉 | and below by

|𝑉 ∩ 𝑊 | + 𝑂

(
Φ𝑟 (𝑁) −Φ𝑟

(
𝑁

(
1 − 𝐶

log 𝐷1

)))
=

|𝑉 | + 𝑂

(
Φ𝑟 (𝑁) −Φ𝑟

(
𝑁

(
1 − 𝐶

log 𝐷1

)))
+ 𝑂 (𝜖Φ𝑟 (𝑁)).
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Similarly,

∞∑
𝑘=0

𝑟∏
𝑖=𝑘+1

log
(
1 + 1

𝑒𝑖−𝑘 log 𝐷1

)−1 ∫
T𝑘

|𝑋 (t) | 𝑑𝑝1 · · · 𝑑𝑝𝑘𝑑𝑠𝑘+1 · · · 𝑑𝑠𝑟
𝑠𝑘+1 · · · 𝑠𝑟

= Φ𝑟 (𝑁) + 𝑂

(
Φ𝑟 (𝑁) −Φ𝑟

(
𝑁

(
1 − 𝐶

log 𝐷1

)))
+ 𝑂 (𝜖Φ𝑟 (𝑁)).

The result follows from the estimate |𝑉 ∩ 𝑋 (t) | = (𝛿 + 𝑂 (𝜖)) |𝑋 (t) | for t ∈ T𝑘 . �

With some extra work, it is possible to prove that

Φ𝑟 (𝑁) −Φ𝑟

(
𝑁

(
1 − 𝐶

log 𝐷1

))
� Φ𝑟 (𝑁)

log 𝐷1
,

which ensures that the error term in Theorem 5.13 is smaller than the main term. However, in our
applications, we work with all values of r simultaneously so that the trivial bound∑

𝑟

(
Φ𝑟 (𝑁) −Φ𝑟

(
𝑁

(
1 − 𝐶

log 𝐷1

)))
� Φ(𝑁)

log 𝐷1

suffices for our purposes. Our next proposition deals with boxes that are not Siegel-less. It is directly
based on Proposition 6.10 in Smith [18].

Theorem 5.14. Let 𝑑1, 𝑑2, . . . be a sequence of distinct squarefree integers greater than 𝐷1 satisfying
𝑑2
𝑖 < 𝑑𝑖+1. Take 𝑁 ≥ 𝐷1 ≥ 3 satisfying log 𝑁 ≥ (log 𝐷1)4, and suppose that r satisfies equation (4.3).

Define

𝑉𝑖 := {𝑥 ∈ 𝑆𝑟 (𝑁) : there is a box 𝑋 ⊆ 𝑆𝑟 (𝑁) with 𝑥 ∈ 𝑋 and there is 𝑥 ′ ∈ 𝑋 with 𝑑𝑖 | 𝑥 ′}.

Then

| ∪𝑖≥1 𝑉𝑖 | �
Φ𝑟 (𝑁)
log 𝐷1

.

Proof. Suppose we have some box 𝑋 ⊆ 𝑉𝑖 and 𝑑𝑖 = 𝑝1 · · · 𝑝𝑚. For any element 𝑥 ∈ 𝑋 , there are prime
factors 𝑞1, . . . , 𝑞𝑚 of x such that

𝑞𝑖 = 𝑝𝑖 if 𝑝𝑖 < 𝐷1 and
1
2

𝑝𝑖 < 𝑞𝑖 < 2𝑝𝑖 if 𝑝𝑖 ≥ 𝐷1.

If 𝑑𝑖 < 𝑁2/3, we deduce from equation (4.1) that there exists some constant 𝐶 > 0 with

|𝑉𝑖 | ≤ Φ𝑟−𝑚

(
2𝑚𝑁

𝑑𝑖

)
·

∏
𝑝𝑖≥𝐷1

����{𝑞𝑖 prime :
1
2

𝑝𝑖 < 𝑞𝑖 < 2𝑝𝑖 , 𝑞𝑖 ≡ 1 mod 4
}����

≤ Φ𝑟 (𝑁) · 𝐶𝑚

𝑑𝑖

∏
𝑝𝑖≥𝐷1

𝑝𝑖
log 𝑝𝑖

� Φ𝑟 (𝑁)
log 𝑑𝑖

.

Notice that 𝑑𝑖 > 𝐷2𝑖−1

1 . Then������ ⋃
𝑑𝑖<𝑁 2/3

𝑉𝑖

������ � Φ𝑟 (𝑁)
∑
𝑖≥1

1
2𝑖−1 log 𝐷1

� Φ𝑟 (𝑁)
log 𝐷1

.
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If 𝑑𝑖 ≥ 𝑁2/3, then 𝑑𝑖+1 ≥ 𝑁4/3 > 𝑁 . Therefore there is at most one i such that 𝑑𝑖 ≥ 𝑁2/3 and 𝑉𝑖 is
not empty. Then for sufficiently large 𝐷1,

|𝑉𝑖 | ≤ |{𝑥 ∈ 𝑆𝑟 (𝑁) : 𝑑𝑖 | 𝑥}| ·
∏
𝑝𝑖≥𝐷1

����{𝑞𝑖 prime :
1
2

𝑝𝑖 < 𝑞𝑖 < 2𝑝𝑖 , 𝑞𝑖 ≡ 1 mod 4
}����

≤ 𝑁

𝑑𝑖

∏
𝑝𝑖≥𝐷1

2𝑝𝑖
log 𝑝𝑖

� 𝑁

log 𝑑𝑖
� 𝑁

log 𝑁
,

which fits into the error bound. �

Definition 5.15. Fix some constants 𝑐9, 𝑐10 > 0. We call a box X of 𝑆𝑟 (𝑁) acceptable if it

1. contains a comfortably spaced element above 𝐷1 = exp
((

1
2 log log 𝑁

)𝑐9 )
,

2. contains a (𝑐10 log log log 𝑁)-regular element, and
3. is Siegel-less above 𝐷1.

Given any integer 𝑥 ∈ D, let 𝑝1 < · · · < 𝑝𝑛 be the distinct prime factors of x, and call the matrix
(𝑐𝑖 𝑗 )1≤𝑖, 𝑗≤𝑛 defined by

(−1)𝑐𝑖 𝑗 =
⎧⎪⎪⎨⎪⎪⎩

(
𝑝𝑖
𝑝 𝑗

)
if 𝑖 ≠ 𝑗∏

𝑙≠ 𝑗

(
𝑝𝑙
𝑝 𝑗

)
if 𝑖 = 𝑗

the Rédei matrix of x. This is a symmetric matrix with column (and row) sum zero due to our assumption
𝑥 ∈ D. We are now ready to reprove a well-known result due to Fouvry and Klüners [6]. Note that unlike
the work of Fouvry and Klüners, our theorem has the benefit of providing an error term.

Theorem 5.16. There exists a constant 𝑐 > 0 such that for all integers 𝑘 ≥ 0,���� |{𝑑 ∈ D(𝑁) : rk4 Cl+(𝑑) = 𝑘}|
|D(𝑁) | − lim

𝑛→∞
𝑃(𝑛|𝑘)

���� � (log log 𝑁)−𝑐 .

Proof. By our Erdős–Kac result – that is, equation (4.2) – it suffices to show that���� |{𝑑 ∈ 𝑆𝑟 (𝑁) : rk4 Cl+(𝑑) = 𝑘}|
|𝑆𝑟 (𝑁) | − lim

𝑛→∞
𝑃(𝑛|𝑘)

���� � (log log 𝑁)−𝑐

for any r satisfying equation (4.3). We can find some 𝑊 ⊆ 𝑆𝑟 (𝑁) that is comfortably spaced above 𝐷1
and (𝑐10 log log log 𝑁)-regular by Theorem 4.1 and Siegel-less above 𝐷1 by Proposition 5.14 so that

|𝑊 | ≥ (1 − 𝜖)Φ𝑟 (𝑁) with 𝜖 � (log log 𝑁)−𝑐

for some absolute constant 𝑐 > 0. Then, applying Theorem 5.13, we see that we can restrict to acceptable
boxes by introducing an error � (log log 𝑁)−𝑐 . In other words, it suffices to show that we have for any
acceptable box 𝑋 ⊆ 𝑆𝑟 (𝑁)���� |{𝑥 ∈ 𝑋 : rk4 Cl+(𝑥) = 𝑘}|

|𝑋 | − lim
𝑛→∞

𝑃(𝑛|𝑘)
���� � (log log 𝑁)−𝑐 . (5.6)

Take X to be an acceptable box. Then one can check that there exist constants that satisfy the
requirements in Theorem 5.9 applied to the prebox (𝑋1 × · · · × 𝑋𝑟 ,∅). Then Theorem 5.9 shows that the
Rédei matrices of 𝑥 ∈ 𝑋 are equidistributed amongst all 𝑟 × 𝑟 symmetric matrices over F2 with column
sum zero, up to reordering some columns and rows, with an error within the statement. Since reordering
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columns and rows does not change the rank, we can assume that the Rédei matrix is a random 𝑟 × 𝑟
symmetric matrix over F2 with column sum zero.

Let A be the matrix obtained from the Rédei matrix after removing a column and a row. It is a
classical fact that rk4 Cl+(𝑥) is equal to the corank of A. But A is a random (𝑟 − 1) × (𝑟 − 1) symmetric
matrix. By [15, Theorem 2], we have for all 𝑛 ≥ 𝑘 ≥ 0

𝑃(𝑛|𝑘) = 𝑁 (𝑛, 𝑛 − 𝑘)
2

𝑛(𝑛+1)
2

=
1

2
𝑛(𝑛+1)

2

𝑛−𝑘
2∏
𝑖=1

22𝑖

22𝑖 − 1
·
𝑛−𝑘−1∏
𝑖=0

(2𝑛−𝑖 − 1)

=
1

2
𝑘 (𝑘+1)

2

𝑛−𝑘
2∏
𝑖=1

22𝑖

22𝑖 − 1
·
𝑛−𝑘−1∏
𝑖=0

(1 − 2𝑖−𝑛)

if 𝑛 − 𝑘 ≡ 0 mod 2 and

𝑃(𝑛|𝑘) = 𝑁 (𝑛, 𝑛 − 𝑘)
2

𝑛(𝑛+1)
2

=
1

2
𝑛(𝑛+1)

2

𝑛−𝑘−1
2∏
𝑖=1

22𝑖

22𝑖 − 1
·
𝑛−𝑘−1∏
𝑖=0

(2𝑛−𝑖 − 1)

=
1

2
𝑘 (𝑘+1)

2

𝑛−𝑘−1
2∏
𝑖=1

22𝑖

22𝑖 − 1
·
𝑛−𝑘−1∏
𝑖=0

(1 − 2𝑖−𝑛)

if 𝑛− 𝑘 ≡ 1 mod 2, where 𝑁 (𝑛, 𝑘) denotes the number of symmetric 𝑛× 𝑛-matrices with coefficients in
F2 and rank k. Using this, one directly bounds the difference 𝑃(𝑟 − 1|𝑘) − lim𝑛→∞ 𝑃(𝑛|𝑘), completing
the proof. �

Gerth [8, Theorem 2.2] also studied the difference 𝑃(𝑟 − 1|𝑘) − lim𝑛→∞ 𝑃(𝑛|𝑘) but without giving
a rate of convergence. It is for this reason that we appeal to the work [15] instead.

6. Proof of main theorems

Recall from the introduction that

D𝑛,𝑚 (𝑋) = {𝐷 ∈ D(𝑋) : rk4 Cl(𝐷) = rk4 Cl+(𝐷) = 𝑛 and rk8 Cl+(𝐷) = 𝑚}.

We also define

D𝑛 (𝑋) = {𝐷 ∈ D(𝑋) : rk4 Cl+(𝐷) = 𝑛}.

In this section, we prove the following theorem.

Theorem 6.1. There are 𝐴, 𝑁0 > 0 such that for all 𝑁 > 𝑁0 and all integers 𝑛2 ≥ 𝑛3 ≥ 0, we have����D𝑛2 ,𝑛3 (𝑁)
�� − 𝑄(𝑛2 |𝑛3) ·

��D𝑛2 (𝑁)
���� ≤ 𝐴|D(𝑁) |

log log log log 𝑁
.

Theorem 5.16 and Theorem 6.1 together imply Theorem 1.2. Hence it remains to prove Theorem 6.1.
Our first step is to reduce to sufficiently nice boxes X. We formalise this in our next definition.

Definition 6.2. Let 𝑟 ≥ 1 be an integer, let 𝑋 = 𝑋1 × . . . × 𝑋𝑟 be a box, and let 𝑁 ≥ 101010 be a real
number. Put

𝐷1 := 𝑒 (log log 𝑁 )1/10
, 𝜂 :=

√
log log log 𝑁.
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We let W be the maximal subset of 𝑆𝑟 (𝑁) that is comfortably spaced above 𝐷1, 𝜂-regular and disjoint
from the sets 𝑉𝑖 in Proposition 5.14. We call X a nice box for N if 𝑋 ⊆ 𝑆𝑟 (𝑁), 𝑋 ∩𝑊 ≠ ∅ and r satisfies
equation (4.3).

Proposition 6.3. There are 𝐴, 𝑁0 > 0 such that for all 𝑁 > 𝑁0, all nice boxes X for N and all integers
𝑛2 ≥ 𝑛3 ≥ 0, we have����𝑋 ∩D𝑛2 ,𝑛3 (𝑁)

�� − 𝑄(𝑛2 |𝑛3) ·
��𝑋 ∩D𝑛2 (𝑁)

���� ≤ 𝐴|𝑋 |
log log log log 𝑁

.

Proof that Proposition 6.3 implies Theorem 6.1. From Erdős—Kac (see equation (4.2)), it follows that
we only need to consider r satisfying equation (4.3). For each such r, we apply Proposition 5.13 with
W as in Definition 6.2; the required lower bound for |𝑊 | follows from the material in Section 4 and
Proposition 5.14. �

Given a box X and 𝑎 : M → {±1}, our next step is to reduce to 𝑋 (𝑎). However, it turns out that we
cannot prove equidistribution for all 𝑎 : M → {±1}, but only if a is generic in the following sense.

Definition 6.4. For a field K and for integers 𝑎, 𝑏 ≥ 0, we denote by Mat(𝐾, 𝑎, 𝑏) the set of 𝑎 × 𝑏-
matrices with coefficients in K. Let 𝜄 be the unique group isomorphism between {±1} and F2. For the
rest of the paper, we will use

M := {(𝑖, 𝑗) : 1 ≤ 𝑖 < 𝑗 ≤ 𝑟}, N := ∅.

Given 𝑎 : M → {±1}, we associate a symmetric matrix 𝐴 ∈ Mat(F2, 𝑟, 𝑟) by setting for all 𝑖 < 𝑗

𝐴(𝑖, 𝑗) = 𝜄 ◦ 𝑎(𝑖, 𝑗), 𝐴( 𝑗 , 𝑖) = 𝜄 ◦ 𝑎(𝑖, 𝑗)

and finally

𝐴(𝑖, 𝑖) = 𝜄 ◦
𝑟∏
𝑗=1

𝑎(𝑖, 𝑗).

Think of F𝑟2 as column vectors. We define the vector space

V𝑎,2 = {𝑣 ∈ F𝑟2 : 𝑣𝑇 𝐴 = 0} = {𝑣 ∈ F𝑟2 : 𝐴𝑣 = 0}.

Let 𝑅 := (1, . . . , 1) so that 𝑅 ∈ V𝑎,2. Put 𝑛2 (𝑎) := −1 + dimF2 V𝑎,2.
Let N be a large real, and let 𝑋 = 𝑋1 × . . . × 𝑋𝑟 be a nice box for N. Choose an index 𝑘gap such that

the extravagant spacing of X is between 𝑘gap and 𝑘gap + 1. Set

𝑛max :=
⌊√

3 log log log log log 𝑁
⌋
.

We say that 𝑎 : M → {±1} is generic for X if 𝑛2 (𝑎) ≤ 𝑛max, and furthermore we have for all
𝑆 ∈ V𝑎,2 \ 〈𝑅〉 and all 𝑖 ∈ F2 that��������{ 𝑗 ∈ [𝑟] :

𝑘gap

2
≤ 𝑗 ≤ 𝑘gap and 𝜋 𝑗 (𝑆) = 𝑖

}���� − 𝑘gap

4

���� ≤ 2−10𝑛max · 𝑘gap (6.1)

and ������{ 𝑗 ∈ [𝑟] : 𝑘gap < 𝑗 ≤ 2𝑘gap and 𝜋 𝑗 (𝑆) = 𝑖
}�� − 𝑘gap

2

���� ≤ 2−10𝑛max · 𝑘gap. (6.2)
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We shall prove that the Artin pairing Art2 is equidistributed in 𝑋 (𝑎) under favorable circumstances.
For this reason, we make the following definition.

Definition 6.5. We say that a bilinear pairing

Art2 : V𝑎,2 × V𝑎,2 → F2

is valid if the right kernel contains (1, . . . , 1). Fix a basis 𝑤1, . . . 𝑤𝑛2 , 𝑅 for V𝑎,2. Using this basis, we
may identify Art2 with a (𝑛2 + 1) × (𝑛2 + 1) matrix with coefficients in F2. Since (1, . . . , 1) is in the
right kernel, we may also naturally identify Art2 with a (𝑛2 + 1) × 𝑛2 matrix. Finally, define for a box X

𝑋 (𝑎, Art2) := {𝑥 ∈ 𝑋 (𝑎) : the Artin pairing of 𝑥 equals Art2}.

Here one defines the Artin pairing of x as follows:

Art2 (𝑥) (𝑖, 𝑗) :=

〈 ∑
𝑎∈[𝑟 ]

𝜋𝑎 (𝑤 𝑗 )𝜒𝜋𝑎 (𝑥) ,
∏
𝑏∈[𝑟 ]

𝜋𝑏 (𝑥) 𝜋𝑏 (𝑤𝑖 )
〉
𝑥

,

where 𝑤𝑖 and 𝑤 𝑗 are allowed to be equal to R and 〈·, ·〉𝑥 is the pairing defined in Section 2. We recall
that rk4 Cl(𝑥) = rk4 Cl+(𝑥) if and only if (1, . . . , 1) is in the left kernel of Art2 (𝑥). Furthermore, the
dimension of the left kernel of Art2(𝑥) is precisely one more than the dimension of 4 Cl+(𝑥) [8].

If 𝑋 = 𝑋1 × · · · × 𝑋𝑟 is a box with 𝐷1 sufficiently large, we recall that k is the largest index such that
|𝑋𝑘 | = 1.

Proposition 6.6. There are 𝐴, 𝑁0 > 0 such that for all 𝑁 > 𝑁0, all nice boxes X for N, all integers
𝑛2 ≥ 0, all generic 𝑎 : M → {±1} for X with 𝑛2(𝑎) = 𝑛2 and

|𝑋 𝑗 (𝑎, (𝑥1, . . . 𝑥𝑘 )) | ≥
1

(log 𝑡𝑘+1)100 · |𝑋 𝑗 | (6.3)

for all 𝑘 < 𝑗 ≤ 𝑟 , and all valid Artin pairings Art2, we have���|𝑋 (𝑎, Art2) | − 2−𝑛2 (𝑛2+1) |𝑋 (𝑎) |
��� ≤ 𝐴|𝑋 (𝑎) |

(log log log log 𝑁)4 .

Here we write 𝑥1, . . . , 𝑥𝑘 for the unique elements of 𝑋1, . . . , 𝑋𝑘 .

Proof that Proposition 6.6 implies Proposition 6.3. Take N to be a large integer, and take X to be a nice
box for N. If N is sufficiently large and 𝑛2 > 𝑛max, we have

lim
𝑘→∞

𝑃(𝑘 |𝑛2) = 𝑂

(
1

log log log log 𝑁

)
.

Then it follows from equation (5.6) that����𝑋 ∩D𝑛2 ,𝑛3 (𝑁)
�� − 𝑄(𝑛2 |𝑛3) ·

��𝑋 ∩D𝑛2 (𝑁)
���� ≤ 2

��𝑋 ∩D𝑛2 (𝑁)
�� ≤ 𝐴|𝑋 |

log log log log 𝑁

for a sufficiently large constant 𝐴 > 0. From now on, suppose that 𝑛2 ≤ 𝑛max. We deduce from
Hoeffding’s inequality that the proportion of S in F𝑟2 failing equation (6.1) or equation (6.2) is bounded
by

𝑂
(
exp

(
−2−20𝑛2

max · 𝑘gap

))
.
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Given 𝑆 ∉ 〈𝑅〉, the proportion of 𝑎 : M → {±1} with 𝑆 ∈ V𝑎,2 is 𝑂 (0.5𝑟 ). Taking the union over all S
in F𝑟2 failing equation (6.1) or equation (6.2) proves that the proportion of nongeneric a is at most

𝑂
(
exp

(
−2−20𝑛2

max · 𝑘gap

))
.

Put 𝑘2 := �0.25𝑘gap�. Then we have for all 𝜎 ∈ P(𝑘2) that 𝑎 : M → {±1} is generic if and only if
𝜎(𝑎) is generic, where 𝜎(𝑎) is defined in the natural way. Theorem 5.9 implies that

∑
𝑎:M→{±1}

������2−|M | · |𝑋 | − 1
𝑘2!

∑
𝜎∈P(𝑘2)

|𝑋 (𝜎(𝑎)) |

������ ≤ (𝑘−𝛿1
2 + 𝑡 ′−𝛿2

𝑘+1 ) · |𝑋 |,

where 𝛿1 and 𝛿2 are small, positive absolute constants. Restricting this sum to the nongeneric a shows
that the union of 𝑋 (𝑎) over all nongeneric a is within the error term of Proposition 6.3. We now deal
with the 𝑎 : M → {±1} that fail equation (6.3). Let j be an integer satisfying 𝑘 < 𝑗 ≤ 𝑟 . We say that
𝑎, 𝑎′ : M → {±1} are equivalent at j, which we write as 𝑎 ∼ 𝑗 𝑎′, if 𝑎(𝑖, 𝑗) = 𝑎′(𝑖, 𝑗) for all 1 ≤ 𝑖 ≤ 𝑘 .
Since our box is 𝜂-regular, we see that k is roughly equal to log log 𝐷1. In particular, if N is sufficiently
large, we get

𝑘 ≤ 2 log log 𝐷1 =
1
5

log log log 𝑁.

Then there are at most 2 1
5 log log log 𝑁 equivalence classes. Furthermore, if 𝑎 : M → {±1} is such that

equation (6.3) fails for some fixed j, we have that������ ⋃
𝑎′:𝑎∼ 𝑗𝑎′

𝑋 (𝑎′)

������ ≤ 1
(log 𝑡𝑘+1)100 · |𝑋 |,

where the union is over all 𝑎′ : M → {±1} equivalent to 𝑎 : M → {±1} at j. Summing this over all
choices of j and all equivalence classes, we stay within the error term of Proposition 6.3. So far, we have
shown����𝑋 ∩D𝑛2 ,𝑛3 (𝑁)

�� − 𝑄(𝑛2 |𝑛3) ·
��𝑋 ∩D𝑛2 (𝑁)

����
≤

∑
𝑎 generic

𝑎 sat. eq. (6.3)
𝑛2 (𝑎)=𝑛2

∑
rk(Art2)=𝑛2−𝑛3

Art2 valid

���|𝑋 (𝑎, Art2) | − 2−𝑛2 (𝑛2+1) |𝑋 (𝑎) |
��� + 𝐴|𝑋 |

log log log log 𝑁
.

Note that we could have further restricted the sum over Artin pairings to only those with bottom row
identically 0. However, the displayed inequality suffices for our purposes. We now apply Proposition
6.6 for every generic 𝑎 : M → {±1} for X such that it satisfies equation (6.3) and 𝑛2 (𝑎) = 𝑛2, and all
valid Artin pairings Art2 with rk(Art2) = 𝑛2 − 𝑛3. Since there are at most

2𝑛2 (𝑛2+1) ≤ 2𝑛max (𝑛max+1)

valid Artin pairings, we get∑
𝑎 generic

𝑎 sat. eq. (6.3)
𝑛2 (𝑎)=𝑛2

∑
rk(Art2)=𝑛2−𝑛3

Art2 valid

���|𝑋 (𝑎, Art2) | − 2−𝑛2 (𝑛2+1) |𝑋 (𝑎) |
��� ≤ 2𝑛max (𝑛max+1) 𝐴|𝑋 |

(log log log log 𝑁)4

as desired. �
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In our next definition, we introduce the notion of variable indices, which are by definition certain
subsets S of [𝑟]. At the very end of this section, we will reduce to the case where we have chosen one
element 𝑥𝑖 ∈ 𝑋𝑖 for all 𝑖 ∈ [𝑟] − 𝑆, whence the terminology.

Definition 6.7. Let 𝑎 : M → {±1}. Recall that we fixed a basis 𝑤1, . . . 𝑤𝑛2 , 𝑅 for V𝑎,2 in Definition 6.5.
Let 1 ≤ 𝑗1 ≤ 𝑛2+1, and let 1 ≤ 𝑗2 ≤ 𝑛2. Let 𝐸 𝑗1 , 𝑗2 be the (𝑛2+1)×𝑛2-matrix with 𝐸 𝑗1 , 𝑗2 ( 𝑗1, 𝑗2) = 1 and 0
otherwise, and let 𝐹𝑗1 , 𝑗2 be the dual basis. Any nonzero multiplicative character 𝐹 : Mat(F2, 𝑛2+1, 𝑛2) →
{±1} can be written as

𝐹 = 𝜄−1 ◦
∑

1≤ 𝑗1≤𝑛2+1
1≤ 𝑗2≤𝑛2

𝑐 𝑗1 , 𝑗2 𝐹𝑗1 , 𝑗2

with not all 𝑐 𝑗1 , 𝑗2 zero. A set 𝑆 ⊆ [𝑟] is called a set of variable indices for F if there are 𝑖1(𝐹), 𝑖2(𝐹) ∈ 𝑆
such that

𝑘gap

2
≤ 𝑖 ≤ 𝑘gap for all 𝑖 ∈ 𝑆 \ {𝑖2(𝐹)}, 𝑘gap < 𝑖2(𝐹) ≤ 2𝑘gap

and

◦ if 𝑐𝑛2+1, 𝑗2 = 0 for all 1 ≤ 𝑗2 ≤ 𝑛2 and 𝑐 𝑗1 , 𝑗1 = 0 for all 1 ≤ 𝑗1 ≤ 𝑛2 and 𝑐 𝑗1 , 𝑗2 = 0 implies 𝑐 𝑗2 , 𝑗1 = 0 for
all 1 ≤ 𝑗1, 𝑗2 ≤ 𝑛2, we choose any pair ( 𝑗1, 𝑗2) such that 𝑐 𝑗1 , 𝑗2 = 1. Furthermore, choose |𝑆(𝐹) | = 2,

𝑖1(𝐹) ∈
⋂
𝑖≠ 𝑗1

{ 𝑗 ∈ [𝑟] : 𝜋 𝑗 (𝑤𝑖) = 0} ∩ { 𝑗 ∈ [𝑟] : 𝜋 𝑗 (𝑤 𝑗1 ) = 1}

and

𝑖2(𝐹) ∈
⋂
𝑖≠ 𝑗2

{ 𝑗 ∈ [𝑟] : 𝜋 𝑗 (𝑤𝑖) = 0} ∩ { 𝑗 ∈ [𝑟] : 𝜋 𝑗 (𝑤 𝑗2 ) = 1};

◦ if there are 1 ≤ 𝑗1, 𝑗2 ≤ 𝑛2 such that 𝑐 𝑗1 , 𝑗2 = 1 and 𝑐 𝑗2 , 𝑗1 = 0, choose such a pair ( 𝑗1, 𝑗2). Next
choose |𝑆(𝐹) | = 3 and

𝑆(𝐹) ⊆
⋂

𝑖∉{ 𝑗1 , 𝑗2 }
{ 𝑗 ∈ [𝑟] : 𝜋 𝑗 (𝑤𝑖) = 0}

and

𝑆(𝐹) ∩ { 𝑗 ∈ [𝑟] : 𝜋 𝑗 (𝑤 𝑗1 ) = 1, 𝜋 𝑗 (𝑤 𝑗2 ) = 0} = {𝑖1(𝐹)}

and

𝑆(𝐹) ∩ { 𝑗 ∈ [𝑟] : 𝜋 𝑗 (𝑤 𝑗2 ) = 1, 𝜋 𝑗 (𝑤 𝑗1 ) = 0} = {𝑖2(𝐹)}

and

𝑆(𝐹) ∩ { 𝑗 ∈ [𝑟] : 𝜋 𝑗 (𝑤 𝑗1 ) = 1, 𝜋 𝑗 (𝑤 𝑗2 ) = 1} = ∅;

◦ in all other cases, choose a pair ( 𝑗2, 𝑗2) such that 𝑐 𝑗2 , 𝑗2 = 1 or choose a pair (𝑛2 + 1, 𝑗2) such that
𝑐𝑛2+1, 𝑗2 = 1. We pick |𝑆(𝐹) | = 2 and

𝑖1(𝐹) ∈
⋂
𝑖≠ 𝑗2

{ 𝑗 ∈ [𝑟] : 𝜋 𝑗 (𝑤𝑖) = 0} ∩ { 𝑗 ∈ [𝑟] : 𝜋 𝑗 (𝑤 𝑗2 ) = 1}
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and

𝑖2 (𝐹) ∈
𝑛2⋂
𝑖=1

{ 𝑗 ∈ [𝑟] : 𝜋 𝑗 (𝑤𝑖) = 0}.

If 𝑎 : M → {±1} is generic for X, we will now show that one can find variable indices provided that
r is sufficiently large. Our essential tool is the following combinatorial lemma.

Lemma 6.8. Assume that 𝑎 : M → {±1} is generic for X. If 𝑤1, . . . , 𝑤𝑑 , 𝑅 ∈ V𝑎,2 are linearly
independent, then we have for all v ∈ F𝑑2��������{𝑖 ∈ [𝑟] :

𝑘gap

2
≤ 𝑖 ≤ 𝑘gap and 𝜋𝑖 (𝑤 𝑗 ) = 𝜋 𝑗 (v) for all 1 ≤ 𝑗 ≤ 𝑑

}���� − 𝑘gap

2𝑑+1

���� ≤ 3𝑑 · 𝑘gap

210𝑛max
.

Proof. We proceed by induction on d. The base case 𝑑 = 1 follows immediately from equation (6.1).
Now suppose that 𝑑 > 1. We define for w ∈ F𝑑2

𝑔(w) =
����{𝑖 ∈ [𝑟] :

𝑘gap

2
≤ 𝑖 ≤ 𝑘gap and 𝜋𝑖 (𝑤 𝑗 ) = 𝜋 𝑗 (w) for all 1 ≤ 𝑗 ≤ 𝑑

}����.
Let v ∈ F𝑑2 be given. Let v1, v2, v3 be the three unique pairwise distinct vectors such that 𝜋𝑑−2 (v𝑖) =
𝜋𝑑−2 (v) and v𝑖 ≠ v. We have

2
����𝑔(v) − 𝑘gap

2𝑑+1

���� ≤ �����3𝑔(v) +
3∑
𝑖=1

𝑔(v𝑖) −
3𝑘gap

2𝑑

����� +
����� 𝑘gap

2𝑑−1 − 𝑔(v) −
3∑
𝑖=1

𝑔(v𝑖)

�����
≤

3∑
𝑖=1

����𝑔(v) + 𝑔(v𝑖) −
𝑘gap

2𝑑

���� + ����� 𝑘gap

2𝑑−1 − 𝑔(v) −
3∑
𝑖=1

𝑔(v𝑖)

�����.
Now apply the induction hypothesis. �

With this lemma, it is straightforward to find variable indices provided that a is generic for X and
r is sufficiently large. We can now formulate our next reduction step. For a subset 𝑇 ⊆ [𝑟], a point
𝑃 ∈

∏
𝑖∈𝑇 𝑋𝑖 and 𝑎 : M → {±1}, we say that P is consistent with a if(

𝜋𝑖 (𝑃)
𝜋 𝑗 (𝑃)

)
= 𝑎(𝑖, 𝑗)

for all distinct 𝑖, 𝑗 ∈ 𝑇 with 𝑖 < 𝑗 .

Proposition 6.9. There are 𝐴, 𝑁0 > 0 such that for all 𝑁 > 𝑁0, all nice boxes X for N, all integers
𝑛2 ≥ 0, all generic 𝑎 : M → {±1} for X with 𝑛2 (𝑎) = 𝑛2, all nonzero multiplicative characters F from
Mat(F2, 𝑛2 + 1, 𝑛2) to {±1}, all sets of variable indices S for F and all 𝑄 ∈

∏
𝑖∈[𝑘gap ]−𝑆 𝑋𝑖 consistent

with a such that

|𝑋 𝑗 (𝑎, 𝑄) | ≥ 4−𝑘gap · |𝑋 𝑗 | (6.4)

for all 𝑗 ∈ 𝑆, we have ������ ∑
𝑥∈𝑋 (𝑎,𝑄)

𝐹 (Art2(𝑥))

������ ≤ 𝐴|𝑋 (𝑎, 𝑄) |
(log log log log 𝑁)4 .
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Proof that Proposition 6.9 implies Proposition 6.6. Let F be a nonzero multiplicative character from
Mat(F2, 𝑛2 + 1, 𝑛2) to {±1}. We claim that there exist absolute constants 𝐴′, 𝑁 ′

0 > 0 such that for all
𝑁 > 𝑁 ′

0 ������ ∑
𝑥∈𝑋 (𝑎)

𝐹 (Art2(𝑥))

������ ≤ 𝐴′ |𝑋 (𝑎) |
(log log log log 𝑁)4 . (6.5)

Once we establish equation (6.5), Proposition 6.6 follows easily. Take a set of variable indices S for F.
We split the sum in equation (6.5) over all 𝑄 ∈

∏
𝑖∈[𝑘gap ]−𝑆 𝑋𝑖 consistent with a. If Q satisfies equation

(6.4) for all 𝑗 ∈ 𝑆, we apply Proposition 6.9 with this S. It remains to bound∑
𝑄∈

∏
𝑖∈[𝑘gap ]−𝑆 𝑋𝑖

𝑄 consistent with 𝑎
𝑄 fails eq. (6.4)

|𝑋 (𝑎, 𝑄) |. (6.6)

But this follows quickly from an application of Proposition 5.11 with the prebox

(𝑋𝑘+1(𝑎, 𝑃) × · · · × 𝑋𝑟 (𝑎, 𝑃), 𝑃),

where P is the union of 𝑥1, . . . , 𝑥𝑘 . Note that we make crucial usage of equation (6.3) to validate the
fourth condition of Proposition 5.11. �

It remains to prove Proposition 6.9, which we shall do now.

Proof of Proposition 6.9. Put

𝑀 :=
⌊
(log log log log 𝑁)20⌋ , 𝑆′ := [𝑘gap] ∩ 𝑆, 𝑚 := |𝑆′ |.

Define

𝑋 ′ :=
∏
𝑖∈𝑆′

𝑋𝑖 (𝑎, 𝑄),

and

𝑌 := {𝑥 ∈ 𝑋 ′ : 𝑥 is consistent with 𝑎}.

Also set 𝑅 := �exp
(
exp

(
0.2𝑘gap

) )
�. We let 𝑍1

var, . . . , 𝑍 𝑡var be a longest sequence of subsets of 𝑋 ′ satisfying

◦ we have for all 1 ≤ 𝑠 ≤ 𝑡 the equality

𝑍𝑠var =
∏
𝑖∈𝑆′

𝑍𝑠𝑖

for some subset 𝑍𝑠𝑖 of 𝑋𝑖 (𝑎, 𝑄) with cardinality M;
◦ we have 𝑍𝑠var ⊆ 𝑌 and every 𝑦 ∈ 𝑌 is in at most R different 𝑍𝑠var;
◦ for all distinct 1 ≤ 𝑠, 𝑠′ ≤ 𝑡, we have

��𝑍𝑠var ∩ 𝑍𝑠
′

var
�� ≤ 1.

Define 𝑌bad as

𝑌bad :=
{
𝑦 ∈ 𝑌 :

��{1 ≤ 𝑠 ≤ 𝑡 : 𝑦 ∈ 𝑍 𝑠var
}�� < 𝑅

}
,
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and let 𝛿 be the density of 𝑌bad in 𝑋 ′. With a greedy algorithm, we can construct a subset W of 𝑌bad of
density at least 𝛿/𝑅𝑀𝑚 such that |𝑊 ∩ 𝑍𝑠var | ≤ 1 for all s. If there were to be subsets 𝑍𝑖 ⊆ 𝑋𝑖 (𝑎, 𝑄) for
each 𝑖 ∈ 𝑆′ satisfying |𝑍𝑖 | = 𝑀 and ∏

𝑖∈𝑆′
𝑍𝑖 ⊆ 𝑊,

we could extend our sequence 𝑍1
var, . . . , 𝑍 𝑡var to a longer sequence. Hence we may apply the contrapositive

of Proposition 4.1 of Smith [18] to infer

𝑀 >
exp(0.3𝑘gap)

5 log(𝑅𝑀𝑚/𝛿) ,

since |𝑋𝑖 (𝑎, 𝑄) | ≥ exp(exp(0.3𝑘gap)) for sufficiently large N thanks to equation (6.4) and the regular
spacing. This yields

𝛿 <
𝑅𝑀𝑚

exp
(

exp(0.3𝑘gap)
5𝑀

) ≤ exp(−0.25 exp(𝑘gap)) (6.7)

if N is sufficiently large. An application of the Chebotarev density theorem (see Theorem 5.1) shows
that for 𝑖 > 𝑘gap

|𝑋𝑖 (𝑎, 𝑄 × 𝑍𝑠var) | =
|𝑋𝑖 (𝑎, 𝑄) |

2𝑀𝑚
(
1 + 𝑂

(
𝑒−2𝑘gap

))
, (6.8)

where we made use of the extravagant spacing of 𝑘gap. We can deal with a potential exceptional zero
due to our Siegel-less assumption on X and the famous theorem of Heilbronn [9]. Then Proposition 5.7
implies that for each 𝑦 ∈ 𝑌 the quantity |𝑋 (𝑎, 𝑄 × {𝑦}) | is of the expected size. Hence equation (6.7)
implies that ��������

∑
𝑥∈𝑋 (𝑎,𝑄)
𝜋𝑆′ (𝑥) ∈𝑌bad

𝐹 (Art2 (𝑥))

�������� ≤
∑

𝑥∈𝑋 (𝑎,𝑄)
𝜋𝑆′ (𝑥) ∈𝑌bad

1

is easily within the error of our proposition. Given 𝑍𝑠var, we define

Hull(𝑍𝑠var) := {𝑄} × 𝑍𝑠var ×
∏

𝑗∈[𝑟 ]−[𝑘gap ]
𝑋 𝑗 (𝑎, 𝑄 × 𝑍𝑠var).

For each 𝑥 ∈ 𝑋 (𝑎, 𝑄) with 𝜋𝑆′ (𝑥) ∉ 𝑌bad, we define the counting function

Λ(𝑥) :=
��{1 ≤ 𝑠 ≤ 𝑡 : 𝑥 ∈ Hull(𝑍𝑠var)

}��.
We shall compute the first and second moment of Λ(𝑥). Since the second moment will turn out to be
approximately the square of the first moment, we see that the value of Λ(𝑥) is roughly constant. Then
we shall use this to reduce to spaces of the shape Hull(𝑍𝑠var) ∩ 𝑋 (𝑎, 𝑄).
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We start by computing the first moment as follows:∑
𝑥∈𝑋 (𝑎,𝑄)
𝜋𝑆′ (𝑥)∉𝑌bad

Λ(𝑥) =
∑

𝑦∈𝑌 \𝑌bad

∑
𝑥∈𝑋 (𝑎,𝑄)
𝜋𝑆′ (𝑥)=𝑦

∑
1≤𝑠≤𝑡

1𝑥∈Hull(𝑍 𝑠
var)

=
∑

𝑦∈𝑌 \𝑌bad

∑
1≤𝑠≤𝑡

��𝑋 (𝑎, 𝑄) ∩ Hull(𝑍𝑠var) ∩ 𝜋−1
𝑆′ (𝑦)

��.
The last expression is obviously 0 if 𝑦 ∉ 𝑍𝑠var. If 𝑦 ∈ 𝑍𝑠var, we make an appeal to equation (6.8) and
Proposition 5.7 to deduce��𝑋 (𝑎, 𝑄) ∩ Hull(𝑍𝑠var) ∩ 𝜋−1

𝑆′ (𝑦)
�� = ��𝑋 (𝑎, 𝑄) ∩ 𝜋−1

𝑆′ (𝑦)
��

2(𝑀−1)𝑚· | [𝑟 ]−[𝑘gap ] |

(
1 + 𝑂

(
𝑒−𝑘gap

))
.

Since there are precisely R values of s such that 𝑦 ∈ 𝑍𝑠var, we conclude that the first moment of Λ(𝑥) is
equal to

𝑅

2(𝑀−1)𝑚· | [𝑟 ]−[𝑘gap ] |

(
1 + 𝑂

(
𝑒−𝑘gap

))
.

To compute the second moment, we expand Λ(𝑥)2 as∑
𝑥∈𝑋 (𝑎,𝑄)
𝜋𝑆′ (𝑥)∉𝑌bad

Λ(𝑥)2 =
∑

𝑦∈𝑌 \𝑌bad

∑
𝑥∈𝑋 (𝑎,𝑄)
𝜋𝑆′ (𝑥)=𝑦

∑
1≤𝑠≤𝑡

∑
1≤𝑠′ ≤𝑡

1𝑥∈Hull(𝑍 𝑠
var)1𝑥∈Hull(𝑍 𝑠′

var) ,

which we split as∑
𝑦∈𝑌 \𝑌bad

∑
𝑥∈𝑋 (𝑎,𝑄)
𝜋𝑆′ (𝑥)=𝑦

∑
1≤𝑠≤𝑡

1𝑥∈Hull(𝑍 𝑠
var) +

∑
𝑦∈𝑌 \𝑌bad

∑
𝑥∈𝑋 (𝑎,𝑄)
𝜋𝑆′ (𝑥)=𝑦

∑
1≤𝑠,𝑠′ ≤𝑡
𝑠≠𝑠′

1𝑥∈Hull(𝑍 𝑠
var)∩Hull(𝑍 𝑠′

var) .

We have already seen how to deal with the first sum. To treat the second sum, we first rewrite it as∑
𝑦∈𝑌 \𝑌bad

∑
1≤𝑠,𝑠′ ≤𝑡
𝑠≠𝑠′

���𝑋 (𝑎, 𝑄) ∩ Hull(𝑍𝑠var) ∩ Hull(𝑍𝑠′var) ∩ 𝜋−1
𝑆′ (𝑦)

���.
Next observe that the above sum is zero if 𝑦 ∉ 𝑍𝑠var ∩ 𝑍𝑠

′
var. If 𝑦 ∈ 𝑍𝑠var ∩ 𝑍𝑠

′
var, we have, again due to the

Chebotarev density theorem and Proposition 5.7, that���𝑋 (𝑎, 𝑄) ∩ Hull(𝑍𝑠var) ∩ Hull(𝑍𝑠′var) ∩ 𝜋−1
𝑆′ (𝑦)

��� = ��𝑋 (𝑎, 𝑄) ∩ 𝜋−1
𝑆′ (𝑦)

��
22(𝑀−1)𝑚· | [𝑟 ]−[𝑘gap ] |

(
1 + 𝑂

(
𝑒−𝑘gap

))
.

There are precisely 𝑅2−𝑅 pairs of (𝑠, 𝑠′) such that 𝑦 ∈ 𝑍𝑠var∩𝑍𝑠
′

var and 𝑠 ≠ 𝑠′. Hence the second moment
equals(

𝑅2 − 𝑅

22(𝑀−1)𝑚· | [𝑟 ]−[𝑘gap ] |
+ 𝑅

2(𝑀−1)𝑚· | [𝑟 ]−[𝑘gap ] |

) (
1 + 𝑂

(
𝑒−𝑘gap

))
=

𝑅2

22(𝑀−1)𝑚· | [𝑟 ]−[𝑘gap ] |

(
1 + 𝑂

(
𝑒−𝑘gap

))
.

Having computed the first and second moment, we apply Chebyshev’s inequality to deduce that outside
a set of density 𝑂

(
𝑒−0.5𝑘gap

)
in the subset of those 𝑥 ∈ 𝑋 (𝑎, 𝑄) satisfying 𝜋𝑆′ (𝑥) ∉ 𝑌bad, we have that����Λ(𝑥) − 𝑅

2(𝑀−1)𝑚· | [𝑟 ]−[𝑘gap ] |

���� ≤ 𝑅𝑒−0.25𝑘gap

2(𝑀−1)𝑚· | [𝑟 ]−[𝑘gap ] |
.
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From this, we easily deduce that it suffices to prove that������ ∑
𝑥∈𝑋 (𝑎,𝑄)∩Hull(𝑍 𝑠

var)
𝐹 (Art2 (𝑥))

������ ≤ 𝐴|𝑋 (𝑎, 𝑄) ∩ Hull(𝑍𝑠var) |
(log log log log 𝑁)4 .

Since we are only dealing with one 𝑍𝑠var at a time, we will abbreviate it as Z. If 𝑚 = 2, we will also write
𝑍 = 𝑍1 × 𝑍2 with 𝑖1(𝐹) ∈ 𝑍1.

We will now define a field L depending on the shape of F as in Definition 6.7. If we are in the first
case, we have 𝑚 = 1, and we set

𝐿 :=
∏

(𝑝1 , 𝑝2) ∈𝑍×𝑍
𝜙𝑝1 𝑝2 ,−1.

Here we construct the fields 𝜙𝑝1 𝑝2 ,−1 as follows. First pick 𝑝1 ∈ 𝑍 arbitrary and choose fields 𝜙𝑝1 𝑝 𝑗 ,−1
in Funr

𝑝1 𝑝 𝑗 ,−1 for all 𝑝 𝑗 ≠ 𝑝1. Then we define 𝜙𝑝𝑖 𝑝 𝑗 ,−1 to be the unique element of Funr
𝑝𝑖 𝑝 𝑗 ,−1 contained in

the compositum 𝜙𝑝1 𝑝𝑖 ,−1𝜙𝑝1𝑝 𝑗 ,−1. If we are instead in the second case, we have 𝑚 = 2, and we define

𝐿 :=
∏

(𝑝1 , 𝑝2 ,𝑞1 ,𝑞2) ∈𝑍1×𝑍1×𝑍2×𝑍2

𝜙𝑝1 𝑝2 ,𝑞1𝑞2 .

In this case, we pick 𝑝1 ∈ 𝑍1, 𝑞1 ∈ 𝑍2 arbitrary, and we choose fields 𝜙𝑝1𝑝𝑖 ,𝑞1𝑞𝑘 in Funr
𝑝1 𝑝𝑖 ,𝑞1𝑞𝑘 for all

𝑝𝑖 ≠ 𝑝1 and all 𝑞𝑘 ≠ 𝑞1. Then we define 𝜙𝑝𝑖 𝑝 𝑗 ,𝑞𝑘𝑞𝑙 to be the unique element of Funr
𝑝𝑖 𝑝 𝑗 ,𝑞𝑘𝑞𝑙 contained in

the compositum 𝜙𝑝1 𝑝𝑖 ,𝑞1𝑞𝑘 𝜙𝑝1 𝑝 𝑗 ,𝑞1𝑞𝑘 𝜙𝑝1 𝑝𝑖 ,𝑞1𝑞𝑙 𝜙𝑝1 𝑝 𝑗 ,𝑞1𝑞𝑙 .
Finally, if we are in the third case, we have 𝑚 = 1 again, and we put

𝐿 :=
∏

(𝑝1 , 𝑝2) ∈𝑍×𝑍
𝜙𝑝1𝑝2 ,𝑥 ,

where

𝑥 := (𝑝1 𝑝2)𝑐 𝑗2 , 𝑗2 · (−1)𝑐𝑛2+1, 𝑗2 .

Let K be the largest multiquadratic extension ofQ inside L. In each case, we have a natural isomorphism

Gal(𝐿/𝐾) � A(𝑍). (6.9)

In the first case, this isomorphism is given by

𝜎 ↦→
(
(𝑝1, 𝑝2) ↦→ 𝜋 (𝑝1 , 𝑝2) (𝜎)

)
,

where 𝜋 (𝑝1 , 𝑝2) is the natural quotient map Gal(𝐿/𝐾) → Gal(𝐾𝜙𝑝1𝑝2 ,−1/𝐾) � F2. In the second and
third cases, we have similar isomorphisms.

Note that any prime 𝑝 ∈ 𝑋 𝑗 (𝑎, 𝑄) splits completely in K by construction. Given 𝜎 ∈ Gal(𝐿/𝐾), we
define 𝑋 𝑗 (𝑎, 𝑄 × 𝑍, 𝜎) be the subset of primes 𝑝 ∈ 𝑋 𝑗 (𝑎, 𝑄 × 𝑍) that map to 𝜎 under Frobenius. Then
Lemma 3.1 and Proposition 5.1 yield

|𝑋𝑖2 (𝐹 ) (𝑎, 𝑄 × 𝑍, 𝜎) | =
|𝑋𝑖2 (𝐹 ) (𝑎, 𝑄 × 𝑍) |

2(𝑀−1)𝑚

(
1 + 𝑂

(
𝑒−𝑘gap

))
.
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Proposition 5.11 shows that for almost all choices of 𝑄gap ∈
∏

[𝑟 ]−[𝑘gap ]−𝑖2 (𝐹 ) 𝑋 𝑗 (𝑎, 𝑄 × 𝑍) consistent
with a, we have that |𝑋𝑖2 (𝐹 ) (𝑎, 𝑄 × 𝑄gap × 𝑍) | is of the expected size and furthermore

|𝑋𝑖2 (𝐹 ) (𝑎, 𝑄 × 𝑄gap × 𝑍, 𝜎) | =
|𝑋𝑖2 (𝐹 ) (𝑎, 𝑄 × 𝑄gap × 𝑍) |

2(𝑀−1)𝑚

(
1 + 𝑂

(
𝑒−𝑘gap

))
(6.10)

for all 𝜎 ∈ Gal(𝐿/𝐾). By construction, we have that

𝑍final := {𝑄} × 𝑍 × {𝑄gap} × 𝑋𝑖2 (𝐹 ) (𝑎, 𝑄 × 𝑄gap × 𝑍) ⊆ 𝑋 (𝑎, 𝑄),

so it suffices to prove that ����� ∑
𝑥∈𝑍final

𝐹 (Art2(𝑥))

����� ≤ 𝐴|𝑍final |
(log log log log 𝑁)4 . (6.11)

Now pick

𝜖 :=
1

(log log log log 𝑁)4 .

We formally apply Theorem 3.3 to 𝑍 × [𝑀]. We see that Theorem 3.3 guarantees the existence of
𝑔spec ∈ A(𝑍 × [𝑀]) such that 𝑔spec is not 𝜖-bad. Now pick any 𝑥1, . . . , 𝑥𝑀 ∈ 𝑋𝑖2 (𝐹 ) (𝑎, 𝑄 × 𝑄gap × 𝑍).
Then we can define a map [𝑀] × [𝑀] → Gal(𝐿/𝐾) by

𝑔(𝑖, 𝑗) := Frob𝐿/𝐾 (𝑥𝑖) + Frob𝐿/𝐾 (𝑥 𝑗 ),

which we can naturally view as a map [𝑀] × [𝑀] → A(𝑍) due to the isomorphism in equation (6.9).
Hence g naturally becomes an element of A(𝑍 × [𝑀]).

We claim that we can find disjoint ordered subsets 𝐴1, . . . , 𝐴𝑘 of 𝑋𝑖2 (𝐹 ) (𝑎, 𝑄 × 𝑄gap × 𝑍) whose
union is the whole set 𝑋𝑖2 (𝐹 ) (𝑎, 𝑄×𝑄gap × 𝑍) except for a small remainder such that defining g as above
for each 𝐴1, . . . , 𝐴𝑘 , we get 𝑔spec under the natural identifications.

Let 𝑔′
spec : [𝑀] × [𝑀] → Gal(𝐿/𝐾) be the map that is sent to 𝑔spec under the natural identifications.

Suppose that elements 𝑥1, . . . , 𝑥𝑀 ∈ 𝑋𝑖2 (𝐹 ) (𝑎, 𝑄 × 𝑄gap × 𝑍) are given. Now look at the equation

𝑔′
spec (𝑖, 𝑗) := Frob𝐿/𝐾 (𝑥𝑖) + Frob𝐿/𝐾 (𝑥 𝑗 ).

We see that one can freely choose 𝑥1, and then all the Frob𝐿/𝐾 (𝑥 𝑗 ) for 𝑗 > 1 are uniquely determined
by 𝑔′

spec(𝑖, 𝑗) and Frob𝐿/𝐾 (𝑥1). Now an appeal to equation (6.10) finishes the proof of our claim.
Now pick one of the 𝐴𝑖 and suppose that 𝐴𝑖 = {𝑥1, . . . , 𝑥𝑀 }. Let 𝐹 : 𝑍final → F2 be the map that

sends x to 𝜄 ◦ 𝐹 (Art2(𝑥)). We can restrict 𝐹 to 𝐴𝑖 and then naturally view 𝐹 as a map from 𝑍 × [𝑀] to
F2. Theorem 3.3 then implies equation (6.11) and therefore Proposition 6.9, provided that we can verify
the identity 𝑑𝐹 = 𝑔′

spec.
We distinguish three cases depending on the type of F as in Definition 6.7. In the first case, we

apply Theorem 2.11 and Theorem 2.12. Let ( 𝑗1, 𝑗2) be the entry as chosen in Definition 6.7, so that
𝑐 𝑗1 , 𝑗2 = 𝑐 𝑗2 , 𝑗1 = 1. Theorem 2.12 gives

𝑑𝐹𝑗1 , 𝑗2 = 𝑔′
spec,
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where 𝐹𝑗1 , 𝑗2 is obtained from 𝐹𝑗1 , 𝑗2 in the same way as 𝐹 was obtained from F. Now consider any
( 𝑗3, 𝑗4) not equal to ( 𝑗1, 𝑗2), with 1 ≤ 𝑗3 ≤ 𝑛2 + 1, 1 ≤ 𝑗4 ≤ 𝑛2 and 𝑐 𝑗3 , 𝑗4 = 1. Then we have 𝑗3 ≤ 𝑛2
and 𝑐 𝑗4 , 𝑗3 = 1. Hence Theorem 2.11 implies

𝑑𝐹𝑗3 , 𝑗4 = 0.

Altogether, we conclude that 𝑑𝐹 = 𝑔′
spec.

We now deal with the second case. Once more let ( 𝑗1, 𝑗2) be the entry as chosen in Definition 6.7,
so that 1 ≤ 𝑗1, 𝑗2 ≤ 𝑛2, 𝑐 𝑗1 , 𝑗2 = 1 and 𝑐 𝑗2 , 𝑗1 = 0. Two applications of part (ii) of Theorem 2.9 show that

𝑑𝐹𝑗1 , 𝑗2 = 𝑔′
spec.

Two applications of Theorem 2.10 show that for all 1 ≤ 𝑗2 ≤ 𝑛2,

𝑑𝐹𝑗2 , 𝑗2 = 0,

while two applications of part (i) of Theorem 2.9 imply

𝑑𝐹𝑗3 , 𝑗4 = 0

for all 1 ≤ 𝑗3 ≤ 𝑛2 + 1, 1 ≤ 𝑗4 ≤ 𝑛2 such that ( 𝑗1, 𝑗2) ∉ {( 𝑗3, 𝑗4), ( 𝑗4, 𝑗3)} and 𝑗3 ≠ 𝑗4. This finishes
the proof of the second case.

It remains to treat the third case, which follows from an application of Theorem 2.9 and
Theorem 2.10. �
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