RESEARCH ARTICLE

The 8-rank of the narrow class group and the negative Pell equation

Stephanie Chan ${ }^{\left({ }^{1}\right)}$, Peter Koymans ${ }^{®_{2}}$, Djordjo Milovic ${ }^{3}$ and Carlo Pagano ${ }^{4}$
${ }^{1}$ University of Michigan, 530 Church Street, Ann Arbor, MI 48109, United States of America; E-mail: ytchan@umich.edu.
${ }^{2}$ University of Michigan, 530 Church Street, Ann Arbor, MI 48109, United States of America; E-mail: koymans@umich.edu.
${ }^{3}$ University College London, 25 Gordon Street, London, WC1E 6BT, United Kingdom.
${ }^{4}$ University of Glasgow, University Place, Glasgow, G12 8SQ, United Kingdom; E-mail: carlein90@ gmail.com.

Received: 11 July 2021; Revised: 27 April 2022; Accepted: 17 May 2022
Keywords: Class groups, negative Pell
2020 Mathematics subject classification: Primary - 11N45, 11R29, 11R45, 11R65; Secondary - 11R11, 11R37

Abstract

Using a recent breakthrough of Smith [18], we improve the results of Fouvry and Klüners [4,5] on the solubility of the negative Pell equation. Let \mathcal{D} denote the set of positive squarefree integers having no prime factors congruent to 3 modulo 4. Stevenhagen [19] conjectured that the density of d in \mathcal{D} such that the negative Pell equation $x^{2}-d y^{2}=-1$ is solvable with $x, y \in \mathbb{Z}$ is 58.1%, to the nearest tenth of a percent. By studying the distribution of the 8 -rank of narrow class groups $\mathrm{Cl}^{+}(d)$ of $\mathbb{Q}(\sqrt{d})$, we prove that the infimum of this density is at least 53.8\%.

Contents

1 Introduction 2
2 Algebraic results 4
2.1 Rédei symbols 4
2.2 Reflection principles 6
3 A combinatorial result 11
4 Prime divisors 12
4.1 Some estimates 13
4.1.1 Upper bound for rough numbers 13
4.1.2 Upper bound for smooth numbers 14
4.2 Proof of Theorem 4.1 15
4.2.1 Proof of Theorem 4.11 15
4.2.2 Proof of Theorem 4.12 16
4.2.3 Proof of Theorem 4.13 18
5 Equidistribution of Legendre symbol matrices 20
6 Proof of main theorems 34

[^0]
1. Introduction

In recent years, much progress has been made in the study of the distribution of 2-parts of class groups of quadratic number fields, most notably by Fouvry and Klüners [4, 5] and Smith [18]. One way to test the robustness of new methods in this subject is to study their applications to a conjecture of Stevenhagen [19] concerning the solvability over \mathbb{Z} of the negative Pell equation

$$
\begin{equation*}
x^{2}-d y^{2}=-1 \tag{1.1}
\end{equation*}
$$

Here and henceforth, we take d to be a positive squarefree integer. Equation (1.1) is solvable over \mathbb{Z} if and only if the ordinary and narrow class groups of the quadratic field $\mathbb{Q}(\sqrt{d})$, denoted by $\mathrm{Cl}(d)$ and $\mathrm{Cl}^{+}(d)$, respectively, coincide. As the odd parts of $\mathrm{Cl}(d)$ and $\mathrm{Cl}^{+}(d)$ are isomorphic, the frequency of solvability of equation (1.1) is intimately related to the joint distribution of the 2-primary parts of $\mathrm{Cl}(d)$ and $\mathrm{Cl}^{+}(d)$. We note that $\mathrm{Cl}(d) / 2 \mathrm{Cl}(d) \cong \mathrm{Cl}^{+}(d) / 2 \mathrm{Cl}^{+}(d)$ if and only if d is in the set

$$
\mathcal{D}=\{d \text { positive squarefree integer }: p \mid d \Longrightarrow p \not \equiv 3 \bmod 4\}
$$

which we occasionally refer to as the Pell family. As \mathcal{D} has natural density 0 in the set of all squarefree integers, it is more meaningful to study density questions concerning the solvability of equation (1.1) relative to \mathcal{D} than relative to the set of all squarefree integers.

One of the main conjectures in [19] is that

$$
\lim _{X \rightarrow \infty} \frac{\left|\mathcal{D}^{-}(X)\right|}{|\mathcal{D}(X)|}=1-\alpha=0.58057 \ldots,
$$

where

$$
\begin{gathered}
\mathcal{D}(X)=\{d \in \mathcal{D}: d \leq X\} \\
\mathcal{D}^{-}(X)=\{d \in \mathcal{D}(X):(1.1) \text { is solvable over } \mathbb{Z}\}
\end{gathered}
$$

and

$$
\alpha=\prod_{j \text { odd }}\left(1-2^{-j}\right)=\prod_{j=1}^{\infty}\left(1+2^{-j}\right)^{-1}=0.41942 \ldots
$$

We remark that the constant α already appears in the work of Cremona-Odoni [3], namely as the constant λ_{∞}. These authors studied the negative Pell equation when the number of prime divisors is fixed, which is traditionally viewed as a simpler problem.

Until now, the best bounds in the direction of Stevenhagen's conjecture are due to Fouvry and Klüners [6, 7], who used the methods they developed in [5] to prove that

$$
\begin{equation*}
\frac{5}{4} \alpha \leq \liminf _{X \rightarrow \infty} \frac{\left|\mathcal{D}^{-}(X)\right|}{|\mathcal{D}(X)|} \leq \limsup _{X \rightarrow \infty} \frac{\left|\mathcal{D}^{-}(X)\right|}{|\mathcal{D}(X)|} \leq \frac{2}{3} . \tag{1.2}
\end{equation*}
$$

By incorporating the methods developed by Smith [18], we can improve the lower bound.
Theorem 1.1. With $\mathcal{D}(X), \mathcal{D}^{-}(X)$ and α defined as above, we have

$$
\liminf _{X \rightarrow \infty} \frac{\left|\mathcal{D}^{-}(X)\right|}{|\mathcal{D}(X)|} \geq \alpha \beta,
$$

where

$$
\beta=\sum_{n=0}^{\infty} 2^{-n(n+3) / 2}=1.28326 \ldots
$$

We note that $\beta>5 / 4$. To the nearest tenth of a percent, Stevenhagen's conjecture states that the density of $d \in \mathcal{D}$ for which (1.1) is solvable over \mathbb{Z} is 58.1%. Fouvry and Klüners proved that the lower density is at least 52.4%, and we prove that the lower density is at least 53.8%.

For a finite abelian group G and an integer $k \geq 1$, we let $\mathrm{rk}_{2^{k}} G=\operatorname{dim}_{\mathbb{F}_{2}}\left(2^{k-1} G / 2^{k} G\right)$; this is called the 2^{k}-rank of G. The nonincreasing sequence of nonnegative integers $\left\{\mathrm{rk}_{2^{k}} G\right\}_{k}$ determines the isomorphism class of the 2-primary part of G. Hence

$$
\text { (1.1) is solvable } \Longleftrightarrow \mathrm{rk}_{2^{k}} \mathrm{Cl}(d)=\mathrm{rk}_{2^{k}} \mathrm{Cl}^{+}(d) \text { for all integers } k \geq 1 .
$$

The lower bound in (1.2) comes from proving that the density of $d \in \mathcal{D}$ such that

$$
\mathrm{rk}_{4} \mathrm{Cl}^{+}(d)=0
$$

is equal to α and the density of $d \in \mathcal{D}$ such that

$$
\mathrm{rk}_{4} \mathrm{Cl}(d)=\mathrm{rk}_{4} \mathrm{Cl}^{+}(d)=1 \text { and } \mathrm{rk}_{8} \mathrm{Cl}^{+}(d)=0
$$

is equal to $\alpha / 4$. We obtain our lower bound by proving that the density of $d \in \mathcal{D}$ such that

$$
\mathrm{rk}_{4} \mathrm{Cl}(d)=\mathrm{rk}_{4} \mathrm{Cl}^{+}(d)=n \text { and } \mathrm{rk}_{8} \mathrm{Cl}^{+}(d)=0
$$

is equal to $2^{-n(n+3) / 2} \alpha$. In fact, we will prove more. Define $P(r \mid n)$ to be the probability that a uniformly chosen r by r symmetric matrix with coefficients in \mathbb{F}_{2} has rank $r-n$ and define $Q(n \mid m)$ to be the probability that a uniformly chosen $(n+1) \times n$ matrix with coefficients in \mathbb{F}_{2} has a bottom row consisting of all zeroes and rank $n-m$.

Theorem 1.2. Let $\mathcal{D}(X)$ and α be as above, and, for integers $n \geq m \geq 0$, let

$$
\mathcal{D}_{n, m}(X)=\left\{d \in \mathcal{D}(X): \mathrm{rk}_{4} \mathrm{Cl}(d)=\mathrm{rk}_{4} \mathrm{Cl}^{+}(d)=n \text { and } \mathrm{rk}_{8} \mathrm{Cl}^{+}(d)=m\right\} .
$$

Then

$$
\lim _{X \rightarrow \infty} \frac{\left|\mathcal{D}_{n, m}(X)\right|}{|\mathcal{D}(X)|}=Q(n \mid m) \cdot \lim _{r \rightarrow \infty} P(r \mid n)=\alpha \cdot 2^{-n(n+1)} \frac{\prod_{j=m+1}^{n}\left(2^{n}-2^{n-j}\right)}{\prod_{k=1}^{m}\left(2^{k}-1\right) \prod_{l=1}^{n-m}\left(2^{l}-1\right)} .
$$

It is the first equality that we shall prove in Section 6. The second equality is a straightforward computation but has the nice feature that it makes immediately visible how Theorem 1.2 implies Theorem 1.1. We note that our proof of Theorem 1.2 gives an alternative proof of [5, Theorem 2] and [7, Theorem 2].

The major novel difficulty with working in the Pell family is that the integers $d \in \mathcal{D}$ have the remarkable property that the sets

$$
\{a \mid d: a>0, a \text { squarefree, }(a,-d / a)=1\}
$$

and

$$
\{b \mid d: b>0, b \text { squarefree, }(b, d / b)=1\}
$$

coincide, where (\cdot, \cdot) denotes the Hilbert symbol. However, for Smith's method to work, it is essential that these spaces typically intersect trivially. For instance, this is used in [18, p.76] to argue that most
assignments a are generic. This is not the case for the Pell family, and all the integers $d \in \mathcal{D}$ end up in the error term in Smith's proof. It is therefore of utmost importance to extend Smith's algebraic results.

We introduce a different notion of genericity in equations (6.1) and (6.2) to circumvent this. This necessitates new algebraic results, which can be found in Section 2. These algebraic results essentially rely on the fact that we are working with the 8 -rank, which brings manipulations with Redei symbols into play; see [20] for an extensive treatment of Rédei symbols. Note that this approach is inspired by Smith's first paper [17]. However, the result in [17] assumes GRH, which we avoid by borrowing from the ideas that Smith introduced in his breakthrough paper [18].

In Section 4, we give more direct proofs of the results that appear in [18, Section 5] and concern the typical distribution of prime divisors of a squarefree integer. Of course, we once again adapt these results to d coming from the Pell family \mathcal{D}.

2. Algebraic results

We start this section by introducing the Rédei symbol, which will play a prominent role throughout the paper. Then we prove several identities on the sum of four Rédei symbols, which serve as the algebraic input for our analytic machinery.

2.1. Rédei symbols

We shall review the fundamental properties of Rédei symbols. Our main reference is Stevenhagen's recent work [20]. Fix a separable closure $\mathbb{Q}^{\text {sep }}$ of \mathbb{Q}. All our number fields are implicitly taken inside this fixed separable closure. If K is a number field, we write $G_{K}:=\operatorname{Gal}\left(\mathbb{Q}^{\text {sep }} / K\right)$ for its absolute Galois group.

Definition 2.1. Write Ω for the collection of the places of \mathbb{Q}. For a place v in Ω, we write $(-,-)_{v}$ for the Hilbert symbol. If K / \mathbb{Q} is a finite extension, write Δ_{K} for the discriminant of K / \mathbb{Q}.

Definition 2.2. Let $a, b \in \mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}$. If a is nontrivial, write χ_{a} for the unique character $\chi_{a}: G_{\mathbb{Q}} \rightarrow \mathbb{F}_{2}$ with kernel $G_{\mathbb{Q}(\sqrt{a})}$. We say that (a, b) is acceptable if we have that $(a, b)_{v}=1$ for each $v \in \Omega$.

In case one of a, b is trivial, then (a, b) is clearly acceptable. Now suppose a and b are both nontrivial. Then (a, b) is acceptable if and only if there exists a Galois extension L / \mathbb{Q} containing $\mathbb{Q}(\sqrt{a}, \sqrt{b})$, with $\operatorname{Gal}(L / \mathbb{Q}(\sqrt{a b}))$ cyclic of order 4 , and such that every element $\sigma \in \operatorname{Gal}(L / \mathbb{Q})$ with $\chi_{a}(\sigma) \neq \chi_{b}(\sigma)$ must be an involution: that is, $\sigma^{2}=\mathrm{id}$.

If $a=b$, we are simply requiring L / \mathbb{Q} to be a cyclic extension of degree 4 of \mathbb{Q} containing $\mathbb{Q}(\sqrt{a})$. If $a \neq b$, we are requiring L / \mathbb{Q} to be dihedral of degree 8 with $\operatorname{Gal}(L / \mathbb{Q}(\sqrt{a b}))$ cyclic of order 4 . When a, b are both nontrivial and (a, b) is acceptable, denote by $\mathcal{F}_{a, b}$ the collection of fields L / \mathbb{Q} described above.

Write $\Gamma_{\mathbb{F}_{2}}(\mathbb{Q}):=\operatorname{Hom}_{\text {top.gr. }}\left(G_{\mathbb{Q}}, \mathbb{F}_{2}\right)$. For $\chi \in \Gamma_{\mathbb{F}_{2}}(\mathbb{Q})$, write $\mathbb{Q}(\chi):=\left(\mathbb{Q}^{\operatorname{sep}}\right)^{\operatorname{ker}(\chi)}$. We put $\Gamma_{\mathbb{F}_{2}}(\mathbb{Q},\{a, b\}):=\frac{\Gamma_{\bar{P}_{2}}(\mathbb{Q})}{\left\langle\left\{\chi_{a}, \chi_{b}\right\}\right\rangle}$. Note that the set $\mathcal{F}_{a, b}$ is equipped with a difference, which is a map $-: \mathcal{F}_{a, b} \times \mathcal{F}_{a, b} \rightarrow \Gamma_{\mathbb{F}_{2}}(\mathbb{Q},\{a, b\})$ such that for all $L_{1}, L_{2}, L_{3} \in \mathcal{F}_{a, b}$,

$$
\left(L_{3}-L_{2}\right)+\left(L_{2}-L_{1}\right)=L_{3}-L_{1}
$$

and $L_{2}-L_{1}=0$ if and only if $L_{1}=L_{2}$. Indeed, for $L_{1}, L_{2} \in \mathcal{F}_{a, b}$, we define $L_{2}-L_{1}$ to be the unique $\chi \in \Gamma_{\mathbb{F}_{2}}(\mathbb{Q},\{a, b\})$ such that $\mathbb{Q}(\chi) \cdot L_{2} \supseteq L_{1}$.

Therefore each $L \in \mathcal{F}_{a, b}$ induces an explicit bijection between $\mathcal{F}_{a, b}$ and $\Gamma_{\mathbb{F}_{2}}(\mathbb{Q},\{a, b\})$. For any subgroup $H \leq \Gamma_{\mathbb{F}_{2}}(\mathbb{Q},\{a, b\})$, we say that $S \subseteq \mathcal{F}_{a, b}$ is a H-coset if there exists some $s_{0} \in S$ such that $S=\left\{s \in \mathcal{F}_{a, b}: s-s_{0} \in H\right\}$.

Now let (a, b) be an acceptable pair such that a and b are not divisible by any prime congruent to 3 modulo 4. Write $a=t_{a} \prod_{l \mid a} l$ and $b=t_{b} \prod_{l^{\prime} \mid b} l^{\prime}$, where the products run over all odd primes
$l \mid a$ and $l^{\prime} \mid b$. Define $\Gamma_{\mathbb{F}_{2}}^{\mathrm{unr}}(\mathbb{Q},\{a, b\})$ to be the subgroup of $\Gamma_{\mathbb{F}_{2}}(\mathbb{Q},\{a, b\})$ generated by the set $\left\{\chi_{p}: p \mid a\right\} \cup\left\{\chi_{p}: p \mid b\right\} \cup\left\{\chi_{t_{a}}, \chi_{t_{b}}\right\}$. One calls an element $L \in \mathcal{F}_{a, b}$ minimally ramified (see [20, Definition 7.4]) if

- $L / \mathbb{Q}(\sqrt{a}, \sqrt{b})$ does not ramify above any odd, finite place $v \nmid \operatorname{gcd}\left(\Delta_{\mathbb{Q}(\sqrt{a})}, \Delta_{\mathbb{Q}(\sqrt{b})}\right)$;
- $L / \mathbb{Q}(\sqrt{a}, \sqrt{b})$ is unramified at 2 if $\Delta_{\mathbb{Q}(\sqrt{a})} \Delta_{\mathbb{Q}(\sqrt{b})}$ is odd or if one of the discriminants is 1 modulo 8;
- if $\left\{\Delta_{\mathbb{Q}(\sqrt{a})}, \Delta_{\mathbb{Q}(\sqrt{b})}\right\}$ is the set $\{4,5\}$ modulo 8 , then we ask that $L / \mathbb{Q}(\sqrt{a b})$ is 2-minimally ramified; see [20, Definition 7.3].
We denote by $\mathcal{F}_{a, b}^{\text {unr }}$ the subset of $\mathcal{F}_{a, b}$ consisting of minimally ramified elements. As it is shown in [20, Lemma 7.5], the set $\mathcal{F}_{a, b}^{\mathrm{urr}}$ is a $\Gamma^{\mathrm{unr}}(\mathbb{Q},\{a, b\})$-coset (which in particular implies that it is nonempty).
Definition 2.3. Let (a, b, c) be a triple with $a, b, c \in\left(\mathbb{Q}^{*}\right) /\left(\mathbb{Q}^{*}\right)^{2}$. We say that (a, b, c) is jointly unramified if

$$
\operatorname{gcd}\left(\Delta_{\mathbb{Q}(\sqrt{a})}, \Delta_{\mathbb{Q}(\sqrt{b})}, \Delta_{\mathbb{Q}(\sqrt{c})}\right)=1 .
$$

We say that (a, b, c) is admissible if all $(a, b),(a, c),(b, c)$ are acceptable pairs; a, b and c are not divisible by any prime congruent to 3 modulo 4 ; and (a, b, c) is jointly unramified.

Observe that if a triple is admissible, then so is any permutation of it.
Definition 2.4. For any admissible triple (a, b, c), define the Rédei symbol $[a, b, c] \in \mathbb{F}_{2}$ as follows. ${ }^{1}$ If any of a, b, c is trivial, set $[a, b, c]:=0$. Assuming a, b, c are all nontrivial, choose $L \in \mathcal{F}_{a, b}^{\mathrm{unr}}$ and \mathfrak{c} an integral ideal of norm $|c|$ in the ring of integers of $\mathbb{Q}(\sqrt{a b})$; existence of \mathfrak{c} follows from admissibility of (a, b, c). Define

$$
[a, b, c]:= \begin{cases}{\left[\frac{L / \mathbb{Q}(\sqrt{a b})}{c}\right]} & \text { if } c>0 \\ {\left[\frac{L / \mathbb{Q}(\sqrt{a b})}{c \dot{\infty}}\right]} & \text { if } c<0\end{cases}
$$

where $\tilde{\infty}$ is any choice of infinite prime in $\mathbb{Q}(\sqrt{a b})$. We identify the Artin symbol with its image under the isomorphism $\operatorname{Gal}(L / \mathbb{Q}(\sqrt{a}, \sqrt{b})) \cong \mathbb{F}_{2}$.

A priori, the resulting symbol would depend on the choices of L and \mathfrak{c}, so the notation should reflect this dependency. However, the following theorem shows in particular that the symbol does not depend on any of the choices. For a proof, see [20, Theorem 7.7].
Theorem 2.5 (Rédei reciprocity). Let (a, b, c) be an admissible triple. Then $[a, b, c]$ does not depend on the choice of L and c . Furthermore,

$$
\begin{equation*}
[a, b, c]=[a, c, b] . \tag{2.1}
\end{equation*}
$$

As a consequence of Rédei reciprocity, the following proposition shows that the Rédei symbol is linear in every entry.

Proposition 2.6. Let $(a, b, c),\left(a, b^{\prime}, c\right)$ be two admissible triples. Then $\left(a, b b^{\prime}, c\right)$ is also an admissible triple, and furthermore,

$$
[a, b, c]+\left[a, b^{\prime}, c\right]=\left[a, b b^{\prime}, c\right] .
$$

Since admissibility and the Rédei symbol do not depend on the order of a, b, c in the triple, the corresponding statements hold for all three entries.

[^1]Proof. It follows from $(a, b)_{v}=\left(a, b^{\prime}\right)_{v}=1$ for all $v \in \Omega$ and the bilinearity of Hilbert symbols that $\left(a, b b^{\prime}\right)_{v}=1$ for all $v \in \Omega$. Therefore $\left(a, b b^{\prime}\right)$ is acceptable, and similarly $\left(b b^{\prime}, c\right)$. Since (a, b, c) or (a, b^{\prime}, c) are jointly ramified, we have

$$
\begin{aligned}
& \operatorname{gcd}\left(\Delta_{\mathbb{Q}(\sqrt{a})}, \Delta_{\mathbb{Q}(\sqrt{b})} \Delta_{\mathbb{Q}\left(\sqrt{b^{\prime}}\right)}, \Delta_{\mathbb{Q}(\sqrt{c})}\right)= \\
& \quad \operatorname{gcd}\left(\Delta_{\mathbb{Q}(\sqrt{a})}, \Delta_{\mathbb{Q}(\sqrt{b})}, \Delta_{\mathbb{Q}(\sqrt{c})}\right) \operatorname{gcd}\left(\Delta_{\mathbb{Q}(\sqrt{a})}, \Delta_{\mathbb{Q}\left(\sqrt{b^{\prime}}\right)}, \Delta_{\mathbb{Q}(\sqrt{c})}\right)=1 .
\end{aligned}
$$

Observe that $\Delta_{\mathbb{Q}\left(\sqrt{b b^{\prime}}\right)} \mid \Delta_{\mathbb{Q}(\sqrt{b})} \Delta_{\mathbb{Q}\left(\sqrt{b^{\prime}}\right)}$. Hence $\left(a, b b^{\prime}, c\right)$ is jointly unramified. It follows that $\left(a, b b^{\prime}, c\right)$ is an admissible triple.

Now the desired identity follows from Theorem 2.5 and the linearity of the last entry.
We need a final fact that will be crucial in the proof of Theorem 2.10. We thank Professor Stevenhagen for showing us this fact.

Proposition 2.7. Let (a, b, c) be an admissible triple such that $a, b>0$ and

$$
\operatorname{gcd}\left(\Delta_{\mathbb{Q}(\sqrt{a})}, \Delta_{\mathbb{Q}(\sqrt{b})}\right)=1
$$

Then $(a, b,-a b c)$ is also admissible and

$$
[a, b, c]=[a, b,-a b c] .
$$

Proof. Assume that a, b are both nontrivial; otherwise, the statement is immediate.
We first show that $(a, b,-a b)$ is admissible. The condition of being jointly unramified follows immediately from the assumption that $\Delta_{\mathbb{Q}(\sqrt{a})}$ and $\Delta_{\mathbb{Q}(\sqrt{b})}$ are coprime. Since $(a,-a)$ and $(b,-b)$ are always acceptable and (a, b) is acceptable by assumption, we conclude that $(a, b,-a b)$ is admissible.

We claim that $[a, b,-a b]=0$. Let us pick L in $\mathcal{F}_{a, b}^{\text {unr }}$. Since $\operatorname{gcd}\left(\Delta_{\mathbb{Q}(\sqrt{a})}, \Delta_{\mathbb{Q}(\sqrt{b})}\right)=1$, it follows that $L / \mathbb{Q}(\sqrt{a b})$ is unramified at all odd, finite places. At the prime 2, we use that $a>0$ and admissibility to deduce that $\Delta_{\mathbb{Q}(\sqrt{a})}$ is never 4 modulo 8 . Then we see that $2 \mid \Delta_{\mathbb{Q}(\sqrt{a})}$ implies that $\Delta_{\mathbb{Q}(\sqrt{b})}$ is odd by our coprimality condition and hence 1 modulo 8 , since otherwise (a, b) is not acceptable. We conclude that we are always in the second case in the definition of minimally ramified, and we conclude that $L / \mathbb{Q}(\sqrt{a b})$ is also unramified at 2 .

Furthermore, $L / \mathbb{Q}(\sqrt{a b})$ is a cyclic degree 4 extension. On the other hand, the principal ideal ($\sqrt{a b}$) generates the kernel of the natural surjection $\mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{a b})) \rightarrow \mathrm{Cl}(\mathbb{Q}(\sqrt{a b}))$. The extension $L / \mathbb{Q}(\sqrt{a b})$ is totally real if and only if this kernel acts trivially on L via the Artin map. Therefore

$$
\left[\frac{L / \mathbb{Q}(\sqrt{a b})}{(\sqrt{a b})}\right]=\left[\frac{L / \mathbb{Q}(\sqrt{a b})}{\tilde{\infty}}\right] .
$$

Hence $[a, b,-a b]=0$. By Proposition 2.6, we have that $(a, b,-a b c)$ is also admissible and

$$
[a, b, c]=[a, b, c]+[a, b,-a b]=[a, b,-a b c]
$$

as desired.

2.2. Reflection principles

We begin by recalling the connection between Rédei symbols and 8-rank pairings. Throughout this subsection, D is a positive squarefree integer with no prime divisors 3 modulo 4 .

Recall that $\mathrm{Cl}^{+}(D)$ [2] is generated by the primes above the rational primes ramifying in $\mathbb{Q}(\sqrt{D}) / \mathbb{Q}$. For each positive $b \mid D$, we define $\mathfrak{B}_{D}(b)$ to be the unique integral ideal of $\mathcal{O}_{\mathbb{Q}(\sqrt{D})}$ having norm equal to b. If $b<0$, we instead put $\mathfrak{B}_{D}(b):=\mathfrak{B}_{D}(|b|) \cdot(\sqrt{D})$. Recall that $\mathfrak{B}_{D}(b) \in 2 \mathrm{Cl}^{+}(D)[4]$ if and only if (b, D) forms an acceptable pair: that is, $(b, D)_{v}=1$ for all $v \in \Omega$.

We now define the dual class group $\mathrm{Cl}^{+}(D)^{\vee}=\operatorname{Hom}\left(\mathrm{Cl}^{+}(D), \mathbb{Q} / \mathbb{Z}\right)$. Then recall that $\mathrm{Cl}^{+}(D)^{\vee}[2]$ is generated by the characters χ_{p} with p a prime dividing D. There is precisely one relation among these characters, which comes from the fact that χ_{D} is the trivial character when restricted to $\mathbb{Q}(\sqrt{D})$. For a positive divisor $a \mid D$, we have that $\chi_{a} \in 2 \mathrm{Cl}^{+}(D)^{\vee}[4]$ if and only if $(a,-D)$ is an acceptable pair: that is, $(a,-D)_{v}=1$ for all $v \in \Omega$.

Since D is not divisible by any primes congruent to $3 \bmod 4$, we have for any positive $a \mid D$ that $(a, D)_{v}=(a,-D)_{v}$. In particular, we have for any positive $a \mid D$

$$
\begin{equation*}
\chi_{a} \in 2 \mathrm{Cl}^{+}(D)^{\vee}[4] \quad \text { if and only if } \quad \mathfrak{B}_{D}(a) \in 2 \mathrm{Cl}^{+}(D)[4] . \tag{2.2}
\end{equation*}
$$

Now let $a, b \mid \Delta_{\mathbb{Q}(\sqrt{D})}$ such that $\chi_{a} \in 2 \mathrm{Cl}^{+}(D)^{\vee}[4]$ and $\mathfrak{B}_{D}(b) \in 2 \mathrm{Cl}^{+}(D)[4]$. Then for all cyclic degree 4 extensions $L / \mathbb{Q}(\sqrt{D})$ unramified at all finite places and containing $\mathbb{Q}(\sqrt{a}, \sqrt{D})$, the Artin symbol $\left[\frac{L / \mathbb{Q}(\sqrt{D})}{\mathcal{B}_{D}(b)}\right]$ always lands in the unique cyclic subgroup of order 2 of $\operatorname{Gal}(L / \mathbb{Q}(\sqrt{D}))$, since $\mathfrak{B}_{D}(b) \in \mathrm{Cl}^{+}(D)$ [2]. Furthermore, for a fixed a, the value of the symbol does not depend on the choice of L, since $\mathfrak{B}_{D}(b) \in 2 \mathrm{Cl}^{+}(D)$ [4]. In this statement, we are implicitly identifying any two groups of size 2 in the unique possible way. The value of this symbol is by definition

$$
\left\langle\chi_{a}, b\right\rangle_{D}
$$

and we shall refer to it as the Artin pairing between χ_{a} and b. The two crucial features of this pairing are that it can be computed using Rédei symbols and that it determines $4 \mathrm{Cl}^{+}(D)[8]$ and $4 \mathrm{Cl}^{+}(D)^{\vee}[8]$ (namely, they are respectively the right and the left kernel of the pairing).

Proposition 2.8. Let (a, b) be a pair with $a, b \in \mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}$ and such that $\Delta_{\mathbb{Q}(\sqrt{a})}, \Delta_{\mathbb{Q}(\sqrt{b})}$ are coprime. Furthermore, assume that $a, b>0$ are not divisible by any prime congruent to 3 modulo 4 . Let c be a squarefree divisor of $\Delta_{\mathbb{Q}(\sqrt{a b})}$, not necessarily positive. Assume that $\chi_{a} \in 2 \mathrm{Cl}^{+}(a b)^{\vee}[4]$ and $\mathfrak{B}_{a b}(c) \in 2 \mathrm{Cl}^{+}(a b)[4]$. Then the triple (a, b, c) is admissible, and we have that

$$
\left\langle\chi_{a}, c\right\rangle_{a b}=[a, b, c] .
$$

Proof. Observe that (a, b) and $(a b, c)$ are acceptable since $\chi_{a} \in 2 \mathrm{Cl}^{+}(a b)^{\vee}[4]$ and $\mathfrak{B}_{a b}(c) \in$ $2 \mathrm{Cl}^{+}(a b)[4]$.

We claim that (a, c) is acceptable. A similar argument shows that (b, c) is acceptable. Firstly, $a>0$ implies $(a, c)_{\infty}=1$. Now we check that $(a, c)_{v}=1$ for all $v \in \Omega$ finite and odd. If $v \nmid a c$, we trivially have $(a, c)_{v}=1$. If v divides only a but not c, we have that $(a, c)_{v}=(a b, c)_{v}=1$. If v divides only c but not a, we have that $(a, c)_{v}=(a, a b)_{v}=1$. Now assume that v divides both a and c. Since $\Delta_{\mathbb{Q}(\sqrt{a})}, \Delta_{\mathbb{Q}(\sqrt{b})}$ are coprime, we must have $v \nmid b$. Also, by assumption, v^{2} cannot divide a or c, so $(b, a c)_{v}=1$. Therefore

$$
(a, c)_{v}=(a, a c)_{v}=(a b, a c)_{v}
$$

Since (a, b) and $(a b, c)$ are acceptable, we have

$$
(a, a b)_{v}=(a, b)_{v}=(a b, c)_{v}=1
$$

so $(a b, a c)_{v}=1$, as required. The remaining case $v=2$ follows from Hilbert reciprocity. This shows that (a, c) and similarly (b, c) are acceptable pairs.

Since a, b are coprime and not divisible by any prime congruent to $3 \bmod 4$, we conclude that $\operatorname{gcd}\left(\Delta_{\mathbb{Q}(\sqrt{a})}, \Delta_{\mathbb{Q}(\sqrt{b})}, \Delta_{\mathbb{Q}(\sqrt{c})}\right)=1$. Therefore the triple (a, b, c) is admissible. Now observe that any
$L \in \mathcal{F}_{a, b}^{\mathrm{unr}}$ gives a cyclic degree 4 extension of $\mathbb{Q}(\sqrt{a b})$ that is unramified at all finite places and contains $\mathbb{Q}(\sqrt{a}, \sqrt{b})$. Therefore

$$
\left\langle\chi_{a}, c\right\rangle_{a b}=\left[\frac{L / \mathbb{Q}(\sqrt{a b})}{\mathfrak{B}_{a b}(c)}\right]=[a, b, c]
$$

as was to be shown.
We are now ready to prove our main algebraic results.
Theorem 2.9. Let $d \in \mathcal{D}$. Let $p_{1}, p_{2}, q_{1}, q_{2}$ be primes that are 1 modulo 4 and coprime to d. Let a be a positive divisor of d, and let b be any (possibly negative) divisor of d. Assume that

$$
\mathfrak{B}_{p_{i} q_{j} d}(b) \in 2 \mathrm{Cl}^{+}\left(p_{i} q_{j} d\right)[4] \text { for all } i, j \in\{1,2\} .
$$

1. Suppose

$$
\chi_{a} \in 2 \mathrm{Cl}^{+}\left(p_{i} q_{j} d\right)^{\vee}[4] \text { for all }(i, j) \in i, j \in\{1,2\}
$$

Then

$$
\begin{equation*}
\left\langle\chi_{a}, b\right\rangle_{p_{1} q_{1} d}+\left\langle\chi_{a}, b\right\rangle_{p_{1} q_{2} d}+\left\langle\chi_{a}, b\right\rangle_{p_{2} q_{1} d}+\left\langle\chi_{a}, b\right\rangle_{p_{2} q_{2} d}=0 . \tag{2.3}
\end{equation*}
$$

2. Suppose instead

$$
\chi_{p_{i} a} \in 2 \mathrm{Cl}^{+}\left(p_{i} q_{j} d\right)^{\vee}[4] \text { for all }(i, j) \in i, j \in\{1,2\} .
$$

Then the triple $\left(p_{1} p_{2}, q_{1} q_{2}, b\right)$ is admissible and

$$
\begin{equation*}
\left\langle\chi_{p_{1} a}, b\right\rangle_{p_{1} q_{1} d}+\left\langle\chi_{p_{1} a}, b\right\rangle_{p_{1} q_{2} d}+\left\langle\chi_{p_{2} a}, b\right\rangle_{p_{2} q_{1} d}+\left\langle\chi_{p_{2} a}, b\right\rangle_{p_{2} q_{2} d}=\left[p_{1} p_{2}, q_{1} q_{2}, b\right] . \tag{2.4}
\end{equation*}
$$

Proof. (i) By Proposition 2.8, we obtain that the four triples $\left(a, p_{1} q_{1} \frac{d}{a}, b\right),\left(a, p_{1} q_{2} \frac{d}{a}, b\right),\left(a, p_{2} q_{1} \frac{d}{a}, b\right)$ and ($a, p_{2} q_{2} \frac{d}{a}, b$) are all admissible and the left-hand side of (2.3) equals

$$
\left[a, p_{1} q_{1} \frac{d}{a}, b\right]+\left[a, p_{1} q_{2} \frac{d}{a}, b\right]+\left[a, p_{2} q_{1} \frac{d}{a}, b\right]+\left[a, p_{2} q_{2} \frac{d}{a}, b\right]
$$

By Proposition 2.6, this sum equals

$$
\left[a, q_{1} q_{2}, b\right]+\left[a, q_{1} q_{2}, b\right]=0
$$

(ii) By Proposition 2.8, we know that the triples $\left(p_{1} a, q_{1} \frac{d}{a}, b\right),\left(p_{1} a, q_{2} \frac{d}{a}, b\right),\left(p_{2} a, q_{1} \frac{d}{a}, b\right)$ and $\left(p_{2} a, q_{2} \frac{d}{a}, b\right)$ are all admissible and that the left-hand side of (2.4) equals

$$
\left[p_{1} a, q_{1} \frac{d}{a}, b\right]+\left[p_{1} a, q_{2} \frac{d}{a}, b\right]+\left[p_{2} a, q_{1} \frac{d}{a}, b\right]+\left[p_{2} a, q_{2} \frac{d}{a}, b\right]
$$

Applying Proposition 2.6, we find that $\left(p_{1} a, q_{1} q_{2}, b\right)$ and ($\left.p_{2} a, q_{1} q_{2}, b\right)$ are also admissible and this sum equals

$$
\left[p_{1} a, q_{1} q_{2}, b\right]+\left[p_{2} a, q_{1} q_{2}, b\right]
$$

Another application of Proposition 2.6 shows that $\left(p_{1} p_{2}, q_{1} q_{2}, b\right)$ is admissible and the above sum is [$\left.p_{1} p_{2}, q_{1} q_{2}, b\right]$, completing the proof.

We remark that it is possible to prove Proposition 2.6 without using Rédei reciprocity. It is precisely this approach that works in the generality of [18, Theorem 2.8$]$. The resulting argument is substantially more involved, so for brevity, we opted to use the proofs with Rédei reciprocity. Note that Theorem 2.10, Theorem 2.11 and Theorem 2.12 have no analogues in [18].

Theorem 2.10. Let $d \in \mathcal{D}$. Take primes $p_{1}, p_{2}, q_{1}, q_{2}$ that are 1 modulo 4 and coprime to d. Let a be a positive divisor of d. We assume that

$$
\mathfrak{B}_{p_{i} q_{j} d}\left(p_{i} a\right) \in 2 \mathrm{Cl}^{+}\left(p_{i} q_{j} d\right)[4] \text { for all } i, j \in\{1,2\}
$$

Then we have

$$
\chi_{p_{i} a} \in 2 \mathrm{Cl}^{+}\left(p_{i} q_{j} d\right)^{\vee}[4] \text { for all } i, j \in\{1,2\} .
$$

Moreover, the triple ($p_{1} p_{2}, q_{1} q_{2}, p_{1} p_{2}$) is admissible and

$$
\begin{equation*}
\left\langle\chi_{p_{1} a}, p_{1} a\right\rangle_{p_{1} q_{1} d}+\left\langle\chi_{p_{1} a}, p_{1} a\right\rangle_{p_{1} q_{2} d}+\left\langle\chi_{p_{2} a}, p_{2} a\right\rangle_{p_{2} q_{1} d}+\left\langle\chi_{p_{2} a}, p_{2} a\right\rangle_{p_{2} q_{2} d}=\left[p_{1} p_{2}, q_{1} q_{2}, p_{1} p_{2}\right] . \tag{2.5}
\end{equation*}
$$

Proof. By equation (2.2), $\mathfrak{B}_{p_{i} q_{j} d}\left(p_{i} a\right) \in 2 \mathrm{Cl}^{+}\left(p_{i} q_{j} d\right)$ [4] implies that $\chi_{p_{i} a} \in 2 \mathrm{Cl}^{+}\left(p_{i} q_{j} d\right)^{\vee}$ [4] for each $i, j \in\{1,2\}$.

By Proposition 2.8, we conclude that $\left(p_{1} a, q_{1} \frac{d}{a}, p_{1} a\right),\left(p_{1} a, q_{2} \frac{d}{a}, p_{1} a\right),\left(p_{2} a, q_{1} \frac{d}{a}, p_{2} a\right)$ and $\left(p_{2} a, q_{2} \frac{d}{a}, p_{2} a\right)$ are all admissible, and furthermore that the left-hand side of (2.5) is

$$
\left[p_{1} a, q_{1} \frac{d}{a}, p_{1} a\right]+\left[p_{1} a, q_{2} \frac{d}{a}, p_{1} a\right]+\left[p_{2} a, q_{1} \frac{d}{a}, p_{2} a\right]+\left[p_{2} a, q_{2} \frac{d}{a}, p_{2} a\right] .
$$

Using Proposition 2.6, we have that $\left(p_{1} a, q_{1} q_{2}, p_{1} a\right)$ and ($\left.p_{2} a, q_{1} q_{2}, p_{2} a\right)$ are admissible triples, and the sum becomes

$$
\left[p_{1} a, q_{1} q_{2}, p_{1} a\right]+\left[p_{2} a, q_{1} q_{2}, p_{2} a\right] .
$$

Next, since $p_{1} a, q_{1} q_{2}$ are coprime and $p_{2} a, q_{1} q_{2}$ are coprime, Proposition 2.7 implies that ($p_{1} a, q_{1} q_{2},-q_{1} q_{2}$) and ($p_{2} a, q_{1} q_{2},-q_{1} q_{2}$) are admissible, and the above sum is

$$
\left[p_{1} a, q_{1} q_{2},-q_{1} q_{2}\right]+\left[p_{2} a, q_{1} q_{2},-q_{1} q_{2}\right]
$$

By Proposition 2.6, $\left(p_{1} p_{2}, q_{1} q_{2},-q_{1} q_{2}\right)$ is admissible, and the above sum is

$$
\left[p_{1} p_{2}, q_{1} q_{2},-q_{1} q_{2}\right] .
$$

Since $p_{1} p_{2}, q_{1} q_{2}$ are coprime, applying Proposition 2.7 again shows that ($p_{1} p_{2}, q_{1} q_{2}, p_{1} p_{2}$) is admissible and

$$
\left[p_{1} p_{2}, q_{1} q_{2},-q_{1} q_{2}\right]=\left[p_{1} p_{2}, q_{1} q_{2}, p_{1} p_{2}\right],
$$

which gives the desired result.
Theorem 2.11. Let $d \in \mathcal{D}$. Let $p_{1}, p_{2}, q_{1}, q_{2}$ be distinct primes that are 1 modulo 4 and coprime to d. Let a, b be a positive divisors of d. We assume that

$$
\mathfrak{B}_{p_{i} q_{j} d}(b), \mathfrak{B}_{p_{i} q_{j} d}\left(p_{i} a\right) \in 2 \mathrm{Cl}^{+}\left(p_{i} q_{j} d\right)[4] \text { for all } i, j \in\{1,2\}
$$

Then we have that

$$
\chi_{b}, \chi_{p_{i} a} \in 2 \mathrm{Cl}^{+}\left(p_{i} q_{j} d\right)^{\vee}[4] \text { for all } i, j \in\{1,2\}
$$

Furthermore, we have that

$$
\sum_{i, j \in\{1,2\}}\left\langle\chi_{p_{i} a}, b\right\rangle_{p_{i} q_{j} d}+\left\langle\chi_{b}, p_{i} a\right\rangle_{p_{i} q_{j} d}=0 .
$$

Proof. The first assertion follows from equation (2.2). By Proposition 2.8, $\left(p_{i} a, \frac{d}{a} q_{j}, b\right)$ and ($b, \frac{d}{b} p_{i} q_{j}, a p_{i}$) are admissible for all choices of i, j in $\{1,2\}$. Therefore the sum of the pairings in this proposition can be rewritten as

$$
\sum_{i, j \in\{1,2\}}\left[p_{i} a, \frac{d}{a} q_{j}, b\right]+\left[b, \frac{d}{b} p_{i} q_{j}, a p_{i}\right] .
$$

Applying Proposition 2.6, we can rewrite this as

$$
\left[p_{1} a, q_{1} q_{2}, b\right]+\left[p_{2} a, q_{1} q_{2}, b\right]+\left[b, q_{1} q_{2}, a p_{1}\right]+\left[b, q_{1} q_{2}, a p_{2}\right]=\left[p_{1} p_{2}, q_{1} q_{2}, b\right]+\left[b, q_{1} q_{2}, p_{1} p_{2}\right]=0
$$

The first equality follows from Proposition 2.6, and the last equality follows from applying Theorem 2.5.

Theorem 2.12. Let $d \in \mathcal{D}$. Let $p_{1}, p_{2}, q_{1}, q_{2}$ be distinct primes that are 1 modulo 4 and coprime to d. Let a, b be positive divisors of d. We assume that

$$
\mathfrak{B}_{p_{i} q_{j} d}\left(q_{j} b\right), \mathfrak{B}_{p_{i} q_{j} d}\left(p_{i} a\right) \in 2 \mathrm{Cl}^{+}\left(p_{i} q_{j} d\right)[4] \text { for all } i, j \in\{1,2\}
$$

Then we have that

$$
\chi_{q_{j}} b, \chi_{p_{i} a} \in 2 \mathrm{Cl}^{+}\left(p_{i} q_{j} d\right)^{\vee}[4] \text { for all } i, j \in\{1,2\}
$$

In addition, the triple $\left(p_{1} p_{2}, q_{1} q_{2},-1\right)$ is admissible and

$$
\begin{equation*}
\sum_{i, j \in\{1,2\}}\left\langle\chi_{p_{i} a}, q_{j} b\right\rangle_{p_{i} q_{j} d}+\left\langle\chi_{q_{j}} b, p_{i} a\right\rangle_{p_{i} q_{j} d}=\left[p_{1} p_{2}, q_{1} q_{2},-1\right] . \tag{2.6}
\end{equation*}
$$

Proof. The first assertion follows as usual. By Proposition 2.8, we have that the triples $\left(p_{i} a, \frac{d}{a} q_{j}, q_{j} b\right),\left(q_{j} b, \frac{d}{b} p_{i}, p_{i} a\right)$ are admissible for each choice of i, j in $\{1,2\}$, and the left-hand side of equation (2.6) equals

$$
\sum_{i, j \in\{1,2\}}\left[p_{i} a, \frac{d}{a} q_{j}, q_{j} b\right]+\left[q_{j} b, \frac{d}{b} p_{i}, p_{i} a\right] .
$$

By Proposition 2.6, we can rewrite this sum of Rédei symbols as

$$
\left[p_{1} p_{2}, \frac{d}{a} q_{1}, b q_{1}\right]+\left[p_{1} p_{2}, \frac{d}{a} q_{2}, b q_{2}\right]+\left[q_{1} q_{2}, \frac{d}{b} p_{1}, a p_{1}\right]+\left[q_{1} q_{2}, \frac{d}{b} p_{2}, a p_{2}\right]
$$

One readily checks that $p_{i} \frac{d}{b}$ is coprime to $q_{1} q_{2}$ and $q_{j} \frac{d}{a}$ is coprime to $p_{1} p_{2}$. Therefore, we can apply Proposition 2.7 to each of the terms in the above sum to obtain

$$
\left[p_{1} p_{2}, \frac{d}{a} q_{1},-d a b p_{1} p_{2}\right]+\left[p_{1} p_{2}, \frac{d}{a} q_{2},-\operatorname{dab} p_{1} p_{2}\right]+\left[q_{1} q_{2}, \frac{d}{b} p_{1},-d a b q_{1} q_{2}\right]+\left[q_{1} q_{2}, \frac{d}{b} p_{2},-d a b q_{1} q_{2}\right] .
$$

Applying Proposition 2.6, we can further simplify this and get

$$
\left[p_{1} p_{2}, q_{1} q_{2},-d a b p_{1} p_{2}\right]+\left[p_{1} p_{2}, q_{1} q_{2},-d a b q_{1} q_{2}\right]=\left[p_{1} p_{2}, q_{1} q_{2}, p_{1} p_{2} q_{1} q_{2}\right]
$$

Since $p_{1} p_{2}$ and $q_{1} q_{2}$ are coprime, we can apply Proposition 2.7 and get that $\left(p_{1} p_{2}, q_{1} q_{2},-1\right)$ is admissible and the above Rédei symbol equals $\left[p_{1} p_{2}, q_{1} q_{2},-1\right]$ as required.

3. A combinatorial result

Let X_{1}, \ldots, X_{m} be finite, nonempty sets, and let $X:=X_{1} \times \ldots \times X_{m}$. Put

$$
V:=\left\{F: X \rightarrow \mathbb{F}_{2}\right\}, \quad W:=\left\{g: X \times X \rightarrow \mathbb{F}_{2}\right\} .
$$

Given two elements $x_{1}, x_{2} \in X$ and $\mathbf{v} \in\{1,2\}^{m}$, we define $\mathbf{v}\left(x_{1}, x_{2}\right)$ to be the unique element $y \in X$ such that $\pi_{j}(y)=\pi_{j}\left(x_{\pi_{j}(\mathrm{v})}\right)$. Let $d: V \rightarrow W$ be the linear map given by

$$
d F\left(x_{1}, x_{2}\right)=\sum_{\mathbf{v} \in\{1,2\}^{m}} F\left(\mathbf{v}\left(x_{1}, x_{2}\right)\right) .
$$

We define $\mathcal{A}(X):=\operatorname{im}(d)$.
Lemma 3.1. We have that

$$
\operatorname{dim}_{\mathbb{F}_{2}} \mathcal{A}(X)=\prod_{i=1}^{m}\left(\left|X_{i}\right|-1\right) .
$$

Proof. See Proposition 9.3 of Koymans and Pagano [13].
Definition 3.2. Let $\epsilon>0$ be given. We say that F is ϵ-bad if

$$
\left|F^{-1}(0)-\frac{|X|}{2}\right| \geq \epsilon|X| .
$$

We say that $g \in \mathcal{A}(X)$ is ϵ-bad if there is ϵ-bad F such that $d F=g$.
In our application, we shall be able to prove distributional properties of g by using the Chebotarev density theorem. However, we have no direct control over F itself. Nevertheless, the following theorem will allow us to prove the desired equidistribution for F. Note the similarity to Proposition 4.3 in Smith [18]. Since we are dealing with the 8 -rank, we shall not need the more complicated Proposition 4.4 in Smith [18].

Theorem 3.3. Let $\epsilon>0$ be given. Then we have

$$
\frac{\mid\{g \in \mathcal{A}(X): g \text { is } \epsilon-\mathrm{bad}\} \mid}{|\mathcal{A}(X)|} \leq 2^{1+|X|-\prod_{i=1}^{m}\left(\left|X_{i}\right|-1\right)} \cdot \exp \left(-2 \epsilon^{2}|X|\right) .
$$

Proof. Hoeffding's inequality shows that the proportion of F that are ϵ-bad is at most

$$
\begin{equation*}
\frac{\mid\{F \in V: F \text { is } \epsilon-\mathrm{bad}\} \mid}{|V|} \leq 2 \exp \left(-2 \epsilon^{2}|X|\right) . \tag{3.1}
\end{equation*}
$$

Define

$$
a:=|X|-\prod_{i=1}^{m}\left(\left|X_{i}\right|-1\right) .
$$

By Lemma 3.1, we see that the kernel of d is an a-dimensional vector space. Combining this with equation (3.1), we infer that

$$
\frac{\mid\{g \in \mathcal{A}(X): g \text { is } \epsilon-\mathrm{bad}\} \mid}{|\mathcal{A}(X)|} \leq \frac{\mid\{F \in V: F \text { is } \epsilon-\mathrm{bad}\} \mid}{|\mathcal{A}(X)|} \leq 2^{a+1} \cdot \exp \left(-2 \epsilon^{2}|X|\right),
$$

which is the theorem.

4. Prime divisors

In [18, Section 5], Smith proved that several properties pertaining to the spacing of prime divisors of integers in the set $\{1 \leq n \leq N: \omega(n)=r, p \mid n \Rightarrow p>D\}$ occur frequently. Using different methods, we will obtain similar results on squarefree integers with no prime factor congruent to $3 \bmod 4$.

Define $S(N):=\{1 \leq n<N: p \mid n \Rightarrow p \not \equiv 3 \bmod 4, n$ squarefree $\}, S_{r}(N):=\{n \in S(N):$ $\omega(n)=r\}$ and $\mu:=\frac{1}{2} \log \log N$. A classical result by Landau [14] shows that

$$
\Phi(N):=|S(N)|=\frac{C N}{\sqrt{\log N}}+o\left(\frac{N}{\sqrt{\log N}}\right)
$$

for some constant $C>0$. We recall the prime number theorem for arithmetic progressions

$$
|\{p \leq N: p \equiv 1 \bmod 4\}|=\frac{1}{2} \operatorname{Li}(N)+O(N \exp (-c \sqrt{\log N}))
$$

Write $\Phi_{r}(N):=\left|S_{r}(N)\right|$. Then following the proof of the Sathé-Selberg theorem [16], one can deduce that there exists a constant $A>0$ such that for all $r<10 \mu$ and all $N \geq A$,

$$
\begin{equation*}
\frac{A^{-1} N}{\log N} \frac{\left(\frac{1}{2} \log \log N\right)^{r-1}}{(r-1)!} \leq \Phi_{r}(N) \leq \frac{A N}{\log N} \frac{\left(\frac{1}{2} \log \log N\right)^{r-1}}{(r-1)!} \tag{4.1}
\end{equation*}
$$

We can easily bound the number of integers with more than, say, 10μ prime divisors by computing the average number of divisors. Then by standard bounds for the tail of the Poisson distribution, it follows that

$$
\begin{equation*}
\frac{\left|\left\{n \in S(N):|\omega(n)-\mu|>\mu^{2 / 3}\right\}\right|}{|S(N)|} \ll \exp \left(-\frac{1}{3} \mu^{1 / 3}\right) \tag{4.2}
\end{equation*}
$$

In the following, for any $n \in S(N)$, write $r=\omega(n)$ and list the distinct prime factors of n as $p_{1}<p_{2}<\cdots<p_{r}$. We will prove that almost all $n \in S_{r}(N)$ have three particular types of spacing.
Theorem 4.1. Let $\epsilon>0$. Take $y_{1}>3$ and $\eta>1$. Assume

$$
\begin{equation*}
|r-\mu|<\mu^{2 / 3} \tag{4.3}
\end{equation*}
$$

Then

1. other than $<_{\epsilon} \Phi_{r}(N)\left(\left(\log y_{1}\right)^{-1}+(\log x)^{-1 / 2+\epsilon}\right)$ exceptions, all $n \in S_{r}(N)$ are comfortably spaced above $y_{1}: 2 y_{1}<p_{i}<p_{i+1} / 2$ for any $p_{i}>y_{1}$;
2. other than $\ll \Phi_{r}(N) \exp (-k \eta)$ exceptions, where k is an absolute constant, all $n \in S_{r}(N)$ are η-regularly spaced:

$$
\left|\frac{1}{2} \log \log p_{i}-i\right|<\eta^{1 / 5} \max \{i, \eta\}^{4 / 5} \text { for all } i<\frac{1}{3} r
$$

3. other than $<_{\epsilon} \Phi_{r}(N) \exp \left(-(\log \log \log N)^{1 / 3-\epsilon}\right)$ exceptions, all $n \in S_{r}(N)$ are extravagantly spaced:

$$
\log p_{i} \geq\left(\log \log p_{i}\right)^{2} \cdot \log \log \log N \cdot \sum_{j=1}^{i-1} \log p_{j} \text { for some } \frac{1}{2} r^{1 / 2}<i<\frac{1}{2} r
$$

4.1. Some estimates

4.1.1. Upper bound for rough numbers

Mertens' theorem shows that there exist constants $c, M>0$ such that for any $N>2$,

$$
\sum_{\substack{p \leq N \\ p \neq 3 \bmod 4}} \frac{1}{p}=\frac{1}{2} \log \log N+M+O(\exp (-c \sqrt{\log N}))
$$

Fixing some large enough absolute constant $B_{1}>0$, we have for any $N>2$

$$
\frac{1}{2} \log \log N-B_{1} \leq \sum_{\substack{p \leq N \\ p \neq 3 \bmod 4}} \frac{1}{p} \leq \frac{1}{2} \log \log N+B_{1}
$$

For any set of primes E, define

$$
E(N):=\sum_{\substack{p \leq N \\ p \in E}} \frac{1}{p} .
$$

We also define $\omega_{E}(n)$ to be the number of prime divisors of n that are in E. We will apply the following theorem by Tudesq [21, Theorem 2].

Theorem 4.2. There exists an absolute constant $B_{2}>0$ such that

$$
\mid\left\{n \leq N: \omega_{E_{j}}(n)=k_{j} \text { for } 0 \leq j \leq l\right\} \left\lvert\, \ll N \exp \left(-\sum_{j=0}^{l} E_{j}(N)\right) \prod_{j=0}^{l} \frac{\left(E_{j}(N)+B_{2}\right)^{k_{j}}}{k_{j}!}\right.
$$

for all $N \geq 1, l \geq 0, E_{j}$ pairwise disjoint sets of primes, $k_{j} \geq 0$.
In our application, we will take E_{0} to be the set of primes congruent to $3 \bmod 4$ and $E_{0}, E_{1}, \ldots, E_{l}$ to be pairwise disjoint sets of primes so that $\cup_{j=0}^{l} E_{j}$ contains all primes. Also take $k_{0}=0$ and $k_{1}+\cdots+k_{l}=r$. Then

$$
\left|\left\{n \in S_{r}(N): \omega_{E_{j}}(n)=k_{j}, 1 \leq j \leq l\right\}\right| \ll \frac{N}{\log N} \prod_{j=1}^{l} \frac{\left(E_{j}(N)+B_{2}\right)^{k_{j}}}{k_{j}!}
$$

We set $B:=\max \left(B_{1}+B_{2}, 100\right)$, where B_{2} is the absolute constant from Theorem 4.2.

4.1.2. Upper bound for smooth numbers

Define

$$
\Psi_{r}(N, y):=\left\{n \in S_{r}(N): p \mid n \Rightarrow p<y\right\}
$$

so that $\left|\Psi_{r}(N, y)\right|$ is the size of the set of y-smooth numbers in $S_{r}(N)$.
We will need an upper bound for smooth numbers for small $u:=\log N / \log y$. There are works treating the number of prime factors of smooth numbers [1, 10, 11], but none of them explicitly give a formula for the range of small u we are interested in. We prove an upper bound here that is sufficient for our application, although more work could be done to obtain a more precise estimate.

Lemma 4.3. Fix some $\epsilon \in(0,1)$. There exists some large enough $A>0$ such that the following holds. Take $N>y>2$ and some integer $k \geq 1$ such that $\frac{1}{2} k<\frac{1}{2} \log \log y<2 k$ and $u:=\frac{\log N}{\log y}<(\log N)^{1-\epsilon}$, and assume $u>A$. Then

$$
\Psi_{k}(N, y) \leq \frac{u^{-u} N}{\log y} \cdot \frac{\left(\frac{1}{2} \log \log y\right)^{k-1}}{(k-1)!}
$$

Proof. We have

$$
\begin{equation*}
(\log N) \Psi_{k}(N, y)=\sum_{n \in \Psi_{k}(N, y)} \log n+\sum_{n \in \Psi_{k}(N, y)} \log \frac{N}{n} \tag{4.4}
\end{equation*}
$$

We first treat the first term, which is the main contribution. Factoring each $n \in \Psi_{k}(N, y)$ gives

$$
\begin{equation*}
\sum_{n \in \Psi_{k}(N, y)} \log n \leq \sum_{m \in \Psi_{k-1}(N, y)} \sum_{\substack{p<\min \left\{\frac{N}{m}, y\right\} \\ p \equiv 3 \bmod 4}} \log p \tag{4.5}
\end{equation*}
$$

Indeed, for every $n \in \Psi_{k}(N, y)$ and every prime divisor p of n, we see that the pair $(n / p, p)$ contributes $\log p$ to the sum on the RHS of equation (4.5) so that the total contribution of n is $\log n$. Now, taking any $0<\sigma<1$, we have

$$
\sum_{\substack{p<\min \left\{\frac{N}{m}, y\right\} \\ p \neq 3 \bmod 4}} \log p \ll \min \left\{\frac{N}{m}, y\right\} \leq\left(\frac{N}{m}\right)^{\sigma} y^{1-\sigma} .
$$

Then, writing $\frac{1}{m}=\prod_{p \mid m} \frac{1}{p}$, equation (4.5) becomes

$$
\sum_{n \in \Psi_{k}(N, y)} \log n \ll N^{\sigma} y^{1-\sigma} \sum_{m \in \Psi_{k-1}(N, y)} \frac{1}{m^{\sigma}} \ll \frac{N^{\sigma} y^{1-\sigma}}{(k-1)!}\left(\sum_{\substack{p<y \\ p \neq 3 \bmod 4}} \frac{1}{p^{\sigma}}\right)^{k-1} .
$$

Take $\sigma=1-\frac{\log (u \log u)}{\log y}$, which is positive and tends to 1 since $u<(\log N)^{1-\epsilon}$. Then $N^{\sigma}=\frac{N}{(u \log u)^{u}}$ and $y^{1-\sigma}=u \log u$. Noting that $\operatorname{Li}(t)=\frac{t}{\log t}+O\left(\frac{t}{(\log t)^{2}}\right)$ and $\operatorname{Ei}(1 / t)=-\log t+O(1)$ as $t \rightarrow \infty$, we have

$$
\int_{e<t<y} \frac{d t}{t^{\sigma} \log t}=\operatorname{Li}(u \log u)-\operatorname{Ei}\left(\frac{\log (u \log u)}{\log y}\right)=\log \log y+u\left(1+O\left(\frac{\log \log u}{\log u}\right)\right)
$$

Therefore, evaluating the Stieltjes integral $\int_{t<y} \frac{d \pi(t)}{2 t^{\sigma}}$ gives

$$
\sum_{\substack{p<y \\ p \neq 3 \bmod 4}} \frac{1}{p^{\sigma}}=\frac{1}{2} \log \log y+\frac{1}{2} u\left(1+O\left(\frac{\log \log u}{\log u}\right)\right) .
$$

Putting the above together, we obtain

$$
\sum_{n \in \Psi_{k}(N, y)} \log n \ll \frac{N}{(u \log u)^{u-1}} \cdot \frac{\left(\frac{1}{2} \log \log y+\frac{1}{2} u\left(1+O\left(\frac{\log \log u}{\log u}\right)\right)\right)^{k-1}}{(k-1)!} .
$$

The second sum in equation (4.4) is at most

$$
\frac{N^{\sigma}}{\sigma} \sum_{n \in \Psi_{k}(N, y)} \frac{1}{n^{\sigma}} \leq \frac{N^{\sigma}}{\sigma \cdot k!}\left(\sum_{\substack{p<y \\ p \neq 3 \bmod 4}} \frac{1}{p^{\sigma}}\right)^{k} \ll \frac{N}{(u \log u)^{u}} \cdot \frac{\left(\frac{1}{2} \log \log y+\frac{1}{2} u\left(1+O\left(\frac{\log \log u}{\log u}\right)\right)\right)^{k}}{k!}
$$

Since $\log \log y / 2 k$ is bounded, putting back in equation (4.4) yields

$$
\Psi_{k}(N, y) \ll \frac{1}{(u \log u)^{u-1}} \cdot \frac{N}{\log N} \cdot \frac{\left(\frac{1}{2} \log \log y+\frac{1}{2} u\left(1+O\left(\frac{\log \log u}{\log u}\right)\right)\right)^{k-1}}{(k-1)!}
$$

We have

$$
\left(\frac{1}{2} \log \log y+\frac{1}{2} u\left(1+O\left(\frac{\log \log u}{\log u}\right)\right)\right)^{k-1}=\left(\frac{1}{2} \log \log y\right)^{k-1} \cdot\left(1+\frac{u}{\log \log y}\left(1+O\left(\frac{\log \log u}{\log u}\right)\right)\right)^{k-1}
$$

Since $k<\log \log y$, we get that this is at most

$$
\left(1+\frac{u}{\log \log y}\left(1+O\left(\frac{\log \log u}{\log u}\right)\right)\right)^{\log \log y} \leq e^{u\left(1+O\left(\frac{\log \log u}{\log u}\right)\right)}
$$

Because

$$
\frac{e^{u\left(1+O\left(\frac{\log \log u}{\log u}\right)\right)}}{(u \log u)^{u-1}} \ll u^{-u+1}=u^{-u} \cdot \frac{\log N}{\log y}
$$

for sufficiently large u, this implies that

$$
\Psi_{k}(N, y) \ll u^{-u} \cdot \frac{N}{\log y} \cdot \frac{\left(\frac{1}{2} \log \log y\right)^{k-1}}{(k-1)!}
$$

as desired.

4.2. Proof of Theorem 4.1

4.2.1. Proof of Theorem 4.11

The number of $n \in S_{r}(N)$ for which

$$
y_{1}<p<2 y_{1} \text { for some } p \mid n \text { or } y_{1}<q<p<2 q \text { for some } p q \mid n
$$

is bounded by

$$
\sum_{\substack{y_{1}<p_{i}<2 y_{1} \\ p \equiv 1 \bmod 4}} \Phi_{r-1}\left(\frac{N}{p}\right)+\sum_{\substack{y_{1}<q<\sqrt{N} \\ q \equiv 1 \bmod 4\\}} \sum_{\substack{q<p<2<2 q \\ p \equiv 1 \bmod 4}} \Phi_{r-2}\left(\frac{N}{p q}\right)
$$

Split the sum into the cases $p<N^{1 / 4}$ and $p>N^{1 / 4}$. First, bound the sum $p<N^{1 / 4}$ and assume $y_{1}<N^{1 / 4}$; otherwise the sum is zero. Using equation (4.1), we see that the sum is bounded by

$$
\ll \Phi_{r}(N) \sum_{\substack{y_{1}<p<2 y_{1} \\ p \equiv 1 \bmod 4}} \frac{1}{p}+\Phi_{r}(N) \sum_{\substack{y_{1}<q<\sqrt{N} \\ q \equiv 1 \bmod 4}} \sum_{\substack{q<p<2 q \\ p \equiv 1 \bmod 4}} \frac{1}{p q} \ll \frac{\Phi_{r}(N)}{\log y_{1}} .
$$

The sum $p>N^{1 / 4}$ is similarly bounded by

$$
N \sum_{\substack{y_{1}<p<2 y_{1} \\ p>N^{1 / 4} \\ p \equiv 1 \bmod 4}} \frac{1}{p}+N \sum_{\substack{y_{1}<q<\sqrt{N} \\ q \equiv 1 \bmod 4}} \sum_{\substack{q<p<2 q \\ p>N^{1 / 4} \\ p \equiv 1 \bmod 4}} \frac{1}{p q} \ll \frac{N}{\log N} \ll \epsilon \frac{\Phi_{r}(N)}{(\log N)^{1 / 2-\epsilon}},
$$

completing the proof of part (i).

4.2.2. Proof of Theorem 4.12

Recall that $B=\max \left(B_{1}+B_{2}, 100\right)$.
Lemma 4.4. Then there exist some $A>0$ such that the following holds. Assume r satisfies equation (4.3), and take $1 \leq i \leq \frac{1}{2} r$. Let $\max \left\{200 B, i^{4 / 5}\right\} \leq \lambda<\frac{1}{3} r$. For all $N>A$,

$$
\left|\left\{n \in S_{r}(N):\left|\frac{1}{2} \log \log p_{i}-i\right|>\lambda\right\}\right| \ll \Phi_{r}(N) \exp \left(-\frac{\lambda^{2}}{100(i+\lambda)}\right)
$$

Proof. We apply Theorem 4.2 with E_{0} the set of primes that are 3 modulo $4, E_{1}$ the set of primes p with $\frac{1}{2} \log \log p<i+\lambda$ and E_{2} the set of primes p with $i+\lambda \leq \frac{1}{2} \log \log p \leq \mu$. We take $k_{0}=0, k_{1}<i$ and $k_{1}+k_{2}=r$. Then the number of $n \in S_{r}(N)$ such that $\frac{1}{2} \log \log p_{i}>i+\lambda$ is at most

$$
\begin{equation*}
\frac{N}{\log N} \sum_{l=0}^{i-1} \frac{(i+\lambda+B)^{l}}{l!} \frac{(\mu-(i+\lambda)+B)^{r-l}}{(r-l)!} \ll \Phi_{r}(N) \sum_{l=0}^{i-1}\binom{r}{l}\left(\frac{i+\lambda}{\mu}\right)^{l}\left(1-\frac{i+\lambda}{\mu}\right)^{r-l} \tag{4.6}
\end{equation*}
$$

where the second inequality uses equation (4.1) and the inequality

$$
\left(1+\frac{B}{i+\lambda}\right)^{l}\left(1+\frac{B}{\mu-(i+\lambda)}\right)^{r-l} \leq \exp \left(\frac{i B}{i+\lambda}+\frac{r B}{\mu-(i+\lambda)}\right) \leq \exp (7 B)
$$

Let X_{1}, \ldots, X_{n} be independent random variables taking values in $\{0,1\}$. If X denotes their sum and $M=\mathbb{E}[X]$, then the lower tail Chernoff bound states that for any $0 \leq \delta \leq 1$,

$$
\mathbb{P}(X \leq(1-\delta) M) \leq e^{-\delta^{2} M / 2}
$$

See [2, Theorem A.1.13] for a reference in a slightly different form. We warn the reader that the X there corresponds to our $X-M$. Then we bound equation (4.6) as

$$
\begin{aligned}
\Phi_{r}(N) \exp \left(-\frac{r \mu}{2(i+\lambda)}\left(\frac{i+\lambda}{\mu}-\frac{i}{r}\right)^{2}\right) & \leq \Phi_{r}(N) \exp \left(-\frac{1-\mu^{-1 / 3}}{2(i+\lambda)}\left(i+\lambda-\frac{i}{1-\mu^{-1 / 3}}\right)^{2}\right) \\
& \leq \Phi_{r}(N) \exp \left(-\frac{1-\mu^{-1 / 3}}{2(i+\lambda)}\left(\lambda-i^{2 / 3}\right)^{2}\right) \\
& \leq \Phi_{r}(N) \exp \left(-\frac{\lambda^{2}}{4(i+\lambda)}\right) .
\end{aligned}
$$

If $n \in S_{r}(N)$ satisfies $\frac{1}{2} \log \log p_{i}<i-\lambda$, then certainly $\lambda<i$. Another application of Theorem 4.2 yields the bound

$$
\frac{N}{\log N} \sum_{l=i}^{r} \frac{(i-\lambda+B)^{l}}{l!} \frac{(\mu-(i-\lambda)+B)^{r-l}}{(r-l)!} \ll \Phi_{r}(N) \sum_{l=i}^{r}\binom{r}{l}\left(\frac{i-\lambda+B}{\mu}\right)^{l}\left(1-\frac{i-\lambda+B}{\mu}\right)^{r-l},
$$

where the last inequality uses that

$$
\left(\frac{\mu-i+\lambda+B}{\mu-i+\lambda-B}\right)^{r-l}=\left(1+\frac{2 B}{\mu-(i-\lambda)-B}\right)^{r-l} \leq \exp \left(\frac{2 B(r-l)}{\mu-i+\lambda-B}\right) \leq \exp (4 B)
$$

We now apply the upper tail Chernoff bound

$$
\mathbb{P}(X \geq(1+\delta) M) \leq e^{-\delta^{2} M /(2+\delta)}
$$

with $(1+\delta) M=i$. In case $\delta \leq 1$, the computation proceeds among the same lines as before. If instead $\delta>1$, we use that

$$
\frac{\delta^{2}}{2+\delta} \geq \frac{1+\delta}{6}
$$

so we have $\exp (-i / 6)$. Since $\delta>1$ implies that $\lambda>\frac{i}{3}$, this finishes the proof.
We are now ready to prove part (ii). The theorem is trivial when $\eta>2 r$, so assume $\eta<2 r$. Take $\tilde{\eta}=\frac{1}{6} \eta$ so that $\tilde{\eta}<\frac{1}{3} r$, and apply Lemma 4.4 with $\lambda=\tilde{\eta}^{1 / 5} \max \{i, \tilde{\eta}\}^{4 / 5}$ for every i between 1 to $\frac{1}{3} r$. We get that the number of $n \in S_{r}(N)$ such that

$$
\left|\frac{1}{2} \log \log p_{i}-i\right|>\eta^{1 / 5} \max \{i, \eta\}^{4 / 5}>\tilde{\eta}^{1 / 5} \max \{i, \tilde{\eta}\}^{4 / 5} \text { for some } i<\frac{1}{3} r
$$

is bounded by

$$
\begin{aligned}
\Phi_{r}(N) \sum_{i=1}^{\left\lfloor\frac{1}{3} r\right\rfloor} \exp \left(-\frac{\tilde{\eta}^{2 / 5} \max \{i, \tilde{\eta}\}^{8 / 5}}{100\left(i+\tilde{\eta}^{1 / 5} \max \{i, \tilde{\eta}\}^{4 / 5}\right)}\right) & \ll \Phi_{r}(N) \exp \left(-\frac{\tilde{\eta}}{200}\right) \\
& =\Phi_{r}(N) \exp \left(-\frac{\eta}{1200}\right)
\end{aligned}
$$

when $\tilde{\eta}>200 B$.

4.2.3. Proof of Theorem 4.13

Fix $\kappa>\frac{2}{3}$. We will show that other than $<_{\epsilon} \Phi_{r}(N) \exp \left(-(\log \mu)^{1-\kappa(1+\epsilon)}\right)$ exceptions, we have

$$
\max _{\frac{1}{2} \sqrt{r}<i<\frac{1}{2} r} \log \log p_{i}-\log \left(\sum_{j=1}^{i-1} \log p_{j}\right)-2 \log \log \log p_{i}>(3 \kappa-1) \log \log \mu-2 .
$$

First, remove $n \in S_{r}(N)$ for which

$$
\left|\frac{1}{2} \log \log p_{i}-i\right|>i^{4 / 5} \text { for some } \frac{1}{2} \sqrt{r}<i<\frac{1}{2} r .
$$

For each i with $\frac{1}{2} \sqrt{r}<i<\frac{1}{2} r$, we apply Lemma 4.4 with $\lambda=i^{4 / 5}$ to deduce that there are at most $\Phi_{r}(N) \exp \left(-\frac{1}{200} i^{3 / 5}\right)$ such n. Summing over $\frac{1}{2} \sqrt{r}<i<\frac{1}{2} r$ gives

$$
\ll \Phi_{r}(N) \exp \left(-\frac{1}{400} \mu^{3 / 10}\right) .
$$

The remaining $n \in S_{r}(N)$ satisfy

$$
\begin{equation*}
\left|\frac{1}{2} \log \log p_{i}-i\right|<i^{4 / 5} \text { for every } \frac{1}{2} \sqrt{r}<i<\frac{1}{2} r . \tag{4.7}
\end{equation*}
$$

Let $m=\left\lceil\frac{1}{2} \sqrt{r}\right\rceil-1$ and $k=\left\lfloor\frac{1}{2} r\right\rfloor-1$, so $p_{1} \cdots p_{k} \leq \sqrt{N}$. We first bound the number of $n \in S_{r}(N)$ for which $p_{i}<p_{i+1} \leq p_{i}^{a_{i}}$ for all $m \leq i<k$, where $a_{i}=(i+1)^{2}(\log \mu)^{2 \kappa}$. Apply Theorem 4.2 with the set E_{1} containing the primes less than p_{m} and E_{2} containing the primes greater than p_{k} and on numbers up to $\frac{N}{p_{m} \cdot \ldots \cdot p_{k}}$. We let \mathcal{T} be the set of tuples $\left(p_{m}, \ldots, p_{k}\right)$ all consisting of primes not congruent to 3 modulo 4 such that $p_{i}<p_{i+1} \leq p_{i}^{a_{i}}$ for all $m \leq i<k$. Then the number of $n \in S_{r}(N)$ for which $p_{i}<p_{i+1} \leq p_{i}^{a_{i}}$ for all $m \leq i<k$ is at most

$$
\ll \frac{N}{\log N} \sum_{\left(p_{m}, \ldots, p_{k}\right) \in \mathcal{T}} \frac{1}{p_{m} \cdots p_{k}} \cdot \frac{\left(\mu-\frac{1}{2} \log \log p_{k}+B\right)^{r-k}}{(r-k)!} \cdot \frac{\left(\frac{1}{2} \log \log p_{m}+B\right)^{m-1}}{(m-1)!} .
$$

Now, fixing some $m \leq i<k$, we obtain by partial summation on $\frac{1}{p_{i+1}}$ and the prime number theorem that

$$
\begin{aligned}
\sum_{\begin{array}{c}
p_{i}<p_{i+1} \leq p_{i} a_{i} \\
p_{i+1} \neq 3 \bmod 4
\end{array}} \frac{1}{p_{i+1}} & \frac{\left(\frac{1}{2} \log \log p_{i+1}\right)^{r-i-1}}{(r-i-1)!} \\
& =\frac{\left(\frac{1}{2} \log \log p_{i}+\frac{1}{2} \log a_{i}\right)^{r-i}}{(r-i)!}-\frac{\left(\frac{1}{2} \log \log p_{i}\right)^{r-i}}{(r-i)!}+O\left(\exp \left(-c \sqrt{\log p_{i}}\right)\right)
\end{aligned}
$$

Hence we deduce

$$
\begin{aligned}
& \sum_{\substack{p_{i}<p_{i+1} \leq p_{i}^{a_{i}} \\
p_{i+1} \neq 3 \bmod 4}} \frac{1}{p_{i+1}} \frac{\left(\mu-\frac{1}{2} \log \log p_{i+1}+B\right)^{r-i-1}}{(r-i-1)!} \\
= & \frac{\left(\mu-\frac{1}{2} \log \log p_{i}+B\right)^{r-i}}{(r-i)!}-\frac{\left(\mu-\frac{1}{2} \log \log p_{i}-\frac{1}{2} \log a_{i}+B\right)^{r-i}}{(r-i)!}+O\left(\exp \left(-c \sqrt{\log p_{i}}\right)\right) \\
= & \frac{\left(\mu-\frac{1}{2} \log \log p_{i}+B\right)^{r-i}}{(r-i)!}\left(1-\left(1-\frac{\frac{1}{2} \log a_{i}}{\mu-\frac{1}{2} \log \log p_{i}+B}\right)^{r-i}\right)+O\left(\exp \left(-c \sqrt{\log p_{i}}\right)\right) .
\end{aligned}
$$

Furthermore, we have the lower bound

$$
\left(1-\frac{\frac{1}{2} \log a_{i}}{\mu-\frac{1}{2} \log \log p_{i}+B}\right)^{r-i} \geq a_{i}^{-\frac{1}{2}-2 \mu^{-1 / 5}}
$$

Applying this repeatedly for $i=k-1, k-2, \ldots, m$, we obtain the upper bound

$$
\Phi_{r}(N) \prod_{m \leq i<k}\left(1-\frac{1}{\left((i+1) \cdot(\log \mu)^{\kappa}\right)^{1+4 \mu^{-1 / 5}}}\right)<_{\epsilon} \Phi_{r}(N) \exp \left(-(\log \mu)^{1-\kappa(1+\epsilon)}\right)
$$

It follows that other than $<_{\epsilon} \Phi_{r}(N) \exp \left(-(\log \mu)^{1-\kappa(1+\epsilon)}\right)$ exceptions, we have

$$
\begin{equation*}
p_{i-1}^{i^{2}(\log \mu)^{2 \kappa}}<p_{i} \text { for some } \frac{1}{2} \sqrt{r}<i<\frac{1}{2} r . \tag{4.8}
\end{equation*}
$$

For the remaining $n \in S_{r}(N)$, we have equations (4.7) and (4.8), which implies

$$
\max _{\frac{1}{2} \sqrt{r}<i<\frac{1}{2} r} \log \log p_{i}-\log \log p_{i-1}-2 \log \log \log p_{i}>2 \kappa \log \log \mu-2
$$

It remains to remove $n \in S_{r}(N)$ for which there exists some $\frac{1}{2} \sqrt{r} \leq i<\frac{1}{2} r$ such that $p_{i}^{a_{i}}<p_{i+1}$ and

$$
\sum_{j=1}^{i} \log p_{j}>(\log \mu)^{1-\kappa} \log p_{i}
$$

Rewrite the second condition as $p_{i}^{u}<p_{1} \cdots p_{i-1}$, where $u:=(\log \mu)^{1-\kappa}-1$. We wish to bound

$$
\begin{align*}
& \sum_{\substack{p_{i}=1 \bmod 4 \\
(4.7)}} \sum_{\substack{p_{1} \times \ldots<p_{i} \\
p_{1} \cdots p_{i-1}>p_{i}^{u} \\
p_{j} \neq 3 \bmod 4}} \sum_{\substack{p_{i}<p_{i+1}<\cdots<p_{r} \\
p_{i+1} \cdots p_{r}<\frac{N}{p_{1} \cdots p_{i}} \\
p_{j} \neq 3 \bmod 4}} 1 \\
& \tag{4.9}\\
& \\
& \ll \frac{N}{\log N} \sum_{\substack{p_{i}=1 \bmod 4 \\
(4.7)}} \frac{\left(\mu-\frac{1}{2} \log \log p_{i}-\frac{1}{2} \log a_{i}+B\right)^{r-i}}{p_{i}(r-i)!} \sum_{\substack{p_{1}<\cdots<p_{i} \\
p_{1} \cdots p_{i-1}>p_{i}^{u} \\
p_{j} \neq 3 \bmod 4}} \frac{1}{p_{1} \cdots p_{i-1}} .
\end{align*}
$$

Fix a given p_{i} with $\left|\frac{1}{2} \log \log p_{i}-i\right|<i^{4 / 5}$, and fix x with $p_{i}^{u}<x<\min \left\{p_{i}^{i-1}, N\right\}$. By Lemma 4.3, we have

$$
\sum_{\substack{p_{1}<\cdots<p_{i-1}<p_{i} \\ x<p_{1} \cdots p_{i-1} \leq 2 x \\ p_{j} \neq 3 \bmod 4}} \frac{1}{p_{1} \cdots p_{i-1}} \leq \frac{1}{x}\left|\Psi_{i-1}\left(2 x, p_{i}\right)\right| \ll \frac{v^{-v}}{\log p_{i}} \cdot \frac{\left(\frac{1}{2} \log \log p_{i}\right)^{i-1}}{(i-1)!},
$$

where $v:=\log x / \log p_{i}$. To deal with final part of the sum in equation (4.9), split (p_{i}^{u}, p_{i}^{i-1}) into dyadic intervals of the form $(x, 2 x]$; then

$$
\begin{aligned}
\sum_{\substack{p_{1}<\cdots<p_{i} \\
p_{1} \cdots p_{i-1}>p_{i}^{u} \\
p_{j} \neq 3 \bmod 4}} \frac{1}{p_{1} \cdots p_{i-1}} & \ll \frac{1}{\log p_{i}} \cdot \frac{\left(\frac{1}{2} \log \log p_{i}\right)^{i-1}}{(i-1)!} \sum_{\substack{k \geq 0 \\
x=2^{k} p_{i}^{u}}} v^{-v} \\
& \ll \frac{\left(\frac{1}{2} \log \log p_{i}\right)^{i-1}}{(i-1)!} \int_{v>u} v^{-v} d v \ll u^{-u} \frac{\left(\frac{1}{2} \log \log p_{i}\right)^{i-1}}{(i-1)!} .
\end{aligned}
$$

Therefore, equation (4.9) becomes

$$
\begin{aligned}
& \ll \frac{N u^{-u}}{\log N} \sum_{\substack{p_{i}=1 \bmod 4 \\
(4.7)}} \frac{1}{p_{i}} \cdot \frac{\left(\mu-\frac{1}{2} \log \log p_{i}\right)^{r-i}}{(r-i)!} \cdot \frac{\left(\frac{1}{2} \log \log p_{i}\right)^{i-1}}{(i-1)!}\left(1-\frac{\frac{1}{2} \log a_{i}}{\mu-\frac{1}{2} \log \log p_{i}+B}\right)^{r-i} \\
& \quad \ll \frac{N}{\log N} \cdot \frac{u^{-u}}{a_{i}^{1 / 2+2 \mu^{-1 / 5}}} \sum_{\substack{p_{i}=1 \bmod 4 \\
(4.7)}} \frac{1}{p_{i}} \cdot \frac{\left(\mu-\frac{1}{2} \log \log p_{i}\right)^{r-i}}{(r-i)!} \cdot \frac{\left(\frac{1}{2} \log \log p_{i}\right)^{i-1}}{(i-1)!} \ll \frac{u^{-u} \Phi_{r}(N)}{a_{i}^{1 / 2+2 \mu^{-1 / 5}} .}
\end{aligned}
$$

Summing over $\frac{1}{2} \sqrt{r}<i<\frac{1}{2} r$, the total number of such n is

$$
\ll \Phi_{r}(N) \exp \left(-2(\log \mu)^{1-\kappa}\right) \sum_{\frac{1}{2} r^{1 / 2}<i<\frac{1}{2} r} \frac{1}{i} \ll \Phi_{r}(N) \exp \left(-(\log \mu)^{1-\kappa}\right)
$$

which completes the proof of the theorem.

5. Equidistribution of Legendre symbol matrices

We will use the two following propositions from Section 6 of Smith [18].
Proposition 5.1. Suppose L / \mathbb{Q} is Galois of degree d and K / \mathbb{Q} is an elementary abelian extension, and $\operatorname{gcd}\left(\Delta_{L}, \Delta_{K}\right)=1$. Let K_{0} be a quadratic subfield of K with maximal discriminant $\left|\Delta_{K_{0}}\right|$. Let $G:=\operatorname{Gal}(K L / \mathbb{Q})$ be a 2 -group. Take $F: G \rightarrow[-1,1]$ to be a class function with average 0 over G. Then there exists an absolute constant $c>0$ such that

$$
\sum_{p \leq x} F\left(\left(\frac{K L / \mathbb{Q}}{p}\right)\right) \log p \ll x^{\beta}|G|+x|G|\left(d^{2} \log \left|x \Delta_{K_{0}} \Delta_{L}\right|\right)^{4} \exp \left(\frac{-c d^{-4} \log x}{\sqrt{\log x}+3 d \log \left|\Delta_{K_{0}} \Delta_{L}\right|}\right)
$$

for $x \geq 3$, where β is the maximal real zero of any Artin L-function defined for G.
Proof. This follows from the Chebotarev density theorem; see [18, Proposition 6.5].

Proposition 5.2. Let X_{1} and X_{2} be disjoint sets of odd primes with its elements bounded by t_{1} and t_{2}, respectively. Then for any $\epsilon>0$, we have

$$
\sum_{x_{1} \in X_{1}}\left|\sum_{x_{2} \in X_{2}}\left(\frac{x_{1}}{x_{2}}\right)\right| \ll_{\epsilon} t_{1} t_{2}^{3 / 4+\epsilon}+t_{2} t_{1}^{3 / 4+\epsilon}
$$

Proof. This is an easy consequence of the large sieve inequality stated in the work of Jutila [12, Lemma 3]; see Proposition 6.6 in Smith [18].

We shall not work with all squarefree integers simultaneously but instead work with more restricted sets of squarefree integers that have extra combinatorial structure. In our next definition, we define this combinatorial structure, which we call preboxes.
Definition 5.3. Take a sequence of real numbers

$$
0<s_{1}<t_{1}<s_{2}<t_{2}<\cdots<s_{r}<t_{r} .
$$

Take P, X_{1}, \ldots, X_{r} to be disjoint sets of primes not congruent to $3 \bmod 4$ so that $X_{i} \subset\left(s_{i}, t_{i}\right)$. Define $X:=X_{1} \times \cdots \times X_{r}$. We call the pair (X, P) a prebox.

The goal of this section is to prove a weak equidistribution statement regarding matrices of Jacobi symbols associated to each $x \in X$. To make sense of this, we first need to define how we attach a matrix of Jacobi symbols to each $x \in X$, which we shall do now. We will often implicitly identify \mathbb{F}_{2} with $\{ \pm 1\}$ in this section. We use \sqcup to denote disjoint union and $[r]$ to denote the set $\{1, \ldots, r\}$.

Definition 5.4. Let (X, P) be a prebox. Take $\mathcal{M} \subseteq\{(i, j): 1 \leq i<j \leq r\}$ and $\mathcal{N} \subseteq P \times[r]$. Define $M: X \rightarrow \mathbb{F}_{2}^{\mathcal{M} \sqcup \mathcal{N}}$ as follows:

$$
M\left(x_{1}, \ldots, x_{r}\right): \mathcal{M} \sqcup \mathcal{N} \rightarrow\{ \pm 1\} \quad M\left(x_{1}, \ldots, x_{r}\right)(\mathbf{m})= \begin{cases}\left(\frac{x_{i}}{x_{j}}\right) & \text { if } \mathbf{m}=(i, j) \in \mathcal{M} \\ \left(\frac{p}{x_{j}}\right) & \text { if } \mathbf{m}=(p, j) \in \mathcal{N} .\end{cases}
$$

Denote $\mathcal{N}_{j}:=\{(p, j) \in \mathcal{N}: p \in P\}$. Let $M_{j}: X_{j} \rightarrow \mathbb{F}_{2}^{\mathcal{N}_{j}}$ be the function defined by

$$
M_{j}\left(x_{j}\right): \mathcal{N}_{j} \rightarrow\{ \pm 1\} \quad M_{j}\left(x_{j}\right)(p, j)=\left(\frac{p}{x_{j}}\right)
$$

For any $a: \mathcal{M} \sqcup \mathcal{N} \rightarrow\{ \pm 1\}$, define

$$
X(a):=\{x \in X: M(x)=a\}
$$

and $X_{j}(a, P):=\left\{x_{j} \in X_{j}: M_{j}\left(x_{j}\right)=a \upharpoonright_{\mathcal{N}_{j}}\right\}$, where \upharpoonright is restriction of functions. Let $Y \subseteq X$ be a subset, let $S \subseteq[r]$, and let $Q \in \prod_{i \in S} X_{i}$. We put

$$
Y(Q):=\left\{y \in Y: \pi_{S}(y)=Q\right\}
$$

We shall slightly abuse notation by writing $X(a, Q)$ for $X(a)(Q)$.
Ideally, we would like to prove that $X(a)$ is of the expected size: that is,

$$
|X(a)|=\frac{|X|}{2^{|\mathcal{M}|+|\mathcal{N}|}}
$$

Instead, we shall prove a weaker equidistribution statement that allows for permutations of the first few rows and columns.

Definition 5.5. Let $\mathcal{P}(r)$ denote the set of permutations of $[r]$. For any $\sigma \in \mathcal{P}(r)$, any prebox (X, P) and any $a: \mathcal{M} \sqcup \mathcal{N} \rightarrow\{ \pm 1\}$, define

$$
X(\sigma, a)=\{x \in X: M(\sigma(x))=a\},
$$

where $\sigma(x)=\sigma\left(x_{1}, \ldots, x_{r}\right)=\left(x_{\sigma(1)}, \ldots, x_{\sigma(r)}\right)$.
Finally, there is the well-known problem of Siegel zeroes that we need to take care of. This prompts the following definition.

Definition 5.6. For $c>0$, take $\mathcal{S}(c)$ to be the set of (possibly negative) squarefree integers d so that

$$
L\left(s, \chi_{d}\right)=0 \text { for some } 1-\frac{c}{\log (|d|+4)} \leq s \leq 1 .
$$

List the elements in $\mathcal{S}(c)$ as $\left|d_{1}\right| \leq\left|d_{2}\right| \leq \cdots$. By Landau's theorem, fix an absolute c sufficiently small so that $d_{i}^{2} \leq\left|d_{i+1}\right|$ for all $i \geq 1$. We say that a prebox (X, P) is Siegel-less above t if

$$
\left\{\epsilon \prod_{i \in S} \pi_{i}(x) \prod_{p \in \tilde{P}} p: x \in X, \epsilon \in\{ \pm 1\}, \tilde{P} \subseteq P, S \subseteq[r],\left|\epsilon \prod_{i \in S} \pi_{i}(x) \prod_{p \in \tilde{P}} p\right|>t\right\} \cap \mathcal{S}(c)=\varnothing .
$$

We are now ready to prove our first proposition, which shows that $X(a)$ is of the expected size for sufficiently regular preboxes (X, P) and sufficiently nice \mathcal{M} and \mathcal{N}. It is directly based on Proposition 6.3 in Smith [18].

Proposition 5.7. Fix positive constants c_{1}, \ldots, c_{6} such that $c_{2} c_{3}+2 c_{4}+c_{5}<\frac{1}{4}$ and $c_{6}>3$. Take $\delta>0$ satisfying $2 \delta<\frac{1}{4}-c_{2} c_{3}-2 c_{4}-c_{5}$; then the following holds for any large enough D_{1}. Let (X, P) be a prebox with parameters $D_{1}<s_{1}<t_{1}<s_{2}<t_{2}<\cdots<s_{r}<t_{r}$. Take $1 \leq k \leq r$. Let $\mathcal{M} \subseteq\{(i, j): 1 \leq i<j \leq r\}$ and $\mathcal{N} \subseteq P \times\{k+1, \ldots, r\}$. Suppose that

$$
X_{j}:=\left\{x_{j} \in\left(s_{j}, t_{j}\right) \text { prime }: x_{j} \equiv 1 \bmod 4, M_{j}\left(x_{j}\right)=a\left\lceil\mathcal{N}_{j}\right\} \quad \text { if } j>k .\right.
$$

Assume

1. (X, P) is Siegel-less above D_{1};
2. $|P| \leq \log t_{i}-i$ for all $1 \leq i \leq r$ and $p \in P$ implies $p<s_{1}$;
3. $\log t_{k+1}>\max \left\{\left(\log t_{1}\right)^{c_{6}}, D_{1}^{c_{1}}\right\}$ if $k<r$, and $\log t_{k}<t_{1}^{c_{2}}$;
4. $\left|X_{i}\right| \geq e^{i} t_{i}\left(\log t_{i}\right)^{-c_{3}}$ for all $1 \leq i \leq r$;
5. $r<t_{1}^{c_{4}}$;
6. for each $1 \leq i \leq r, j_{i}:=1+i+\left\lfloor c_{5} \log t_{i}\right\rfloor$ satisfy $j_{1}>k$, and $\log t_{j_{i}}>\left(\log t_{i}\right)^{c_{6}}$ if $j_{i} \leq r$.

Then for all $a: \mathcal{M} \sqcup \mathcal{N} \rightarrow\{ \pm 1\}$,

$$
\left||X(a)|-2^{-|\mathcal{M}|}\right| X\left|\left|\leq t_{1}^{-\delta} \cdot 2^{-|\mathcal{M}|}\right| X\right| .
$$

Proof. Let $\kappa:=c_{4}+\delta$. Since $r<t_{1}^{c_{4}}$, it suffices to show that

$$
\left||X(a)|-2^{-|\mathcal{M}|}\right| X\left|\left|\leq r t_{1}^{-\kappa} \cdot 2^{-|\mathcal{M}|}\right| X\right| .
$$

We proceed by induction on r. Define

$$
X_{j}\left(a, x_{1}\right):=\left\{x_{j} \in X_{j}:\left(\frac{x_{1}}{x_{j}}\right)=a(1, j) \text { if }(1, j) \in \mathcal{M}\right\} .
$$

First consider $(1, j) \in \mathcal{M}$, where $j>k$. Apply Proposition 5.1 to

$$
K=\mathbb{Q}(\sqrt{-1}, \sqrt{p}: p \in P), \quad L=\mathbb{Q}\left(\sqrt{x_{1}}\right)
$$

and

$$
F: \sigma \mapsto\left\{\begin{array}{cl}
1-2^{-|P|-2} & \text { if } \sigma=\left(\frac{K L / Q}{x_{j}}\right) \text { for some } x_{j} \in X_{j}\left(a, x_{1}\right), \\
-2^{-|P|-2} & \text { otherwise. }
\end{array}\right.
$$

Notice that $\left(\frac{K L / \mathbb{Q}}{x_{j}}\right)$ is independent of the choice $x_{j} \in X_{j}\left(a, x_{1}\right)$. By Siegel's theorem, for D_{1} sufficiently large, we have $1-\beta>D_{1}^{-c_{1} / 6}$ if β is an exceptional real zero of $L\left(s, \chi_{d}\right)$ with $|d|<D_{1}$. Then

$$
t_{j}^{\beta}<t_{j} \exp \left(-\left(\log t_{j}\right)^{5 / 6}\right) .
$$

We have the bounds

$$
\log \left|\Delta_{K_{0}} \Delta_{L}\right| \ll|P| \log t_{1} \leq\left(\log t_{1}\right)^{2} \ll\left(\log t_{j}\right)^{\frac{2}{c_{6}}}
$$

and

$$
|\operatorname{Gal}(K L / \mathbb{Q})|=2^{|P|+2} \leq 2^{1+\log t_{1}}<t_{1}<\exp \left(\left(\log t_{j}\right)^{\frac{1}{c_{6}}}\right) .
$$

Since $c_{6}>3$, we have by a double application of Proposition 5.1 and partial summation

$$
\left|\sum_{s_{j}<p<t_{j}} F\left(\left(\frac{K L / \mathbb{Q}}{p}\right)\right)\right| \leq t_{j} \exp \left(-\left(\log t_{j}\right)^{1 / 3}\right)
$$

for sufficiently large D_{1}. Repeating this for the field K / \mathbb{Q}, we get after possibly enlarging D_{1}

$$
\left|\left|X_{j}\left(a, x_{1}\right)\right|-\frac{1}{2}\right| X_{j}| | \leq 2 t_{j} \exp \left(-\left(\log t_{j}\right)^{1 / 3}\right)<t_{1}^{-1}\left|X_{j}\right| .
$$

Next consider $(1, j) \in \mathcal{M}$, where $j \leq k$. Note that $\frac{1}{4}-c_{2} c_{3}-c_{5}-2 \kappa>0$ by assumption, so we can fix a positive constant ϵ such that $2 \epsilon<\frac{1}{4}-c_{2} c_{3}-c_{5}-2 \kappa$. The large sieve in Proposition 5.2 gives

$$
\sum_{x_{1} \in X_{1}}\left|\sum_{x_{j} \in X_{j}}\left(\frac{x_{1}}{x_{j}}\right)\right|<_{\epsilon} t_{j} t_{1}^{3 / 4+\epsilon}
$$

From the identity

$$
\left|X_{j}\left(a, x_{1}\right)\right|=\frac{1}{2} \sum_{x_{j} \in X_{j}}\left(a(1, j)\left(\frac{x_{1}}{x_{j}}\right)+1\right)=\frac{a(1, j)}{2} \sum_{x_{j} \in X_{j}}\left(\frac{x_{1}}{x_{j}}\right)+\frac{1}{2}\left|X_{j}\right|,
$$

we deduce that for sufficiently large D_{1},

$$
\sum_{x_{1} \in X_{1}}| | X_{j}\left(a, x_{1}\right)\left|-\frac{1}{2}\right| X_{j}| |=\frac{1}{2} \sum_{x_{1} \in X_{1}}\left|\sum_{x_{j} \in X_{j}}\left(\frac{x_{1}}{x_{j}}\right)\right| \leq t_{1}^{-\frac{1}{4}+c_{2} c_{3}+\epsilon}\left|X_{1}\right|\left|X_{j}\right| .
$$

Let $B_{1}:=c_{5}+\kappa$ and $B_{2}:=\kappa+\epsilon$; then $B_{1}+B_{2}<\frac{1}{4}-c_{2} c_{3}-\epsilon$. We conclude that

$$
\left|\left|X_{j}\left(a, x_{1}\right)\right|-\frac{1}{2}\right| X_{j}| |<t_{1}^{-B_{2}}\left|X_{j}\right| \text { for all }(1, j) \in \mathcal{M} \text { and } j \leq k
$$

holds with at most $k t_{1}^{-B_{1}}\left|X_{1}\right|$ exceptions $x_{1} \in X$. Call the set of exceptions $X_{1}^{\text {bad }}(a)$.
We bound the size of the set of exceptions $X^{\text {bad }}(a)=X(a) \cap \pi_{1}^{-1}\left(X_{1}^{\text {bad }}(a)\right)$ in X. First, fix some $x_{1} \in X_{1}$ and move x_{1} to P. Apply the induction hypothesis to

$$
X_{2} \times X_{3} \times \cdots \times X_{k} \times X_{k+1}\left(a, x_{1}\right) \times \cdots \times X_{r}\left(a, x_{1}\right)
$$

Let us briefly explain the value of k to which we apply the induction hypothesis. Let $k_{\text {old }}$ be the current value of k, and let $k_{\text {new }}$ be the value of k to which we apply the induction hypothesis. We choose $k_{\text {new }}$ as the smallest integer satisfying

$$
k_{\text {new }} \geq k_{\text {old }}-1, \quad t_{k_{\text {new }}+2}>\max \left(e^{\left(\log t_{2}\right)^{c_{6}}}, e^{D_{1}^{c_{1}}}\right)
$$

and we choose $k_{\text {new }}=r-1$ if there is no such integer.
Since $t_{1}>r^{c_{4}}$ with $c_{4}<\frac{1}{8}$, we get

$$
\left|X(a) \cap \pi_{1}^{-1}\left(x_{1}\right)\right| \leq\left(1+\frac{2}{t_{1}}\right)^{r} \cdot 2^{-|\mathcal{M}|+k} \frac{|X|}{\left|X_{1}\right|} \leq 2^{-|\mathcal{M}|+k+1} \frac{|X|}{\left|X_{1}\right|}
$$

and hence

$$
\begin{equation*}
\left|X^{\mathrm{bad}}(a)\right| \leq 2^{k+1} k t_{1}^{-B_{1}} \cdot 2^{-|\mathcal{M}|}|X|<2^{j_{1}+1} j_{1} t_{1}^{-B_{1}} \cdot 2^{-|\mathcal{M}|}|X|<t_{1}^{-\kappa} \cdot \frac{|X|}{2^{|\mathcal{M}|+1}} . \tag{5.1}
\end{equation*}
$$

For $x_{1} \notin X^{\text {bad }}(a)$, we look at

$$
X_{2}\left(a, x_{1}\right) \times \cdots \times X_{r}\left(a, x_{1}\right)
$$

Then we obtain

$$
\begin{aligned}
\left|X(a) \backslash X^{\text {bad }}(a)\right| & =\sum_{x_{1} \in X_{1} \backslash X_{1}^{\text {bad }}(a)}\left|X(a) \cap \pi_{1}^{-1}\left(x_{1}\right)\right| \\
& =\sum_{x_{1} \in X_{1} \backslash X_{1}^{\text {bad }}(a)}\left|\left(X_{2}\left(a, x_{1}\right) \times \cdots \times X_{r}\left(a, x_{1}\right)\right)(a)\right|,
\end{aligned}
$$

which lies between

$$
\left(1 \pm \frac{2}{t_{1}}\right)^{r}\left(1 \pm \frac{2}{t_{1}^{B_{2}}}\right)^{k}\left(1 \pm(r-1) t_{1}^{-\kappa}\right) \cdot 2^{-|\mathcal{M}|}|X|
$$

by the induction hypothesis. Since $r<t_{1}^{c_{4}}<t_{1}^{\kappa}, 1-c_{4}>\kappa$ and $B_{2}>\kappa$, we have

$$
\begin{aligned}
\left(1+\frac{2}{t_{1}}\right)^{r}\left(1+\frac{2}{t_{1}^{B_{2}}}\right)^{k} & \frac{1+(r-1) t_{1}^{-\kappa}}{1+\left(r-\frac{1}{2}\right) t_{1}^{-\kappa}}=\left(1+\frac{2}{t_{1}}\right)^{r}\left(1+\frac{2}{t_{1}^{B_{2}}}\right)^{k}\left(1-\frac{\frac{1}{2} t_{1}^{-\kappa}}{1+\left(r-\frac{1}{2}\right) t_{1}^{-\kappa}}\right) \\
& <\exp \left(2 r t_{1}^{-1}+2 k t_{1}^{-B_{2}}-\frac{1}{4} t_{1}^{-\kappa}\right)<\exp \left(2 t_{1}^{-\left(1-c_{4}\right)}+2 c_{5} t_{1}^{-B_{2}} \log t_{1}-\frac{1}{4} t_{1}^{-\kappa}\right)<1
\end{aligned}
$$

and similarly

$$
\left(1-\frac{2}{t_{1}}\right)^{r}\left(1-\frac{2}{t_{1}^{B_{2}}}\right)^{k} \frac{1-(r-1) t_{1}^{-\kappa}}{1-\left(r-\frac{1}{2}\right) t_{1}^{-\kappa}}=\left(1-\frac{2}{t_{1}}\right)^{r}\left(1-\frac{2}{t_{1}^{B_{2}}}\right)^{k}\left(1+\frac{\frac{1}{2} t_{1}^{-\kappa}}{1-\left(r-\frac{1}{2}\right) t_{1}^{-\kappa}}\right)>1 .
$$

We conclude that the sum lies between

$$
\begin{equation*}
\left(1 \pm\left(r-\frac{1}{2}\right) t_{1}^{-\kappa}\right) \cdot 2^{-|\mathcal{M}|}|X| \tag{5.2}
\end{equation*}
$$

Adding the contributions from equations (5.1) and (5.2) completes the inductive step.
The condition $\mathcal{N} \subseteq P \times\{k+1, \ldots, r\}$ in Proposition 5.7 turns out to be too restrictive for us. It is, however, not so straightforward to remove this condition. Hence we shall only prove a weaker equidistribution statement that allows for permutations of the first few columns. This weaker equidistribution statement will fall as a consequence of Proposition 5.7 and the following combinatorial proposition, which is Proposition 6.7 of Smith [18].

Proposition 5.8. Let (X, P) be a prebox. Let $\mathcal{M}=\{(i, j): 1 \leq i<j \leq r\}$ and $\mathcal{N}=P \times[r]$. Take $0 \leq k_{0} \leq k_{1} \leq k_{2} \leq r$ so that

$$
2^{|P|+k_{0}+1} k_{1}^{2}<k_{2} .
$$

Let $\sigma \in \mathcal{P}(r)$. Define

$$
S(\sigma):=\left\{(i, j) \in \mathcal{M}:(\sigma(i), \sigma(j)) \in\left(\left[k_{0}\right] \times\left[k_{1}\right]\right) \cup\left(\left[k_{1}\right] \times\left[k_{0}\right]\right)\right\} \sqcup\left\{(p, j) \in \mathcal{N}: \sigma(j) \in\left[k_{1}\right]\right\} .
$$

Let $m:=|S(\sigma)|=k_{1}|P|+\frac{1}{2} k_{0}\left(k_{0}-1\right)+k_{0}\left(k_{1}-k_{0}\right)$. If $a: \mathcal{M} \sqcup \mathcal{N} \rightarrow\{ \pm 1\}$, we put

$$
X_{S}(\sigma, a):=\left\{x \in X: M(\sigma(x)) \upharpoonright_{S(\sigma)}=a \upharpoonright_{S(\sigma)}\right\} .
$$

For any $x \in X$, define

$$
W(x, a):=\left\{\sigma \in \mathcal{P}\left(k_{2}\right): x \in X_{S}(\sigma, a)\right\}=\left\{\sigma \in \mathcal{P}\left(k_{2}\right): M(\sigma(x)) \upharpoonright_{S(\sigma)}=a \upharpoonright_{S(\sigma)}\right\} .
$$

Then we have

$$
\sum_{a \in \mathbb{F}_{2}^{\mathcal{M}} \sqcup \mathcal{N}} \| W(x, a)\left|-2^{-m} \cdot k_{2}!\right| \leq\left(\frac{2^{|P|+k_{0}+1}}{k_{2}}\right)^{1 / 2} k_{1} \cdot 2^{-m+|\mathcal{M} \sqcup \mathcal{N}|} \cdot k_{2}!.
$$

Proof. Fix some $x \in X$, and write $W(a):=W(x, a)$. We will show that

$$
\sum_{a \in \mathbb{F}_{2}^{\mathcal{M} \sqcup \mathcal{N}}}\left(|W(a)|-2^{-m} \cdot k_{2}!\right)^{2} \leq \frac{2^{|P|+k_{0}+1} k_{1}^{2}}{k_{2}} \cdot 2^{-2 m+|\mathcal{M} \sqcup \mathcal{N}|}\left(k_{2}!\right)^{2}
$$

Then the proposition follows from the Cauchy-Schwarz inequality.
The average of $|W(a)|$ over a is $2^{-m} \cdot k_{2}!$, since $\left|\mathcal{P}\left(k_{2}\right)\right|=k_{2}$! and there are m Legendre symbol conditions to satisfy. Now

$$
|W(a)|^{2}=\left|\left\{\left(\sigma_{1}, \sigma_{2}\right) \in \mathcal{P}\left(k_{2}\right) \times \mathcal{P}\left(k_{2}\right): M\left(\sigma_{1}(x)\right) \upharpoonright_{S\left(\sigma_{1}\right)}=a \upharpoonright_{S\left(\sigma_{1}\right)}, M\left(\sigma_{2}(x)\right) \upharpoonright_{S\left(\sigma_{2}\right)}=a \upharpoonright_{S\left(\sigma_{2}\right)}\right\}\right| .
$$

We have $\sum_{a \in \mathbb{F}_{2}^{\mathcal{M} \mathcal{N}}}|W(a)|^{2}=\sum_{\sigma_{1}, \sigma_{2} \in \mathcal{P}\left(k_{2}\right)}\left|W\left(\sigma_{1}, \sigma_{2}\right)\right|$, where

$$
W\left(\sigma_{1}, \sigma_{2}\right):=\left\{a \in \mathbb{F}_{2}^{\mathcal{M} \sqcup \mathcal{N}}: M\left(\sigma_{1}(x)\right) \upharpoonright_{S\left(\sigma_{1}\right)}=a \upharpoonright_{S\left(\sigma_{1}\right)}, M\left(\sigma_{2}(x)\right) \upharpoonright_{S\left(\sigma_{2}\right)}=a \upharpoonright_{S\left(\sigma_{2}\right)}\right\}
$$

We fix some $\sigma_{1}, \sigma_{2} \in \mathcal{P}\left(k_{2}\right)$ and bound $\left|W\left(\sigma_{1}, \sigma_{2}\right)\right|$. Let $d:=\left|\left\{i \in\left[k_{2}\right]: \sigma_{1}(i) \leq k_{1}, \sigma_{2}(i) \leq k_{1}\right\}\right|$. We have

$$
\begin{aligned}
\left|S\left(\sigma_{1}\right) \cap S\left(\sigma_{2}\right)\right|=\mid\left\{(i, j) \in \mathcal{M}:\left(\sigma_{1}(i),\right.\right. & \left.\left.\sigma_{1}(j)\right),\left(\sigma_{2}(i), \sigma_{2}(j)\right) \in\left(\left[k_{0}\right] \times\left[k_{1}\right]\right) \cup\left(\left[k_{1}\right] \times\left[k_{0}\right]\right)\right\} \mid \\
& +\left|\left\{(p, j) \in \mathcal{N}: \sigma_{1}(j), \sigma_{2}(j) \in\left[k_{1}\right]\right\}\right| \leq d\left(|P|+k_{0}\right) .
\end{aligned}
$$

Therefore the conditions fix at least $2 m-d\left(|P|+k_{0}\right)$ arguments of $a \in W\left(\sigma_{1}, \sigma_{2}\right)$. Then

$$
\left|W\left(\sigma_{1}, \sigma_{2}\right)\right| \leq 2^{-2 m+d\left(|P|+k_{0}\right)+|\mathcal{M} \sqcup \mathcal{N}|}
$$

Given some $d \leq k_{1}$, we bound the number of $\left(\sigma_{1}, \sigma_{2}\right) \in \mathcal{P}\left(k_{2}\right) \times \mathcal{P}\left(k_{2}\right)$ that gives the same d. There are $\binom{k_{2}}{d}$ ways to pick the indices that map to $\left[k_{1}\right]$ under σ_{1} and σ_{2}. Then there are at most $\left(\frac{k_{1}!}{\left(k_{1}-d\right)!}\left(k_{2}-d\right)!\right)^{2}$ ways to pick a pair of $\left(\sigma_{1}, \sigma_{2}\right)$ in such a way. Hence the total number is bounded by

$$
\binom{k_{2}}{d}\left(\frac{k_{1}!}{\left(k_{1}-d\right)!}\left(k_{2}-d\right)!\right)^{2} \leq\left(k_{2}!\right)^{2}\left(\frac{k_{1}!}{\left(k_{1}-d\right)!}\right)^{2} \frac{\left(k_{2}-d\right)!}{k_{2}!} \leq\left(k_{2}!\right)^{2}\left(\frac{k_{1}^{2}}{k_{2}}\right)^{d}
$$

The average of $|W(a)|^{2}$ is bounded by

$$
\left(k_{2}!\right)^{2} \sum_{d \geq 0}\left(\frac{k_{1}^{2}}{k_{2}}\right)^{d} \cdot 2^{-2 m+d\left(|P|+k_{0}\right)}=\frac{k_{2}}{k_{2}-2^{|P|+k_{0}} k_{1}^{2}} \cdot 2^{-2 m}\left(k_{2}!\right)^{2} .
$$

Then the variance of $|W(a)|$ is bounded by

$$
\begin{aligned}
\frac{k_{2}}{k_{2}-2^{|P|+k_{0}} k_{1}^{2}} \cdot 2^{-2 m}\left(k_{2}!\right)^{2}-\left(2^{-m} \cdot k_{2}!\right)^{2} & =\frac{2^{|P|+k_{0}} k_{1}^{2}}{k_{2}-2^{|P|+k_{0}} k_{1}^{2}} \cdot 2^{-2 m}\left(k_{2}!\right)^{2} \\
& \leq \frac{2^{|P|+k_{0}+1} k_{1}^{2}}{k_{2}} \cdot 2^{-2 m}\left(k_{2}!\right)^{2}
\end{aligned}
$$

Multiplying by $2^{|\mathcal{M} \sqcup \mathcal{N}|}$ gives the required estimate.
We are now ready to prove our weak equidistribution result for $|X(a)|$, which is very similar to Theorem 6.4 in Smith [18]. We define $a(i, j):=a(j, i)$ in case $i>j$.
Theorem 5.9. Take positive constants c_{1}, \ldots, c_{8}, where $c_{2} c_{3}+2 c_{4}+c_{5}<\frac{1}{4}, c_{6}>3$ and $c_{8}<c_{7}<\frac{1}{2}$. Let (X, P) be a prebox, and suppose that for all $1 \leq j \leq r$,

$$
X_{j}:=\left\{x_{j} \in\left(s_{j}, t_{j}\right) \text { prime }: x_{j} \equiv 1 \bmod 4\right\} .
$$

The following holds for any large enough D_{1}. Choose integers $0 \leq k_{0}<k_{1}<k_{2} \leq r$, and assume $t_{k_{0}+1}>D_{1}$ and $k_{2}>D_{1}$. Assume

1. $\log k_{1}<c_{8} \log k_{2}$;
2. $\left(|P|+k_{0}\right) \log 2<\left(1-2 c_{7}\right) \log k_{2}$.

Further assume

1. (X, P) is Siegel-less above D_{1};
2. $|P| \leq \log t_{i}-i$ for all $k_{0}<i \leq r$ and $p \in P$ implies $p<s_{k_{0}+1}$;
3. $\log t_{k_{1}+1}>\max \left\{\left(\log t_{k_{0}+1}\right)^{c_{6}}, D_{1}^{c_{1}}\right\}$ and $\log t_{k_{1}}<t_{1}^{c_{2}}$;
4. $\left|X_{i}\right| \geq 2^{|P|} e^{i} k_{2}^{c_{7}} t_{i}\left(\log t_{i}\right)^{c_{3}}$ for all $k_{0}<i \leq r$;
5. $r<t_{k_{0}+1}^{c_{4}}$;
6. for each $k_{0}<i \leq r, j_{i}:=1+i+\left\lfloor c_{5} \log t_{i}\right\rfloor$ satisfy $j_{k_{0}+1}>k_{1}$, and $\log t_{j_{i}}>\left(\log t_{i}\right)^{c_{6}}$ if $j_{i} \leq r$.

Take $\delta_{1}<c_{7}-c_{8}$ and $2 \delta_{2}<\frac{1}{4}-c_{2} c_{3}-3 c_{4}-c_{5}$. Then for any \mathcal{M} and \mathcal{N}, we have

$$
\sum_{a \in \mathbb{F}_{2}^{\mathcal{M}} \sqcup \mathcal{N}}\left|2^{-|\mathcal{M} \sqcup \mathcal{N}|} \cdot k_{2}!\cdot\right| X\left|-\sum_{\sigma \in \mathcal{P}\left(k_{2}\right)}\right| X(\sigma, a)| | \leq\left(k_{2}^{-\delta_{1}}+t_{k_{0}+1}^{-\delta_{2}}\right) \cdot k_{2}!\cdot|X| .
$$

Proof. Without loss of generality, assume that $\mathcal{M}=\{(i, j): 1 \leq i<j \leq r\}$ and $\mathcal{N}=P \times[r], X_{i}=\left\{x_{i}\right\}$ for $i \leq k_{0}$. Let $m:=k_{1}|P|+\frac{1}{2} k_{0}\left(k_{0}-1\right)+k_{0}\left(k_{1}-k_{0}\right)$ as in Proposition 5.8. Apply the triangle inequality to the sum we wish to bound,

$$
\begin{align*}
& 2^{-|\mathcal{M} \sqcup \mathcal{N}|} \sum_{a \in \mathbb{F}_{2}^{\mathcal{M}\llcorner\mathcal{N}} \mid}\left|k_{2}!\cdot\right| X\left|-2^{m} \sum_{\sigma \in \mathcal{P}\left(k_{2}\right)}\right| X_{S}(\sigma, a)| | \\
&+2^{-|\mathcal{M} \sqcup \mathcal{N}|+m} \sum_{\sigma \in \mathcal{P}\left(k_{2}\right)} \sum_{a \in \mathbb{F}_{2}^{\mathcal{M}} \sqcup \mathcal{N}}| | X_{S}(\sigma, a)\left|-2^{|\mathcal{M} \sqcup \mathcal{N}|-m}\right| X(\sigma, a) \mid . \tag{5.3}
\end{align*}
$$

For the first sum in equation (5.3), noting that

$$
\sum_{x \in X}|W(x, a)|=\sum_{\sigma \in \mathcal{P}\left(k_{2}\right)}\left|X_{S}(\sigma, a)\right|
$$

we obtain by Proposition 5.8 an upper bound

$$
\left(\frac{2^{|P|+k_{0}+1}}{k_{2}}\right)^{1 / 2} k_{1} \cdot k_{2}!\cdot|X|<k_{2}^{-\delta_{1}} \cdot k_{2}!\cdot|X|
$$

Now consider the second sum of equation (5.3). For each $\sigma \in \mathcal{P}\left(k_{2}\right)$, we can partition X into 2^{m} sets according to $\tilde{a}: S(\sigma) \rightarrow\{ \pm 1\}$ as follows:

$$
X_{S}(\sigma, \tilde{a})=\left\{x_{1}\right\} \times \cdots \times\left\{x_{k_{0}}\right\} \times X_{k_{0}+1}(\tilde{a}, \tilde{P}) \times \cdots \times X_{k_{1}}(\tilde{a}, \tilde{P}) \times X_{k_{1}+1} \times \cdots \times X_{r},
$$

where $\tilde{P}=\left\{x_{1}\right\} \cup \cdots \cup\left\{x_{k_{0}}\right\} \cup P$ and $X_{i}(\tilde{a}, \tilde{P})$ is the subset of those $q \in X_{i}$ satisfying

$$
\left(\frac{q}{x_{j}}\right)=\widetilde{a}\left(\sigma^{-1}(i), \sigma^{-1}(j)\right) \text { for } j \in\left[k_{0}\right] \text { and }\left(\frac{q}{p}\right)=\widetilde{a}\left(p, \sigma^{-1}(i)\right) \text { for } p \in P
$$

We first bound the contribution of $\sigma \in \mathcal{P}\left(k_{2}\right)$ with $\left|X_{i}(\tilde{a}, \tilde{P})\right|<2^{-|\tilde{P}|} k_{2}^{-c_{7}}\left|X_{i}\right|$ for some $\tilde{a}: S(\sigma) \rightarrow$ $\{ \pm 1\}$ and some $k_{0}<i \leq k_{1}$ in the sum. For each $\sigma \in \mathcal{P}\left(k_{2}\right)$ and $k_{0}<i \leq k_{1}$, we have the upper bound

$$
\sum_{\tilde{a}:\left|X_{i}(\tilde{a}, \tilde{P})\right| \leq 2^{-|\tilde{P}| k_{2}^{-c c_{7}}\left|X_{i}\right|}}\left|X_{S}(\sigma, \tilde{a})\right| \leq k_{2}^{-c_{7}}|X| .
$$

For each \tilde{a}, there are $2^{|\mathcal{M} \sqcup \mathcal{M}|-m}$ many a satisfying $a \upharpoonright_{S(\sigma)}=\tilde{a}$, so the contribution of such a is bounded by

$$
\sum_{\sigma \in \mathcal{P}\left(k_{2}\right)} \sum_{k_{0}<i \leq k_{1}} \sum_{\tilde{a}:\left|X_{i}(\tilde{a}, \tilde{P})\right| \leq 2^{-|\tilde{P}| \cdot k_{2}^{-c_{7}} \cdot\left|X_{i}\right|}}\left|X_{S}(\sigma, \tilde{a})\right| \leq k_{1} k_{2}^{-c_{7}} \cdot k_{2}!\cdot|X|<k_{2}^{-\delta_{1}} \cdot k_{2}!\cdot|X| .
$$

For the remaining terms, we have $\left|X_{i}(\tilde{a}, \tilde{P})\right| \geq 2^{-|\tilde{P}|} k_{2}^{-c_{7}}\left|X_{i}\right|$ for all $k_{0}<i \leq r$. Bound each summand by Proposition 5.7

$$
\left|\left|X_{S}(\sigma, a)\right|-2^{|\mathcal{M} \sqcup \mathcal{M}|-m}\right| X(\sigma, a)\left|\left|\leq t_{k_{0}+1}^{-\delta_{2}}\right| X_{S}(\sigma, a)\right| ;
$$

then summing over σ and a gives the required estimate.
There is a final technical proposition that will be of key importance in our next section. First we need a definition.

Definition 5.10. Let (X, P) be a prebox, and let $S \subseteq[r]$. If $j \notin S$, we define for a subset $Z \subseteq \prod_{i \in S} X_{i}$

$$
X_{j}(a, Z):=X_{j}(a, P) \cap\left\{x \in X_{j}: \text { for all } i \in S, Q \in Z \text { we have }\left(\frac{x}{\pi_{i}(Q)}\right)=a(i, j)\right\} .
$$

Note that this is a natural generalisation of $X_{j}(a, P)$ as defined in Definition 5.4.
Proposition 5.11. Fix positive constants c_{1}, \ldots, c_{6} such that $c_{2} c_{3}+2 c_{4}+c_{5}<\frac{1}{4}$ and $c_{6}>3$. Take $\delta>0$ satisfying $2 \delta<\frac{1}{4}-c_{2} c_{3}-2 c_{4}-c_{5}$; then the following holds for any large enough D_{1}. Take P to be a set of prime numbers, none of them congruent to 3 modulo 4 , and take $1 \leq k \leq r$. Suppose $\mathcal{M}=\{(i, j): 1 \leq i<j \leq r\}$ and $\mathcal{N}=P \times\{k+1, \ldots, r\}$. Let (X, P) be a prebox with parameters $D_{1}<s_{1}<t_{1}<s_{2}<t_{2}<\cdots<s_{r}<t_{r}$ such that

$$
X_{j}:=\left\{x_{j} \in\left(s_{j}, t_{j}\right) \text { prime }: x_{j} \equiv 1 \bmod 4, M_{j}\left(x_{j}\right)=a \upharpoonright_{\mathcal{N}_{j}}\right\} \quad \text { if } j>k .
$$

Let $U, V \subseteq[r]$ be disjoint subsets such that $U \cup V=[l]$ for some l. Further assume

1. (X, P) is Siegel-less above D_{1};
2. $|P| \leq \log t_{i}-i$ for all $1 \leq i \leq r$ and $p \in P$ implies $p<s_{1}$;
3. $\log t_{k+1}>\max \left\{\left(\log t_{1}\right)^{c_{6}}, D_{1}^{c_{1}}\right\}$ if $k<r$, and $\log t_{k}<t_{1}^{c_{2}}$;
4. $\left|X_{i}\right| \geq e^{i} t_{i}\left(\log t_{i}\right)^{-c_{3}}$ for all $1 \leq i \leq r$;
5. $r<t_{1}^{c_{4}}$;
6. for each $1 \leq i \leq r, j_{i}:=1+i+\left\lfloor c_{5} \log t_{i}\right\rfloor$ satisfy $j_{1}>k$ and $\log t_{j_{i}}>\left(\log t_{i}\right)^{c_{6}}$ if $j_{i} \leq r$;
7. $c_{5} \log t_{u}>r+10$ and $u>k$ for all $u \in U$.

We say that $Q \in \pi_{V}(X)$ is poor if there is $u \in U$ such that

$$
\left|\left|X_{u}(a, Q)\right|-\frac{\left|X_{u}\right|}{2^{|V|} \mid}>t_{1}^{-c_{4}-\delta}\right| V\left|\left|X_{u}\right| .\right.
$$

Then for all $a: \mathcal{M} \sqcup \mathcal{N} \rightarrow\{ \pm 1\}$,

$$
\sum_{Q \in \pi_{V}(X) \text { poor }}|X(a, Q)| \leq r \cdot t_{1}^{-c_{4}-\delta} \cdot \frac{|X|}{2^{|\mathcal{M}|}}
$$

Proof. We proceed by induction on $|V|$. The case $|V|=0$ is trivial. Let v be the smallest element in V. Define \tilde{k} to be the k from the proposition if $v=1$, and define \tilde{k} to be r if $v \neq 1$. Fix some $x \in X_{v}$. Put
$B_{1}:=c_{4}+c_{5}+\delta$ and $B_{2}:=c_{4}+\delta$. Following the proof of Proposition 5.7, we get that

$$
\left|\left|X_{j}(a, x)\right|-\frac{1}{2}\right| X_{j}| |<t_{1}^{-B_{2}}\left|X_{j}\right| \text { for all } 1 \leq j \leq \tilde{k} \text { with } j \neq v
$$

holds for $x \in X_{v}$ with at most $\tilde{k} t_{1}^{-B_{1}}\left|X_{v}\right|$ exceptions, while for $j>\tilde{k}$, we always get

$$
\left|\left|X_{j}(a, x)\right|-\frac{1}{2}\right| X_{j}| |<t_{1}^{-1}\left|X_{j}\right| .
$$

Just as in the proof of Proposition 5.7, define $X_{v}^{\text {bad }}(a)$ to be the set of exceptions. We split the sum in the proposition as

$$
\begin{align*}
\sum_{Q \in \pi_{V}(X) \text { poor }}|X(a, Q)| & =\sum_{\substack{Q \in \pi_{V}(X) \text { poor } \\
\pi_{v}(Q) \notin X_{V}^{\text {bad }}(a)}}|X(a, Q)|+\sum_{\substack{Q \in \pi_{V}(X) \text { poor } \\
\pi_{v}(Q) \in X_{v}^{\text {bad }}(a)}}|X(a, Q)| \\
& \leq \sum_{\substack{Q \in \pi_{V}(X) \text { poor } \\
\pi_{v}(Q) \notin X_{v}^{\text {bad }}(a)}}|X(a, Q)|+\sum_{\substack{Q \in \pi_{V}(X) \\
\pi_{v}(Q) \in X_{v}^{\text {add }}(a)}}|X(a, Q)| . \tag{5.4}
\end{align*}
$$

We first treat the latter sum in equation (5.4). In the case $v=1$, we apply Proposition 5.7 to the prebox

$$
\left(X_{2} \times \cdots \times X_{k} \times X_{k+1}(a, x) \times \cdots \times X_{r}(a, x), P \cup\{x\}\right)
$$

for $x \in X_{1}^{\text {bad }}(a)$ and the natural restrictions of a, U, V, \mathcal{M} and \mathcal{N}. Then the latter sum is bounded by

$$
\sum_{\substack{Q \in \pi_{V}(X) \\ \pi_{1}(Q) \in X_{1}^{\text {bad }}(a)}}|X(a, Q)|=\sum_{x \in X_{1}^{\text {bad }}(a)}\left|X(a) \cap \pi_{1}^{-1}(x)\right| \leq\left|X_{1}^{\text {bad }}(a)\right| \cdot 2^{-|\mathcal{M}|+k+1} \frac{|X|}{\left|X_{1}\right|} .
$$

A small computation shows that this is at most

$$
t_{1}^{-c_{4}-\delta} \cdot \frac{|X|}{2^{|\mathcal{M}|+1}}
$$

for sufficiently large D_{1}. Now suppose that $v \neq 1$ so that $1 \in U$. Then apply Proposition 5.7 with $k=r-1$, the prebox

$$
\left(X_{1} \times \cdots \times X_{v-1} \times X_{v+1} \times \cdots \times X_{r}, \varnothing\right)
$$

and the natural restrictions of a, U, V, \mathcal{M} and \mathcal{N}. Crucially, we have that this choice of k satisfies the requirements of Proposition 5.7 for sufficiently large D_{1} due to our assumption $c_{5} \log t_{u}>r+10$ for all $u \in U$. Then a similar computation shows that the latter sum is again at most

$$
t_{1}^{-c_{4}-\delta} \cdot \frac{|X|}{2^{|\mathcal{M}|+1}} .
$$

It remains to bound the former sum in equation (5.4). We first treat the case $v=1$. Take a poor $Q \in \pi_{V}(X)$ with $x:=\pi_{1}(Q) \notin X_{1}^{\text {bad }}(a)$. Then we claim that $\pi_{V-\{1\}}(Q)$ is poor for the prebox

$$
\left(X_{2}(a, x) \times \cdots \times X_{r}(a, x), P \cup\{x\}\right) .
$$

Suppose that $\pi_{V-\{1\}}(Q)$ is not poor. Then we get for all $u \in U$ that

$$
\left|\left|X_{u}(a, Q)\right|-\frac{\left|X_{u}(a, x)\right|}{2^{|V|-1}}\right| \leq t_{2}^{-B_{2}}(|V|-1)\left|X_{u}\right| .
$$

But from this, we deduce that for all $u \in U$,
establishing the claim. Now we can easily bound the former sum in equation (5.4) using the induction hypothesis. Finally, we deal with the case that $v \neq 1$ so that $1 \in U$. In this case, we apply the induction hypothesis to the prebox

$$
\left(X_{1}(a, x) \times \cdots \times X_{v-1}(a, x) \times X_{v+1}(a, x) \times \cdots \times X_{r}(a, x), P \cup\{x\}\right)
$$

with $k=r-1$.
As alluded to earlier, the squarefree integers play a crucial role in our analysis. It turns out to be more convenient to work with squarefree integers with a fixed number of prime divisors, and this naturally leads to the following definition.

We now define special preboxes that we call boxes. These boxes provide a natural way to study distributional properties $S_{r}(N)$, as we shall see in the coming proposition, which is based on Proposition 6.9 in Smith [18].

Definition 5.12. Suppose $0 \leq k \leq r$. For any $\mathbf{t}=\left(p_{1}, \ldots, p_{k}, s_{k+1}, \ldots, s_{r}\right)$ such that

1. $p_{1}<p_{2}<\cdots<p_{k}<D_{1}$ is a sequence of primes not congruent to $3 \bmod 4$,
2. $D_{1}<s_{k+1}<t_{k+1}<s_{k+2}<t_{k+2}<\cdots<s_{r}<t_{r}$ is a sequence of real numbers where

$$
t_{i}=\left(1+\frac{1}{e^{i-k} \log D_{1}}\right) s_{i}
$$

we define $X(\mathbf{t}):=X_{1} \times \cdots \times X_{r}$ with

$$
X_{i}:=\left\{\begin{array}{cl}
\left\{p_{i}\right\} & \text { if } i \leq k, \\
\left\{p \in\left(s_{i}, t_{i}\right) \text { prime }: p \equiv 1 \bmod 4\right\} & \text { if } i>k .
\end{array}\right.
$$

We call X a box if $X=X(\mathbf{t})$ for some \mathbf{t}. There is a bijection from X to a subset of $S_{r}(\infty)$. By abuse of notation, denote this subset by X.
Theorem 5.13. Take $N \geq D_{1} \geq 3$ with $\log N \geq\left(\log D_{1}\right)^{2}$. Suppose that r satisfies equation (4.3). Let $W \subseteq S_{r}(N)$ be a set of comfortably spaced elements above D_{1} such that

$$
\left||W|-\Phi_{r}(N)\right|<\epsilon \Phi_{r}(N)
$$

for some constant $\epsilon>0$. Let $V \subseteq S_{r}(N)$, and suppose that there exists some constant $\delta>0$ such that

$$
||V \cap X|-\delta| X||<\epsilon| X|
$$

for any box $X \subseteq S_{r}(N)$ satisfying $X \cap W \neq \varnothing$. Then there exists an absolute constant $C>0$ such that

$$
|V|-\delta \Phi_{r}(N) \ll \epsilon \Phi_{r}(N)+\left(\Phi_{r}(N)-\Phi_{r}\left(N\left(1-\frac{C}{\log D_{1}}\right)\right)\right)
$$

Proof. Define $\mathcal{T}_{k}=\left\{\mathbf{t}: X(\mathbf{t}) \subseteq S_{r}(N)\right.$ and $\left.X(\mathbf{t}) \cap W \neq \varnothing\right\}$. Our aim is to estimate $|V|$ in terms of

$$
\int_{\mathcal{T}_{k}}|V \cap X(\mathbf{t})| \frac{d p_{1} \cdots d p_{k} d s_{k+1} \cdots d s_{r}}{s_{k+1} \cdots s_{r}}
$$

where $d p_{i}$ is 1 if $p_{i} \equiv 1 \bmod 4$ is prime and 0 otherwise.
Consider $n=\left(q_{1}, \ldots, q_{r}\right) \in S_{r}(N)$ with exactly k prime factors less than D_{1}. Then $n \in X(\mathbf{t})$ if and only if $q_{i}=p_{i}$ for $1 \leq i \leq k$ and

$$
s_{i}<q_{i}<\left(1+\frac{1}{e^{i-k} \log D_{1}}\right) s_{i} \text { for } k<i \leq r .
$$

If $n \in W$ and

$$
\begin{equation*}
n \prod_{i=k+1}^{r}\left(1+\frac{1}{e^{i-k} \log D_{1}}\right)<N \tag{5.5}
\end{equation*}
$$

then

$$
\begin{aligned}
\int_{\substack{\mathbf{t} \in \mathcal{T}_{k}: \\
n \in X(\mathbf{t})}} \frac{d p_{1} \cdots d p_{k} d s_{k+1} \cdots d s_{r}}{s_{k+1} \cdots s_{r}} & =\int_{\left.q_{k+1}\left(1+\frac{1}{e \log D_{1}}\right)^{-1} \cdots \int_{q_{r}\left(1+\frac{1}{e^{r-k} \log D_{1}}\right.}^{q_{k+1}}\right)^{-1} \frac{d s_{k+1} \cdots d s_{r}}{q_{r}}}^{s_{k+1} \cdots s_{r}} \\
& =\prod_{i=k+1}^{r} \log \left(1+\frac{1}{e^{i-k} \log D_{1}}\right) .
\end{aligned}
$$

If equation (5.5) does not hold or $n \notin W$, then

$$
\int_{\substack{\mathbf{t} \in \mathcal{T}_{k}: \\ n \in X(\mathbf{t})}} \frac{d p_{1} \cdots d p_{k} d s_{k+1} \cdots d s_{r}}{s_{k+1} \cdots s_{r}} \leq \prod_{i=k+1}^{r} \log \left(1+\frac{1}{e^{i-k} \log D_{1}}\right) .
$$

There exists some constant $C>0$ such that any n that does not satisfy equation (5.5) lies in

$$
N\left(1-\frac{C}{\log D_{1}}\right) \leq N \prod_{i=k+1}^{r}\left(1+\frac{1}{e^{i-k} \log D_{1}}\right)^{-1} \leq n \leq N
$$

which we bound by

$$
\Phi_{r}(N)-\Phi_{r}\left(N\left(1-\frac{C}{\log D_{1}}\right)\right) .
$$

Then

$$
\sum_{k=0}^{\infty} \prod_{i=k+1}^{r} \log \left(1+\frac{1}{e^{i-k} \log D_{1}}\right)^{-1} \int_{\mathcal{T}_{k}}|V \cap X(\mathbf{t})| \frac{d p_{1} \cdots d p_{k} d s_{k+1} \cdots d s_{r}}{s_{k+1} \cdots s_{r}}
$$

is bounded above by $|V|$ and below by

$$
\begin{aligned}
& |V \cap W|+O\left(\Phi_{r}(N)-\Phi_{r}\left(N\left(1-\frac{C}{\log D_{1}}\right)\right)\right)= \\
& \quad|V|+O\left(\Phi_{r}(N)-\Phi_{r}\left(N\left(1-\frac{C}{\log D_{1}}\right)\right)\right)+O\left(\epsilon \Phi_{r}(N)\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\sum_{k=0}^{\infty} \prod_{i=k+1}^{r} \log \left(1+\frac{1}{e^{i-k} \log D_{1}}\right)^{-1} & \int_{\mathcal{T}_{k}}|X(\mathbf{t})| \frac{d p_{1} \cdots d p_{k} d s_{k+1} \cdots d s_{r}}{s_{k+1} \cdots s_{r}} \\
& =\Phi_{r}(N)+O\left(\Phi_{r}(N)-\Phi_{r}\left(N\left(1-\frac{C}{\log D_{1}}\right)\right)\right)+O\left(\epsilon \Phi_{r}(N)\right)
\end{aligned}
$$

The result follows from the estimate $|V \cap X(\mathbf{t})|=(\delta+O(\epsilon))|X(\mathbf{t})|$ for $\mathbf{t} \in \mathcal{T}_{k}$.
With some extra work, it is possible to prove that

$$
\Phi_{r}(N)-\Phi_{r}\left(N\left(1-\frac{C}{\log D_{1}}\right)\right) \ll \frac{\Phi_{r}(N)}{\log D_{1}}
$$

which ensures that the error term in Theorem 5.13 is smaller than the main term. However, in our applications, we work with all values of r simultaneously so that the trivial bound

$$
\sum_{r}\left(\Phi_{r}(N)-\Phi_{r}\left(N\left(1-\frac{C}{\log D_{1}}\right)\right)\right) \ll \frac{\Phi(N)}{\log D_{1}}
$$

suffices for our purposes. Our next proposition deals with boxes that are not Siegel-less. It is directly based on Proposition 6.10 in Smith [18].

Theorem 5.14. Let d_{1}, d_{2}, \ldots be a sequence of distinct squarefree integers greater than D_{1} satisfying $d_{i}^{2}<d_{i+1}$. Take $N \geq D_{1} \geq 3$ satisfying $\log N \geq\left(\log D_{1}\right)^{4}$, and suppose that r satisfies equation (4.3). Define

$$
V_{i}:=\left\{x \in S_{r}(N): \text { there is a box } X \subseteq S_{r}(N) \text { with } x \in X \text { and there is } x^{\prime} \in X \text { with } d_{i} \mid x^{\prime}\right\} .
$$

Then

$$
\left|\cup_{i \geq 1} V_{i}\right| \ll \frac{\Phi_{r}(N)}{\log D_{1}}
$$

Proof. Suppose we have some box $X \subseteq V_{i}$ and $d_{i}=p_{1} \cdots p_{m}$. For any element $x \in X$, there are prime factors q_{1}, \ldots, q_{m} of x such that

$$
q_{i}=p_{i} \text { if } p_{i}<D_{1} \quad \text { and } \quad \frac{1}{2} p_{i}<q_{i}<2 p_{i} \text { if } p_{i} \geq D_{1}
$$

If $d_{i}<N^{2 / 3}$, we deduce from equation (4.1) that there exists some constant $C>0$ with

$$
\begin{aligned}
\left|V_{i}\right| & \left.\leq \Phi_{r-m}\left(\frac{2^{m} N}{d_{i}}\right) \cdot \prod_{p_{i} \geq D_{1}} \left\lvert\,\left\{q_{i} \text { prime }: \frac{1}{2} p_{i}<q_{i}<2 p_{i}, q_{i} \equiv 1 \bmod 4\right\}\right. \right\rvert\, \\
& \leq \Phi_{r}(N) \cdot \frac{C^{m}}{d_{i}} \prod_{p_{i} \geq D_{1}} \frac{p_{i}}{\log p_{i}} \ll \frac{\Phi_{r}(N)}{\log d_{i}} .
\end{aligned}
$$

Notice that $d_{i}>D_{1}^{2^{i-1}}$. Then

$$
\left|\bigcup_{d_{i}<N^{2 / 3}} V_{i}\right| \ll \Phi_{r}(N) \sum_{i \geq 1} \frac{1}{2^{i-1} \log D_{1}} \ll \frac{\Phi_{r}(N)}{\log D_{1}}
$$

If $d_{i} \geq N^{2 / 3}$, then $d_{i+1} \geq N^{4 / 3}>N$. Therefore there is at most one i such that $d_{i} \geq N^{2 / 3}$ and V_{i} is not empty. Then for sufficiently large D_{1},

$$
\begin{aligned}
\left|V_{i}\right| & \left.\leq\left|\left\{x \in S_{r}(N): d_{i} \mid x\right\}\right| \cdot \prod_{p_{i} \geq D_{1}} \left\lvert\,\left\{q_{i} \text { prime }: \frac{1}{2} p_{i}<q_{i}<2 p_{i}, q_{i} \equiv 1 \bmod 4\right\}\right. \right\rvert\, \\
& \leq \frac{N}{d_{i}} \prod_{p_{i} \geq D_{1}} \frac{2 p_{i}}{\log p_{i}} \ll \frac{N}{\log d_{i}} \ll \frac{N}{\log N},
\end{aligned}
$$

which fits into the error bound.
Definition 5.15. Fix some constants $c_{9}, c_{10}>0$. We call a box X of $S_{r}(N)$ acceptable if it

1. contains a comfortably spaced element above $D_{1}=\exp \left(\left(\frac{1}{2} \log \log N\right)^{c_{9}}\right)$,
2. contains a $\left(c_{10} \log \log \log N\right)$-regular element, and
3. is Siegel-less above D_{1}.

Given any integer $x \in \mathcal{D}$, let $p_{1}<\cdots<p_{n}$ be the distinct prime factors of x, and call the matrix $\left(c_{i j}\right)_{1 \leq i, j \leq n}$ defined by

$$
(-1)^{c_{i j}}=\left\{\begin{array}{cc}
\left(\frac{p_{i}}{p_{j}}\right) & \text { if } i \neq j \\
\prod_{l \neq j}\left(\frac{p_{l}}{p_{j}}\right) & \text { if } i=j
\end{array}\right.
$$

the Rédei matrix of x. This is a symmetric matrix with column (and row) sum zero due to our assumption $x \in \mathcal{D}$. We are now ready to reprove a well-known result due to Fouvry and Klüners [6]. Note that unlike the work of Fouvry and Klüners, our theorem has the benefit of providing an error term.

Theorem 5.16. There exists a constant $c>0$ such that for all integers $k \geq 0$,

$$
\left|\frac{\left|\left\{d \in \mathcal{D}(N): \mathrm{rk}_{4} \mathrm{Cl}^{+}(d)=k\right\}\right|}{|\mathcal{D}(N)|}-\lim _{n \rightarrow \infty} P(n \mid k)\right| \ll(\log \log N)^{-c} .
$$

Proof. By our Erdős-Kac result - that is, equation (4.2) - it suffices to show that

$$
\left|\frac{\left|\left\{d \in S_{r}(N): \mathrm{rk}_{4} \mathrm{Cl}^{+}(d)=k\right\}\right|}{\left|S_{r}(N)\right|}-\lim _{n \rightarrow \infty} P(n \mid k)\right| \ll(\log \log N)^{-c}
$$

for any r satisfying equation (4.3). We can find some $W \subseteq S_{r}(N)$ that is comfortably spaced above D_{1} and $\left(c_{10} \log \log \log N\right)$-regular by Theorem 4.1 and Siegel-less above D_{1} by Proposition 5.14 so that

$$
|W| \geq(1-\epsilon) \Phi_{r}(N) \text { with } \epsilon \ll(\log \log N)^{-c}
$$

for some absolute constant $c>0$. Then, applying Theorem 5.13, we see that we can restrict to acceptable boxes by introducing an error $\ll(\log \log N)^{-c}$. In other words, it suffices to show that we have for any acceptable box $X \subseteq S_{r}(N)$

$$
\begin{equation*}
\left|\frac{\left|\left\{x \in X: \mathrm{rk}_{4} \mathrm{Cl}^{+}(x)=k\right\}\right|}{|X|}-\lim _{n \rightarrow \infty} P(n \mid k)\right| \ll(\log \log N)^{-c} . \tag{5.6}
\end{equation*}
$$

Take X to be an acceptable box. Then one can check that there exist constants that satisfy the requirements in Theorem 5.9 applied to the prebox $\left(X_{1} \times \cdots \times X_{r}, \varnothing\right)$. Then Theorem 5.9 shows that the Rédei matrices of $x \in X$ are equidistributed amongst all $r \times r$ symmetric matrices over \mathbb{F}_{2} with column sum zero, up to reordering some columns and rows, with an error within the statement. Since reordering
columns and rows does not change the rank, we can assume that the Rédei matrix is a random $r \times r$ symmetric matrix over \mathbb{F}_{2} with column sum zero.

Let A be the matrix obtained from the Rédei matrix after removing a column and a row. It is a classical fact that $\mathrm{rk}_{4} \mathrm{Cl}^{+}(x)$ is equal to the corank of A. But A is a random $(r-1) \times(r-1)$ symmetric matrix. By [15, Theorem 2], we have for all $n \geq k \geq 0$

$$
\begin{aligned}
P(n \mid k) & =\frac{N(n, n-k)}{2^{\frac{n(n+1)}{2}}}=\frac{1}{2^{\frac{n(n+1)}{2}}} \prod_{i=1}^{\frac{n-k}{2}} \frac{2^{2 i}}{2^{2 i}-1} \cdot \prod_{i=0}^{n-k-1}\left(2^{n-i}-1\right) \\
& =\frac{1}{2^{\frac{k(k+1)}{2}}} \prod_{i=1}^{\frac{n-k}{2}} \frac{2^{2 i}}{2^{2 i}-1} \cdot \prod_{i=0}^{n-k-1}\left(1-2^{i-n}\right)
\end{aligned}
$$

if $n-k \equiv 0 \bmod 2$ and

$$
\begin{aligned}
P(n \mid k) & =\frac{N(n, n-k)}{2^{\frac{n(n+1)}{2}}}=\frac{1}{2^{\frac{n(n+1)}{2}}} \prod_{i=1}^{\frac{n-k-1}{2}} \frac{2^{2 i}}{2^{2 i}-1} \cdot \prod_{i=0}^{n-k-1}\left(2^{n-i}-1\right) \\
& =\frac{1}{2^{\frac{k(k+1)}{2}}} \prod_{i=1}^{\frac{n-k-1}{2}} \frac{2^{2 i}}{2^{2 i}-1} \cdot \prod_{i=0}^{n-k-1}\left(1-2^{i-n}\right)
\end{aligned}
$$

if $n-k \equiv 1 \bmod 2$, where $N(n, k)$ denotes the number of symmetric $n \times n$-matrices with coefficients in \mathbb{F}_{2} and rank k. Using this, one directly bounds the difference $P(r-1 \mid k)-\lim _{n \rightarrow \infty} P(n \mid k)$, completing the proof.

Gerth [8, Theorem 2.2] also studied the difference $P(r-1 \mid k)-\lim _{n \rightarrow \infty} P(n \mid k)$ but without giving a rate of convergence. It is for this reason that we appeal to the work [15] instead.

6. Proof of main theorems

Recall from the introduction that

$$
\mathcal{D}_{n, m}(X)=\left\{D \in \mathcal{D}(X): \mathrm{rk}_{4} \mathrm{Cl}(D)=\mathrm{rk}_{4} \mathrm{Cl}^{+}(D)=n \text { and } \mathrm{rk}_{8} \mathrm{Cl}^{+}(D)=m\right\} .
$$

We also define

$$
\mathcal{D}_{n}(X)=\left\{D \in \mathcal{D}(X): \operatorname{rk}_{4} \mathrm{Cl}^{+}(D)=n\right\} .
$$

In this section, we prove the following theorem.
Theorem 6.1. There are $A, N_{0}>0$ such that for all $N>N_{0}$ and all integers $n_{2} \geq n_{3} \geq 0$, we have

$$
\left\|\mathcal{D}_{n_{2}, n_{3}}(N)\left|-Q\left(n_{2} \mid n_{3}\right) \cdot\right| \mathcal{D}_{n_{2}}(N)\right\| \leq \frac{A|\mathcal{D}(N)|}{\log \log \log \log N} .
$$

Theorem 5.16 and Theorem 6.1 together imply Theorem 1.2. Hence it remains to prove Theorem 6.1. Our first step is to reduce to sufficiently nice boxes X. We formalise this in our next definition.
Definition 6.2. Let $r \geq 1$ be an integer, let $X=X_{1} \times \ldots \times X_{r}$ be a box, and let $N \geq 10^{10^{10}}$ be a real number. Put

$$
D_{1}:=e^{(\log \log N)^{1 / 10}}, \quad \eta:=\sqrt{\log \log \log N}
$$

We let W be the maximal subset of $S_{r}(N)$ that is comfortably spaced above D_{1}, η-regular and disjoint from the sets V_{i} in Proposition 5.14. We call X a nice box for N if $X \subseteq S_{r}(N), X \cap W \neq \varnothing$ and r satisfies equation (4.3).

Proposition 6.3. There are $A, N_{0}>0$ such that for all $N>N_{0}$, all nice boxes X for N and all integers $n_{2} \geq n_{3} \geq 0$, we have

$$
\left\|X \cap \mathcal{D}_{n_{2}, n_{3}}(N)\left|-Q\left(n_{2} \mid n_{3}\right) \cdot\right| X \cap \mathcal{D}_{n_{2}}(N)\right\| \leq \frac{A|X|}{\log \log \log \log N}
$$

Proof that Proposition 6.3 implies Theorem 6.1. From Erdős-Kac (see equation (4.2)), it follows that we only need to consider r satisfying equation (4.3). For each such r, we apply Proposition 5.13 with W as in Definition 6.2; the required lower bound for $|W|$ follows from the material in Section 4 and Proposition 5.14.

Given a box X and $a: \mathcal{M} \rightarrow\{ \pm 1\}$, our next step is to reduce to $X(a)$. However, it turns out that we cannot prove equidistribution for all $a: \mathcal{M} \rightarrow\{ \pm 1\}$, but only if a is generic in the following sense.
Definition 6.4. For a field K and for integers $a, b \geq 0$, we denote by $\operatorname{Mat}(K, a, b)$ the set of $a \times b$ matrices with coefficients in K. Let ι be the unique group isomorphism between $\{ \pm 1\}$ and \mathbb{F}_{2}. For the rest of the paper, we will use

$$
\mathcal{M}:=\{(i, j): 1 \leq i<j \leq r\}, \quad \mathcal{N}:=\varnothing .
$$

Given $a: \mathcal{M} \rightarrow\{ \pm 1\}$, we associate a symmetric matrix $A \in \operatorname{Mat}\left(\mathbb{F}_{2}, r, r\right)$ by setting for all $i<j$

$$
A(i, j)=\iota \circ a(i, j), \quad A(j, i)=\iota \circ a(i, j)
$$

and finally

$$
A(i, i)=\iota \circ \prod_{j=1}^{r} a(i, j) .
$$

Think of \mathbb{F}_{2}^{r} as column vectors. We define the vector space

$$
\mathcal{V}_{a, 2}=\left\{v \in \mathbb{F}_{2}^{r}: v^{T} A=0\right\}=\left\{v \in \mathbb{F}_{2}^{r}: A v=0\right\}
$$

Let $R:=(1, \ldots, 1)$ so that $R \in \mathcal{V}_{a, 2}$. Put $n_{2}(a):=-1+\operatorname{dim}_{\mathbb{F}_{2}} \mathcal{V}_{a, 2}$.
Let N be a large real, and let $X=X_{1} \times \ldots \times X_{r}$ be a nice box for N. Choose an index $k_{\text {gap }}$ such that the extravagant spacing of X is between $k_{\text {gap }}$ and $k_{\text {gap }}+1$. Set

$$
n_{\max }:=\lfloor\sqrt{3 \log \log \log \log \log N}\rfloor .
$$

We say that $a: \mathcal{M} \rightarrow\{ \pm 1\}$ is generic for X if $n_{2}(a) \leq n_{\max }$, and furthermore we have for all $S \in \mathcal{V}_{a, 2} \backslash\langle R\rangle$ and all $i \in \mathbb{F}_{2}$ that

$$
\begin{equation*}
\|\left\{j \in[r]: \frac{k_{\text {gap }}}{2} \leq j \leq k_{\text {gap }} \text { and } \pi_{j}(S)=i\right\}\left|-\frac{k_{\text {gap }}}{4}\right| \leq 2^{-10 n_{\max }} \cdot k_{\text {gap }} \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\left|\mid\left\{j \in[r]: k_{\text {gap }}<j \leq 2 k_{\text {gap }} \text { and } \pi_{j}(S)=i\right\}\right|-\frac{k_{\text {gap }}}{2} \right\rvert\, \leq 2^{-10 n_{\max }} \cdot k_{\text {gap }} \tag{6.2}
\end{equation*}
$$

We shall prove that the Artin pairing Art_{2} is equidistributed in $X(a)$ under favorable circumstances. For this reason, we make the following definition.

Definition 6.5. We say that a bilinear pairing

$$
\operatorname{Art}_{2}: \mathcal{V}_{a, 2} \times \mathcal{V}_{a, 2} \rightarrow \mathbb{F}_{2}
$$

is valid if the right kernel contains $(1, \ldots, 1)$. Fix a basis $w_{1}, \ldots w_{n_{2}}, R$ for $\mathcal{V}_{a, 2}$. Using this basis, we may identify Art_{2} with a $\left(n_{2}+1\right) \times\left(n_{2}+1\right)$ matrix with coefficients in \mathbb{F}_{2}. Since $(1, \ldots, 1)$ is in the right kernel, we may also naturally identify Art_{2} with a $\left(n_{2}+1\right) \times n_{2}$ matrix. Finally, define for a box X

$$
X\left(a, \operatorname{Art}_{2}\right):=\left\{x \in X(a): \text { the Artin pairing of } x \text { equals } \operatorname{Art}_{2}\right\} .
$$

Here one defines the Artin pairing of x as follows:

$$
\operatorname{Art}_{2}(x)(i, j):=\left\langle\sum_{a \in[r]} \pi_{a}\left(w_{j}\right) \chi_{\pi_{a}(x)}, \prod_{b \in[r]} \pi_{b}(x)^{\pi_{b}\left(w_{i}\right)}\right\rangle_{x}
$$

where w_{i} and w_{j} are allowed to be equal to R and $\langle\cdot, \cdot\rangle_{x}$ is the pairing defined in Section 2. We recall that $\mathrm{rk}_{4} \mathrm{Cl}(x)=\mathrm{rk}_{4} \mathrm{Cl}^{+}(x)$ if and only if $(1, \ldots, 1)$ is in the left kernel of $\mathrm{Art}_{2}(x)$. Furthermore, the dimension of the left kernel of $\operatorname{Art}_{2}(x)$ is precisely one more than the dimension of $4 \mathrm{Cl}^{+}(x)$ [8].

If $X=X_{1} \times \cdots \times X_{r}$ is a box with D_{1} sufficiently large, we recall that k is the largest index such that $\left|X_{k}\right|=1$.

Proposition 6.6. There are $A, N_{0}>0$ such that for all $N>N_{0}$, all nice boxes X for N, all integers $n_{2} \geq 0$, all generic $a: \mathcal{M} \rightarrow\{ \pm 1\}$ for X with $n_{2}(a)=n_{2}$ and

$$
\begin{equation*}
\left|X_{j}\left(a,\left(x_{1}, \ldots x_{k}\right)\right)\right| \geq \frac{1}{\left(\log t_{k+1}\right)^{100}} \cdot\left|X_{j}\right| \tag{6.3}
\end{equation*}
$$

for all $k<j \leq r$, and all valid Artin pairings Art_{2}, we have

$$
\left|\left|X\left(a, \operatorname{Art}_{2}\right)\right|-2^{-n_{2}\left(n_{2}+1\right)}\right| X(a)\left|\left\lvert\, \leq \frac{A|X(a)|}{(\log \log \log \log N)^{4}}\right.\right.
$$

Here we write x_{1}, \ldots, x_{k} for the unique elements of X_{1}, \ldots, X_{k}.
Proof that Proposition 6.6 implies Proposition 6.3. Take N to be a large integer, and take X to be a nice box for N. If N is sufficiently large and $n_{2}>n_{\max }$, we have

$$
\lim _{k \rightarrow \infty} P\left(k \mid n_{2}\right)=O\left(\frac{1}{\log \log \log \log N}\right)
$$

Then it follows from equation (5.6) that

$$
\left\|X \cap \mathcal{D}_{n_{2}, n_{3}}(N)\left|-Q\left(n_{2} \mid n_{3}\right) \cdot\right| X \cap \mathcal{D}_{n_{2}}(N)\right\| \leq 2\left|X \cap \mathcal{D}_{n_{2}}(N)\right| \leq \frac{A|X|}{\log \log \log \log N}
$$

for a sufficiently large constant $A>0$. From now on, suppose that $n_{2} \leq n_{\text {max }}$. We deduce from Hoeffding's inequality that the proportion of S in \mathbb{F}_{2}^{r} failing equation (6.1) or equation (6.2) is bounded by

$$
O\left(\exp \left(-2^{-20 n_{\max }^{2}} \cdot k_{\mathrm{gap}}\right)\right)
$$

Given $S \notin\langle R\rangle$, the proportion of $a: \mathcal{M} \rightarrow\{ \pm 1\}$ with $S \in \mathcal{V}_{a, 2}$ is $O\left(0.5^{r}\right)$. Taking the union over all S in \mathbb{F}_{2}^{r} failing equation (6.1) or equation (6.2) proves that the proportion of nongeneric a is at most

$$
O\left(\exp \left(-2^{-20 n_{\max }^{2}} \cdot k_{\text {gap }}\right)\right)
$$

Put $k_{2}:=\left\lfloor 0.25 k_{\text {gap }}\right\rfloor$. Then we have for all $\sigma \in \mathcal{P}\left(k_{2}\right)$ that $a: \mathcal{M} \rightarrow\{ \pm 1\}$ is generic if and only if $\sigma(a)$ is generic, where $\sigma(a)$ is defined in the natural way. Theorem 5.9 implies that

$$
\sum_{a: \mathcal{M} \rightarrow\{ \pm 1\}}\left|2^{-|\mathcal{M}|} \cdot\right| X\left|-\frac{1}{k_{2}!} \sum_{\sigma \in \mathcal{P}\left(k_{2}\right)}\right| X(\sigma(a))| | \leq\left(k_{2}^{-\delta_{1}}+t_{k+1}^{\prime-\delta_{2}}\right) \cdot|X|,
$$

where δ_{1} and δ_{2} are small, positive absolute constants. Restricting this sum to the nongeneric a shows that the union of $X(a)$ over all nongeneric a is within the error term of Proposition 6.3. We now deal with the $a: \mathcal{M} \rightarrow\{ \pm 1\}$ that fail equation (6.3). Let j be an integer satisfying $k<j \leq r$. We say that $a, a^{\prime}: \mathcal{M} \rightarrow\{ \pm 1\}$ are equivalent at j, which we write as $a \sim_{j} a^{\prime}$, if $a(i, j)=a^{\prime}(i, j)$ for all $1 \leq i \leq k$. Since our box is η-regular, we see that k is roughly equal to $\log \log D_{1}$. In particular, if N is sufficiently large, we get

$$
k \leq 2 \log \log D_{1}=\frac{1}{5} \log \log \log N .
$$

Then there are at most $2^{\frac{1}{5} \log \log \log N}$ equivalence classes. Furthermore, if $a: \mathcal{M} \rightarrow\{ \pm 1\}$ is such that equation (6.3) fails for some fixed j, we have that

$$
\left|\bigcup_{a^{\prime}: a \sim j a^{\prime}} X\left(a^{\prime}\right)\right| \leq \frac{1}{\left(\log t_{k+1}\right)^{100}} \cdot|X|,
$$

where the union is over all $a^{\prime}: \mathcal{M} \rightarrow\{ \pm 1\}$ equivalent to $a: \mathcal{M} \rightarrow\{ \pm 1\}$ at j. Summing this over all choices of j and all equivalence classes, we stay within the error term of Proposition 6.3. So far, we have shown

$$
\begin{aligned}
\| X \cap \mathcal{D}_{n_{2}, n_{3}}(N) \mid & -Q\left(n_{2} \mid n_{3}\right) \cdot \mid X \cap \mathcal{D}_{n_{2}}(N) \| \\
& \leq \sum_{\substack{\left.a \text { generic } \\
\text { a sat.e. (6.3) } \\
n_{2}(a)=n_{2}\right)}} \sum_{\substack{\operatorname{rk}\left(\operatorname{Art}_{2}\right)=n_{2}-n_{3} \\
\text { Art }_{2} \text { valid }}}\left|X\left(a, \operatorname{Art}_{2}\right)\right|-2^{-n_{2}\left(n_{2}+1\right)}|X(a)| \left\lvert\,+\frac{A|X|}{\log \log \log \log N} .\right.
\end{aligned}
$$

Note that we could have further restricted the sum over Artin pairings to only those with bottom row identically 0 . However, the displayed inequality suffices for our purposes. We now apply Proposition 6.6 for every generic $a: \mathcal{M} \rightarrow\{ \pm 1\}$ for X such that it satisfies equation (6.3) and $n_{2}(a)=n_{2}$, and all valid Artin pairings Art_{2} with $\operatorname{rk}\left(\operatorname{Art}_{2}\right)=n_{2}-n_{3}$. Since there are at most

$$
2^{n_{2}\left(n_{2}+1\right)} \leq 2^{n_{\max }\left(n_{\max }+1\right)}
$$

valid Artin pairings, we get

$$
\sum_{\substack{a \text { generic } \\ a \text { sat. eq. (6.3) } \\ n_{2}(a)=n_{2}}} \sum_{\left(\mathrm{Artr}_{2}\right)=n_{2}-n_{3}}^{\operatorname{Art}_{2} \text { valid }}| | X\left(a, \operatorname{Art}_{2}\right)\left|-2^{-n_{2}\left(n_{2}+1\right)}\right| X(a)| | \leq 2^{n_{\max }\left(n_{\max }+1\right)} \frac{A|X|}{(\log \log \log \log N)^{4}}
$$

as desired.

In our next definition, we introduce the notion of variable indices, which are by definition certain subsets S of $[r]$. At the very end of this section, we will reduce to the case where we have chosen one element $x_{i} \in X_{i}$ for all $i \in[r]-S$, whence the terminology.

Definition 6.7. Let $a: \mathcal{M} \rightarrow\{ \pm 1\}$. Recall that we fixed a basis $w_{1}, \ldots w_{n_{2}}, R$ for $\mathcal{V}_{a, 2}$ in Definition 6.5. Let $1 \leq j_{1} \leq n_{2}+1$, and let $1 \leq j_{2} \leq n_{2}$. Let $E_{j_{1}, j_{2}}$ be the $\left(n_{2}+1\right) \times n_{2}$-matrix with $E_{j_{1}, j_{2}}\left(j_{1}, j_{2}\right)=1$ and 0 otherwise, and let $F_{j_{1}, j_{2}}$ be the dual basis. Any nonzero multiplicative character $F: \operatorname{Mat}\left(\mathbb{F}_{2}, n_{2}+1, n_{2}\right) \rightarrow$ $\{ \pm 1\}$ can be written as

$$
F=\iota^{-1} \circ \sum_{\substack{1 \leq j_{1} \leq n_{2}+1 \\ 1 \leq j_{2} \leq n_{2}}} c_{j_{1}, j_{2}} F_{j_{1}, j_{2}}
$$

with not all $c_{j_{1}, j_{2}}$ zero. A set $S \subseteq[r]$ is called a set of variable indices for F if there are $i_{1}(F), i_{2}(F) \in S$ such that

$$
\frac{k_{\text {gap }}}{2} \leq i \leq k_{\text {gap }} \text { for all } i \in S \backslash\left\{i_{2}(F)\right\}, \quad k_{\text {gap }}<i_{2}(F) \leq 2 k_{\text {gap }}
$$

and

- if $c_{n_{2}+1, j_{2}}=0$ for all $1 \leq j_{2} \leq n_{2}$ and $c_{j_{1}, j_{1}}=0$ for all $1 \leq j_{1} \leq n_{2}$ and $c_{j_{1}, j_{2}}=0$ implies $c_{j_{2}, j_{1}}=0$ for all $1 \leq j_{1}, j_{2} \leq n_{2}$, we choose any pair $\left(j_{1}, j_{2}\right)$ such that $c_{j_{1}, j_{2}}=1$. Furthermore, choose $|S(F)|=2$,

$$
i_{1}(F) \in \bigcap_{i \neq j_{1}}\left\{j \in[r]: \pi_{j}\left(w_{i}\right)=0\right\} \cap\left\{j \in[r]: \pi_{j}\left(w_{j_{1}}\right)=1\right\}
$$

and

$$
i_{2}(F) \in \bigcap_{i \neq j_{2}}\left\{j \in[r]: \pi_{j}\left(w_{i}\right)=0\right\} \cap\left\{j \in[r]: \pi_{j}\left(w_{j_{2}}\right)=1\right\} ;
$$

- if there are $1 \leq j_{1}, j_{2} \leq n_{2}$ such that $c_{j_{1}, j_{2}}=1$ and $c_{j_{2}, j_{1}}=0$, choose such a pair $\left(j_{1}, j_{2}\right)$. Next
choose $|S(F)|=3$ and

$$
S(F) \subseteq \bigcap_{i \notin\left\{j_{1}, j_{2}\right\}}\left\{j \in[r]: \pi_{j}\left(w_{i}\right)=0\right\}
$$

and

$$
S(F) \cap\left\{j \in[r]: \pi_{j}\left(w_{j_{1}}\right)=1, \pi_{j}\left(w_{j_{2}}\right)=0\right\}=\left\{i_{1}(F)\right\}
$$

and

$$
S(F) \cap\left\{j \in[r]: \pi_{j}\left(w_{j_{2}}\right)=1, \pi_{j}\left(w_{j_{1}}\right)=0\right\}=\left\{i_{2}(F)\right\}
$$

and

$$
S(F) \cap\left\{j \in[r]: \pi_{j}\left(w_{j_{1}}\right)=1, \pi_{j}\left(w_{j_{2}}\right)=1\right\}=\varnothing ;
$$

- in all other cases, choose a pair $\left(j_{2}, j_{2}\right)$ such that $c_{j_{2}, j_{2}}=1$ or choose a pair $\left(n_{2}+1, j_{2}\right)$ such that $c_{n_{2}+1, j_{2}}=1$. We pick $|S(F)|=2$ and

$$
i_{1}(F) \in \bigcap_{i \neq j_{2}}\left\{j \in[r]: \pi_{j}\left(w_{i}\right)=0\right\} \cap\left\{j \in[r]: \pi_{j}\left(w_{j_{2}}\right)=1\right\}
$$

and

$$
i_{2}(F) \in \bigcap_{i=1}^{n_{2}}\left\{j \in[r]: \pi_{j}\left(w_{i}\right)=0\right\}
$$

If $a: \mathcal{M} \rightarrow\{ \pm 1\}$ is generic for X, we will now show that one can find variable indices provided that r is sufficiently large. Our essential tool is the following combinatorial lemma.

Lemma 6.8. Assume that $a: \mathcal{M} \rightarrow\{ \pm 1\}$ is generic for X. If $w_{1}, \ldots, w_{d}, R \in \mathcal{V}_{a, 2}$ are linearly independent, then we have for all $\mathbf{v} \in \mathbb{F}_{2}^{d}$

$$
\|\left\{i \in[r]: \frac{k_{\text {gap }}}{2} \leq i \leq k_{\text {gap }} \text { and } \pi_{i}\left(w_{j}\right)=\pi_{j}(\mathbf{v}) \text { for all } 1 \leq j \leq d\right\}\left|-\frac{k_{\text {gap }}}{2^{d+1}}\right| \leq \frac{3^{d} \cdot k_{\text {gap }}}{2^{10 n_{\max }}} .
$$

Proof. We proceed by induction on d. The base case $d=1$ follows immediately from equation (6.1). Now suppose that $d>1$. We define for $\mathbf{w} \in \mathbb{F}_{2}^{d}$

$$
\left.g(\mathbf{w})=\left\lvert\,\left\{i \in[r]: \frac{k_{\text {gap }}}{2} \leq i \leq k_{\text {gap }} \text { and } \pi_{i}\left(w_{j}\right)=\pi_{j}(\mathbf{w}) \text { for all } 1 \leq j \leq d\right\}\right. \right\rvert\, .
$$

Let $\mathbf{v} \in \mathbb{F}_{2}^{d}$ be given. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ be the three unique pairwise distinct vectors such that $\pi_{d-2}\left(\mathbf{v}_{i}\right)=$ $\pi_{d-2}(\mathbf{v})$ and $\mathbf{v}_{i} \neq \mathbf{v}$. We have

$$
\begin{aligned}
2\left|g(\mathbf{v})-\frac{k_{\text {gap }}}{2^{d+1}}\right| & \leq\left|3 g(\mathbf{v})+\sum_{i=1}^{3} g\left(\mathbf{v}_{i}\right)-\frac{3 k_{\text {gap }}}{2^{d}}\right|+\left|\frac{k_{\text {gap }}}{2^{d-1}}-g(\mathbf{v})-\sum_{i=1}^{3} g\left(\mathbf{v}_{i}\right)\right| \\
& \leq \sum_{i=1}^{3}\left|g(\mathbf{v})+g\left(\mathbf{v}_{i}\right)-\frac{k_{\text {gap }}}{2^{d}}\right|+\left|\frac{k_{\text {gap }}}{2^{d-1}}-g(\mathbf{v})-\sum_{i=1}^{3} g\left(\mathbf{v}_{i}\right)\right|
\end{aligned}
$$

Now apply the induction hypothesis.
With this lemma, it is straightforward to find variable indices provided that a is generic for X and r is sufficiently large. We can now formulate our next reduction step. For a subset $T \subseteq[r]$, a point $P \in \prod_{i \in T} X_{i}$ and $a: \mathcal{M} \rightarrow\{ \pm 1\}$, we say that P is consistent with a if

$$
\left(\frac{\pi_{i}(P)}{\pi_{j}(P)}\right)=a(i, j)
$$

for all distinct $i, j \in T$ with $i<j$.
Proposition 6.9. There are $A, N_{0}>0$ such that for all $N>N_{0}$, all nice boxes X for N, all integers $n_{2} \geq 0$, all generic $a: \mathcal{M} \rightarrow\{ \pm 1\}$ for X with $n_{2}(a)=n_{2}$, all nonzero multiplicative characters F from $\operatorname{Mat}\left(\mathbb{F}_{2}, n_{2}+1, n_{2}\right)$ to $\{ \pm 1\}$, all sets of variable indices S for F and all $Q \in \prod_{i \in\left[k_{\text {gap }}\right]-S} X_{i}$ consistent with a such that

$$
\begin{equation*}
\left|X_{j}(a, Q)\right| \geq 4^{-k_{\mathrm{gap}}} \cdot\left|X_{j}\right| \tag{6.4}
\end{equation*}
$$

for all $j \in S$, we have

$$
\left|\sum_{x \in X(a, Q)} F\left(\operatorname{Art}_{2}(x)\right)\right| \leq \frac{A|X(a, Q)|}{(\log \log \log \log N)^{4}}
$$

Proof that Proposition 6.9 implies Proposition 6.6. Let F be a nonzero multiplicative character from $\operatorname{Mat}\left(\mathbb{F}_{2}, n_{2}+1, n_{2}\right)$ to $\{ \pm 1\}$. We claim that there exist absolute constants $A^{\prime}, N_{0}^{\prime}>0$ such that for all $N>N_{0}^{\prime}$

$$
\begin{equation*}
\left|\sum_{x \in X(a)} F\left(\operatorname{Art}_{2}(x)\right)\right| \leq \frac{A^{\prime}|X(a)|}{(\log \log \log \log N)^{4}} \tag{6.5}
\end{equation*}
$$

Once we establish equation (6.5), Proposition 6.6 follows easily. Take a set of variable indices S for F. We split the sum in equation (6.5) over all $Q \in \prod_{i \in\left[k_{\text {gap }}\right]-S} X_{i}$ consistent with a. If Q satisfies equation (6.4) for all $j \in S$, we apply Proposition 6.9 with this S. It remains to bound

$$
\begin{equation*}
\sum_{\substack{Q \in \prod_{i \in[K \text { gap }]-S}^{Q} X_{i} \\ Q \text { consistent with } a \\ Q \text { fails eq. (6.4) }}}|X(a, Q)| . \tag{6.6}
\end{equation*}
$$

But this follows quickly from an application of Proposition 5.11 with the prebox

$$
\left(X_{k+1}(a, P) \times \cdots \times X_{r}(a, P), P\right)
$$

where P is the union of x_{1}, \ldots, x_{k}. Note that we make crucial usage of equation (6.3) to validate the fourth condition of Proposition 5.11.

It remains to prove Proposition 6.9, which we shall do now.
Proof of Proposition 6.9. Put

$$
M:=\left\lfloor(\log \log \log \log N)^{20}\right\rfloor, \quad S^{\prime}:=\left[k_{\text {gap }}\right] \cap S, \quad m:=\left|S^{\prime}\right| .
$$

Define

$$
X^{\prime}:=\prod_{i \in S^{\prime}} X_{i}(a, Q),
$$

and

$$
Y:=\left\{x \in X^{\prime}: x \text { is consistent with } a\right\} .
$$

Also set $R:=\left\lfloor\exp \left(\exp \left(0.2 k_{\text {gap }}\right)\right)\right\rfloor$. We let $Z_{\text {var }}^{1}, \ldots, Z_{\text {var }}^{t}$ be a longest sequence of subsets of X^{\prime} satisfying - we have for all $1 \leq s \leq t$ the equality

$$
Z_{\mathrm{var}}^{s}=\prod_{i \in S^{\prime}} Z_{i}^{s}
$$

for some subset Z_{i}^{s} of $X_{i}(a, Q)$ with cardinality M;

- we have $Z_{\mathrm{var}}^{S} \subseteq Y$ and every $y \in Y$ is in at most R different Z_{var}^{S};
\circ for all distinct $1 \leq s, s^{\prime} \leq t$, we have $\left|Z_{\text {var }}^{s} \cap Z_{\text {var }}^{s^{\prime}}\right| \leq 1$.
Define $Y_{\text {bad }}$ as

$$
Y_{\text {bad }}:=\left\{y \in Y:\left|\left\{1 \leq s \leq t: y \in Z_{\mathrm{var}}^{s}\right\}\right|<R\right\},
$$

and let δ be the density of $Y_{\text {bad }}$ in X^{\prime}. With a greedy algorithm, we can construct a subset W of $Y_{\text {bad }}$ of density at least $\delta / R M^{m}$ such that $\left|W \cap Z_{\text {var }}^{s}\right| \leq 1$ for all s. If there were to be subsets $Z_{i} \subseteq X_{i}(a, Q)$ for each $i \in S^{\prime}$ satisfying $\left|Z_{i}\right|=M$ and

$$
\prod_{i \in S^{\prime}} Z_{i} \subseteq W
$$

we could extend our sequence $Z_{\mathrm{var}}^{1}, \ldots, Z_{\mathrm{var}}^{t}$ to a longer sequence. Hence we may apply the contrapositive of Proposition 4.1 of Smith [18] to infer

$$
M>\frac{\exp \left(0.3 k_{\mathrm{gap}}\right)}{5 \log \left(R M^{m} / \delta\right)}
$$

since $\left|X_{i}(a, Q)\right| \geq \exp \left(\exp \left(0.3 k_{\text {gap }}\right)\right)$ for sufficiently large N thanks to equation (6.4) and the regular spacing. This yields

$$
\begin{equation*}
\delta<\frac{R M^{m}}{\exp \left(\frac{\exp \left(0.3 k_{\text {gap }}\right)}{5 M}\right)} \leq \exp \left(-0.25 \exp \left(k_{\text {gap }}\right)\right) \tag{6.7}
\end{equation*}
$$

if N is sufficiently large. An application of the Chebotarev density theorem (see Theorem 5.1) shows that for $i>k_{\text {gap }}$

$$
\begin{equation*}
\left|X_{i}\left(a, Q \times Z_{\mathrm{var}}^{s}\right)\right|=\frac{\left|X_{i}(a, Q)\right|}{2^{M m}}\left(1+O\left(e^{-2 k_{\mathrm{gap}}}\right)\right) \tag{6.8}
\end{equation*}
$$

where we made use of the extravagant spacing of $k_{\text {gap }}$. We can deal with a potential exceptional zero due to our Siegel-less assumption on X and the famous theorem of Heilbronn [9]. Then Proposition 5.7 implies that for each $y \in Y$ the quantity $|X(a, Q \times\{y\})|$ is of the expected size. Hence equation (6.7) implies that

$$
\left|\sum_{\substack{x \in X(a, Q) \\ \pi_{S^{\prime}}(x) \in Y_{\text {bad }}}} F\left(\operatorname{Art}_{2}(x)\right)\right| \leq \sum_{\substack{x \in X(a, Q) \\ \pi_{S^{\prime}}(x) \in Y_{\text {bad }}}} 1
$$

is easily within the error of our proposition. Given Z_{var}^{s}, we define

$$
\operatorname{Hull}\left(Z_{\mathrm{var}}^{S}\right):=\{Q\} \times Z_{\mathrm{var}}^{S} \times \prod_{j \in[r]-\left[k_{\mathrm{gap}}\right]} X_{j}\left(a, Q \times Z_{\mathrm{var}}^{S}\right)
$$

For each $x \in X(a, Q)$ with $\pi_{S^{\prime}}(x) \notin Y_{\text {bad }}$, we define the counting function

$$
\Lambda(x):=\left|\left\{1 \leq s \leq t: x \in \operatorname{Hull}\left(Z_{\mathrm{var}}^{s}\right)\right\}\right| .
$$

We shall compute the first and second moment of $\Lambda(x)$. Since the second moment will turn out to be approximately the square of the first moment, we see that the value of $\Lambda(x)$ is roughly constant. Then we shall use this to reduce to spaces of the shape $\operatorname{Hull}\left(Z_{\mathrm{var}}^{S}\right) \cap X(a, Q)$.

We start by computing the first moment as follows:

$$
\begin{aligned}
\sum_{\substack{x \in X(a, Q) \\
\pi_{S^{\prime}}(x) \notin Y_{\text {bad }}}} \Lambda(x) & =\sum_{y \in Y \backslash Y_{\text {bad }}} \sum_{\substack{x \in X(a, Q) \\
\pi_{S^{\prime}}(x)=y}} \sum_{1 \leq s \leq t} \mathbf{1}_{x \in \operatorname{Hull}\left(Z_{\text {var }}^{s}\right)} \\
& =\sum_{y \in Y \backslash Y_{\text {bad }}} \sum_{1 \leq s \leq t}\left|X(a, Q) \cap \operatorname{Hull}\left(Z_{\text {var }}^{s}\right) \cap \pi_{S^{\prime}}^{-1}(y)\right| .
\end{aligned}
$$

The last expression is obviously 0 if $y \notin Z_{\mathrm{var}}^{s}$. If $y \in Z_{\mathrm{var}}^{S}$, we make an appeal to equation (6.8) and Proposition 5.7 to deduce

Since there are precisely R values of s such that $y \in Z_{\mathrm{var}}^{s}$, we conclude that the first moment of $\Lambda(x)$ is equal to

$$
\frac{R}{2^{(M-1) m \cdot\left|[r]-\left[k_{\text {gap }}\right]\right|}}\left(1+O\left(e^{-k_{\text {gap }}}\right)\right) .
$$

To compute the second moment, we expand $\Lambda(x)^{2}$ as

$$
\sum_{\substack{x \in X(a, Q) \\ \pi_{S^{\prime}}(x) \notin Y_{\text {bad }}}} \Lambda(x)^{2}=\sum_{\substack{ }} \sum_{\substack{ } Y \backslash Y_{\text {bad }}} \sum_{\substack{x \in X(a, Q) \\ \pi_{S^{\prime}}(x)=y}} \sum_{1 \leq s \leq t} \mathbf{1}_{x \in \operatorname{Hull}\left(Z_{\text {var }}^{s}\right)} \mathbf{1}_{x \in \operatorname{Hull}\left(\mathcal{Z}_{\text {var }}^{\prime}\right)},
$$

which we split as

$$
\sum_{y \in Y \backslash Y_{\text {bad }}} \sum_{x \in X(a, Q)} \sum_{\pi_{S^{\prime}}(x)=y} \sum_{1 \leq s \leq t} \mathbf{1}_{x \in \operatorname{Hull}\left(Z_{\text {var }}^{s}\right)}^{s}+\sum_{\substack{y \in Y \backslash Y_{\text {bad }}}} \sum_{\substack{x \in X(a, Q) \\ \pi_{S^{\prime}}(x)=y}} \sum_{\substack{1 \leq s, s^{\prime} \leq t \\ s \neq s^{\prime}}} \mathbf{1}_{x \in \operatorname{Hull}\left(Z_{\text {埌 }}^{s}\right) \cap \operatorname{Hul}\left(Z_{\text {var }}^{\prime}\right)}^{s^{\prime}} .
$$

We have already seen how to deal with the first sum. To treat the second sum, we first rewrite it as

$$
\sum_{y \in Y \backslash Y_{\text {bad }}} \sum_{\substack{1 \leq s, s^{\prime} \leq t \\ s \neq s^{\prime}}}\left|X(a, Q) \cap \operatorname{Hull}\left(Z_{\text {var }}^{s}\right) \cap \operatorname{Hull}\left(Z_{\text {var }}^{s^{\prime}}\right) \cap \pi_{S^{\prime}}^{-1}(y)\right| .
$$

Next observe that the above sum is zero if $y \notin Z_{\mathrm{var}}^{s} \cap Z_{\mathrm{var}}^{s^{\prime}}$. If $y \in Z_{\mathrm{var}}^{s} \cap Z_{\mathrm{var}}^{s^{\prime}}$, we have, again due to the Chebotarev density theorem and Proposition 5.7, that

$$
\left|X(a, Q) \cap \operatorname{Hull}\left(Z_{\mathrm{var}}^{s}\right) \cap \operatorname{Hull}\left(Z_{\mathrm{var}}^{s^{\prime}}\right) \cap \pi_{S^{\prime}}^{-1}(y)\right|=\frac{\left|X(a, Q) \cap \pi_{S^{\prime}}^{-1}(y)\right|}{2^{2(M-1) m \cdot\left|[r]-\left[k_{\mathrm{gap}}\right]\right|}}\left(1+O\left(e^{-k_{\mathrm{gap}}}\right)\right) .
$$

There are precisely $R^{2}-R$ pairs of $\left(s, s^{\prime}\right)$ such that $y \in Z_{\text {var }}^{s} \cap Z_{\text {var }}^{s^{\prime}}$ and $s \neq s^{\prime}$. Hence the second moment equals

$$
\left(\frac{R^{2}-R}{2^{2(M-1) m \cdot\left|[r]-\left[k_{\text {gap }}\right]\right|}}+\frac{R}{2^{(M-1) m \cdot\left|[r]-\left[k_{\text {gap }}\right]\right|}}\right)\left(1+O\left(e^{-k_{\text {gap }}}\right)\right)=\frac{R^{2}}{2^{2(M-1) m \cdot\left|[r]-\left[k_{\text {gap }}\right]\right|}}\left(1+O\left(e^{-k_{\text {gap }}}\right)\right) .
$$

Having computed the first and second moment, we apply Chebyshev's inequality to deduce that outside a set of density $O\left(e^{-0.5 k_{\text {gap }}}\right)$ in the subset of those $x \in X(a, Q)$ satisfying $\pi_{S^{\prime}}(x) \notin Y_{\text {bad }}$, we have that

$$
\left|\Lambda(x)-\frac{R}{2^{(M-1) m \cdot\left|[r]-\left[k_{\text {gap }}\right]\right|}}\right| \leq \frac{R e^{-0.25 k_{\text {gap }}}}{2^{(M-1) m \cdot\left|[r]-\left[k_{\text {gap }}\right]\right|}}
$$

From this, we easily deduce that it suffices to prove that

$$
\left|\sum_{x \in X(a, Q) \cap \operatorname{Hull}\left(Z_{\mathrm{var}}^{s}\right)} F\left(\operatorname{Art}_{2}(x)\right)\right| \leq \frac{A\left|X(a, Q) \cap \operatorname{Hull}\left(Z_{\mathrm{var}}^{s}\right)\right|}{(\log \log \log \log N)^{4}} .
$$

Since we are only dealing with one $Z_{\text {var }}^{s}$ at a time, we will abbreviate it as Z. If $m=2$, we will also write $Z=Z_{1} \times Z_{2}$ with $i_{1}(F) \in Z_{1}$.

We will now define a field L depending on the shape of F as in Definition 6.7. If we are in the first case, we have $m=1$, and we set

$$
L:=\prod_{\left(p_{1}, p_{2}\right) \in Z \times Z} \phi_{p_{1} p_{2},-1}
$$

Here we construct the fields $\phi_{p_{1} p_{2},-1}$ as follows. First pick $p_{1} \in Z$ arbitrary and choose fields $\phi_{p_{1} p_{j},-1}$ in $\mathcal{F}_{p_{1} p_{j},-1}^{\mathrm{unr}}$ for all $p_{j} \neq p_{1}$. Then we define $\phi_{p_{i} p_{j},-1}$ to be the unique element of $\mathcal{F}_{p_{i} p_{j},-1}^{\mathrm{unr}}$ contained in the compositum $\phi_{p_{1} p_{i},-1} \phi_{p_{1} p_{j},-1}$. If we are instead in the second case, we have $m=2$, and we define

$$
L:=\prod_{\left(p_{1}, p_{2}, q_{1}, q_{2}\right) \in Z_{1} \times Z_{1} \times Z_{2} \times Z_{2}} \phi_{p_{1} p_{2}, q_{1} q_{2}} .
$$

In this case, we pick $p_{1} \in Z_{1}, q_{1} \in Z_{2}$ arbitrary, and we choose fields $\phi_{p_{1} p_{i}, q_{1} q_{k}}$ in $\mathcal{F}_{p_{1} p_{i}, q_{1} q_{k}}^{\text {unr }}$ for all $p_{i} \neq p_{1}$ and all $q_{k} \neq q_{1}$. Then we define $\phi_{p_{i} p_{j}, q_{k} q_{l}}$ to be the unique element of $\mathcal{F}_{p_{i} p_{j}, q_{k} q_{l}}^{\mathrm{unr}}$ contained in the compositum $\phi_{p_{1} p_{i}, q_{1} q_{k}} \phi_{p_{1} p_{j}, q_{1} q_{k}} \phi_{p_{1} p_{i}, q_{1} q_{l}} \phi_{p_{1} p_{j}, q_{1} q_{l}}$.

Finally, if we are in the third case, we have $m=1$ again, and we put

$$
L:=\prod_{\left(p_{1}, p_{2}\right) \in Z \times Z} \phi_{p_{1} p_{2}, x},
$$

where

$$
x:=\left(p_{1} p_{2}\right)^{c_{j_{2}, j_{2}}} \cdot(-1)^{c_{n_{2}+1, j_{2}}} .
$$

Let K be the largest multiquadratic extension of \mathbb{Q} inside L. In each case, we have a natural isomorphism

$$
\begin{equation*}
\operatorname{Gal}(L / K) \cong \mathcal{A}(Z) \tag{6.9}
\end{equation*}
$$

In the first case, this isomorphism is given by

$$
\sigma \mapsto\left(\left(p_{1}, p_{2}\right) \mapsto \pi_{\left(p_{1}, p_{2}\right)}(\sigma)\right)
$$

where $\pi_{\left(p_{1}, p_{2}\right)}$ is the natural quotient map $\operatorname{Gal}(L / K) \rightarrow \operatorname{Gal}\left(K \phi_{p_{1} p_{2},-1} / K\right) \cong \mathbb{F}_{2}$. In the second and third cases, we have similar isomorphisms.

Note that any prime $p \in X_{j}(a, Q)$ splits completely in K by construction. Given $\sigma \in \operatorname{Gal}(L / K)$, we define $X_{j}(a, Q \times Z, \sigma)$ be the subset of primes $p \in X_{j}(a, Q \times Z)$ that map to σ under Frobenius. Then Lemma 3.1 and Proposition 5.1 yield

$$
\left|X_{i_{2}(F)}(a, Q \times Z, \sigma)\right|=\frac{\left|X_{i_{2}(F)}(a, Q \times Z)\right|}{2^{(M-1)^{m}}}\left(1+O\left(e^{-k_{\mathrm{gap}}}\right)\right)
$$

Proposition 5.11 shows that for almost all choices of $Q_{\text {gap }} \in \prod_{[r]-\left[k_{\text {gap }}\right]-i_{2}(F)} X_{j}(a, Q \times Z)$ consistent with a, we have that $\left|X_{i_{2}(F)}\left(a, Q \times Q_{\text {gap }} \times Z\right)\right|$ is of the expected size and furthermore

$$
\begin{equation*}
\left|X_{i_{2}(F)}\left(a, Q \times Q_{\text {gap }} \times Z, \sigma\right)\right|=\frac{\left|X_{i_{2}(F)}\left(a, Q \times Q_{\text {gap }} \times Z\right)\right|}{2^{(M-1)^{m}}}\left(1+O\left(e^{-k_{\text {gap }}}\right)\right) \tag{6.10}
\end{equation*}
$$

for all $\sigma \in \operatorname{Gal}(L / K)$. By construction, we have that

$$
Z_{\text {final }}:=\{Q\} \times Z \times\left\{Q_{\text {gap }}\right\} \times X_{i_{2}(F)}\left(a, Q \times Q_{\text {gap }} \times Z\right) \subseteq X(a, Q),
$$

so it suffices to prove that

$$
\begin{equation*}
\left|\sum_{x \in Z_{\text {final }}} F\left(\operatorname{Art}_{2}(x)\right)\right| \leq \frac{A\left|Z_{\text {final }}\right|}{(\log \log \log \log N)^{4}} \tag{6.11}
\end{equation*}
$$

Now pick

$$
\epsilon:=\frac{1}{(\log \log \log \log N)^{4}}
$$

We formally apply Theorem 3.3 to $Z \times[M]$. We see that Theorem 3.3 guarantees the existence of $g_{\text {spec }} \in \mathcal{A}(Z \times[M])$ such that $g_{\text {spec }}$ is not ϵ-bad. Now pick any $x_{1}, \ldots, x_{M} \in X_{i_{2}(F)}\left(a, Q \times Q_{\text {gap }} \times Z\right)$. Then we can define a map $[M] \times[M] \rightarrow \operatorname{Gal}(L / K)$ by

$$
g(i, j):=\operatorname{Frob}_{L / K}\left(x_{i}\right)+\operatorname{Frob}_{L / K}\left(x_{j}\right),
$$

which we can naturally view as a map $[M] \times[M] \rightarrow \mathcal{A}(Z)$ due to the isomorphism in equation (6.9). Hence g naturally becomes an element of $\mathcal{A}(Z \times[M])$.

We claim that we can find disjoint ordered subsets A_{1}, \ldots, A_{k} of $X_{i_{2}(F)}\left(a, Q \times Q_{\text {gap }} \times Z\right)$ whose union is the whole set $X_{i_{2}(F)}\left(a, Q \times Q_{\text {gap }} \times Z\right)$ except for a small remainder such that defining g as above for each A_{1}, \ldots, A_{k}, we get $g_{\text {spec }}$ under the natural identifications.

Let $g_{\text {spec }}^{\prime}:[M] \times[M] \rightarrow \operatorname{Gal}(L / K)$ be the map that is sent to $g_{\text {spec }}$ under the natural identifications. Suppose that elements $x_{1}, \ldots, x_{M} \in X_{i_{2}(F)}\left(a, Q \times Q_{\text {gap }} \times Z\right)$ are given. Now look at the equation

$$
g_{\mathrm{spec}}^{\prime}(i, j):=\operatorname{Frob}_{L / K}\left(x_{i}\right)+\operatorname{Frob}_{L / K}\left(x_{j}\right)
$$

We see that one can freely choose x_{1}, and then all the $\operatorname{Frob}_{L / K}\left(x_{j}\right)$ for $j>1$ are uniquely determined by $g_{\text {spec }}^{\prime}(i, j)$ and $\operatorname{Frob}_{L / K}\left(x_{1}\right)$. Now an appeal to equation (6.10) finishes the proof of our claim.

Now pick one of the A_{i} and suppose that $A_{i}=\left\{x_{1}, \ldots, x_{M}\right\}$. Let $\widetilde{F}: Z_{\text {final }} \rightarrow \mathbb{F}_{2}$ be the map that sends x to $\iota \circ F\left(\operatorname{Art}_{2}(x)\right)$. We can restrict \widetilde{F} to A_{i} and then naturally view \widetilde{F} as a map from $Z \times[M]$ to \mathbb{F}_{2}. Theorem 3.3 then implies equation (6.11) and therefore Proposition 6.9, provided that we can verify the identity $d \widetilde{F}=g_{\text {spec }}^{\prime}$.

We distinguish three cases depending on the type of F as in Definition 6.7. In the first case, we apply Theorem 2.11 and Theorem 2.12. Let $\left(j_{1}, j_{2}\right)$ be the entry as chosen in Definition 6.7, so that $c_{j_{1}, j_{2}}=c_{j_{2}, j_{1}}=1$. Theorem 2.12 gives

$$
d \widetilde{F}_{j_{1}, j_{2}}=g_{\mathrm{spec}}^{\prime},
$$

where $\widetilde{F}_{j_{1}, j_{2}}$ is obtained from $F_{j_{1}, j_{2}}$ in the same way as \widetilde{F} was obtained from F. Now consider any (j_{3}, j_{4}) not equal to $\left(j_{1}, j_{2}\right)$, with $1 \leq j_{3} \leq n_{2}+1,1 \leq j_{4} \leq n_{2}$ and $c_{j_{3}, j_{4}}=1$. Then we have $j_{3} \leq n_{2}$ and $c_{j_{4}, j_{3}}=1$. Hence Theorem 2.11 implies

$$
d \widetilde{F}_{j_{3}, j_{4}}=0 .
$$

Altogether, we conclude that $d \widetilde{F}=g_{\text {spec }}^{\prime}$.
We now deal with the second case. Once more let $\left(j_{1}, j_{2}\right)$ be the entry as chosen in Definition 6.7, so that $1 \leq j_{1}, j_{2} \leq n_{2}, c_{j_{1}, j_{2}}=1$ and $c_{j_{2}, j_{1}}=0$. Two applications of part (ii) of Theorem 2.9 show that

$$
d \widetilde{F}_{j_{1}, j_{2}}=g_{\text {spec }}^{\prime}
$$

Two applications of Theorem 2.10 show that for all $1 \leq j_{2} \leq n_{2}$,

$$
d \widetilde{F}_{j_{2}, j_{2}}=0
$$

while two applications of part (i) of Theorem 2.9 imply

$$
d \widetilde{F}_{j_{3}, j_{4}}=0
$$

for all $1 \leq j_{3} \leq n_{2}+1,1 \leq j_{4} \leq n_{2}$ such that $\left(j_{1}, j_{2}\right) \notin\left\{\left(j_{3}, j_{4}\right),\left(j_{4}, j_{3}\right)\right\}$ and $j_{3} \neq j_{4}$. This finishes the proof of the second case.

It remains to treat the third case, which follows from an application of Theorem 2.9 and Theorem 2.10.

Acknowledgements. We would like to thank Andrew Granville for his support throughout this project. We wish to thank Peter Stevenhagen for some very helpful discussions at the beginning of the project. We are grateful to Alexander Smith for answering questions about his paper and for several conversations on the challenges of this project. We are also grateful to Mark Watkins for pointing out a small error in a previous version. We would also like to thank Kevin Ford, Andrew Granville and Sam Porritt for their useful suggestions in writing some of the proofs in Section 4.

Conflicts of Interest. None.
Funding statement. The first and third authors were supported by the European Research Council grant agreement No. 670239. The second and fourth author are grateful to the Max Planck Institute for Mathematics in Bonn for its financial support.

References

[1] K. Alladi. An Erdős-Kac theorem for integers without large prime factors. Acta Arith., 49(1): 81-105, 1987.
[2] N. Alon and J. H. Spencer. The probabilistic method. Wiley Series in Discrete Mathematics and Optimization. John Wiley \& Sons, Inc., Hoboken, NJ, fourth edition, 2016.
[3] J. E. Cremona and R. W. K. Odoni. Some Density Results for Negative Pell Equations; an Application of Graph Theory. J. Lond. Math. Soc. (2), 39(1): 16-28, 1989.
[4] É. Fouvry and J. Klüners. Cohen-Lenstra heuristics of quadratic number fields. Algorithmic number theory, 40-55, Lecture Notes in Comput. Sci., 4076, Springer, Berlin, 2006.
[5] É. Fouvry and J. Klüners. On the 4-rank of class groups of quadratic number fields. Invent. Math., 167(3): 455-513, 2007.
[6] É. Fouvry and J. Klüners. On the negative Pell equation. Ann. of Math. (2), 172(3): 2035-2104, 2010.
[7] É. Fouvry and J. Klüners. The parity of the period of the continued fraction of \sqrt{d}. Proc. Lond. Math. Soc. (3), 101(2): 337-391, 2010.
[8] F. Gerth. Limit probabilities for coranks of matrices over GF (q). Linear and Multilinear Algebra, 19:1, 79-93.
[9] H. Heilbronn. On real zeros of Dedekind ζ-functions. Canadian Journal of Math., 25: 870-873, 1973.
[10] D. Hensley. The distribution of $\Omega(n)$ among numbers with no large prime factors. In Analytic number theory and Diophantine problems (Stillwater, OK, 1984), volume 70 of Progr. Math., pages 247-281. Birkhäuser Boston, Boston, MA, 1987.
[11] A. Hildebrand. On the number of prime factors of integers without large prime divisors. J. Number Theory, 25(1): 81-106, 1987.
[12] M. Jutila. On mean values of Dirichlet polynomials with real characters. Acta Arith., 27: 191-198, 1975.
[13] P. Koymans and C. Pagano. On the distribution of $\mathrm{Cl}(K)\left[l^{\infty}\right]$ for degree l cyclic fields. J. Eur. Math. Soc. DOI:10.4171/JEMS/1112
[14] E. Landau. Losung des Lehmer'schen Problems. Amer. J. Math., 31(1): 86-102, 1909.
[15] J. MacWilliams. Orthogonal matrices over finite fields. Amer. Math. Monthly, 76: 152-164, 1969.
[16] A. Selberg. Note on a paper by L. G. Sathe. J. Indian Math. Soc. (N.S.), 18: 83-87, 1954.
[17] A. Smith. Governing fields and statistics for 4-Selmer groups and 8-class groups. arXiv preprint:1607.07860.
[18] A. Smith. 2^{∞}-Selmer groups, 2^{∞}-class groups, and Goldfeld's conjecture. arXiv preprint: 1702.02325.
[19] P. Stevenhagen. The number of real quadratic fields having units of negative norm. Experiment. Math., 2(2): 121-136, 1993.
[20] P. Stevenhagen. Redei reciprocity, governing fields and negative Pell. Math. Proc. Camb. Phil. Soc., 1-28. DOI:10.1017/S0305004121000335.
[21] C. Tudesq. Majoration de la loi locale de certaines fonctions additives. Arch. Math. (Basel), 67(6): 465-472, 1996.

[^0]: © The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]: ${ }^{1}$ We use, in contrast to [20], the convention that Rédei symbols take their values in \mathbb{F}_{2}, since this shall be notationally more convenient in the rest of the paper.

