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Significant advances have been made by identifying the levels of synchrony of the underlying

dynamics of a given brain state. This research has demonstrated that non-conscious

dynamics tend to be more synchronous than in conscious states, which are more asyn-

chronous. Here we go beyond this dichotomy to demonstrate that different brain states are

underpinned by dissociable spatiotemporal dynamics. We investigated human neuroimaging

data from different brain states (resting state, meditation, deep sleep and disorders of

consciousness after coma). The model-free approach was based on Kuramoto’s turbulence

framework using coupled oscillators. This was extended by a measure of the information

cascade across spatial scales. Complementarily, the model-based approach used exhaustive

in silico perturbations of whole-brain models fitted to these measures. This allowed studying

of the information encoding capabilities in given brain states. Overall, this framework

demonstrates that elements from turbulence theory provide excellent tools for describing and

differentiating between brain states.
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Fundamentally different brain states such as sleep, wakeful-
ness, or coma all emerge from the complex dynamics of self-
organised brain activity. Nevertheless, an unanswered

question in modern neuroscience is how best to characterise the
underlying human brain states acquired with neuroimaging1,2.
Many challenges remain unsolved, and most importantly, there is
a need to arrive at an agreed definition of brain states2–9. The
most important feature of such a definition would help to create a
mechanistic framework for characterising brain states in terms of
the underlying causal mechanisms and dynamical complexity. An
elegant way of assessing dynamical complexity was proposed by
Massimini and colleagues who investigated the perturbation-
elicited changes in global brain activity during brain states,
including wakefulness, sleep, anaesthesia, and post-coma
states10–12. They have proposed the perturbational complexity
index (PCI), which captures the significant differences in brain-
wide spatiotemporal propagation of external stimulation, distin-
guishing between different brain states10. Beyond basic neu-
roscience, a better definition and description of a brain state could
offer novel avenues for translational therapeutic interventions to
rebalance disrupted brain states in disease.

In a recent review, Goldman and colleagues1 showed that at
both macroscopic and microscopic scales, unconscious brain
states are dominated by synchronous activity13–17, while con-
scious states are characterised by asynchronous dynamics15,18,19.
Equally, they propose that brain signals in unconscious and
conscious states vary in their algorithmic complexity20, entropy21

and dimensionality22. The authors were inspired by the elegant
mathematical framework of statistical physics, which provides the
tools for uncovering structures of microscopic interactions
underlying macroscopic properties. They propose that different
brain states may emerge from the interactions between popula-
tions of neurons, similar to how different states of matter like
solids and liquids emerge from interactions between populations
of molecules. In other words, unconscious states are more like a
solid-state, with high synchrony and low complexity, while con-
scious states are more like liquids, with asynchronous activity and
high complexity.

This dichotomy is very useful for capturing the fundamental
difference between conscious and unconscious states, especially
for the microstates, where for example, deep sleep is characterised
by slow waves23. However, the transition between scales is more
subtle and crucially depends on the complex percolation across
the whole brain of the synchronous and asynchronous micro-
states, which gives rise to mixed complex dynamical states24. The
challenge remains to find a unifying dynamical approach, which
can establish the balance between different levels of synchrony
and complexity needed to distinguish between brain states.

Here, we show that different brain states are always under-
pinned by spatiotemporal dynamics, but the mixing across scales
gives rise to dissociable dynamical characteristics, beyond simply
synchronous and asynchronous signatures. We investigate this
using two complementary model-free and model-based
frameworks.

For the model-free framework, we profited from the advances
in turbulence theory in physics25–28. In physical systems, starting
with fluid dynamics25–27, turbulence has been shown to provide
the optimal transmission of energy, and at the core of this
transmission are the scale-free mixing properties of turbulence.
Mathematically, it can be shown that energy is essentially
information29,30. The essence of turbulence is the efficient
transmission of energy/information in fluid dynamics, which was
shown by Kolmogorov to be captured by elegant scale-free sta-
tistical power laws26,27. This shows that rather than using fine-
grained Navier-Stokes equations of the billions of molecules in
fluid dynamics31, the extremely high dimensional system of fluid

dynamics can be described in a much simpler, lower-
dimensional space.

Beyond this fluid dynamics approach to turbulence, Kuramoto
showed that coupled oscillators can be used to capture turbulence in
many other systems, suggesting that coupled oscillators could sustain
optimal information transmission28. Specifically, within the frame-
work of coupled oscillators, turbulence can be characterised as the
variability across space and time of the local level of synchronisation
of the coupled oscillators. In fact, this characterisation is a general-
isation of the concept of metastability32–36, which in neuroscience
has been measured as the variability across time of the global level of
synchronisation of the whole system, commonly known as the
global Kuramoto order parameter of a dynamical system.

Here, however, as in previous papers, we describe that the
human brain operates in a turbulent regime37,38, in the sense of
Kuramoto38, which confers important information processing
advantages, including significantly enhancing the functional role
of the anatomically rare long-range connections39. We focus on
Kuramoto’s related concept of a local order parameter, defined as
the local level of synchronisation in the system40. The variability
of this local measure across spacetime turns out to be a sensitive
and precise description of the level of turbulence. Importantly, the
level of local synchronisation can be thought of as analogous to
the rotational vortices found in fluid dynamics, where the size of
these vortices in ‘vortex space’ defines the different scales of
information processing.

In turbulence many researchers operate in such a ‘vortex space’
rather than the signal space29,41, which is the strategy that we also
use here, noting that this is the first application of the strategy of
measuring information transfer in the brain.

For the model-based framework, it has been shown that
emergent collective macroscopic behaviour of brain models only
depends weakly on individual neuron behaviour42. Here we used
whole-brain modelling based on the integration of anatomy and
dynamics, which can be used to accurately fit and reproduce
many aspects of empirical neuroimaging data43–46, and specifi-
cally to capture the brain turbulent dynamics38,47. Over the years,
there have been many different whole-brain models with varying
degree of biophysical realism, from spiking networks to mean-
field to oscillatory Hopf whole-brain model43,48–52. However, it
has been shown that rather than modelling the complex spiking
neuronal and mean field dynamics, very high precision fitting can
be achieved by using coupled oscillators, allowing for the capture
of the most important features of mesoscopic brain dynamics49.

Importantly, using a Hopf whole-brain model allows for in
silico exhaustive perturbation of the model that can be used to
assess many aspects, including the susceptibility and information
encoding capability. These two measures have been defined in
previous works to successfully demonstrate that the susceptibility
is enhanced due to long-range connections in the brain39 and the
information encoding capability is maximal when the brain
operates in turbulent regime38. In other words, the model-free
approach measures the naturally occurring information trans-
mission flow, while the model-based approach allows us to
measure the reactivity of the brain to external perturbations.

Furthermore, it has been shown that simply varying the global
coupling in the Hopf whole-brain model produces excellent fits
not only to normal resting state data but also to other brain states
such as psychedelics45, coma, anaesthesia53 and sleep45. The most
parsimonious explanation for this ability to fit multiple brain
states is that the turbulence-generating Hopf model varies as
function of the global coupling37–39. This would provide a causal
mechanistic explanation of why turbulence is a sensitive and
specific marker of the underlying brain state.

Overall, we hypothesised that the model-free and model-based
complementary frameworks will allow us to differentiate between
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different brain states. We found turbulent dynamics (in the sense
of Kuramoto28) in all the different brain states but, crucially,
using the model-free framework, we were able to characterise the
different information transmission across spacetime scales in
resting state, meditation, deep sleep and post-coma states. Fur-
thermore, the model-based framework showed that different
information encoding capabilities39 characterise different brain
states. Thus, according to our hypothesis, the complementary
methods are able to not only significantly distinguish between
different brain states but also offer a unifying dynamical frame-
work for mechanistically describing the underlying fundamental
principles.

Results
We used model-free and model-based frameworks to explore
information transmission flow in whole-brain dynamics across
different brain states. Specifically, we compared brain measures
on three independent resting-state fMRI datasets. The meditation
dataset comprised experienced Vipassana meditators (N= 19)
during both focused attention meditation (M) and resting state
(R). The sleep dataset comprised healthy subjects during deep
sleep, i.e., stage 3 (DS, N= 13) and resting state (R, N= 13)
states. Finally, the disorders of consciousness (DOC) dataset were
acquired in two independent research sites (Liège and Paris),
comprised of healthy volunteers (RCNT: N= 49) and DOC
patients diagnosed in a minimally conscious state (RMCS: N= 66)
or an unresponsive wakefulness state (RUWS: N= 39).

First, we applied the model-free approach to measuring
information transmission flow across spacetime scales based on
the recent finding demonstrating turbulence in human brain

dynamics (Fig. 1a)38. This analysis was based on the local Kur-
amoto order parameter that describes the local level of synchro-
nisation of a brain area, n, as a function of space, �x, and time, t, at
a given scale, λ. The scale of the local synchronisation is defined
by the parameter λ, which determines the size of the spatial
distances where the synchronisation is evaluated, where high
values of λ stand for short distances, and vice versa (Fig. 1b). In
particular, we computed for each dataset the amplitude turbu-
lence defined by Kuramoto as the space and time variability of the
local level of synchronisation28,40,54 (referred here as Kuramoto
amplitude turbulence), and three measures quantifying the
information transmission in terms of scale, space and time cor-
relation of the local level of synchronisation that we defined as
transfer correlation, information cascade flow, and information
cascade (Fig. 1 and see more details in Methods and ref. 39).

Second, we applied the model-based approach based on the
sensitivity of these models to react to external in silico pertur-
bations (Fig. 1c and Methods). For each brain state, we con-
structed a whole-brain dynamical model based on the normal
form of a supercritical Hopf bifurcation coupled with the dMRI
structural connectivity and the exponential distance rule (EDR).
Finally, to evaluate how each model fitted reacts to external sti-
muli, we applied in silico perturbations by quantifying the sus-
ceptibility and information encoding capability measures.

Model-free framework. We computed the information trans-
mission flow measures on the three datasets in terms of Kur-
amoto amplitude turbulence and transfer correlation within the
0.008–0.08 Hz frequency range (see Methods). First, we explored
the level of Kuramoto amplitude turbulence over different λ

Fig. 1 Overview of framework. a Turbulence in fluids is one the most common dynamical regime where the mixing motion governs (left panel). The energy
cascade, i.e., how the energy travels across scale while dissipated and the statistical properties defined as power laws on the energy levels and structure
functions (bottom panel) determine the turbulent behaviour of the fluid. The analogy between brain activity and Turbulence has been recently
demonstrated using resting state data from a large dataset of 1,003 healthy human participants. b Model-free approach. The turbulent behaviour of brain
activity is reflected in the similarity between the local level of synchronisation, determined by the local Kuramoto order parameter (R) at different scales
(λ), and vortex with different spatial scales in fluid dynamics. The spatial scale (r) of the vortex is inversely related with the exponential decay of the local
Kuramoto order parameter (λ). The turbulence regime also endows the brain with an efficient information cascade measured as the correlation of the local
level of synchronisation across scales (Information Cascade Flow). The average across scales of the information cascade flow is defined as the Information
cascade. The Transfer Correlation quantified as the correlation of local synchronisation across space at different scales also characterises the brain’s
information processing. c In the Hopf whole-brain model, the dynamics of each brain area are described through a Stuart Landau non-linear oscillator. The
system of local oscillators is connected through the anatomical connectivity to simulate the global dynamics, capable of reproducing statistical observables
from fMRI data. We used as structural connectivity the long-range connections (LR) from human diffusion MRI measurements on top of an exponential
distance rule (EDR) to fit the empirical functional connectivity as a function of the Euclidean distance (following the relation between the Kolmogorov’s
second-order structure-function and the traditional FC). Using whole-brain modelling allows obtaining measures that rise from the in silico perturbative
approach. We simulated external stimuli and evaluated the model’s reaction for each brain state by quantifying the susceptibility and information capability
measures.
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values, i.e., from 0.01 (~100mm) to 0.30 (~3 mm), in steps of
0.03. This measure was defined as the standard deviation across
time (t) and space (brain areas, n) of the local Kuramoto order
parameter. We found that the meditation state increases Kur-
amoto amplitude turbulence levels in higher spatial scales, i.e.,
short distances in the brain, compared to the resting state. On the
other hand, the deep sleep state shows lower Kuramoto amplitude
turbulence levels than the resting state across all the spatial scales.
Finally, the Kuramoto amplitude turbulence levels decrease for
DOC patients (RMCS and RUWS) compared to healthy controls
during resting state in lower lambda values, i.e., long distances,
but increases in higher lambda scales; differentiating, also,
between the RUWS and RMCS groups. The results of Kuramoto

amplitude turbulence levels in each state are displayed in Fig. 2a.
We included in the supplemental material seven videos (Sup-
plementary Videos 1 to 7) of the full spatiotemporal evolution of
Kuramoto amplitude turbulence in one hemisphere across time of
the full resting state of a single participant for each brain state
within each dataset. Furthermore, to summarise the behaviour of
the time and space information transmission measures at dif-
ferent scales, we quantified the Kuramoto amplitude turbulence
changes at each λ across brain states. We computed a linear fit to
the mean Kuramoto amplitude turbulence of brain states at each
λ and obtained the slopes of the corresponding lines, which
stands for Kuramoto amplitude turbulence across brain states at a
specific scale. Figure 2b shows the relationship between these

Fig. 2 Model-free framework reveals significant differences in Kuramoto amplitude turbulence and transfer correlation in different brain states. a The
plots show the level of Kuramoto amplitude turbulence at different spatial scales, from λ= 0.01 (100mm) to λ= 0. 3 (3 mm) in steps of 0.03, and show
the comparison between brain states for λ= 0.01, λ= 0.12 and λ= 0.3. The meditation state showed significant increases in Kuramoto
amplitude turbulence compared to the resting state only on higher scales. The DS shows significantly lower Kuramoto amplitude turbulence than the
resting state across all spatial scales. By contrast, the Kuramoto amplitude turbulence showed significant decreases in RMCS and RUWS states in lower
lambda scales but significant increases in higher scales compared to RCNT. b The plots were computed as the linear fit of the mean level of Kuramoto
amplitude turbulence at each scale for the three brain states for the DOC dataset (i.e., RCNT, RMCS, and RUWS) and two brain states for sleep and meditation
datasets (i.e., W, DS, and R, M, respectively). The plots display the obtained slopes as a function of the scale. In particular, DOC showed negative slopes at
lower scales and increased with the scales up to positive slopes. The sleep dataset presented negative slopes at lower scales, increased up to λ = 0.12, and
a negative slope value was kept almost constant. The meditation dataset also increased with scale but presented less variability than the other datasets.
Dashed vertical lines indicate the scales displayed in A and the horizontal red dashed line highlights the zero slope. c We computed the transfer correlation
(|Aλ|), which measures how the information travels across space at different spatial scales, i.e., we show the results as a constant k - |Aλ|, with k= 3 |Aλ|.
The meditation state presents no significant differences on any scale compared to the resting state. In contrast, the transfer correlation significantly
decreased for DS and RMCS, RUWS states compared to the resting state across all scales. d We performed the same computation as in panel B for the
transfer correlation measure. In this case, DOC and sleep datasets presented a similar slope-scale relationship, whereas the meditation dataset presented
less variability across scales. In the figure, P-values were assessed using the Wilcoxon rank-sum test and corrected for multiple comparisons, *P < 0.05,
**P < 0.01 and ***P < 0.001.
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slopes and scales for each dataset. The meditation dataset presents
similar behaviour but is less sensitive to this measure, i.e., lower
variability of the slope values across scales. By contrast, the sleep
dataset shows a monotonical increase of slope values from
negative values at low scales up to λ= 0.12, where it remains
almost constant for higher scales. Finally, DOC states present the
same behaviour: the slopes monotonically increase from negative
values at low λ scales towards positive values at high λ. This
positive slopes at high λ can be associated with an increase in the
short-range information transmission with a lack of a global
broadcasting due to the long-range transmission diminution
(negative slopes at low λ). It is noticeable that with this quanti-
fication it is possible to differentiate between datasets that involve
a reduction of consciousness, i.e., despite that sleep and DOC
patients present a reduction of the information processing in
many scales, the behaviour across scales captures differences
between sleep and DOC states.

Secondly, we explored how the information is transferred
across space in terms of the time correlation between the level of
local synchronisation at each scale (see Methods). This measure
indicates how the information travels across space at a given
spatial scale, λ. We found that the transfer correlation in the
meditation state did not significantly differ across any scale
compared to the resting state. By contrast, this measure
significantly decreases for deep sleep and DOC states across all
λ scales compared to the resting state, and interestingly,
differentiating the RMCS and RUWS groups across all scales
(Fig. 2c). Furthermore, to summarise the behaviour of transfer
correlation at different scales, we quantified the changes at each λ
across brain states. Conversely, the evolution of the slopes across
scales for the transfer correlation presents the same behaviour
across all datasets (Fig. 2d).

We measured how the information travels across scales by
defining the information cascade flow, as the predictability in
terms of time correlation of a given level of local synchronisation

at scale λ from the level of local synchronisation at scale λ–Δλ, in
consecutive time steps, t and t+ Δt (where Δλ and Δt are the
discretisation of scale and time, respectively). This is important,
given that the brain is organised as a hierarchy where information
flows from bottom to top in a recurrent reciprocal manner, i.e.
segregated sensory information is processed first and iteratively
more refined and integrated, while a global workspace at the top
of the hierarchy integrates information. We found that the
meditation state did not significantly changes compared to the
resting state, whereas for deep sleep and DOC, the information
cascade flow decreases across all scales compared to the resting
state (Fig. 3a).

Finally, to summarise the information transmission’s whole
behaviour across scales, we defined the information cascade as the
information cascade flow average across all λ scales. We found
that the information cascade in the meditation state presents no
significant differences compared to the resting state. In contrast,
the deep sleep and DOC states present less transfer correlation
across the scales than the resting state, moreover, the information
cascade clearly differentiate between RCNT and RUWS states
(Fig. 3b).

To assess the regional heterogeneity of the synchronisation
time variability at a given scale, we defined the node-level
metastability as the standard deviation over time of the local
Kuramoto order parameter for each brain state in each dataset.
This measure indicates how changes the level of local synchro-
nisation across time. We quantified this difference by computing
the Kolmogorov-Smirnov distance (KSD) between the distribu-
tions of node-level metastability, where larger values mean more
different distributions (see Methods). We found that the KSD for
all datasets monotonically decreases between brain states across
scales, whereas the value of λ increases. In other words, the KSD
is maximal for lower values of λ, i.e., long distances in the brain.
In particular, for DOC states, the higher KSD is found between
RCNT and RUWS states (Fig. 4a). Furthermore, we show the

Fig. 3 Model-free framework showed differences in information cascade flow and information cascade in different brain states. a The information
cascade flow across scales is the predictability given by the level of synchronisation at a specific scale (λ) from the previous scale λ−Δλ (where Δλ = 0.03
is the discretisation of scale). The meditation state presents no differences across the scales compared to the resting state, the information cascade flow
significantly decreases for DS and RMCS, RUWS states compared to the resting across all scales. b The information cascade, defined as the average
information cascade flow, differentiates RMCS, RUWS, and DS states from the resting state, while the meditation state presents no differences. P-values were
assessed using the Wilcoxon rank-sum test and corrected for multiple comparisons, *P < 0.05, **P < 0.01 and ***P < 0.001.
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absolute difference between the node-level metastability between
brain states in each dataset at λ= 0.12 rendered onto the brain
cortex (Fig. 4b).

Then, we identified the resting state networks to which they
mainly belong and quantified the number of nodes per network
by selecting the nodes for each comparison of the top 15%
quantile. We found that differences between meditation and
resting state are mainly in the limbic and default-mode networks.
In contrast, the highest differences between deep sleep and resting
state are observed in the nodes of the visual- and default-mode-
networks. Finally, the highest differences in local synchronisation
are found between controls during resting state and DOC patients
(RMCS and RUWS) in the somatomotor-, salience-, control-, and
default-mode- networks. Conversely, the highest differences
between RMCS and RUWS are observed in nodes associated with
visual-, somatomotor- and default mode- networks.

Model-based framework. For each brain state, we built a Hopf
whole-brain model of coupled dynamical oscillators in an ana-
tomical brain architecture coupling the exponential distance rule
(EDR) and the dMRI matrix fitted to the empirical functional
data (see more details in Methods). In particular, we exhaustively
varied G from 0 to 7 in 0.1 steps and for each G value we repeated
100 simulations for each brain state with the same TR and time
duration as the empirical data. Then, we computed the fitting of

the functional connectivity as the Euclidean distance between the
empirical and simulated functional connectivity (FC) as a func-
tion of distance (r) within the inertial subrange (see Methods).
The optimal working point of each model is determined as the
minimum of the fitting level (vertical lines in Fig. 5a). We used
the respective minima of each condition as the basis of the fol-
lowing perturbative in silico investigations. The G values obtained
for meditation, deep sleep, and DOC are lower than those
obtained for the resting state. This result can be interpreted as
reducing the coupling between areas to represent the global brain
dynamics.

Furthermore, we study how the system reacts to external
perturbations by perturbing each model at its optimal working
point and computing the model-based measures. Specifically, we
defined the susceptibility as the ability of a system to be
perturbed, and we estimated by measuring the perturbed and
non-perturbed modulus of the local Kuramoto order parameter
(eRλs

�x; tð Þ and Rλs
�x; tð Þ, respectively). The perturbation consisted

of applying an external periodical force equally for all brain
regions. This stimulus was represented as an external additive
periodic forcing term, given by Fj = F0j cos(ω0 t) + iF0j sin(ω0t)
with F0j= 5 × 10−4, in the corresponding real and imaginary part
of the node j equation (Eqs. 10 and 11 see Methods), with
frequency ω0 equal to the average across node of the empirical
node frequency (Fig. 1c). Finally, we computed the susceptibility

Fig. 4 Local node-level metastability was significantly different between brain states and revealed distinct signatures of network involvement. We
computed the node-level metastability as the standard deviation across time of the local Kuramoto order parameter (see Methods). a We performed the
KSD between distributions of the node-level of metastability of each brain state within each dataset for each scale. The KSD for all datasets monotonically
decreases, whereas the value of λ increases for all comparisons. b Render brains represent the absolute difference of the node-level metastability between
each brain state for scale λ = 0.12, indicated with vertical dashed lines in panel A. We selected the top 15% quantile of absolute differences between
conditions, identified the resting state networks to which they belong and quantified the number of nodes per network. c Radar plots represent the number
of nodes on the top 15% quantile of the absolute difference by each comparison and resting-state network (CON: control; DMN: default mode; TP:
temporal-parietal; VIS; visual; SOM: somatomotor; ATT: attentional; SAL: salience; LIM: limbic). The networks showing the highest differences between
resting and meditation states were the limbic and default-mode networks. The comparison between deep sleep and resting state shows that nodes of the
visual- and default-mode- networks present the highest difference. Finally, the comparison between RCNT and DOC patients (RMCS and RUWS) shows that
the somatomotor-, salience-, control-, and default-mode- networks present the highest differences, whereas, specifically in the comparison between RMCS

and RUWS nodes associated with the somatomotor- and control- networks present the highest differences. P-values were assessed using the
Kolmogorov–Smirnov test and corrected for multiple comparisons, *P < 0.001.
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as the difference between the perturbed and non-perturbed cases
averaged across time, trials, and space. Note that we here define
susceptibility as the ability of the system to be externally
perturbed, in the same sense found in electromagnetism, where
the ‘magnetic susceptibility’ is determined as the magnetisation of
the material as the result of an external field. This general
framework was adapted for coupled oscillators by Hiroaki Daido,
who defines the susceptibility of a large population of coupled
oscillators as the variation of the Kuramoto order parameter
under external perturbation55. This measure was previously used
to demonstrate that the long-range connections enhance the
brain responsiveness to external stimulus39 and also increases is
turbulent regime38. Here we found that the susceptibility
decreases for meditation, deep sleep, and DOC compared to the
resting state (Fig. 5b).

Similarly, we computed the information encoding capability
(as an extension of the susceptibility) to study how external
perturbations are encoded in brain dynamics. This measure was
defined as the standard deviation across trials of the difference
between the perturbed and unperturbed mean of the modulus of
the local Kuramoto order parameter across time, averaged across
space. We found that, compared to the resting state, the
information encoding capability also decreases for meditation,
deep sleep, and DOC (Fig. 5c). To investigate the link between
Information encoding capability and complexity well-establish
measure, we computed the normalised Lempel-Ziv complexity56

(LZC) as is described in Casali et al.10 for each brain state within
each data set when it is externally perturbed. We found that the
LZC behaves similarly to the Information encoding capability
measure but is less sensitive to discriminate between them (see
Supplementary Fig. 1).

We replicated the results by randomly changing the bifurcation
parameter of each brain area, an, within the range [−0.02:0] (see
Methods). As shown in Supplementary Fig. 2, we found that the
response is the same for both perturbative approaches.

Overall, both perturbative measures show that the capability to
react to in silico perturbations decreases for meditation, deep
sleep, and DOC compared to the resting state.

Discussion
We were able to significantly distinguish between different brain
states based on a unifying framework for defining and measuring
the spatiotemporal variability of local synchronisation and
information transfer across scales. This research is based on
Kuramoto’s important research for extending the concept of
turbulence in the context of coupled oscillators28 (for other fra-
meworks used to study turbulence, see25–27,29). Using Kuramoto’s
insight, we have previously shown turbulence-like dynamics in
the healthy human brain37–39. Here we extended these results by
using model-free and model-based frameworks to demonstrate
that different brain states exhibit different levels of such
turbulent-like dynamics and information transfer across scales. In
turbulence, such local level of synchronisation across spatial
scales is usually called ‘vortex space’. Our model-free framework
was able to show the role of information cascade in ‘vortex space’
as a distinguishing feature between brain states (resting state,
meditation, deep sleep, RMCS, and RUWS) as measured by fMRI
neuroimaging. As such our results demonstrated that these brain
states exhibit significant differences in information cascade across
different scales at both the spatial and temporal domains. Equally,
our model-based approach fitted a whole-brain model to the

Fig. 5 Model-based framework revealed significant perturbative differences for different brain states. a We show the evolution of the error of the
whole-brain model FC fitting to the empirical fMRI data as a function of the global coupling strength, G. The error of the FC fitting was given by the square
root of the difference between the simulated and empirical FC matrix. The optimal working point of the model was defined as the minimum value of the FC
fitting, i.e., where the model shows maximal similarity to the empirical fMRI data. b We show the results of the susceptibility measure, which estimates
how these models react to external periodical force perturbations. In all datasets, the resting state was the most susceptible to be perturbed. c We show
the information encoding capability of the whole-brain models, which captures how different external stimulations are encoded in the dynamics. Similar to
the susceptibility measure, the resting state was more susceptible to react to the perturbations. Susceptibility and information capability measures
differentiated each brain state and between RMCS and RUWS groups. These results show that each brain state encodes the whole-brain dynamics with a
particular complexity. P-values were assessed using the Wilcoxon rank-sum test and corrected for multiple comparisons; ***P < 0.001.
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empirical data, which allowed us to exhaustively perturb the
system to demonstrate differences in susceptibility and informa-
tion encoding capabilities between different brain states. The
results showed that when inducing a shift in the intrinsic local
dynamics of brain areas, the brain responds to the external per-
turbations less sensitively as the conscious awareness diminishes.

This framework captures the differences in percolation
between scales across the whole brain of the different levels of
synchrony and complexity associated with different brain states.
At the mesoscopic level, the result of this percolation and mixing
across scales is always reflected in the brain dynamics determined
by the spatiotemporal variability of local synchronisation.

Overall, the proposed unifying framework reconciles the bal-
ance between different levels of synchrony and complexity of
large population of coupled oscillators for describing and differ-
entiating between brain states. Importantly, both model-free and
model-based measures successfully differentiate the minimally
conscious state (RMCS) and unresponsive wakefulness syndrome
(RUWS) groups.

Previously, it has been shown that the information processing
associated with rare long-range (LR) connections is significantly
enhanced in the resting state of healthy awake participants39.
When reducing the level of spatiotemporal variability of local
synchronisation, in what we call the turbulent regime, for a model
with LR connections, this resulted in a reduced level of long-range
information transmission. While we were not explicitly testing a
model with and without LR connections, we found that the
evolution of Kuramoto amplitude turbulence and information
cascade at different spatial scales is significantly different between
different brain states. In fact, Fig. 2a and b show that compared to
a group of healthy controls, the DOC groups exhibited lower
levels of turbulence at higher spatial scales (i.e., lower λ and larger
distances) but higher levels of turbulence at lower spatial scales.
This dramatic reduction of long-range information transmission
in RUWS and RMCS patients (see relevant boxplot for λ= 0.01 in
Fig. 2a) could be a defining feature of the reduction of conscious
awareness in these patients. This results are consistent with EEG
evidence showing that noncommunicative patients have lower
global information sharing57, and decreased brain
complexity58,59. This also aligns with the global neuronal work-
space theory that postulates that the long-distance connexions
globally broadcast the information for different processor brain-
wide and this lack of spatially bounded information processing is
associated with conscious access60.

In healthy participants, deep sleep was characterised by lower
Kuramoto amplitude turbulence across all spatial scales,
demonstrating a reduction in information processing over both
short and long distances61,62. In contrast, in highly trained
meditators, the meditation state presented higher Kuramoto
amplitude turbulence only at lower spatial scales (large λ and
short distances), suggesting that meditation is a state showing an
alteration rather than a reduction of consciousness. Overall, the
results demonstrate that each brain state exhibits different tur-
bulent dynamic patterns across spatial scales, allowing us to
characterise the brain states based on fluctuations of their
underlying information processing. Interestingly, this also
allowed us to differentiate between deep sleep and DOC states,
thus unveiling specific and unique features of turbulent dynamics
underlying low-level states of consciousness, going beyond a
simple dichotomy of synchrony and asynchrony.

The results also gave new insights into information processing
across scales changes with brain state. Working in ‘vortex space’,
we quantified three different measures of information transfer,
information cascade flow and information cascade for each brain
state. Figure 2c and d show that information transfer increased
significantly with the spatial scale between normal resting state

and the level of awareness in the other brain states (meditation,
deep sleep and DOC). This result clearly demonstrates that the
measure of information transfer indexes conscious awareness.
Interestingly, while this measure increases with the distance
between resting and meditation, this difference is not statistically
significant. This suggests that meditation is more similar to the
resting state but that there are important significant differences
which can be revealed by the other information transmission
measures.

The information cascade flow monotonically decreased with
shorter distances (the increase in spatial scale λ) for all brain
states (shown in Fig. 3a). This measure also discriminated
between conditions within each dataset, i.e., showing lower values
for DOC patients than control participants and in the deep sleep
stage compared to the resting state in the same participants. The
information cascade (i.e., the average of the information flow
across scales) was lower in low-levels states of awareness (deep
sleep, RMCS and RUWS) than in normal resting state (shown in
Fig. 3b). Overall, this demonstrates that the information trans-
mission is altered with conscious access and that this is captured
with the global information processing measures of information
transmission, information cascade flow and information cascade.

The framework also allowed us to identify local brain regions
involved in controlling the turbulent dynamics of different brain
states. In particular, we defined a ‘local node-level metastability’
measure as the regional level of the variability of local synchro-
nisation (see Methods). This measure was able to significantly
differentiate between different brain states at different spatial
scales. Yet, the node-level metastability for higher λ values, i.e.,
shorter distances in the brain, was less sensitive in discriminating
between brain states (Fig. 4a).

Importantly, this node-level of description allowed us to cap-
ture the different signatures of the whole-brain dynamics that
changed between brain states. As shown by the renderings in
Fig. 4b (at λ= 0.12) and quantified at the network level in Fig. 4c,
we found that brain regions belonging to the somatomotor, sal-
ience, control, and default-mode networks present the most cri-
tical differences in DOC states, with a more substantial decrease
in the RUWS than in the RMCS condition, corresponding to lower
levels of conscious awareness.

Specifically, we found the highest difference between RUWS and
RMCS in brain regions belonging to default mode-, visual- and
somatomotor- networks, which is consistent with previous stu-
dies in DOC patients63–66. We also found that changes in regions
in visual- and default-mode- networks indexed differences
between deep sleep and wakeful resting, consistent with other
studies of the human wake-sleep cycle67–69. In contrast, com-
paring meditation with resting state in expert meditators revealed
regions in limbic- and default-mode- networks, similar to other
findings in meditation70–74.

Please note that the current study is based on human brain
fMRI data. Thus, the time and spatial scales analysed here are
restricted to the order of millimetres and seconds (low fre-
quencies), respectively. Complementary to this approach, it
would be of considerable interest to extend this analysis at dif-
ferent scales by considering different neuroimaging recording
modalities capable of representing a much broader range of fre-
quencies, such as Electrocorticography (ECoG), magnetoence-
phalography/ electroencephalography (MEG/EEG) and circuit
level local field potentials.

Given the exciting results of directly perturbing the brain
revealed by the pioneering studies of Massimini and
colleagues10–12, we also wanted to explore the causal mechanistic
underpinnings of the differences between brain states and ensu-
ing reactivity to external perturbations. To this end, we modelled
the empirical fMRI data using Hopf whole-brain models38,45,51,68.
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The question of what level of abstraction to use in the whole-
brain model is the focus of much ongoing research. Over the
years, there have been many different whole-brain models with
varying degree of biophysical realism, from spiking networks to
mean-field to oscillatory Hopf models43,48–52. The conclusion
that we have drawn from this work is that currently, the Hopf
model creates the best fitting for fMRI BOLD data49 with a high
level of simplicity, which implies less computational cost but
being cautious on the biological interpretations given the level of
the abstraction of the model.

We found that the optimal working point of the Hopf whole-
brain models for all brain states shifted to a lower global coupling
factor compared to the resting state (see Fig. 5a). The global
coupling parameter, G, represents the conductivity of the fibre
densities among brain regions given by the underlying structural
connectivity, which is assumed, for simplicity, to be equal across
the brain49,75. Importantly, previous research showed that the
optimal values of G and a are related by a monotonic function, so
that fixing a before model fitting preserves the differences in the
coupling strength parameter between states45. Thus, a higher
coupling, G, allows the propagation of information among brain
areas indirectly connected, enhancing the transmission of infor-
mation across the whole network and vice versa53. Overall, this
drastic shift toward a lower coupling indicates sub-critical beha-
viour suggestive of a change in the dynamical complexity
underlying the brain state75.

In other words, simply varying the global coupling, G, in the
Hopf model have allowed us to obtain an excellent fit for different
brain states such as psychedelics76, DOC53,77, anaesthesia53 and
sleep45. One can of course add more parameters to the Hopf
model, such effective connectivity which creates an even better fit
to the empirical data78. One can also use more sophisticated
biophysical grounded models that provide a set of parameters
with a different biological interpretation that could provide new
insight into the differences between brain states. Nevertheless,
utilising Occam’s razor, we went for the minimal Hopf model that
can reproduce the differences in brain states.

Using the model-based framework, crucially, we were able to
perturb each brain model at its optimal working point to inves-
tigate the induced whole-brain dynamics changes caused by the
external in silico perturbations in order to obtain complementary
measures of information encoding in different brain states. Spe-
cifically, our external manipulation consisted of a shift towards
the bifurcation point of the intrinsic local dynamics of brain
areas. We found that the resting state showed significantly higher
susceptibility and information encoding capability than in the
pairwise comparison in each dataset, i.e., meditation, deep sleep
and DOC. The similar behaviour of both measures (susceptibility
and information encoding capability) can be related to the spe-
cific features of our perturbative approach. Differences in silico
protocols can be assessed to study how different brain states react
to external perturbations such as shifting the local dynamics in
the opposite direction, node by node perturbation78,79, non-
sustained perturbations47,80 or perturbing with external strength
dependent periodic force47,77. Notably, the perturbative approach
allows for the exploration of brain responses elicited by in silico
protocols which are not limited by ethical constraints of in vivo
stimulations81,82. Furthermore, the differential sensitivity of each
brain state of external perturbations could potentially serve as a
specific biomarker that reveals features of their dynamical
complexity.

Overall, we have presented a unifying framework that can
account for the differences between brain states. The key idea is
that the complex dynamics of a brain state result from the per-
colation across scales of previously demonstrated differences in
synchrony and complexity at the microscale. These dynamics

present differentiable turbulent dynamics, in terms of spatio-
temporal variability of local synchronisation, which our dual
model-free and model-based framework can reveal. The main
finding is that turbulent dynamics across different spatial scales
can distinguish between brain states. Furthermore, these differ-
ences are also found as differences in susceptibility and infor-
mation encoding capability as a result of the reactivity of different
external perturbations on the underlying brain state. Given the
sensitivity and specificity of the results, long-term, these might
help identify potential targets for patients to rebalance and regain
consciousness.

Methods
Participants
Meditation. A total of 19 experienced meditators with more than 1000 hours of
meditation experience were selected from a dataset previously described in Escrichs
et al. (2019)83. Meditators were recruited from Vipassana communities of Barce-
lona, Catalonia, Spain (7 females, mean ± SD, 39.8 ± 10.29 years, 9,526.9 ± 8,619.8
meditation experience). Participants were asked to practice focused attention on
breathing (i.e., anapanasati in language Pali). In this meditation technique, medi-
tators focus their attention on natural breathing, and when they realize that the
mind is wandering, they must refocus their attention back to natural breathing. All
participants reported no history of past neurological disorder and gave written
informed consent. The study was approved by the Ethics Committee of the Bell-
vitge University Hospital according to the Helsinki Declaration on ethical research.

Sleep. A total of 63 healthy subjects (36 females, mean ± SD, 23 ± 43.3 years) were
selected from a dataset previously described in Tagliazucchi and Laufs84. On the day
of the study, participants reported a wake-up time between 5:00 AM and 11:00 AM
and a sleep onset time between 10:00 PM and 2:00 AM for the night before the
experiment. Within half an hour of 7 PM, participants entered the scanner and were
asked to relax, close their eyes, and not fight the sleep onset. Their resting state
activity was measured for 52minutes with a simultaneous combination of EEG and
fMRI. According to the rules of the American Academy of Sleep Medicine85, the
scalp potentials measured with EEG determine the classification of sleep into four
stages (resting state, N1, N2 and N3 sleep). We selected 13 subjects who reached the
deep sleep stage (DS, i.e., N3) and contiguous time series of at least 198 volumes.
The local ethics committee approves the experimental protocol (Goethe-Universität
Frankfurt, Germany, protocol number: 305/07), and written informed consent was
asked to all participants before the experiment. The study was conducted according
to the Helsinki Declaration on ethical research.

Disorders of consciousness, Paris. A total of 77 patients who were hospitalised in
Paris Pitié-Salpêtrière, suffering from brain injuries, were included in this study.
Clinical assessment and trained clinicians carried out the clinical assessment and
Coma Recovery Scale-Revised (CRS-R) scoring to determine their state of con-
sciousness. Patients were diagnosed with UWS if they showed arousal (opening
their eyes) without any signs of awareness (never exhibiting non-reflex voluntary
movements). On the other hand, patients were in a RMCS if they exhibited some
behaviours that could be indicative of awareness, such as visual pursuit, orientation
to pain, or reproducible command following. We excluded subjects with T1
acquisition errors (n= 5), with high levels of motion detected (n= 7), registration
errors (n= 4), and large focal brain lesions (n= 4). We thus included 33 patients in
MCS (11 females, mean age ± SD, 47.25 ± 20.76 years), and 24 in UWS (10 females,
mean age ± SD, 39.25 ± 16.30 years) and 13 healthy controls (7 females, mean age ±
SD, 42.54 ± 13.64 years). This research was approved by the local ethics committee
Comité de Protection des Personnes Ile de France 1 (Paris, France) under the code
‘Recherche en soins courants’ (NEURODOC protocol, n° 2013-A01385-40). The
patient’s family gave their informed consent for the participation of their relative,
and all investigations were conducted according to the Declaration of Helsinki and
the French regulations.

Disorders of consciousness, Liège. A total of 35 healthy controls (14 females, mean
age ± SD, 40 ± 14 years) and 48 patients with disorders of consciousness (DOC)
were included in the study based on a dataset previously described in López-
González et al53. The diagnosis was made after at least 5 CRS-R by trained clin-
icians. The highest diagnosis of the level of consciousness was taken as the final
diagnosis, which was also confirmed with Positron Emission Tomography (PET)
(i.e., patients in MCS presented a relatively preserved metabolism in the fronto-
parietal network while patients with UWS had a bilateral hypometabolism in this
network). We thus included 33 patients in MCS (9 females, mean age ± SD, 45 ± 16
years), and 15 in UWS (6 females, mean age ± SD, 47 ± 16 years). The Ethics
Committee of the Faculty of Medicine of the University of Liege approved the
study protocol. The study was conducted according to the Helsinki Declaration on
ethical research. Written informed consent was obtained from controls and the
patients’ legal surrogates.
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MRI data acquisition
Meditation. MRI images were acquired on a 3 T Siemens Trio scanner (Siemens,
Erlangen, Germany) using a 32-channel receiver coil. The high-resolution T1-
weighted images were acquired with 208 contiguous sagittal slices; TR/TE= 1970
ms/ 2.34 ms; inversion time (IT)= 1050 ms; flip angle = 9°; FOV= 256 mm; and
isotropic voxel size 1 mm. Resting-state and meditation fMRI images were per-
formed by a single shot gradient-echo EPI sequence with a total of 450 volumes
(15 min); TR/TE= 2000 ms/29 ms; FOV= 240 mm; in-plane resolution 3 mm; 32
transversal slices with thickness = 4 mm; flip angle = 80°.

Sleep. MRI images were acquired on a 3-T Siemens Trio scanner (Erlangen, Ger-
many). EEG via a cap (modified BrainCapMR, Easycap, Herrsching, Germany) was
recorded continuously during fMRI acquisition (1505 volumes of T2-weighted
echo planar images, TR/TE= 2080 ms/30 ms, matrix 64 × 64, voxel size 3 × 3 × 2
mm3, distance factor 50%; FOV 192 mm2). An optimised polysomnographic
setting was employed (chin and tibial EMG, ECG, EOG recorded bipolarly
[sampling rate 5 kHz, low pass filter 1 kHz] with 30 EEG channels recorded with
FCz as the reference [sampling rate 5 kHz, low pass filter 250 Hz]. Pulse oxymetry
and respiration were recorded via sensors from the Trio [sampling rate 50 Hz]) and
MR scanner compatible devices (BrainAmp MR+ , BrainAmpExG; Brain Pro-
ducts, Gilching, Germany), facilitating sleep scoring during fMRI acquisition.

Disorders of consciousness, Paris. MRI images were acquired with two different
acquisition protocols. In the first protocol, MRI data of 26 patients and 13 healthy
controls were acquired on a 3T General Electric Signa System. T2*-weighted whole
brain resting state images were acquired with a gradient-echo EPI sequence using
axial orientation (200 volumes, 48 slices, slice thickness: 3 mm, TR/TE: 2400 ms/
30 ms, voxel size: 3.4375 × 3.4375 × 3.4375 mm, flip angle: 90°, FOV: 220 mm2). An
anatomical volume was also acquired using a T1-weighted MPRAGE sequence in
the same acquisition session (154 slices, slice thickness: 1.2 mm, TR/TE: 7.112 ms/
3.084 ms, voxel size: 1 × 1 × 1mm, flip angle: 15°).

In the second protocol, MRI data of 51 patients were acquired on a 3 T Siemens
Skyra System. T2*-weighted whole brain resting state images were recorded with a
gradient-echo EPI sequence using axial orientation (180 volumes, 62 slices, slice
thickness: 2.5 mm, TR/TE: 2000 ms/30 ms, voxel size: 2 × 2 × 2mm, flip angle: 90°,
FOV: 240 mm2, multiband factor: 2). An anatomical volume was acquired in the
same session using a T1-weighted MPRAGE sequence (208 slices, slice thickness:
1.2 mm, TR/TE: 1800 ms/2.35 ms, voxel size: 0.85 × 0.85 × 0.85 mm, flip angle: 8°).

Disorders of consciousness, Liège. MRI images were acquired on a Siemens 3 T Trio
scanner (Siemens Inc, Munich, Germany). MRI acquisition included a gradient
echo-planar imaging (EPI) sequence (32 transversal slices, 300 volumes, TR/
TE= 2000 ms/30 ms, flip angle = 78°, voxel size = 3x3x3 mm, FOV= 192 mm); a
structural T1 (120 transversal slices, TR= 2300 ms, voxel size = 1.0 × 1.0 × 1.2 mm,
flip angle = 9°, FOV= 256 mm).

Brain parcellation. We used the Schaefer parcellation with 1000 brain areas, based
on estimation from a large dataset (n= 1489)86, to extract the time series from
each subject. Furthermore, we estimated the Euclidean distances from the Schaefer
parcellation in MNI space.

Resting-state pre-processing
For meditation, Paris, Liège datasets. The pre-processing of resting-state data was
performed using FSL (http://fsl.fmrib.ox.ac.uk/fsl) as described in our previous
study53. In brief, resting-state fMRI was computed using MELODIC (Multivariate
Exploratory Linear Optimised Decomposition into Independent Components)87.
Steps included discarding the first five volumes, motion correction using MCFLIRT88,
Brain Extraction Tool (BET)89, spatial smoothing with 5mm FWHM Gaussian
Kernel, rigid-body registration, high pass filter cutoff = 100.0 s, and single-session
ICA with automatic dimensionality estimation. Then, lesion-driven artifacts (for
patients) and noise components were regressed out independently for each subject
using FIX (FMRIB’s ICA-based X-noiseifier)90. Finally, FSL tools were used to co-
register the images and extract the time-series between 1000 cortical brain areas for
each subject in MNI space from the Schaefer parcellation86.

For the sleep dataset. The pre-processing of resting-state data was performed using
FSL (http://fsl.fmrib.ox.ac.uk/fsl). In brief, steps included discarding the first five
volumes, motion correction using MCFLIRT88, BET89, spatial smoothing with
5 mm FWHM Gaussian Kernel, rigid-body registration, bandpass filtering between
0.01− 0.1 Hz. Finally, FSL tools were used to co-register the images and extract the
time-series between 1000 cortical brain areas for each subject in MNI space from
the Schaefer parcellation86. Previous publications based on this dataset can be
consulted for further details77.

Probabilistic Tractography analysis. We used the Human Connectome Project
(HCP) database that contains diffusion spectrum and T2-weighted neuroimaging
data from 32 participants as reported in Deco and Kringelbach38. A complete
description of the acquisition parameters for diffusion MRI (dMRI) is described in
detail on the HCP website91. The freely Lead-DBS software package (https://www.

lead-dbs.org/) provides the pre-processing described in detail in Horn et al.92. In
brief, the data were processed by using a q-sampling imaging algorithm imple-
mented in DSI studio (http://dsi-studio.labsolver.org). A white-matter mask was
computed by segmenting the T2-weighted images and co-registering the images to
the b0 image of the diffusion data using SPM12. For each HCP participant, 200,000
fibres were sampled within the white-matter mask. Fibres were transformed into
MNI space using Lead-DBS Horn and Blankenburg93. Finally, we used the stan-
dardised methods in Lead-DBS to extract the structural connectomes from the
Schaefer 1000 parcellation86.

Model-free framework
Kuramoto Local order parameter. The amplitude turbulence, Rλ �x; tð Þ, is defined as
the modulus of the Kuramoto local order parameter for a given brain area as a
function of time:

Rλð�x; tÞeiϑλ �x;tð Þ ¼ k
Z 1

�1
d�x0Gλ �x � �x0ð Þeiφ �x0 ;tð Þ ð1Þ

where Gλ is the local weighting kernel Gλ �xð Þ ¼ e�λ �xj j , λ is the spatial scaling and
φ �x; tð Þ are the phases of the spatiotemporal data and k is the normalisation factor

½R1
�1d�x0Gλð�x � �x0Þ��1

. The empirical instantaneous phases were computed
applying the Hilbert transform to the narrowband of 0.008–0.08 Hz filtered BOLD
signals individually. This frequency range was chosen because it has been shown
that when mapped to the grey matter, this band contains more reliable and
functionally relevant information compared to other frequency bands, and is less
affected by noise.94

Thus, Rλ defines local levels of synchronisation at a given scale, λ, as function of
space, �x, and time, t. This measure captures what we call brain vortex space, Rλ,
over time, inspired by the rotational vortices found in fluid dynamics, but of course
not identical.

Amplitude turbulence. The level of amplitude turbulence, Dλ, is defined as the
standard deviation across time and space of the modulus of local Kuramoto order
parameter (R):

Dλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rλ

2
� �

x;t � Rλ

� �2
x;t

q
ð2Þ

where the brackets hix;t denotes averages across time and space.

Information cascade flow and Information cascade. The information cascade flow
indicates how travels the information from a given scale (λ) to a lower scale (λ −
Δλ, where Δλ is a scale step) in consecutive time steps (t and t+ Δt). In this sense,
the information cascade flow measures the information transfer across scales
computed as the time correlation between the Kuramoto local order parameter in
two consecutive scales and times:

F λð Þ ¼ corrtðRλ �x; t þ Δtð Þ;Rλ�Δλ �x; tð ÞÞ� �
�x ð3Þ

where the brackets hix;t denotes averages across time and space. Then, the infor-
mation cascade is obtained by averaging the information cascade flow across scales
λ, which captures the whole behaviour of the information processing across scales
(Fig. 1a, middle panel).

Transfer Correlation. The spatial Transfer Correlation indicates how the infor-
mation travels across space at a specific scale, λ. This measurement is computed as
the slope of a linear fitting in the log-log scale of the time correlation between the
Kuramoto local order parameter of two brain areas at the same scale as a function
of its Euclidean distance (r) within the inertial subrange (Fig. 1a, right panel).

log corrt Rλ
n;R

λ
p

� �
rð Þ

� �
¼ Aλ � log rð Þ þ Bλ ð4Þ

Essentially, Aλ and Bλ are the fitting parameters for each scale (λ), where r is the
spatial distance in brain. The negative slope (Aλ) stands for the transfer in the
spatial direction r of the information in terms of time correlation of the local level
of synchronisation. In this sense, when the slope is steeper, the information travels
across shorter distances; while a flatter slope indicates that the information is
transferred across longer distances. Thus, we define the negative slope as the spatial
transfer correlation. Please note that in order to represent longer distances of
information transmission with higher positive values, we present the results panels
of Fig. 2c as a constant value minus |Aλ|.

Local node-level metastability. We define the ‘local node-level metastability’ as the
brain region variability of the local synchronisation, measured as the standard
deviation across time of the local Kuramoto order parameter:

NLM n; λð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rλ
n tð Þ2� �

t � Rλ
n tð Þ� �2

t

q
ð5Þ

where the brackets < >t represent average values across time points.
Here, we used the discrete version of the node-level Kuramoto order parameter,

with modulus R and phase ν, representing a spatial average of the complex phase
factor of the local oscillators weighted by the coupling computed in the following
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way:

Rλ
n tð Þeiνn ðtÞ ¼ ∑

p

Cλ
np

∑qC
λ
nq

" #
e
iφp tð Þ ð6Þ

where ϕp(t) are the phases of the spatiotemporal data and Cλ
nq is the local weighting

kernel between node n and p, and λ defines the spatial scaling:

Cnp ¼ e�λ r n;pð Þð Þ ð7Þ
where r(n, q) is the Euclidean distance between the brain areas n and p in
MNI space.

To compare the node-level metastability statistics, we collected the 1000 nodes
values for all participants in each condition and generated the distributions. Then,
we compared across states the distributions using the Kolmogorov-Smirnov
distance between them. The Kolmogorov–Smirnov distance quantifies the maximal
difference between the cumulative distribution functions of the two samples, where
larger values stand for more significant differences between both distributions.

Model-based framework. We constructed whole-brain dynamical models based
on the normal form of a supercritical Hopf bifurcation (also known as Stuart-
Landau)49. This type of bifurcation can change the qualitative nature of the
solutions from a limit cycle that yields self-sustained oscillations towards a stable
fixed point in phase space. This whole-brain computational model is characterised
by a series of model parameters that rules the global dynamical behaviour. One of
them is the multiplicative factor, G, representing the global conductivity of the
fibres scaling the structural connectivity between brain areas, which is assumed to
be equal across the brain49,75. The other relevant parameters are the local bifur-
cation parameter (aj), which rules the dynamical behaviour of each area between
noise-induced (a < 0), self-sustained oscillations (a > 0) or a critical behaviour
between both (a ~ 0) (Fig. 1c). We optimised the model parameters to better fit the
empirical functional connectivity as a function of the distance, r, within the inertial
subrange. The models consisted of 1000 cortical brain areas from the resting-state
atlas mentioned above. The underlying anatomical matrix Cnp was added to link
the brain structure and functional dynamics and was obtained by measuring the
exponential distance rule as defined in Eq. (7). The local dynamics of each brain
area was described by the normal form of a supercritical Hopf bifurcation, which
emulates the dynamics for each brain area from noisy to oscillatory dynamics as
follows:

dxn
dt

¼ anxn � x2n þ y2n
� �

xn � ωnyn þ νηn tð Þ ð8Þ

dyn
dt

¼ anyn � x2n þ y2n
� �

yn þ ωnxn þ νηn tð Þ ð9Þ

where ηn(t) is additive Gaussian noise with standard deviation ν = 0.01. This
normal form has a supercritical bifurcation at an = 0, such that for an > 0, the
system is in a stable limit cycle oscillation with frequency fn = ωn/2π, whereas for
an < 0, the local dynamics are in a stable point (i.e., noisy state). The frequency ωn

of each brain area was estimated from the empirical fMRI data as the peak of the
power spectrum.

Finally, the whole-brain dynamics was defined by the following set of coupled
equations:

dxn
dt

¼ anxn � x2n þ y2n
� �

xn � ωnyn þ G ∑
N

p¼1
Cnp xp tð Þ � xn

� �
þ νηn tð Þ ð10Þ

dyn
dt

¼ anyn � x2n þ y2n
� �

yn þ ωnxn þ G ∑
N

p¼1
Cnp ypðtÞ � yp

� �
þ νηn tð Þ ð11Þ

Where the global coupling factor G, scaled equally for each brain area, represents
the input received in region n from every other region p.

For the functional connectivity fitting the Kolmogorov’s structure-function of a
variable u was applied to the BOLD signal of the data. This measure is based on the
functional correlations between each pair of brain areas with equal Euclidean
distance and was defined as:

S rð Þ ¼ u �x þ rð Þ � u �xð Þð Þ2� �
x;t ¼ 2 FC 0ð Þ � FC rð Þ½ � ð12Þ

where FC(r) is the spatial correlations of two points separated by a Euclidean
distance r, which is given by:

FC rð Þ ¼ u �x þ rð Þu �xð Þ� �
�x;t ð13Þ

where the symbol hix;t refers to the average across the spatial location x of the brain
areas and time. Thus, the structure functions characterise the evolution of the
functional connectivity (FC) as a function of the Euclidean distance between
equally distant nodes, which is different from the usual definition of FC that
does not include distance. We then compute the fitting as the Euclidean distance
between simulated and empirical FC(r) within the inertial range as defined in Deco
et al.38.

The main implementation consists of an external perturbation represented as
an external additive periodical forcing term in the Hopf brain model for each brain
states as follows:

dxn
dt

¼ anxn � x2n þ y2n
� �

xn � ωnyn þ G ∑
N

p¼1
Cnp xp tð Þ � xn

� �
þ F0jcos ω0jt

� �
þ vηnðtÞ

ð14Þ

dyn
dt

¼ anyn � x2n þ y2n
� �

yn þ ωnxn þ G ∑
N

p¼1
Cnp yp tð Þ � yp

� �
þ F0jsin ω0jt

� �
þ vηnðtÞ

ð15Þ

where ω0 average empirical node frequency equal to all the nodes. The strength of
the external periodical force was fixed at F0j = 5 × 10−4 equally for all nodes based
on previous results presented in Perl et al.47.

In the alternative implementation we perturb the Hopf whole-brain model at
each brain state by randomly changing the local bifurcation parameter, an, in the
range [−0.02:0]. Note that this perturbation is carefully defined to keep the
dynamical scenario in the subcritical regime of each oscillator. For further detail in
this approach see Deco et al.78

The susceptibility measure of the whole-brain model was defined as the brain’s
sensitivity to react to external stimulations as it was defined in previous works38,39.
We computed the sensitivity of the perturbations on the spatiotemporal dynamics
extended the definition of previous work, which determines the susceptibility in a
system of coupled oscillators based on the response of the Kuramoto order
parameter55. The Hopf model was perturbed for each G by randomly changing the
local bifurcation parameter, an, in the range [−0.02: 0]. The sensitivity of the
perturbations on the spatiotemporal dynamics was calculated by measuring the
modulus of the local Kuramoto order parameter as:

χ ¼ ��	�eRλs
ð�x; tÞ�

t
� �

Rλs
ð�x; tÞ�

t


�
trials

�
�x

ð16Þ

where eRλs
�x; tð Þ corresponds to the perturbed case, the Rλs

�x; tð Þ to the unperturbed
case, and hit , hitrials and hix to the average across time, trials, and space, respectively.

The information encoding capability measures the ability of the system to
encode external inputs, and such is closer related to complexity measures such as
Lempel-Ziv (LZ) (used in Massimini seminal works10,12) or automatic complexity
evaluator (ACE), and synchrony coalition entropy (SCE) (used and defined
in95). The information capability, I, was defined as the standard deviation across
trials of the difference between the perturbed eRλs

ð�x; tÞ and unperturbed Rλs
�x; tð Þ

mean of the modulus of the local Kuramoto order parameter across time t,
averaged across all brain areas n as:

I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��	�eRλs

	
�x; t


�
t
� �

Rλs

	
�x; t


�
t


2�
trials

�
�x
� ��	�eRλs

	
�x; t


�
t
� �

Rλs

	
�x; t


�
t


�2
trials

�
�x

r
ð17Þ

where the brackets hit , hitrials and hix denote the averages defined as above.

Statistical analyses. We applied the Wilcoxon rank-sum method to test the
differences between conditions in Kuramoto amplitude turbulence, information
capacity, transfer correlation, and perturbative measures. For the node-level ana-
lysis, we applied the Kolmogorov–Smirnov test to compare between conditions.
Additionally, we applied the False Discovery Rate (FDR) at the 0.05 level of sig-
nificance to correct multiple comparisons96.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sleep and meditation time-series are publicly available on https://github.com/aescrichs/
brainstates-turbulence/releases. The disorders of consciousness datasets contain
information from a clinical population and are not publicly available due to constraints
imposed by the currently approved ethics protocol, however the data can be requested to
the Authors.

Code availability
All code written in support of this is publicly available on https://github.com/aescrichs/
brainstates-turbulence.
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