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Measurement of arbitrary scan
patterns for correction of imaging
distortions in laser scanning
microscopy:
supplemental document

In the following all necessary details to implement methods to extract a scan pattern from any
laser scanning microscope are described.

1. Z-SCAN TECHNIQUE

The Z-scan technique[1] is a simple means to measure the axial point-spread function (PSF) in
multi-photon-excitation (MPE) based microscopy. Here, a volumetric intensity profile is acquired
along the z-axis (i.e. the optical axis) by recording fluorescent flux through an orthogonal plane
separating a fluorescent and a non-fluorescent region. The axial PSF ψp(z) of the emission1 is
related to the acquired intensity via

I(z) ∝
∫ ∞

z
ψp(ζ − z0)dζ (S1)

for pth-order excitation (note, that for p = 1 the intensity I(z) is constant), where z0 was defined
as an arbitrary offset determining the interface between fluorescent (in positive z-direction) and
non-fluorescent probe. The actual profile can be recovered by differentiating the intensity profile
I(z) or fitting an appropriate function to the acquired data.

By tomographically scanning through several such interfaces this scheme can be extended to
capture the volumetric PSF ψp(z) for each pixel-wise detected focal volume but, more importantly,
allows to retrieve the geometry (i.e. the three-dimensional shape) of the scan pattern contained in
the z0 essential for unambiguous reconstruction of anatomical features of the specimen under
observation.

2. GEOMETRIC Z-SCAN

The geometric z-scan is executed in R3 along trajectories(
T
)

nm(z) :=
(
T0
)

nm + z ·
(
t0)

n (S2)

with the origin T0 and direction t0 through the interface plane

Pn :
{

x
∣∣∣(x−

(
P0
)

n

)
·
(
p0)

n = 0
}

, (S3)

with an arbitrary point P0 on the plane and it’s surface normal p0 (see Fig. S1). Here, n is the plane
index and m the interface-traversal per plane. The trajectory is commonly executed step-wise
(z(q) = zq, q ∈ 0, 1, . . .) resulting in the image sequence(

Iij
)

nm(q) := cnm ·
∫ ∞

z(q)

(
ψp,ij

)
nm

((
T
)

nm(ζ)
)

dζ with cnm = const (S4)

where Iij is the pixel intensity for all indices i and j.2 Assuming a near GAUSSIAN profile (see
Sec. 3ff.)

ψp ∝ exp

{
−p
(

z− z0
σ

)2}
(S5)

1In the following we will only deal with a normalized PSF, thus,

ψp(z) =
[ψ(z)]p〈
[ψ(z)]p

〉 ,

where ψ is the PSF of the excitation beam (cf. Eq. S18).
2The proportionality constant in (S4) depends on pulse properties, order of effect, wavenlength, dye and dye concentra-

tion [2] and is expected to be constant at least during the scan of a single plane and trajectory.



Fig. S1. Two-dimensional depiction of the precedure of scanning through an interface plane
on a single trajectory. The plane P (blue) is defined by a point P0 and its surface normal p0

separating a fluorescent (left) and non-fluorescent (right) region. The individual points of the
scan patter Sx (red) are shifted along the scan trajectory which is defined by its origin T0 and
direction t0 (two arbirarily selected positions of the scan path are display). They magnified,
shaded area (grey) portrays the GAUSSIAN beam shape with elicited fluorescence (green) for a
selected pixel.

in any direction the individual transitions
(
z0,ij

)
nm can be recovered by, for example chi-square

minimization, using the fit function

f (z0, σ, A, I0) := I0 +
A
2

(
1 + erf

{
− z− z0

σ

})
(S6)

for each pixel and trajectory individually, thus, the three-dimensional transistion coordinates are(
z0,ij

)
nm =

(
T0
)

nm +
(
z0,ij

)
nm ·

(
t0)

n . (S7)

The actual, pixel-wise scan trajectory, though, is offset by the scan-pattern:(
Tij
)

nm →
(
T
)

nm + Sij , (S8)

where the scan-pattern is defined by

S :
(

Sij, tij

)
(S9)

with the spatial and temporal components Sij and tij, respectively (in the following we will ignore
the temporal components). The plane-trajectory intersection, thus, is

Pn ∩
((

T
)

nm + Sij

)
=
(
z0,ij

)
nm , (S10)

which can be written as a system of linear equations (see Eq. S3):[(
z0,ij

)
nm + Sij −

(
P0
)

n

]
·
(
p0)

n = 0 . (S11)

Interface planes To first calculate the plane parameters, noting that Sij does not depend on n
and m, we may choose an appropriate origin of the scan path which may be a single or a range of
pixels i and j, so that 〈

Sij

〉
= 0 . (S12)

Taking the same average over (S11) we may now select an arbitrary m for which(
P0
)

n = (z)nm with z =
〈

z0,ij

〉
. (S13)
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The respective interface normal is found using

(
p0)

n =

(
p
)

n〈(
p
)

n

〉 with
(
p
)

n =
(
(zm−1 − zm)× (zm+1 − zm)

)
n (S14)

with indexes m + 1 and m− 1 (mod M), M being the number of interface traversals.

Scan pattern With the known interface planes Pn the scan pattern can now be infered (see
Eq. S11) using

Sij,m =

(
p0)T

n

[(
P0
)

n −
(
z0,ij

)
nm

]
(
p0
)T

n

. (S15)

The results for the individual m can be averaged, so that

Sij =
〈

Sij,m

〉
m

. (S16)

3. VOLUMETRIC Z-SCAN

As stated before the axial z-scan can be extended so that the volumetric PSF could be detected
using tomographic reconstruction over the full FOV. However, optical aberrations can lead to
very complex shapes of the PSF which would render a tomographic reconstruction of the focal
volume inept [3].

For ordinary laser scanning microscopes, however, several reasonable assumptions can be
made: 1. the excitation beam is quasi GAUSSIAN, 2. the optical system is well corrected to attain a
minimal focus volume, and, 3. par-axial approximations apply.3 In addition, effects such as beam
truncation (cf. [5]) leading to an AIRY pattern, or, absorption and scattering (cf. [6]) are neglected.

Hence the PSF is described by

ψp(ρ, ζ) ∝
[

1
1 + ζ2 exp

{
− ρ2

1 + ζ2

}]p

(S17)

for p-th order MPE using normalized coordinates ρ = |r|/w0 and ζ = z/zR, with the focal plane
beam diameter w0 and the RAYLEIGH range zR.

4. ACCURACY

In this section the accuracy and deviations of the minimization using the error function (Eq. S6)
due to differences in shape of transverse and axial behavior as well as the influence of the inherent
shot-noise shall be reviewed. In addition the last paragraph will consider influences due to
reflections in the probe.

A. Shape dependence
For further considerations we use the normalization

lim
z→±∞

ψp(z) = 0 , 〈ψp(z)〉 = 1 , 〈zψp(z)〉 = 0 , and ψp(0.5) = 0.5 · ψp(0) , (S18)

which means, that 1. I(z) ∈ [0, 1], 2. the expected transition z0 relates to ψp(0) (centroid), and, 3.
the full-width-half-maximum (FWHM) is 1.

The acquired intensity distribution (see Eqs. S4, S17) thus stems from a mixture between the
transverse

ψp,transverse(r) =
p

2
√

π
√

log 2
exp

{
−4 log 2 · r2

}
(S19)

and par-axial

ψp,axial(z) =
2β√

π

Γ(p)

Γ
(

p− 1
2

) 1
(1 + 4β2z2))

p with β =

√
2

1
p − 1 (S20)

shape of the PSF.

3High numerical aperture optics will require higher-order corrections to the transverse GAUSSIAN shape of the excitation
beam [4].
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With the normalization introduced above the fit function (Eq. S6) becomes

f (σ) =
1
2

(
1 + erf

{
− z

σ

})
(S21)

To first order any sigmoidal function is dominated by the slope near the point of symmetry, so
that for any bell-shaped PSF ψ (normalized according to Eq. S18) we yield

∂

∂z
f
∣∣∣
z=0

=
1

σ
√

π
= ψ(0) . (S22)

As the FWHM is commonly used as criterion for optical resolution in laser scanning microscopy,
we may also state that, according to (S18) the FWHM is the inverse of the width parameter in
(S21):

σFWHM = σ−1 =
√

πψ(0) . (S23)

Transverse For the GAUSSIAN PSF

ψp,transverse(0) =
p

2
√

π
√

log 2
(S24)

the FWHM is unsurprisingly σFWHM = 2
√

log 2 ≈ 1.665 and the intensity contained within the
interval [−σ, σ] is erf(1) ≈ 84.3%.

Par-axial For the par-axial PSF

ψp,axial(0) =
2β√

π

Γ(p)

Γ
(

p− 1
2

) with β =

√
2

1
p − 1 (S25)

the FWHM is σFWHM,2 ≈ 1.452 and σFWHM,3 ≈ 1.534 and the intensity contained within the
interval [−σ, σ] is 77.8% and 80.3% for 2- and 3-photon excitation, respectively.

From this we conclude that the error function given in (S6) is well suited as fit function.

B. Reflection
For the construction of the test sample we had used high quality microscope slides, which,
depending on the angle of incidence α, have a FRESNEL reflection coefficient

r⊥ =
cos α−

√
n2 − sin2 α

cos α +
√

n2 − sin2 α
with n =

n2
n1

(S26)

for s-polarization with the incidence and transmission volume refractive indices n1 and n2 (note
that for the coefficient for p-polarization r‖ ≤ r⊥ applies). With this we can estimate the upper
limit of relative excitation efficiency as

∆Ip ≤ r2p (S27)

with the excitation order p. With the refractive indices n1 = 1.33 for water and n2 = 1.51 for glass
the influence is negligible (see Fig. S2).
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Fig. S2. Relative intensity of MPE due to reflection at a glass surface immersed in water calcu-
lated for two- and three-photon excitation.
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