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Abstract 1

In order to migrate over large distances, cells within tissues and organisms rely on sensing local 2

gradient cues which are irregular, conflicting, and changing over time and space. The mecha- 3

nism how they generate persistent directional migration when signals are disrupted, while still 4

remaining adaptive to signal’s localization changes remain unknown. Here we find that single 5

cells utilize a molecular mechanism akin to a working memory to satisfy these two opposing 6

demands. We derive theoretically that this is characteristic for receptor networks maintained 7

away from steady states. Time-resolved live-cell imaging of Epidermal growth factor receptor 8

(EGFR) phosphorylation dynamics shows that cells transiently memorize position of encoun- 9

tered signals via slow-escaping remnant of the polarized signaling state, a dynamical ”ghost”, 10

driving memory-guided persistent directional migration. The metastability of this state further 11
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enables migrational adaptation when encountering new signals. We thus identify basic mech- 12

anism of real-time computations underlying cellular navigation in changing chemoattractant 13

fields. 14

Introduction 15

Directed chemotactic behavior relies on generating polarized signaling activity at the plasma 16

membrane of the cell that is translated to an elongated cell shape, and subsequent persistent mi- 17

gration in the direction of the signal. Experimental observations have shown that cells as diverse 18

as social amoeba, neutrophils, leukocytes, fibroblasts and nerve cells maintain the acquired ori- 19

entation even when signals are disrupted or noisy (Parent and Devreotes, 1999; Foxman et al., 20

1999; Ridley et al., 2003). However, not only do they respond robustly to dynamic gradients, 21

they can also adapt the migrational direction by integrating and resolving competing spatial sig- 22

nals, or prioritizing newly encountering attractants (Jilkine and Edelstein-Keshet, 2011; Skoge 23

et al., 2014; Albrecht and Petty, 1998). This suggests that cells likely memorize their recent en- 24

vironment. Numerous models based on positive feedbacks, incoherent feed-forward, excitable 25

or Turing-like networks have been proposed to describe how polarized signaling activity of 26

cell-surface receptors and/or downstream signaling component such as members of the Rho 27

GTPase family can arise (Levchenko and Iglesias, 2002; Levine et al., 2002; Mori et al., 2008; 28

Goryachev and Pokhilko, 2008; Beta et al., 2008; Xiong et al., 2010; Trong et al., 2014; Ha- 29

latek and Frey, 2018). This polarized activity in turn controls actin and myosin dynamics, and 30

thereby cell migration. Conceptually, the underlying dynamical principles of the proposed mod- 31

els are similar, and can be understood as switching from the stable state of basal- to the stable 32

polarized-signaling steady state in presence of guiding external cues. However, they can ac- 33

count either for sensing and adaptation to non-stationary stimuli or for long-term maintenance 34

of polarized signaling activity, but not both. Thus, how cells process the information from a 35
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changing chemoattractant field in real time for long-range navigation remains unknown. 36

We propose a shift in the conceptual framework, describing theoretically that efficient navi- 37

gation can be achieved when the polarized signaling state of the receptor network is transiently 38

stable. This is fulfilled in the presence of dynamical ”ghosts” at a unique dynamical transi- 39

tion, which we demonstrate in the EGFR signaling network dynamics using a mathematical 40

model, as well as quantitative live-cell imaging of polarized EGFR signaling. We show with 41

a physical model of the cell and migration experiments using microfluidics, that cells generate 42

memory of encountered signals through the ”ghost” state, translating it to memory in polarized 43

shape changes and directional migration. Due to the metastability of the ”ghost” state, cells can 44

also easily adapt their migration direction depending on the changes in signal localization. We 45

therefore describe a basic mechanism of real-time cellular navigation in complex chemoattrac- 46

tant fields. 47
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Results 48

1 Dynamical mechanism of navigation in non-stationary en- 49

vironments 50

We conjectured that only dynamically metastable receptor signaling states can enable both tran- 51

sient stability of polarized signaling as necessary for robust, memory-guided migration in noisy 52

fields, as well as rapid adaptation of its direction when signals vary in space and time. Our 53

hypothesis is that this can be achieved if biochemical systems are maintained outside, but in the 54

vicinity of the polarization steady state. We therefore approached the problem using the abstract 55

language of dynamical systems theory, where the characteristics of any process directly follow 56

from the type of dynamical transitions, called bifurcations, through which they emerge (Stro- 57

gatz, 2018). 58

Directed migration relies on a polarized representation of the directional signal, requiring 59

a reliable mechanism for signal-induced transition from a non-polarized symmetric, to a po- 60

larized receptor signaling state, and subsequently polarized cell shape. This transition is thus a 61

symmetry-breaking transition, and we propose that a pitchfork bifurcation (PB, (Koseska et al., 62

2013; Strogatz, 2018)) satisfies the necessary dynamical conditions (Figure 1A, Figure 1 - fig- 63

ure supplement 1A). Transient memory on the other hand is a unique characteristic of another 64

bifurcation, a saddle-node (SN ) bifurcation, that characterizes a transition between stable and 65

unstable steady states. When the SN and thereby a stable steady-state is lost i.e. upon signal 66

removal, a remnant or a dynamical ”ghost” of the stable state emerges (Strogatz, 2018). These 67

”ghost” states are dynamically metastable and transiently maintain the system in the vicinity 68

of the steady state (Figure 1A, Figure 1 - figure supplement 1A). Necessary for manifestation 69

of the ”ghost” state is organization at criticality, before the SN . We have previously examined 70

both theoretically and experimentally, the response of receptor networks under uniform growth 71

4



factor stimulation and determined that the concentration of receptors on the cell membrane reg- 72

ulate the organization of the system at criticality (Stanoev et al., 2018; Stanoev et al., 2020). 73

The features of both bifurcations, cell polarization under spatial cues and a transient memory 74

of this polarization in absence of the cue, will be unified for a sub-critical PB, as it is stabi- 75

lized via a SNPBs. We thus propose that organization at criticality - in the vicinity of a SNPB 76

(gray shaded area in Figure 1 - figure supplement 1A; details discussed in Methods), renders a 77

minimal mechanism for cellular responsiveness in changing environments. 78

We described this conjecture mathematically for a general reaction-diffusion model repre- 79

senting the signaling activity on the plasma membrane of a cell, ∂U(x,t)
∂t

= F(U)+D∇2U(x, t), 80

with U being the vector of local densities of active signaling components, D - diffusion con- 81

stants and F accounting for all chemical reactions. Our theoretical analysis shows that a PB 82

exists if, for a spatial perturbation of the symmetric steady state (Us) of the form U(x, t) = 83

Us + δU(x)eλt, the conditions δU(−x) = −δU(x) and the limit limλ→0 Fλ = det(J) = 0 are 84

simultaneously fulfilled (Methods). This implies that the linearized system has zero-crossing 85

eigenvalues (λ) associated with the odd mode of the perturbation (Paquin-Lefebvre et al., 2020). 86

To probe the sub-critical transition and therefore the necessary organization at criticality, a re- 87

duced description in terms of an asymptotic expansion of the amplitude of the polarized state 88

(φ) must yield the Landau equation dφ
dt

= c1φ + c2φ
3 − c3φ

5, guaranteeing the existence of 89

SNPB (see Methods for derivation). 90

These abstract dynamical transitions can be realized in receptor signaling networks with 91

different topologies and are best analyzed using computational models, whose predictions are 92

then tested in quantitative experiments on living cells. To exemplify the above mentioned prin- 93

ciple, we use the well-characterized Epidermal growth factor receptor (EGFR) sensing net- 94

work (Reynolds et al., 2003; Baumdick et al., 2015; Stanoev et al., 2018). It constitutes of 95

double negative and negative feedback interactions of the receptor, EGFR (Ep) with two en- 96
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Figure 1. In silico manifestation of metastable polarized membrane signaling, as a mecha-
nism for sensing changing spatial-temporal signals. A, Dynamical mechanism: sub-critical
pitchfork bifurcation (PB) determines stimulus-induced transition (arrow) between basal un-
polarized and polarized receptor signaling state, whereas the associated saddle-node through
which the PB is stabilized (SNPB) gives rise to a ”ghost” memory state upon signal removal
for organization at criticality (before the SNPB). See Figure 1 - figure supplement 1A and
Methods for detailed description of these transitions.
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B, Scheme of the EGFR-PTP interaction network. Ligandless EGFR (Ep) interacts with PTPRG
(PRG) and PTPN2 (PN2). Liganded EGFR (E−Ep) promotes autocatalysis of Ep. Causal links
- solid black lines; curved arrow lines - diffusion, PM - plasma membrane, ER- endoplasmic
reticulum. See also Figure 1 - figure supplement 1B. C, Signal-induced shape-changes during
cell polarization. Arrows: local edge velocity direction. Zoom: Viscoelastic model of the cell
- parallel connection of an elastic and a viscous element. Ptotal: total pressure; v: local mem-
brane velocity; l: viscoelastic state. Bold letters: vectors. Cell membrane contour: [0, 2π]. D,
Top: In silico evolution of spatial EGF distribution. Bottom: Kymograph of Ep for organization
at criticality from reaction-diffusion simulations of the network in (B). Triangle - gradient dura-
tion. E, Corresponding exemplary cell shapes with color coded Ep, obtained with the model in
(C). F, Top: Temporal profiles Ep (black) and E−Ep (gray). Green shaded area: EGF gradient
presence. Bottom: State-space trajectory of the system with denoted trapping state-space areas
(colored) and respective time-scales. See also Figure 1 - video 1. Thick/thin line: signal pres-
ence/absence. G, Quantification of in silico cell morphological changes from the example in E.
Triangle - gradient duration. H, Left: same as in G, only when stimulated with two consecutive
dynamic gradients (triangles) from same direction. Second gradient within the memory phase
of the first. See also Figure 1 - figure supplement 1D. Right: the second gradient (orange trian-
gle) has opposite direction. See also Figure 1 - figure supplement 1E. Dashed line: curve from
G. Mean±s.d. from n=3 is shown. Parameters: Methods. In (D-H), green(orange)/red lines:
stimulus presence/absence.

zymes, the phosphatases PTPRG (PRG) and PTPN2 (PN2, Figure 1B, Figure 1 - figure supple- 97

ment 1B), respectively. Ep and PRG laterally diffuse on the membrane and inhibit each-other’s 98

activities (see Methods for the molecular details of the network). The bidirectional molecular 99

interactions between EGFR and the phosphates can be mathematically represented using mass 100

action kinetics, giving a system of partial differential equations (PDE) that describes how the 101

dynamics of the constituents evolves in time and space (Eqs.(14) in Methods). Applying a 102

weakly nonlinear stability analysis (Becherer et al., 2009) to this system of equations shows 103

that the EGFR phosphorylation dynamics undergoes a symmetry-breaking transition (PB) as 104

outlined above (proof in Methods, Figure 1 - figure supplement 1C). The PB generates a polar- 105

ized state that is represented as a inhomogeneous steady state (IHSS) - a combination of a high 106

receptor phosphorylation at the cell front and low in the back of the cell (schematically shown 107

in Figure 1A, Figure 1 - figure supplement 1A). This is contrary to a bistable system, where 108
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the polarized signaling state would be manifested by two steady states, high and low protein 109

phosphorylation in the front and back of the cell, respectively (Beta et al., 2008). This profiles 110

PB as a robust mechanism of cell polarization. Polarized EGFR signaling on the other hand, 111

will lead to reorganization of the cortical actomyosin cytoskeleton by regulating members of 112

the Rho GTPase family, thereby inducing signal-dependent cell shape changes and subsequent 113

migration (Chiasson-MacKenize and McClatchey, 2018; Ridley and Hall, 1992). In order to 114

link signaling activity with morphodynamics, we modeled the cell as a viscoelastic cortex sur- 115

rounding a viscous core (Yang et al., 2008) (Methods), where EGFR signaling dynamics affects 116

cell shape changes through the protrusion/retraction stress and the viscoelastic nature of the cell 117

membrane (Figure 1C). 118

We first fixed the total EGFR concentration on the cell membrane to a value that corresponds 119

to organization at criticality, and investigated the response of the in silico cell to gradient stimu- 120

lus. In the absence of stimulus, basal EGFR phosphorylation is uniformly distributed along the 121

cell membrane rendering a symmetrical cell shape (Figure 1D, E). Introducing dynamic gradi- 122

ent stimulus in the simulation (slope changes from steep to shallow over time, Figure 1D, top) 123

led to rapid polarization of EGFR phosphorylation in the direction of the maximal chemoattrac- 124

tant concentration, generating a cell shape with a clear front and back. The polarized signaling 125

state was maintained for a transient period of time after removal of the gradient, corresponding 126

to manifestation of memory of the localization of the previously encountered signal (Figures 127

1D,E; temporal profile Figure 1F, top). The prolonged polarized state does not result from rem- 128

nant ligand-bound receptors (E − Ep) on the plasma membrane, as they exponentially decline 129

after signal removal (Figure 1F, top). The memory in polarized signaling was also reflected on 130

the level of the cell morphology, as shown by the difference of normalized cell protrusion area 131

in the front and the back of the cell over time (Figure 1G). Plotting the trajectory that describes 132

the change of the state of the system over time (state-space trajectory, Figure 1F bottom) shows 133
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that the temporal memory in EGFR phosphorylation polarization is established due to transient 134

trapping of the signaling state trajectory in state-space, a property of the metastable ”ghost” 135

state (Stanoev et al., 2020; Strogatz, 2018) through which the system is maintained away from 136

the steady state. The simulations show that there are two characteristic time-scales present in 137

the system: slow evolution of the system’s dynamics in the ”ghost” state due to the trapping, 138

and fast transitions between the steady states (Figure 1 - video 1). This emergence of the slow 139

time-scale is another hallmark of systems organized at criticality. What is crucial here however, 140

is that the trapping in the dynamically-metastable memory state does not hinder sensing of, 141

and adapting to subsequent signals. The cell polarity is sustained even when the EGF signal is 142

briefly disrupted (Figure 1H left, Figure1 - figure supplement 1D), but also, the cell is able to 143

rapidly reverse direction of polarization when the signal direction is inverted (Figure 1H right, 144

Figure1 - figure supplement 1E). 145

We next chose in the simulations a higher EGFR concentration on the membrane, such that 146

the system moves from criticality to organization in the stable polarization state (magenta lines, 147

Figure1 - figure supplement 1C). In this scenario, even a transient signal induces switching to the 148

polarized state that is permanently maintained, generating a long-term memory of the direction 149

on the initial signal. Thus, the cell is insensitive to subsequent stimuli from the same direc- 150

tion, whereas consecutive gradients from opposite directions generate conflicting information 151

that cannot be resolved (Figure 1 - figure supplement 1F). Organization in the homogeneous, 152

symmetric steady states on the other hand renders cells insensitive to the extracellular signals 153

(Figure 1 - figure supplement 1G,H). These response features for organization in the stable 154

steady state regimes resemble the finding of the previously published models: such models can- 155

not simultaneously capture memory in polarization along with continuous adaptation to novel 156

signals, or require fine-tuning of kinetic parameters to explain the experimentally observed cell 157

behavior (Levchenko and Iglesias, 2002; Levine et al., 2002; Mori et al., 2008; Goryachev and 158

9



Pokhilko, 2008; Beta et al., 2008; Xiong et al., 2010; Trong et al., 2014). This demonstrates 159

that organization at criticality, in a vicinity of a SNPB, is a unique mechanism for processing 160

changing signals. 161

2 Cells display temporal memory in polarized receptor phos- 162

phorylation resulting from a dynamical ”ghost” 163

To test experimentally whether cells maintain memory of the direction of previously encoun- 164

tered signals through prolonged EGFR phosphorylation polarization, and what is the duration 165

of this effect, epithelial breast cancer-derived MCF7 cells were subjected for 1h to a stable gra- 166

dient of fluorescently tagged EGF-Alexa647 (EGF647) with a maximal amplitude of 10ng/ml 167

applied from the top of the chamber in a computer-programmable microfluidic device (Figures 168

2A,B). EGFR phosphorylation at the plasma membrane was quantified during and for 3h after 169

gradient wash-out (gradient wash-out established in 4-5min) by determining the rapid translo- 170

cation of mCherry-tagged phosphotyrosine-binding domain (PTBmCherry) to phosphorylated 171

tyrosines 1086/1148 of ectopically expressed EGFR-mCitrine (EGFRmCitrine) using ratiomet- 172

ric imaging (Offterdinger et al., 2004)(Methods). Due to the low endogenous EGFR levels in 173

MCF7 cells, the expression range of EGFRmCitrine was set to mimic the endogenous receptor 174

range in the related MCF10A cell line, such that both cell lines have equivalent signaling prop- 175

erties of downstream effector molecules (Stanoev et al., 2018), and were therefore used in a 176

complementary way in this study. 177

Kymograph analysis of EGFRmCitrine phosphorylation at the plasma membrane of single 178

cells showed polarization in a shallow gradient of EGF647 (as shallow as 10% between front and 179

back of the cell; Figure 2C, Figure 2 - figure supplement 1A-D). The direction of EGFRmCitrine
180

phosphorylation polarization coincided with the direction of maximal EGF647 concentration 181

around each cell (π/4 on average, Figure 2 - figure supplement 1F). Only few cells manifested 182
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Figure 2. Molecular memory in polarized EGFRmCitrine phosphorylation resulting from
dynamical state-space trapping is translated to memory in polarized cell shape. A, Scheme
of microfluidic EGF647-gradient experiment; Zoom: single-cell measurables. Cell membrane
contour [0, 2π] (20 segments). PTB - phosphotyrosine binding domain, FP /star symbol -
fluorescent protein, EGFRp- phosphorylated EGFRmCitrine. Remaining symbols as in Figure
1B. B, Quantification of EGF647 gradient profile (at 60min, green) and after gradient wash-out
(at 65min, red). Mean±s.d., N=4.
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C, Exemplary quantification of, Top: Spatial projection of EGF647 around the cell perime-
ter. Gaussian fit of the spatial projection is shown. Middle: single-cell EGFRp kymograph.
Data was acquired at 1min intervals in live MCF7-EGFRmCitrine cells subjected for 60min
to an EGF647 gradient. Other examples in Figure 2 - figure supplement 1D. Bottom: respec-
tive spatial projection of EGFRp. Gaussian fit of the spatial projection is shown. Mean±s.d.
from n=20 cells, N=7 experiments in Figure 2 - figure supplement 1C. D, Average fraction of
polarized plasma membrane area (mean±s.d.). Single cell profiles in Figure 2 - figure sup-
plement 1G. E, Quantification of memory duration in single cells (median±C.I.). In D and E,
n=20, N=7. F, Top: Exemplary temporal profiles of phosphorylated EGFRmCitrine (black) and
EGF 647 − EGFRmCitrine (gray) corresponding to C. Bottom: Corresponding reconstructed
state-space trajectory (Figure 2 - video 1) with denoted trapping state-space areas (colored).
Thick/thin line: signal presence/absence. d - embedding time delay. G, Equivalent as in F,
only in live MCF7-EGFRmCitrine cell subjected to 1h EGF647 gradient (green shading), and
3h after wash-out with 1 µM Lapatinib. Corresponding kymograph shown in Figure 2 - figure
supplement 2A. Mean±s.d. temporal profile from n=9, N=2 in Figure 2 - figure supplement
2B. Bottom: Corresponding reconstructed state-space trajectory with state-space trapping (col-
ored) (Methods, Figure 2 - video 2). H, Averaged single-cell morphological changes (solid-
ity, mean±s.d. from n=20, N=7). Average identified memory duration (blue arrow): 40min.
Top insets: representative cell masks at distinct time points. I, Average solidity in MCF7-
EGFRmCitrine cells subjected to experimental conditions as in G. Mean±s.d. from n=9, N=2.
Top insets: representative cell masks at distinct time points. In F-I, green shaded area: EGF647

gradient duration; green/red lines: stimulus presence/absence. Orange line: Lapatinib stimula-
tion. See also Figure 2 - figure supplement 1 and 2.

basal or symmetric EGFRmCitrine phosphorylation distribution upon gradient stimulation (Fig- 183

ure 2 - figure supplement 1A, B, E). Plotting the fraction of plasma membrane area with polar- 184

ized EGFRmCitrine phosphorylation showed cell-to-cell variability in the polarization kinetics, 185

as well as the maximal amplitude of polarized EGFRmCitrine phosphorylation (Figure 2 - fig- 186

ure supplement 1G), in contrast to the rapid EGFR polarization in the numerical simulations 187

(Figure 1D). These differences likely results from the variable positioning of the cells along the 188

gradient in the microfluidic chamber, as well as the variability of total EGFR concentrations in 189

single cells. However, quantification of the polarization duration revealed that, similarly to the 190

numerical predictions, the polarization persisted ∼ 40min on average after gradient removal 191

([4− 159min], Figures 2D,E). 192
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The memory in EGFRmCitirne phosphorylation was also reflected in the respective single- 193

cell temporal profiles (exemplary profile shown in Figure 2F, top). Reconstructing the state- 194

space trajectory from this temporal profile using Takens’s delay embedding theorem (Takens, 195

1980)(Methods) showed that before the fast transition to the basal state, the trajectory of the 196

system was trapped in the vicinity of the polarized state (2F bottom, Figure 2 - video 1). Despite 197

the biological and technical noise that affect the measurement of the temporal EGFRmCitrine
198

phosphorylation profile, and thereby the reconstruction of the state-space trajectory, they both 199

qualitatively resemble the equivalent numerical profiles (compare Figure 2F to 1F). In contrast, 200

when cells were subjected to an ATP analog EGFR inhibitor Lapatinib (Bjorkelund et al., 2012) 201

during gradient wash-out, the EGFRmCitrine phosphorylation response exponentially decayed, 202

resulting in a clear absence of transient memory and respective state-space trapping (Figure 203

2G, Figure 2 - figure supplement 2A, B, Figure 2 - video 2). Since Lapatinib inhibits the 204

kinase activity of the receptor, the dynamics of the system in this case is mainly guided by 205

the dephosphorylating activity of the phosphates. Implementing an equivalent of the Lapatinib 206

inhibition in the numerical simulations by decreasing the autocatalytic EGFR activation rate 207

constant after gradient removal verifies that the presence of memory in EGFR phosphorylation 208

cannot be explained only by a dephosphorylation process (Figure 2 - figure supplement 2C). 209

This is also evident from the respective state-space trajectory, where the system directly transits 210

from the polarized to the basal state, without intermediate state-space trapping (Figure 2 - figure 211

supplement 2D, Figure 2 - video 3). 212

Fitting the experimentally measured single-cell temporal EGFRmCitrine phosphorylation 213

profiles after gradient wash-out using an inverse sigmoid function (Mathods) further corrobo- 214

rated that under Lapatinib treatment, phosphorylated EGFRmCitrine exponentially relaxed from 215

the polarized to the basal state (Hill coefficient ≈ 1.28), with a half-life of approx. 10min (Fig- 216

ure 2 - figure supplement 2E, G). Under normal conditions however, the half-life was 30min 217
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on average, reflecting that the phosphorylated EGFRmCitrine is transiently maintained in the 218

metastable signaling state after gradient removal, before rapidly switching to the basal state 219

(Hill coefficient ≈2.88, Figure 2 - figure supplement 2F, G). Taken together, this analysis sug- 220

gests that the memory in polarized EGFRmCitrine phosphorylation results from a dynamically 221

metastable ”ghost” state, and not a slow dephosphorylation process. 222

In order to identify whether the memory in polarized EGFRmCitrine phosphorylation also 223

enables maintaining memory of polarized cell morphology after gradient removal, we quan- 224

tified the cellular morphological changes using solidity, which is the ratio between the cell’s 225

area and the area of the convex hull. The average single-cell solidity profile over time showed 226

that epithelial cells maintained the polarized cell shape for ∼ 40min after signal removal (Fig- 227

ure 2H, Methods), which directly corresponds to the average memory duration in polarized 228

EGFRmCitrine phosphorylation (Figure 2E). The exemplary quantification of the temporal evo- 229

lution of the cell protrusion area in direction of the gradient showed equivalent results (Figure 2 230

- figure supplement 2H corresponding to the profile in Figure 2C; memory duration ∼ 43min). 231

In contrast, the absence of memory in EGFRmCitrine phosphorylation under Lapatinib treatment 232

also resulted in absence of transient memory in polarized morphology after stimulus removal 233

(Figure 2I). This establishes a direct link between memory in polarized receptor activity and 234

memory in polarized cell shape. 235

3 Transient memory in cell polarization is translated to tran- 236

sient memory in directional migration 237

To test the phenotypic implications of the transient memory in cell polarization, we analyzed 238

the motility features of the engineered MCF7-EGFRmCitrine, as well as of MCF10A cells at 239

physiological EGF concentrations. Cells were subjected to a 5h dynamic EGF647 gradient that 240

was linearly distributed within the chamber, with EGF647 ranging between 25− 0ng/ml, allow- 241
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ing for optimal cell migration (Figure 3 - figure supplement 1A, B). The gradient steepness was 242

progressively decreased in a controlled manner, rendering an evolution towards a ∼ 50% shal- 243

lower gradient over time (Figure 3 - figure supplement 1B). Automated tracking of single-cell’s 244

motility trajectories was performed for 14h in total. MCF7-EGFRmCitrine, as well as MCF10A 245

cells migrated in a directional manner towards the EGF647 source (Figure 3A- and Figure 3 - 246

figure supplement 1C,D - left, green trajectory parts). This directed migration persisted for tran- 247

sient period of time after the gradient wash-out (Figure 3A- and Figure 3 - figure supplement 248

1C,D - left, red trajectory parts, Figure 3 - video 1), indicating that cells maintain memory of 249

the location of previously encountered source. After the memory phase, the cells transitioned 250

to a migration pattern equivalent to that in the absence of a stimulus (Figure 3A right, Figure 3 - 251

figure supplement 1C,D middle). Uniform stimulation with 20ng/ml EGF647 did not induce di- 252

rected migration in either of the cell lines, although the overall migration distance was increased 253

in accordance with previous findings (Brueggemann et al., 2021) (Figure 3 - figure supplement 254

1C,D, right). Quantification of the directionality of single cells’ motion, that is defined as the 255

displacement over travelled distance, showed that for MCF10A cells, it was significantly higher 256

during the gradient stimulation (5h) as compared to no- or uniform-stimulation case (Figure 257

3B). Moreover, the directionality estimated in the 9h time-frame after the gradient removal was 258

greater than the one in continuous stimulus absence, corroborating that cells transiently main- 259

tain memory of the previous direction of migration. 260

This was also reflected in the projection of the cell’s relative displacement angles (cos θ) 261

estimated along the gradient direction (π) at each time point (Figure 3 - figure supplement 2A), 262

representing the angular alignment of the cells to the source direction. The cellular migra- 263

tion trajectories aligned with the source direction (cos θ approached 1) during, and maintained 264

this temporally after gradient removal, before returning to a migration pattern characteristic 265

for stimulus absence or during uniform stimulation (cos θ ≈ 0, Figure 3C top, Figure 3 - fig- 266
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Figure 3. Cells display memory in directional migration towards recently encountered
signals. A, Left: representative MCF10A single-cell trajectories. Green - 5h during and red
line - 9h after dynamic EGF647 gradient (shaded). Exemplary cell in Figure 3 - video 1. Right:
Same as in A, only 14h in continuous EGF647 absence. Black dots: end of tracks. B, Direction-
ality (displacement/distance) in MCF10A single-cell migration during 14h absence (0ng/ml;
n=245, N=3) or uniform 20ng/ml EGF647 stimulation (n=297, N=3); 5h dynamic EGF647 gra-
dient (green) and 9h during wash-out (red; n=23, N=5). p-values: ∗ ∗ ∗ p≤0.001, two-sided
Welch’s t-test. Error bars: median±95%C.I. C, Top: Projection of the cells’ relative displace-
ment angles (mean±sd; n=23, N=5) during (green shaded) and after 5h dynamic EGF647 gra-
dient. Green/red lines: stimulus presence/absence. Bottom: Kolmogorov-Smirnov (KS) test
p-values depicting end of memory in directional migration (blue arrow, t = 350min). KS-test
estimated using 5 time points window. For A-C, data sets in Figure 3 - figure supplements 1D,
2A-C.
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D, Representative in silico single-cell trajectories. Left: PB(t)RW: Persistent biased random
walk, bias is a function of time (green/blue trajectory part - bias on). Right: RW: random
walk. E, Corresponding directionality estimates from n=50 realizations, data in Figure 3 -
figure supplement 2D. PRW: persistent random walk. p-values: ∗ ∗ ∗ p≤0.001, two-sided
Welch’s t-test. Error bars: median±95%C.I. F, Same as in C, top, only from the synthetic
PB(t)RW trajectories. G, MCF10A single-cell trajectories quantified 5h during (green) and
9h after (orange) dynamic EGF647 gradient (shading) wash-out with 3 µM Lapatinib. n=12,
N=5. See also Figure 3 - video 2. H, Directionality in single-cell MCF10A migration after
gradient wash-out with (brown, n=12, N=5) and without Lapatinib (red, n=23, N=5). p-values:
∗∗ p≤0.01, KS-test. Error bars: median±95%C.I. I, Same as in C, only for the cells in G. See
also Figure 3 - figure supplement 2H.

ure supplement 2B). Calculating the similarity between the kernel density distribution estimate 267

(KDE) of the angular alignment distributions at each point in the gradient series with that in 268

continuous stimulus absence, showed that the distributions approach each other only ∼ 50min 269

after the gradient removal (Figure 3C, bottom; Figure 3 - figure supplement 2C). Additionally, 270

the calculated similarity between the KDE distributions during the gradient (5h) and the 50min 271

memory period further corroborated this finding (Figure 3 - figure supplement 2C). The average 272

memory phase in directional motility thus corresponds to the time-frame in which the memory 273

in polarized EGFRmCitrine phosphorylation and cell shape is maintained (Figures 2E, 3C), indi- 274

cating that the metastable signaling state is translated to a stable prolonged directed migration 275

response after gradient removal. 276

To investigate whether the motility patterns during the gradient and the memory phase have 277

equivalent characteristics, we fitted the motility data using a modified Ornstein-Uhlenbeck pro- 278

cess (Uhlenbeck and Ornstein, 1930; Svensson et al., 2017) and used the extracted migration 279

parameters to generate synthetic single-cell trajectories (Methods). In absence of stimulus, 280

the cellular motion resembled a random walk process (RW: Figure 3D right, Figure 3 - figure 281

supplement 2D,E middle), persistent random walk (PRW) was characteristic for the uniform 282

stimulation case (Figure 3 - figure supplement 2D,E right), whereas biased PRW described the 283

migration in gradient presence (PBRW, Figure 3D- and Figure 3 - figure supplement 2D, left, 284
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green trajectory part). Extending the bias duration during the interval of the experimentally 285

observed memory phase (PB(t)RW) was necessary to reproduce the transient persistent motion 286

after gradient removal (Figure 3D- and Figure 3 - figure supplement 2D, left, blue trajectory 287

part; Figures 3E, F; Figure 3 - figure supplement 2F). 288

To corroborate the link between memory in polarized receptor activity, memory in polarized 289

cell shape and memory in directional migration, we also quantified the directional migration of 290

MCF10A cells when subjected to Lapatinib during gradient wash-out (Figure 3G). The direc- 291

tionality after gradient removal was significantly lower than in the case without Lapatinib (Fig- 292

ure 3H), suggesting that cells rapidly switch to a RW migration pattern upon gradient wash-out 293

due to the absence of memory in polarized EGFRmCitrine phosphorylation (Figure 2G,I). Thus, 294

single-cell motility trajectories that closely resembled the experimentally observed ones could 295

be mimicked with the PB(t)RW simulation, where the bias duration corresponded to the du- 296

ration of the gradient (Figure 3 - figure supplement 2E left, G). Quantification of the average 297

cells’ relative displacement angles showed as well that cos θ approaches 0 exponentially after 298

gradient removal (Figure 3I, Figure 3 - figure supplement 2G), suggesting that majority of cells 299

display absence of memory in directional migration under Lapatinib treatment. 300

In order to dissect better the cell-to-cell variability in this case, we also calculated memory 301

duration form single cell cos θ profiles. For this, single-cell trajectories were first smoothed 302

using Kalman filter (Methods). The quantification showed that majority of the cells displayed 303

absence of or shorter memory in directional migration, with a mean value of ∼25min (Fig- 304

ure 3 - figure supplement 3A, B, D). Since under Lapatinib treatment, EGFR phosphorylation 305

rapidly decays (Figure 2G), this residual memory in some cells likely results from memory in 306

cytoskeletal asymmetries, as previously suggested (Prentice-Mott et al., 2016). Without Lapa- 307

tinib treatment however, the duration of memory estimated from single-cell cos θ profiles was 308

of the order of 90min (Figure 3 - figure supplement 3A, C, E). If we therefore account in this 309
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case also the contribution of cytoskeletal memory, then the memory in directional migration 310

which results from memory in polarized EGFR phosphorylation is on average ∼50min, similar 311

to the deduced vealues from the single-cell kymograph quantification (Figure 2E). 312

4 Molecular working memory enables cells to navigate in dy- 313

namic chemoattractant fields 314

To test whether the identified memory enables cellular navigation in environments where sig- 315

nals are disrupted but also change over time and space, we subjected cells in the simulations 316

and experiments to a changing growth factor field. The field was generated by a sequence of 317

signals, starting with a dynamic gradient whose steepness changed over time, and was tempo- 318

rary disrupted for a time interval shorter than the interval of memory in cell polarization. This 319

was followed by a second static gradient in the same direction, that after an equivalent disrup- 320

tion period was followed by a third dynamic gradient in the opposite direction (Figure 4A). The 321

in silico migration simulations showed that the cell can sense the initial dynamic gradient and 322

polarizes in the direction of maximal attractant concentration, resulting in directed migration 323

(Figure 4B, Figure 4 - figure supplement 1A, Figure 4 - video 1). The simulations also pre- 324

dicted that the memory of the previously encountered signal localization enables maintaining 325

robust directional migration even when the signal was disrupted, while still remaining sensitive 326

to the newly emerging signal from the opposite direction. The in silico cell rapidly adapted the 327

orientation when encountering the third signal, demonstrating that the proposed mechanism can 328

also account for prioritizing newly encountered signals. Such a dynamic memory which enables 329

information of previous signals to be temporally maintained while retaining responsiveness to 330

upcoming signals, and thereby manipulate the stored information, in neuronal networks is de- 331

scribed as a working memory (Atkinson and Shiffrin, 1968). 332

If the signal disruption is however longer than the duration of the working memory, the sim- 333
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Figure 4. Working memory enables history-dependent single-cell migration in chang-
ing chemoattractant field. A, Scheme of dynamic spatial-temporal growth factor field im-
plemented in the simulations and experiments. Green(orange)/red: gradient presence/absence.
B, In silico cellular response to the sequence of gradients as depicted in A, showing changes
in EGFR activity, cellular morphology and respective motility trajectory over time. Trajectory
color coding corresponding to that in (A), cell contour color coding with respective Ep values
as in Figure 1E. Cell size is magnified for better visibility. See also Figure 4 - figure supplement
1A, Figure 4 - video 1. C, Representative MCF10A single-cell trajectory and cellular morpholo-
gies at distinct time-points, when subjected to dynamic EGF647 gradient field as in A (gradient
quantification in Figure 4 - figure supplement 1E). Trajectory color coding corresponding to that
in A. See also Figure 4 - video 4. Full data set in Figure 4 - figure supplement 1F. D, Projection
of cells’ relative displacement angles (cos θ) depicting their orientation towards the respective
localized signals. Mean±s.d. from n=12, N=5 is shown. E, Corresponding kernel density es-
timates (intervals and color coding in legend). p-values: ∗ ∗ ∗, p≤0.001, ns: not significant,
KS-test.
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ulations demonstrated that cells cannot integrate the signals. In turn, cells respond to each signal 334

individually, as the directional migration after the memory is lost, resulting in a shorter-range 335

migration trajectory (Figure 4 - figure supplement 1B, Figure 4 - video 2). On the other hand, 336

if the system has a long-term memory, as resulting from organization in the stable polarized 337

regime, the simulations showed that cellular adaptation to a changing gradient field is hindered 338

(Figure 4 - figure supplement 1C,D, Figure 4 - video 3). The initial dynamic gradient shifted the 339

system to the stable polarization steady state where it was maintained on a long-term, such that 340

sensitivity to upcoming signals from the same direction was hindered. Even more, the cell could 341

not resolve the conflicting information from a subsequent gradient from the opposite direction, 342

as the signals induced high receptor activity on the opposed cell sides, resulting in halted mi- 343

gration. These results therefore highlight the importance of working memory for generating 344

memory-guided migration over long trajectories. 345

We next tested these predictions experimentally by establishing an equivalent dynamic 346

EGF647 spatial-temporal field in a controlled manner in the microfluidic chamber, and quantified 347

the migratory profile of MCF10A cells (Figure 4 - figure supplement 1E). The MCF10A cells 348

sensed the initial dynamic gradient field and migrated in the direction of increasing chemoat- 349

tractant concentration, maintaining the directionality even when the signal was temporary dis- 350

rupted. Despite the memory in cell polarization, cells remained responsive and adapted the 351

duration of directional migration when presented with a second static gradient from the same 352

direction, and subsequently prioritized the third, newly encountered signal with opposed orien- 353

tation (exemplary trajectory in Figure 4C, Figure 4 - video 4, Figure 4 - figure supplement 1F, 354

G). Thus, the predictions derived by the numerical simulations quantitatively captured that the 355

proposed mechanism of navigation enables integration of, and adaptation to changes in signal 356

localization. The distinction between the simulations and the experiments (Figure 4B and C) is 357

only in the details of the migration pattern, since the PBRW migration mode was not included 358
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in the physical model of the cell for simplicity. The temporal memory in directional migration 359

as well as the continuous adaptation of MCF10A cells to novel cues was also reflected in the 360

projection of the cell’s relative displacement angles (Figure 4D). The thereby derived KDE dis- 361

tributions during the first and second gradient (5-245min; 275-335min respectively), as well as 362

the corresponding intervals in which the gradient has been disrupted (245-275min; 335-365min 363

respectively) were statistically similar to each other, demonstrating that cells maintain the di- 364

rection of migration in the intermittent intervals when the gradient was interrupted (Figure 4E). 365

Moreover, these distributions statistically differed from the one characterizing cellular migra- 366

tion in continuous EGF647 absence (w/o EGF647, distribution symmetrically distributed around 367

cos θ = 0). The presence of the third gradient from the opposite direction (365-605min) on the 368

other hand, induced a shift in the respective KDE distribution to negative cos θ values, reflecting 369

that cells revert the direction of migration (established in ∼10min). Furthermore, the reverse 370

migration was maintained for approx. 20min after wash-out of the third gradient (KDE 605- 371

625min). The statistical similarity between these two distributions demonstrates that cells also 372

establish transient memory of the last detected signal, before reverting to a random walk migra- 373

tion mode (KDE 625-900min similar to KDE w/o EGF647). These results therefore demonstrate 374

that cells utilize molecular working memory to navigate in changing gradient fields. 375

Navigation in non-stationary fields however also necessitates integration of information, 376

requiring active comparison during migration task execution. We therefore tested next numeri- 377

cally whether the identified organization at criticality enables resolving simultaneous gradients 378

with different amplitudes from opposite sides, that temporally vary in time. In the simula- 379

tions, the cell sensed the presence of both signals, as reflected in the respective increase in 380

EGFR phosphorylation. However, the net polarization towards the higher-amplitude gradient 381

was dominant, resulting in a clear directional migration towards this signal (Figure 4 - figure 382

supplement 2A, B). After the gradient removal, the EGFR phosphorylation and the cell shape 383
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remained transiently polarized, manifesting memory of the recently encountered stronger signal 384

that was translated to memory in directional migration, before the cell reverted to a random walk 385

migration (Figure 4 - video 5). In contrast, if the system has a long-term memory as resulting 386

from organization in the stable polarized state, the simulations showed that EGFR phospho- 387

rylation increased almost equivalently with respect to both signals, despite the difference in 388

signal amplitudes. This hindered the responsiveness of the cell such that migration could not 389

be effectively exhibited (Figure 4 - figure supplement 4C, D; Figure 4 - video 6). These simu- 390

lations therefore suggest that critical organization of receptor networks is in general crucial for 391

performing complex cellular behavior that goes beyond simple stimulus-response associations. 392

Discussion 393

Our data establishes that mammalian cells use a mechanism of working memory to navigate in 394

complex environments where the chemical signals are disrupted or vary over time and space. 395

Previous observations of memory in directed migration have been explained through the pres- 396

ence of bistable dynamics, where the transition from the basal to the polarized steady state and 397

vice versa (after a memory phase) is regulated by two finely tuned thresholds. The authors 398

however did not identify potential molecular elements that store this information, or regulate 399

the thresholds (Skoge et al., 2014). Similarly, the remaining proposed models of polarization 400

also rely on steady-state description of the basal and polarized states (Levine et al., 2002; Mori 401

et al., 2008; Goryachev and Pokhilko, 2008; Beta et al., 2008; Trong et al., 2014), and thereby 402

cannot account for the rapid adaptation to changes in signal localization. 403

The mechanism of transient memory we report here is realized on a molecular level by a 404

prolonged polarized phosphorylation state of a receptor tyrosine kinase. Dynamically, this state 405

emerges for organization at criticality, where a slow-escaping remnant from the polarized state 406

or a dynamically metastable ”ghost” state is generated, and endows cells with robust transient 407

23



maintenance of directional migration after signal removal. Although the observed memory in 408

directional migration is in part supported by the memory in cytoskletal asymmetries as previ- 409

ously suggested (Prentice-Mott et al., 2016), the memory in receptor signaling we identify here 410

provides a crucial bridge between the rapid receptor phosphorylation/dephosphorylation events 411

and the long-range cellular migration. In particular, the organization at criticality endows the 412

system with a slow time-scale through which the prolonged receptor phosphorylation state can 413

be maintained on average for ∼40-50min after signal removal, which in turn maintains the po- 414

larized cell shape, and thereby directional migration in absence of a signal. Moreover, we have 415

demonstrated that this memory arising from a metastable state uniquely ensures the ability of 416

cells to quickly adapt to changes in the external environment. 417

Thus, our results suggest that in order to balance between a robust response and adaptation 418

to novel signals, cell utilize an optimal receptor amount at the plasma membrane that corre- 419

sponds to organization at criticality. The theoretical analysis suggest that the closeness of the 420

receptor amount to the one corresponding to the critical transition is reflected in the memory du- 421

ration. It can be therefore suggested that the observed variability in the experimentally identified 422

memory length likely results from cell-to-cell variability in receptor concentration at the plasma 423

membrane. Moreover, these results also suggest that a higher number of sensory units at the 424

plasma membrane does not necessarily imply improved sensitivity of cells, but rather contra- 425

intuitively, leads to permanent memory of the initially encountered signal. This in turn will 426

limit the cellular responsiveness to upcoming signal changes. It would be therefore of interest 427

to study whether receptor networks are self-organized at criticality through an active sensing 428

mechanism, or this feature has been fine-tuned through evolution, as a means for optimizing 429

sensing and computational capabilities of cells. 430

Our work furthermore suggest that this general mechanism of a system poised at criticality 431

can explain a wide range of biologically relevant scenarios, from the integration of temporally 432
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and spatially varying signals, to how extracellular information is transformed into guidance 433

cues for memory-directed migration. Such memory-guided navigation is advantageous when 434

migration must be realized over long and complex trajectories through dense tissues where the 435

chemical cues are disrupted or only locally organized (Lämmermann et al., 2013). We have 436

demonstrated here that the molecular working memory in cell polarization and therefore the 437

capabilities of cells to navigate in a complex environment are an emergent feature of receptor 438

networks. 439
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5 Materials and Methods 456

5.1 Key Resources Table 457

458

Reagent type
(species) or
resource

Designation Source or reference Identifiers Additional
information

Cell line
(Homo sapi-
ens)

MCF-7 ECACC Cat.No.86012803

Cell line
(Homo sapi-
ens)

MCF10A ATCC CRL-10317

Recombinant
DNA reagent

EGFR-mCitrine Baumdick et al., 2015

Recombinant
DNA reagent

PTB-mCherry Fueller et al., 2015

Recombinant
DNA reagent

cCbl-BFP Fueller et al., 2015

Peptide, re-
combinant
protein

Fibronectin Sigma-Aldrich F0895-1MG

Peptide, re-
combinant
protein

Collagen Sigma-Aldrich C9791-50MG

Chemical
compound,
drug

Lapatinib Cayman chemicals Cay11493-10

Chemical
compound,
drug

Hoechst 33342 Thermo Fisher Sc. 62249

Chemical
compound,
drug

Dulbecco’s
modified Ea-
gle’s medium
(DMEM)

PAN Biotech Cat. P04-01500

Chemical
compound,
drug

MEM Amino
Acids Solution
(50x)

PAN Biotech Cat. P08 32100

459
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Reagent type
(species) or
resource

Designation Source or reference Identifiers Additional
information

Chemical
compound,
drug

Penicillin- Strep-
tomycin

PAN Biotech Cat. P06 07100

Chemical
compound,
drug

Fetal Bovine
Serum

Sigma-Aldrich Cat. F7524

Chemical
compound,
drug

EGF Sigma-Aldrich Cat. E9644

Chemical
compound,
drug

Hydrocortisone Sigma-Aldrich Cat. H-0888

Chemical
compound,
drug

Cholera toxin Sigma-Aldrich Cat. C-8052

Chemical
compound,
drug

Insulin Sigma-Aldrich Cat. I-1882

Chemical
compound,
drug

Horse Serum Invitrogen 26050088

Chemical
compound,
drug

FuGENE6 Promega E2691

Software, al-
gorithm

Python Python software foun-
dation

RRID:SCR008394

Software, al-
gorithm

Matlab MathWorks RRID:SCR001622

Software, al-
gorithm

XPPAUT http://www.math.pitt.edu
/ bard/xpp/xpp.html

Software, al-
gorithm

Trackmate https://doi.org/10.1016
/j.ymeth.2016.09.016

Software, al-
gorithm

Fiji, ImageJ https://doi.org/10.1038
/nmeth.2019

460
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Reagent type
(species) or
resource

Designation Source or reference Identifiers Additional
information

Other EGF-Alexa647 Sonntag et al., 2014 Prof. Luc
Brunsveld,
University of
Technology,
Eindhoven

Methods

Other Cellasic ONIX
plates

Merck Chemicals M04G-02-5PK Methods

461

5.2 Cell Culture 462

MCF7 cells (sex: female, ECACC, Cat. No. 86012803) were grown at 37◦C and 5% CO2 463

in Dulbecco’s Eagle’s medium (DMEM) (PAN-Biotech, Germany), supplemented with 10% 464

inactivated Fetal Calf Serum (FCS) (Sigma-Aldrich), 100 ng ml−1 L-Glutamine, 0.5 mg ml−1 465

non-essential amino acids, 100 µg ml−1 penicillin and 100 µg ml−1 streptomycin (PAN-Biotech, 466

Germany). Serum starvation was performed by culturing the cells in DMEM supplemented with 467

0.5% FCS, 100 µg ml−1 penicillin and 100 µg ml−1 streptomycin (PAN-Biotech, Germany). 468

MCF10A cells (sex: female, ATCC-CRL 10317) were grown at 37◦C and 5%CO2 in Mammary 469

Epithelial Cell Growth Basal medium (MEBM from Lonza Pharma & Biotech), supplemented 470

with 5% Horse Serum (HS) (Invitrogen), 20 ng mL−1 EGF (Sigma-Aldrich), 0.5 mg mL−1 hy- 471

drocortisone (Sigma-Aldrich), 100 ng ml−1 cholera toxin (Sigma-Aldrich), 10 µg mL−1 insulin 472

(Sigma-Aldrich), 100 µg mL−1 penicillin and 100 µg mL−1 streptomycin. Serum starvation was 473

performed by culturing the cells in the DMEM supplemented with 0.5% HS, 0.5 mg mL−1 hy- 474

drocortisone (Sigma-Aldrich), 100 ng ml−1, cholera toxin (Sigma-Aldrich) 100 µg mL−1 peni- 475

cillin and 100 µg mL−1 streptomycin. MCF7 and MCF10A cells were authenticated by Short 476
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Tandem Repeat (STR) analysis and did not contain DNA sequences from mouse, rat and ham- 477

ster (Leibniz-Institut DSMZ). Cells were regularly tested for mycoplasma contamination using 478

MycoAlert Mycoplasma detection kit (Lonza). 479

5.3 Transfection and cell seeding 480

For EGFRmCitrine polarization experiments, 2.5× 105 MCF7 cells were seeded per well in a 6- 481

well Lab-Tek chamber (Nunc) until 80% confluence was reached. After 9-10 h of seeding, tran- 482

sient transfection was performed with a total of 1 µg of plasmids (EGFRmCitrine, PTBmCherry
483

and cCblBFP at ratio 4:3:4 by mass) using FUGENE6 (Roche Diagnostics) transfection reagent 484

and Opti-MEM (Gibco - Thermo Fisher Scientific) according to manufacturer’s procedure. All 485

plasmids were generously provided by Prof. P. Bastiaens, MPI of Molecular Physiology, Dort- 486

mund. Cells were incubated for 7-8 h to allow the expression of the transfected proteins prior 487

to experiments. To detach the cells, the growth media was discarded and cells were washed 488

once with DPBS (PAN Biotech) before adding 100 µL Accutase (Sigma-Aldrich). After 10 min 489

incubation period at 37◦C and 5 % CO2, fresh growth media was added, and the cell density and 490

viability was measured using cell counter (Vi-CELL XR Cell Viability Analyzer System). After 491

spinning down, the cells were diluted to 10× 106 cells/ml. The M04-G02 microfluidic gradient 492

plates (Merck Chemicals) were primed for usage by flowing cell culture growth media through 493

the cell chamber for 5 min and cells were subsequently seeded according to manufacturer’s 494

instructions. 495

For migration experiments with uniform EGF 647 stimulation, 6-well Lab-Tek plates were 496

coated with Collagen (Sigma-Aldrich) in 0.1 M Acetic acid (Sigma-Aldrich) for MCF7 497

(100 µg cm−2), and Fibronectin (Sigma-Aldrich) in Phosphate-Buffered Saline (DPBS) (PAN- 498

Biotech) for MCF10A cells (2 µg mL−1), and stored in incubator at 37◦C overnight for evapo- 499

ration. Excessive media was removed and the wells were washed with DPBS before seeding 500
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cells. MCF7 cells were seeded and transfected as described above. In the case of MCF10A 501

cells, 1 × 105 cells per well were used for seeding. For migration experiments with gradient 502

EGF647 stimulation, MCF7 cells were transferred to the coated M04-G02 microfluidic gradient 503

plates as described above. Before seeding, MCF10A cells were detached from 6 well Lab-Teks 504

by discarding the growth media and washing once with DPBS (PAN Biotech) before adding 505

100 µL Accutase (Sigma-Aldrich). After 20− 30min incubation period at 37◦C and 5 % CO2, 506

fresh cell growth media was added, and the cell density and viability were measured using a 507

cell counter (Vi-CELL XR Cell Viability Analyzer System). After spinning down, the cells 508

were diluted to 2× 106 cells/ml, and subsequently seeded in the microfluidic plates according 509

to manufacturer’s instructions. 510

5.4 Reagents 511

For gradient quantification, Fluorescein (Sigma Aldrich) was dissolved in Dulbecco’s modified 512

Eagle’s medium (with 25 mM HEPES, without Phenol Red) (PAN Biotech). Imaging media: 513

DMEM without Phenol Red was mixed with 25 mM HEPES. For nuclear staining, 20 mM 514

Hoechst 33342 (Thermo Fisher Scientific) was mixed with DPBS and diluted to 2 µM working 515

concentration. EGFR inhibitor Lapatinib (Cayman Chemical, Ann Arbor, MI) was solubilized 516

in DMSO (Thermo Fisher Scientific) to a stock concentration of 5 mM and stored at -20◦C. 517

5.5 Confocal and wide-field microscopy 518

Confocal images were recorded using a Leica TCS SP8i confocal microscope (Leica Microsys- 519

tems) with an environment-controlled chamber (Life Imaging Services) maintained at 37◦C 520

and HC PL APO 63x/1.2 N.A / motCORR CS2 water objective (Leica Microsystems) or a 521

HC PL FLUOTAR 10x/0.3 N.A. dry objective (Leica Microsystems). mCitrine, mCherry and 522

Alexa647 were excited with a 470 nm-670 nm pulsed white light laser (Kit WLL2, NKT Pho- 523
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tonics) at 514 nm, 561 nm and 633 nm, respectively. BFP and Hoechst 33342 (Thermo Fisher 524

Scientific) were excited with a 405 nm diode laser. The detection of fluorescence emission 525

was restricted with an Acousto-Optical Beam Splitter (AOBS): BFP (425 nm-448 nm), Hoechst 526

33342 (425 nm-500 nm), mCitrine (525 nm-551 nm), mCherry (580 nm-620 nm) and Alexa647 527

(655 nm-720 nm). Transmission images were recorded at a 150-200% gain. To suppress laser 528

reflection, Notch filter 488/561/633 was used whenever applicable. When using the dry ob- 529

jective for migration experiments, the pinhole was set to 3.14 airy units and 12-bit images of 530

512x512 pixels were acquired in frame sequential mode with 1x frame averaging. When using 531

the water objective for polarization experiments, the pinhole was fixed (1.7 airy units) for all 532

channels. The Leica Application Suite X (LAS X) software was used. 533

Wide field images were acquired using an Olympus IX81 inverted microscope (Olympus 534

Life Science) equipped with a MT20 illumination system and a temperature controlled CO2 in- 535

cubation chamber at 37◦C and 5% CO2. Fluorescence and transmission images were collected 536

via a 10x/0.16 NA air objective and an Orca CCD camera (Hamamatsu Photonics). Hoechst 537

33342 fluorescence emission was detected between 420 nm-460 nm via DAPI filter, mCitrine 538

fluorescence emission between 495 nm-540 nm via YFP filter and Alexa647 fluorescence emis- 539

sion between 705 nm-745 nm via Cy5 filter. The xCellence (Olympus) software was used. 540

5.6 Gradient establishment for polarization and migration experiments 541

The CellAsic Onix Microfluidic Platform (EMD Millipore) was used for gradient cell migration 542

and EGFRmCitrine phosphorylation polarization experiments. For EGFRmCitrine phosphoryla- 543

tion polarization experiments, 1 h gradient stimulation was established using CellASIC ONIX2 544

software as follows. (i) Pre-stimulus: Imaging media was flowed from well groups 3 and 4 (Cel- 545

lAsic Onix Manual - www.merckmillipore.com/) at low pressure (2.5 kPa) for 5 min. (ii) Gra- 546

dient establishment: After closing well group 3, pre-loaded EGF647 (10 ng mL−1) was flowed 547
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through well group 2 and imaging media from well group 4 at high pressure (15 kPa) for 15 min 548

(iii) Gradient maintenance: The pressure was reduced to 10 kPa for 45 min. (iv) Washout: Af- 549

ter closing well groups 2 and 4, imaging media was flowed from well groups 3 and 5 at high 550

pressure (15 kPa) for 15 min and maintained at low pressure (7 kPa) for 165 min. For single 551

gradient migration experiments, this protocol was modified as follows: in step (iii), gradient 552

maintenance was done for 285 min. In step (iv), maintenance was at low pressure for 585 min. 553

30 ng mL−1 EGF647 was used. For polarization experiments with inhibitor, the same protocol 554

as for polarization experiments was used, except well group 3 and 5 were filled with 1 µM La- 555

patinib solution and in step (i) well group 3 was kept closed. For single cell gradient migration 556

experiment with inhibitor, 3 µM Lapatinib was used. 557

For migration experiments under subsequent gradient stimuli / gradient quantification, the 558

following changes in the steps were used : (ii) well group 2 with 30 ng mL−1 EGF647/ 2.5 µM 559

Fluorescein was used. (iii) The gradient maintenance was done for 225 min. (iv) Washout: 560

imaging media was flowed from well groups 3 and 4 at high pressure (15 kPa) for 15 min and 561

maintained at low pressure (7 kPa) for 15 min. (v) Second gradient establishment: After closing 562

well group 3, EGF647(30 ng mL−1) / 2.5 µM Fluorescein was flowed from well group 2 and 563

imaging media from well group 4 at high pressure (15 kPa) for 15 min. (vi) The second gradient 564

thus formed was maintained by reducing the pressure to 10 kPa for 45 min. (vii) Washout: 565

imaging media was flowed from well groups 3 and 4 at high pressure (15 kPa) for 15 min 566

and maintained at low pressure (7 kPa) for 15 min. (viii) Third gradient establishment: After 567

closing well group 4, EGF647 (30 ng mL−1) / 2.5 µM Fluorescein was flowed from well group 568

5 and imaging media from well group 3 at high pressure (15 kPa) for 15 min. (ix) The third 569

reversed gradient was maintained by reducing the pressure to 10 kPa for 225 min. (x) Washout: 570

imaging media was flowed from well groups 3 and 4 at high pressure (15 kPa) for 15 min and 571

maintained at low pressure (7 kPa) for 285 min. 572
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5.7 Imaging EGFRmCitrine phosphorylation polarization and single cell 573

migration 574

Transfected MCF7-EGFRmCitrine cells transferred to M04G-02 gradient plates as described 575

above were incubated for at least 3 h, followed by serum starvation for at least 6 h before imag- 576

ing. Existing cell media was substituted right before imaging with imaging media. Confocal 577

imaging for multiple positions at 1 min time interval using adaptive auto-focus system and the 578

water objective was performed concurrently during the duration of the experiment using the 579

Leica TCS SP8i. 580

For migration experiments under uniform EGF647 stimulation, confocal laser scanning mi- 581

croscopy / transmission imaging of live MCF7-EGFRmCitrine / MCF10A cells was done on 582

a Leica TCS SP8i or Olympus IX81 for multiple positions at 3 min and 2 min time interval 583

respectively, using the 10x dry objective for 14 hours. 584

5.8 EGF647 / Fluorescein gradient quantification 585

hEGF647 was generated in the lab of Prof. P. Bastiaens, MPI of molecular Physiology, Dort- 586

mund, using the His-CBD-Intein-(Cys)-hEGF-(Cys) plasmid (Sonntag et al., 2014), kindly pro- 587

vided by Prof. Luc Brunsveld, University of Technology, Eindhoven. Human EGF was purified 588

from E. coli BL21 (DE3), N-terminally labeled with Alexa647-maleimide as described previ- 589

ously (Sonntag et al., 2014) and stored in PBS at -20◦C. To quantify the spatial extent of the 590

EGF647 / Fluorescein gradient, gradients were generated following the protocol described in 591

sub-section 5.6 in plates without cells or matrix coating. Confocal images of Alexa647 / GFP 592

channel were acquired at 1 min interval. A rectangular region of interest (including the perfu- 593

sion channels and the culture chamber) was used to obtain an averaged pixel intensity profile 594

using FIJI at each time point. This spatial profile was averaged across multiple experiments and 595

then scaled with the mean intensity value in the perfusion channel, which corresponds to the 596
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applied EGF647 / Fluorescein concentration. 597

5.9 Quantifying EGFRmCitrine phosphorylation in single cells 598

To quantify plasma membrane EGFRmCitrine phosphorylation in live MCF7-EGFRmCitrine cells, 599

single cell masks were obtained from the EGFRmCitrine channel at each time-point using FIJI 600

(https://imagej.net/Fiji). All pixels within the obtained boundary were radially divided into 2 601

segments of equal areas (Stanoev et al., 2018), and the outer segment was taken to represent 602

the plasma membrane. For the kymograph analysis, at each time point, the plasma membrane 603

segment was divided into 4 quadrants in anti-clockwise direction, and each was divided into 604

5 spatial bins (Figure 2A). The fraction of phosphorylated EGFRmCitrine in each bin, i was 605

estimated as: 606

EGFRi
p(t) =

PTBi
PM(t)/(PTBT (t)− PTBendo(t))

EGFRi
PM(t)/EGFRT (t)

(1)

where PTBi
PM(t) and EGFRi

PM(t) are respectively the PTBmCherry and EGFRmCitrine
607

fluorescence at ith plasma membrane bin, PTBT (t) and EGFRT (t) - respective total fluores- 608

cence in the whole cell, PTBendo(t) – the PTBmCherry fluorescence on vesicular structures in 609

the cytoplasm. Endosomal structures were identified from the cytosol by intensity thresholding 610

(1.5 s.d. percentile) and PTBmCherry fluorescence from these structures was subtracted from the 611

PTBT (t), to correct for the PTBmCherry fraction bound to the phosphorylated EGFRmCitrine on 612

endosomes. 613

Temporal profile of the fraction of phosphorylated EGFRmCitrine on the plasma membrane 614

was obtained using: 615

EGFRp(t) =

∑20
i=1 PTB

i
PM (t)

(PTBT (t)−PTBendo(t))∑20
i=1 EGFR

i
PM (t)

(EGFRT (t))

(2)
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and then normalized as: 616

EGFRp(t) =
EGFRp(t)− < EGFRp >t∈[0,5min]

maxt(EGFRp(t))− < EGFRp >t∈[0,5min]
(3)

with <> being the temporal average in the pre-stimulation interval t ∈ [0, 5min]. The 617

fraction of liganded receptor was calculated using: 618

EGF − EGFR(t) =
EGFPM
EGFRPM

(t) (4)

To classify single cells into non-activated, activated (polarized EGFRmCitrine phosphory- 619

lation) and pre-activated (uniformly distributed EGFRmCitrine phosphorylation) upon gradi- 620

ent EGF647 stimulation (Figure 2 - figure supplement 2A, B), the following method was ap- 621

plied. To identify pre-activated cells, a Gaussian Mixture Model (GMM) was fitted to the 622

histogram of (EGFRi
p)t∈[0,5min] values from all the analysed cells, and the intersection point 623

between the two normal distributions was identified. If more than 30% of the (EGFRi
p)t∈[0,5min] 624

pixel intensity values for any cell lie above the intersection point, the cell is classified as 625

pre-activated. To distinguish between the non-activated and activated cells in the remaining 626

population, average EGFRmCitrine phosphorylation value (EGFRp) per cell was estimated 627

during the pre-stimulation (t ∈ [0, 5min]) and the stimulation period (t ∈ [5min, 65min]) 628

(< EGFRp >t∈[0,65]) from the temporal EGFRmCitrine phosphorylation profiles. Histogram 629

of the respective EGFRp values was again fitted with a GMM model. All cells with an aver- 630

age < EGFRp >t∈[0,65] value lying below the intersection point were considered to be non- 631

activated, whereas those above - activated. 632

The average of the spatial projection of the fraction of phosphorylated EGFRmCitrine from 633

single-cell kymographs (Figure 2 - figure supplement 1C) was generated from the 20 cells that 634

were polarized in the direction of the EGF647 gradient. For each cell, a temporal average of 635
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EGFRp per bin was calculated for the duration of the gradient (t ∈ [5min, 65min]) and the 636

bin with the maximal EGFRp value was translated to π. The profiles were then smoothened 637

using a rolling average with a window of 7 bins. The resulting profiles were then averaged over 638

all cells and mean±s.d. is shown. 639

The local spatial EGF647 distribution around single cells (Figure 2 - figure supplement 1F) 640

was estimated as follows: the cell mask obtained using the EGFRmCitrine images were dilated 641

outwards by 8 pixels to account for possible ruffles, and then by additional 15 pixels. The 642

secondary rim of 15 pixels around the cell mask was used to calculate the spatial distribution of 643

EGF647 outside single cells. This outer contour was divided in 20 bins as for the kymographs, 644

and EGF647 intensity was quantified in each bin. The angle between the direction of EGF647
645

and the direction of EGFR phosphorylation was calculated as the amount of radial bins between 646

the maxima in the spatial projections. This bin-distance was then translated into an angle under 647

the assumption of a circular perimeter. 648

In order to identify the characteristic features of the EGFRmCitrine phosphorylation profile 649

during the transition from polarized to unpolarized state, the single-cell EGFRp(t) profiles 650

with and without Lapatinib treatment after gradient wash-out were fitted to an inverse sigmoid 651

function given by, 652

f(t) =
a0

an + tn
(5)

were a0, a are constants and n is the Hill-coefficient (examples in Figure 2-figure supple- 653

ment 2E, F). Non-linear least square method (python package curve fit) was used to perform the 654

fitting. Under normal conditions (w/o Lapatinib), a ∼ 10, a0 ∼ 103 and n ∼ 2.88 fitted well 655

the data (R2 ∼ 0.79). The same function however could not describe the EGFRp profiles in 656

the Lapatinib treatment experiment (median R2 ∼ 0.33). The Lapatinib treatment profiles were 657
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therefore fitted by fixing a = 10, and leaving a0 and n as free parameters, as they determine 658

the upper plateau and the steepness of the drop to the basal level. In this case, a0 ∼ 19 and 659

n ∼ 1.28 were identified from the fitting (median R2 ∼ 0.84, Figure 2 - figure supplement 2E, 660

G). From the fitted profiles in both cases, half-life was estimated to be the time frame in which 661

50% of EGFRmCitrine phosphorylation is lost after EGF647 removal. 662

5.10 Estimating memory duration in EGFRmCitrine phosphorylation po- 663

larization 664

The duration of memory in EGFRmCitrine phosphorylation polarization in single cells was esti- 665

mated from the temporal profile of the fraction of plasma membrane area with high EGFRmCitrine
666

phosphorylation during and after gradient removal (Figures 2D,E). For this, the single-cell ky- 667

mographs were normalized to a maximal value of 1 using 668

EGFRi
p(t) =

EGFRi
p(t)− < EGFRp >t∈[0,5min]

maxt(EGFRp(t))− < EGFRp >t∈[0,5min]
(6)

yielding the value of phosphorylated EGFRmCitrine per bin i per time point t. Using the mean of 669

EGFRp + s.d. over the whole experiment duration as a threshold, all EGFRi
p(t) lying above 670

the threshold were taken to constitute the area of polarized EGFRmCitrine phosphorylation. To 671

account for different bin sizes, at each timepoint, the area of all bins with EGFRp above the 672

threshold was summed and divided by the respective total cell area, yielding the temporal evo- 673

lution of the fraction of polarized cell area (FPA) (Figure 2D). The end of the memory duration 674

per cell was identified as the time point at which FPAper−cell < (FPAaverage − s.d.) in 3 675

consecutive time points (Figure 2E). 676
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5.11 Quantifying morphological changes in response to EGF647 in exper- 677

iments and simulations 678

Morphological changes of polarized cells were quantified using the solidity (Figure 2H and I) of 679

each cell at each time point and the directed protrusive area towards and away from the gradient 680

(Figure 1 G,H; Figure 2 - figure supplement 2H). The solidity σ is the ratio between the cell’s 681

area Acell and the area of the convex hull Aconvex (σ = Acell
Aconvex

). The memory duration in cell 682

morphology was calculated from the single-cell solidity profiles, and corresponds to the time- 683

point at which the solidity is below mean-s.d. estimated during gradient presence. The directed 684

cell protrusion area was estimated by comparing single cell masks at two consecutive time 685

points. To reduce noise effects, the masks were first subjected to a 2D Gaussian filtering using 686

the filters.gaussian function from the scipy python package. Protrusions were considered 687

if the area change was greater than 10 pixels or 1.2µm2 per time point. The front and the 688

back of the cells were determined by identifying an axis that runs perpendicular to the gradient 689

and through the cell nucleus of the initial time point. The directed cell protrusion area was then 690

obtained using Aprot,front
Afront

−Aprot,back
Aback

. The final profiles of directed protrusive area were smoothed 691

using 1D Gaussian filtering with the filters.gaussian filter1d function from the scipy python 692

package. For the equivalent quantification from the simulations, the same procedures were 693

applied without an area threshold. The memory duration was estimated as the time point at 694

which the directed protrusive area crosses zero after the gradient removal. 695

5.12 Quantification of single-cell migration and duration of memory in 696

directed cell migration 697

Single cell migration trajectories were extracted using Trackmate (Tinevez et al., 2017) in 698

Fiji (Schindelin et al., 2012) using Hoechst 33342 / transmission channel. From the positional 699

information (x and y coordinates) of individual cell tracks, quantities such as Motility, Direc- 700
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tionality and cos θ were extracted using custom made Python code (Python Software Founda- 701

tion, versions 3.7.3, https://www.python.org/). Directionality was calculated as displacement 702

over total distance and statistical significance was tested using two-sided Welch’s t-test. To 703

quantify the memory duration in directed single-cell migration, the Kernel Density Estimate 704

(KDE) from cos θ quantification in the continuous absence of EGF647 (uniform case, between 705

250 min-300 min) was compared with a moving window KDE (size of 5 time points) from the 706

gradient migration profile, using two sided Kolmogorov-Smirnov test. To verify the absence of 707

memory when cells were treated with Lapatinib during gradient wash-out, a moving window 708

KDE (5 time points) from cos θ obtained in this case was compared to the KDE in continuous 709

absence of EGF647 (uniform case Figure 3 - figure supplement 2B, between 250 min-300 min) 710

using two sided Kolmogorov-Smirnov test (Figure 3I). Furthermore, the KDE between 300 min- 711

350 min and 350 min-840 min (after gradient removal) was statistically equivalent to the KDE 712

in continuous absence of EGF647, confirming the rapid switch from directed to random-walk mi- 713

gration in the Lapatinib case (Figure 3 - figure supplement 2H). To estimate the time required for 714

complete reversal of cell migration direction when the cells were subjected to a gradient from 715

opposite direction, KDE distributions were compared between the following time windows: 716

275 min-335 min (second gradient), 335 min-365 min, 365 min-385 min, 375 min-385 min, and 717

365 min-605 min (third gradient). 718

To quantify the motility patterns of MCF10A cells in absence, uniform or gradient EGF 647
719

stimulation, we fitted the experimentally obtained single cell migration trajectories using modi- 720

fied Ornstein-Uhlenbeck process (mOU) (Uhlenbeck and Ornstein, 1930) that is defined by the 721

Langevin equation for the velocity vector ν: 722

dν(t)

dt
= − 1

τ
· ν(t) +

√
2D

τ
· (ξ(t) + b(t)) (7)
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where ξ(t) represents a white noise component, D is a diffusion coefficient characteristic 723

of a Brownian motion, τ is the persistence time and b(t) models the contribution of the time- 724

dependent bias. The experimental data was fitted to obtain values of D and τ . In order to 725

estimate D, Mean Square Displacement (MSD) was calculated from the single cell tracks using 726

MSD(t) = <|xi(t) − xi(0)|2>, where xi(t) is the tracked position of i-th cell in the 2D 727

plane, <> is the average across all single cell tracks, and |.| is the Euclidean distance (Selmeczi 728

et al., 2005). To estimate D, the obtained MSD profile was fitted with a linear function (= 4Dt). 729

Goodness of Fit for the different experimental conditions: 0ng/ml EGF647, R2 = 0.975; for 730

uniform 20ng/ml EGF647 stimulation, R2 = 0.995. In order to estimate τ , Velocity Auto- 731

Correlation Function V ACF (t) = <νi(t) · νi(0)>, where νi(t) is the measured velocity 732

of i-th cell at time t, was fitted with a mono exponential function (= φ0 · e
−t
τ ). Goodness 733

of Fit : for 0ng/ml EGF647 case - Standard Error of Estimate SEOE = 0.0261; for uniform 734

20ng/ml EGF647 stimulation case, SEOE = 0.0570. Fitted values: for 0ng/ml EGF647 case, 735

τ = 11.105,D = 0.425; for uniform 20ng/ml EGF647 stimulation case, τ = 38.143,D = 2.207; 736

bias b(t) = 0.134. 737

To compute the duration of memory in directional migration after gradient removal for in- 738

dividual cells (Figure 3 - figure supplement 3), single cell migration tracks were first smoothed 739

using a Kalman-filter (python package filterpy.kalman) by predicting the cell position and ve- 740

locity. The cell’s displacement angles relative to the gradient direction (cos θ) were calculated 741

for each cell at each timepoint, rendering single-cell cos θ plots (Figure 3 - figure supplement 742

3B,C). The memory duration was then calculated as the point where three consecutive time- 743

points in the cos θ profiles fall below a threshold cos θ value of 0.75. 744
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5.13 Reconstructing state-space trajectories from temporal EGFRmCitrine
745

phosphorylation profiles 746

The state-space reconstruction in Figures 2F and G was performed using the method of time- 747

delay. For a time series of a scalar variable, a vector x(ti), i = 1, ..N in state-space in time ti 748

can be constructed as following 749

X(ti) = [x(ti), x(ti + d), .., x(ti + (m− 1)d)] (8)

where i = 1 to N − (m−1)d, d is the embedding delay, m - is a dimension of reconstructed 750

space (embedding dimension). Following the embedding theorems by Takens (Takens, 1980) 751

and Sauer et al. (Sauer et al., 1991), if the sequence X(ti) consists of scalar measurements of 752

the state of a dynamical system, then under certain genericity assumptions, the time delay em- 753

bedding provides a one-to-one image of the original set, provided m is large enough. The em- 754

bedding delay was identified using the timeLag function (based on autocorrelation), the embed- 755

ding dimension using the estimateEmbeddingDims function (based on the nearest-neighbours 756

method), and the state-space reconstruction using the buildTakens function, all from the nonlin- 757

earTseries package in R (https://cran.r-project.org/web/packages/nonlinearTseries/index.html). 758

Before state-space reconstructions, time series were smoothened using the Savitzky-Golay filter 759

function in Python. For Figure 2F, d = 26, de = 3; for Figure 2G, d = 50, de = 3. 760

5.14 Theoretical consideration of the navigation mechanism in a general- 761

ized reaction-diffusion signaling model 762

We consider a generalized form of a (mass-conserved) reaction-diffusion (RD) model of an M 763

(U ∈ RM ) component system in N (x ∈ RN ) dimensional space 764
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∂U(x, t)

∂t
= F(U(x, t)) + D · ∇2U(x, t) (9)

where F ∈ RM is the reaction term, D is a M ×M diagonal matrix of diffusion constants 765

Dj, j = 1, ...,M , and ∇2 is the Laplacian operator. Standard analysis of such models relies 766

on linear stability analysis to find the conditions for a Turing-type instability (Turing, 1952), 767

such that the symmetric steady state becomes unstable and an asymmetric polarized state is 768

stabilized. By its nature, the linear stability analysis makes no prediction about the transition 769

process itself, and thereby the type of bifurcation that underlies it. To provide quantitative 770

description of the symmetry breaking transition in reaction-diffusion models, local perturbation 771

analysis can be applied (Holmes et al., 2015). However, this analysis is mainly restricted to 772

models characterized with large diffusion discrepancy between the signaling components. The 773

conditions for a pitchfork bifurcation (PB)-induced transition in a generic RD model therefore 774

have to be formally defined. Let Us = (uis) for i = 1, ..,M , be the stable homogeneous 775

symmetric steady state of the RD system. Consider a linear perturbation of the form 776

U(x, t) = Us + δU(x)e(λt), δU(x) ∈ RM (10)

where δU(x) is the spatial and e(λt) is the temporal part of the perturbation. Substituting 777

Eq.(10) in Eq.(9) yields a linearized eigenvalue equation whose solution can be determined by 778

solving the characteristic equation, Fλ = det(λIM×M − JM×M) = 0. J is the Jacobian matrix 779

of the system defined by Jij = ∂Fi(U(x,t))
∂Uj

, i = 1, ....,M, j = 1, .....,M . 780

The system exhibits a PB if, an odd eigenfunction δU(x) such that δU(−x) = −δU(x), 781

taken in the limit λ→ 0, fulfills the following condition (Paquin-Lefebvre et al., 2020): 782

lim
λ→0

Fλ = det(J) = 0. (11)
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When this conditions is satisfied, the symmetric, homogeneous steady state of the system 783

undergoes a pitchfork bifurcation and an inhomogeneous steady state (IHSS) with two branches 784

of asymmetric steady states emerges. In terms of polarization, these branches correspond to 785

front-back-polarized states, where the orientation depends on the direction of the external signal 786

(Figure 1A, Figure 1 - figure supplement 1A). 787

To identify whether the PB is of sub-critical type, and thereby identify the presence of a 788

SNPB, a weakly nonlinear analysis of Eq.(9) must be performed to obtain description of the 789

amplitude dynamics of the inhomogeneous state. This can be achieved using an approximate 790

analytical description of the perturbation dynamics based on the Galerkin method (Becherer 791

et al., 2009; Rubinstein et al., 2012; Bozzini et al., 2015). For simplicity, we outline the steps 792

for a one-dimensional system (N = 1). As we are interested in the description of a structure 793

of finite spatial size (i.e. finite wavelength k), the final solution of the PDE is expanded around 794

the fastest growing mode, km into a superposition of spatially periodic waves. That means that 795

u(x, t) ∈ U can be written as: 796

u(x, t) ≈
+∞∑

n=−∞

(un(t)enikmx + u∗n(t)e−nikmx) (12)

where un(t) is the complex amplitude of the nth harmonics. Let the amplitude correspond- 797

ing to the leading harmonics (n = 1) is φ(t). After assuming that the amplitude of every other 798

harmonics can be written as a power series of φ(t), substituting Eq.(12) into Eq.(9) allows to 799

write an equation that describes the evolution of φ(t). In the case when the resulting equation 800

is of Stuart-Landau type: 801

dφ

dt
= c1φ+ c2φ

3 − c3φ5 (13)
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with c1, c2, c3 > 0, this corresponds to the normal form of a sub-critical pitchfork bifurcation 802

(Strogatz, 2018). Together with the condition given by Eq.(11), the existence of a sub-critical 803

PB for the full system (Eq.(9)) is guaranteed. A numerical or analytical analysis of Eq.(13) 804

enables the identification of the position of the SNPB. 805

5.15 Modeling EGFR phosphorylation polarization dynamics 806

The dynamics of the experimentally identified spatially-distributed EGFR sensing network (Fig- 807

ure 1B, Figure 1 - figure supplement 1B) is described using the following one-dimensional 808

system of partial differential equations (PDEs): 809

∂[Ep]

∂t
= f1([Ep], [E − Ep], [RGa], [N2a], [EGFt]) +DEp

∂2[Ep]

∂x2

∂[E − Ep]
∂t

= f2([Ep], [E − Ep], [EGFt]) +DE−Ep
∂2[E − Ep]

∂x2

∂[RGa]

∂t
= f3([Ep], [E − Ep], [RGa]) +DRGa

∂2[RGa]

∂x2

∂[N2a]

∂t
= f4([Ep], [E − Ep], [N2a])

(14)

with

f1 = ([Et]− [Ep]− [E − Ep])(α1([Et]− [Ep]− [E − Ep]) + α2[Ep] + α3[E − Ep])−

γ1[RGa][Ep]− γ2[N2a][Ep]− kon([EGFt]− [E − Ep])[Ep]2 + 1/2koff [EEp];

f2 = kon([EGFt]− [E − Ep])([Ep]2 + ([Et]− [Ep]− [E − Ep])2)− koff [E − Ep];

f3 = k1([RGt]− [RGa])− k2[RGa]− β1[RGa]([Ep] + [E − Ep]);
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and

f4 = ε(k1([N2t]− [N2a])− k2[N2a] + β2([Ep] + [E − Ep])([N2t]− [N2a])).

The reaction terms are described in details in (Stanoev et al., 2018). In brief, [E − Ep] 810

is the phosphorylated ligand-bound dimeric EGFR, [Ep] - ligandless phosphorylated EGFR, 811

[Et] - total amount of EGFR, [RGa], [RGt] and [N2a], [N2t] - the active and total amount of 812

the membrane localized PTPRG and the ER-bound PTPN2, respectively. Both, the receptor 813

and the deactivating enzymes have active and inactive states, and the model equations de- 814

scribe their state transition rates. Therefore, mass is conserved in the system and the total 815

protein concentrations of the three species ([Et], [RGt] and [N2t]) are constant parameters. Au- 816

tonomous, autocatalytic and ligand-bound-induced activation of ligandless EGFR ensue from 817

bimolecular interactions with distinct rate constants α1−3, respectively. Other parameters are as 818

follows: k1/k2 — activation/inactivation rate constants of the phosphatases, β1/β2 - receptor- 819

induced regulation rate constants of PTPRG/PTPN2, γ1/γ2 - specific reactivity of the en- 820

zymes (PTPRG/PTPN2) towards the receptor. The EGFR-PTPN2 negative feedback is 821

on a time scale (ε) approximately two orders of magnitude slower than the phosphorylation- 822

dephosphorylation reaction, as estimated from the∼ 4min recycling time of EGFRp (Stanoev 823

et al., 2018). This enables, when necessary, to consider a quasi-steady state approximation for 824

the dynamics of PTPN2 for simplicity: 825

[N2a]qss = [N2t] ·
(k1 + β2 · ([Ep] + [E − Ep]))

k1 + k2 + β2 · ([Ep] + [E − Ep])
(15)

[EGFt] denotes the total ligand concentration. Assuming that at low, physiologically rele- 826

vant EGF doses, the ligand will be depleted from the solution due to binding to EGFR (Lauf- 827

fenburger and Linderman, 1996), ligand-binding unbinding was explicitly modeled (kon, koff ) 828

in Eqs.14, with values corresponding to the experimentally identified ones. 829
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The diffusion terms model the lateral diffusion of the EGFR and PTPRG molecules on the 830

plasma membrane, whereas PTPN2 is ER-bound and does not diffuse. Single particle tracking 831

studies have demonstrated that EGFR molecules on the plasma membrane occupy three distinct 832

mobility states, free, confined and immobile, with the occupations of the free and immobile 833

states decreasing and increasing significantly after EGF stimulation, respectively (2min after 834

EGF stimulation, corresponding with the time-scale of EGF binding) (Ibach et al., 2015). In 835

the reaction-diffusion (RD) simulations therefore for simplicity, it is assumed that DE−Ep ≈ 0, 836

whereas diffusion constants of same order are assumed for the ligandless EGFR and PTPRG 837

(DEp ∼ DRGa). 838

5.16 Analytical consideration for an SNPB existence in the EGFR net- 839

work 840

To identify analytically the existence of a SNPB in the EGFR receptor network, we performed a 841

weakly nonlinear analysis as described in the general consideration (Section 5.14). For this, we 842

considered the system Eqs.(14), where the dynamics of PTPN2 is at quasi-steady state (Eq.(15)), 843

[E − Ep] = 0, and rest of the dependent and independent variables were scaled to have a 844

dimensionless form. Let [Ẽp] = [Ep]/E0, [ ˜RGa] = [RGa]/RG0, x̃ = x/x0, τ = t/t0, such that 845

t0 = 1/(k1 + k2), E0 = k1/β2, RG0 = (k1 + k2)/γ1 and t0/x20 = 1/DEp . Substituting these 846

into Eqs.(14) yields the system of dimensionless equations: 847

∂[Ẽp]

∂τ
= q1 + q2[Ẽp] + q3[Ẽp]

2 − [ ˜RGa][Ẽp]−
q4(1 + [Ẽp])[Ẽp]

(1 + k + [Ẽp])
+
∂2[Ẽp]

∂x̃2

∂[ ˜RGa]

∂τ
= r1 − [ ˜RGa]− r2[ ˜RGa][Ẽp] +D

∂2[ ˜RGa]

∂x̃2

(16)

with q1 = α1·[Et]2·k3
(k1+k2)·β2 , q2 = (α2−2·α1)·[Et]

k1+k2
, q3 = (α1−α2)·k1

(k1+k2)·β2 , q4 = γ2·[N2t]
k1+k2

, k = k2/k1, r1 = 848

k1·[RGt]·γ1
(k1+k2)2

, r2 = β1·k1
(k1+k2)·β2 and D =

DRGa
DEp

. 849
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We further simplify the system Eqs.(16) by taking the Talyor series expansion of the quasi- 850

steady state approximation of [N2a] around Es, the steady state of [Ẽp]: 851

q4(1 + [Ẽp])[Ẽp]

1 + k + [Ẽp]
= q7 + q8[Ẽp] + q9[Ẽp]

2 + o([Ẽp]
2) (17)

with q7 = Esq4
1+k+Es

− Esq4(1+k)
(1+k+Es)2

, q8 = Esq4
1+k+Es

+ q4(1+k)
(1+k+Es)2

(1− Es) and q9 = q4(1+k)
(1+k+Es)2

, thus 852

yielding: 853

∂[Ẽp]

∂τ
= q9 + q10[Ẽp] + q11[Ẽp]

2 − [ ˜RGa][Ẽp] +
∂2[Ẽp]

∂x̃2

∂[ ˜RGa]

∂τ
= r1 − [ ˜RGa]− r2[ ˜RGa][Ẽp] +D

∂2[ ˜RGa]

∂x̃2

(18)

with q9 = q1 − q7, q10 = q2 − q8 and q11 = q3 − q9. 854

To avoid long expression in the further analysis, we re-name the dependent variables as 855

u1 = [Ẽp] and u2 = [ ˜RGa], and the independent variables as x̃ = x, τ = t . The system 856

Eqs.(16) therefore obtains the generic form: 857

∂u1
∂t

= F1(u1, u2) +
∂2u1
∂x2

∂u2
∂t

= F2(u1, u2) +D
∂2u2
∂x2

.

(19)

In order to perform linear stability analysis, a one-dimensional projection of Eq.(19) is con- 858

sidered, 859
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du1f
dt

= F1(u1f , u2f )− (u1f − u1b) = G1(u1f , u2f , u1b)

du2f
dt

= F2(u1f , u2f )−D(u2f − u2b) = G2(u1f , u2f , u2b)

du1b
dt

= F1(u1b, u2b)− (u1b − u1f ) = G3(u1b, u2b, u1f )

du2b
dt

= F2(u1b, u2b)−D(u2b − u2f ) = G4(u1b, u2b, u2f )

(20)

The simplified one-dimensional geometry assumes a model composed of two compartments 860

(front and back), resembling a projection of the membrane along the main diagonal of the cell. 861

The standard approach of modeling the diffusion along the membrane in this case is simple 862

exchange of the diffusing components. The one-dimensional projection, as demonstrated below, 863

preserves all of the main features of the PDE model. 864

Let, Us =


u1fs
u2fs
u1bs
u2bs

 be the stable symmetric steady state of the system (u1fs = u1bs, u2fs = 865

u2bs). A small amplitude perturbation on this symmetric steady state of the form, 866


u1f (t)
u2f (t)
u1b(t)
u2b(t)

 =


u1fs
u2fs
u1bs
u2bs

+


δu1f
δu2f
δu1b
δu2b

 · eλt (21)

yields a linearized equation, 867

λ



dδu1f
dt

dδu2f
dt

dδu1b
dt

dδu2b
dt


= J


δu1f

δu2f

δu1b

δu2b

 (22)
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where J =



∂G1

∂u1f

∂G1

∂u2f

∂G1

∂u1b
0

∂G2

∂u1f

∂G2

∂u2f
0 ∂G2

∂u2b

∂G3

∂u1f
0 ∂G3

∂u1b

∂G3

∂u2b

0 ∂G4

∂u2f

∂G4

∂u1b

∂G4

∂u2b

 868

869

is the Jacobian of the system evaluated at the symmetric steady state. In order to identify 870

existence of PB in the system, the condition given in Eq.(11) should be satisfied for an odd 871

mode of the perturbation. For the one-dimensional projection (Eqs.(20)), the odd mode of the 872

perturbation (δU(−x)) = −δU(x)) must yield: δu1f = −δu1b and δu2f = −δu2b. Substituting 873

this into Eq.(22) to obtain F−(λ), in the limit λ→ 0 renders: 874

lim
λ→0

F−(λ) = det

(
( ∂G1

∂u1f
+ ∂G3

∂u1b
)− ( ∂G1

∂u1b
+ ∂G3

∂u1f
) ( ∂G1

∂u2f
+ ∂G2

∂u2b
)

( ∂G2

∂u1f
+ ∂G4

∂u1b
) ( ∂G2

∂u2f
+ ∂G4

∂u2b
)− ( ∂G2

∂u2b
+ ∂G4

∂u2f
)

)
= 0 (23)

Thus, there exists parameter set for which existence of PB in the system Eq.(20) is guaran- 875

teed. 876

To identify whether the PB is sub-critical and thereby identify existence of a SNPB, the 877

solution of the system Eqs.(19) is approximated as in Eq.(12): 878

u(x, t) = φ(t)eikmx + φ∗(t)e−ikmx + u0(t) +
3∑

n=2

(un(t)enikmx + u∗n(t)e−nikmx)

v(x, t) = φ(t)eikmx + φ∗(t)e−ikmx + v0(t) +
3∑

n=2

(vn(t)enikmx + v∗n(t)e−nikmx)

(24)

The expansion is taken to n = 3rd order, rendering an amplitude equation of 5th order. As 879

described in (Becherer et al., 2009), the complex coefficients of the n = 0th, n = 2nd and 880

n = 3rd harmonics can be approximated as power series of φ(t). Substituting into Eqs.(19) 881

allows to derive these coefficients. This yields a system of coupled ODEs representing the time 882
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evolution of the complex amplitudes, in this case, for φ(t), u0(t), v0(t), u1(t), v1(t), u2(t), v2(t), 883

u3(t) and v3(t). Assuming that the dynamics of the higher order harmonics reaches their steady 884

state much faster than the leading perturbation does, the derivatives of their amplitudes can be 885

set to zero. This allows to obtain expressions of the amplitudes purely as functions φ and the 886

parameters of the system as: 887

u0(φ) = (
1

q10
(2(1− q11)−

q9
|φ|2

))|φ|2

v0(φ) = (
r1
|φ|2
− 2r2)|φ|2

u2(φ) = u
(2)
2 φ2

v2(φ) = v
(2)
2 φ2

u3(φ) = u
(3)
3 φ3

v3(φ) = v
(3)
3 φ3

(25)

where u(2)2 = 1−q11
q10−4k2m

, v(2)2 = −r2
1+4Dk2m

, u(3)3 =
u
(2)
2 +v

(2)
2 −2q11u

(2)
2

q10−9k2m
and v(3)3 =

−r2(u(2)2 +v
(2)
2 )

1+9Dk2m
. The 888

dynamics of the leading harmonics (n = 1) can be written as: 889

dφ

dt
= c1φ+ c2φ

3 − c3φ5 (26)

where c1 = q10−k2m−r1+ q9(1−2q11)
q10

, c2 = (1−q11)(2q11−1)( 2
q10
− 1
q10−4k2m

)+r2(2+ 1
1+4Dk2m

) 890

and c3 = 2q11u
(2)
2 u

(3)
3 − u

(2)
2 v

(3)
3 . Eq.(26) is of Stuart-Landau type and represents a normal form 891

of a sub-critical pitchfork bifurcation. This shows the existence of SNPB in the EGFR network. 892

To corroborate this, we also performed numerical bifurcation analysis on one-dimensional 893

projection (Eqs.(20)) where the reaction terms have the form as defined in Eqs.(14), including 894
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the full form for [N2a], when [E −Ep] = 0. The bifurcation analysis (Figure 1 - figure supple- 895

ment 1C) was obtained using the Xppaut software package (Ermentrout, 2016). The parameters 896

in the model Eqs.(14) have been described in (Stanoev et al., 2018), where they were calibrated 897

with experimental data: α1 = 0.001, α2 = 0.3, α3 = 0.7, β1 = 11, β2 = 1.1, k1 = 0.5, 898

k2 = 0.5, g1 = 1.9, g2 = 0.1, kon = 0.05, koff = 0.28, ε = 0.01, RGt = 1, N2t = 1; and the 899

diffusion-like terms have been scaled from the values derived in (Orr et al., 2005): D̃Ep = 0.02, 900

˜DRGa = 0.02 (see also Supplementary File 1). 901

The bifurcation analysis is performed with respect to total EGFR concentration at the plasma 902

membrane in order to reveal all possible dynamical regimes of the system. This analysis demon- 903

strates that for the spatially-distributed EGFR network, the homogeneous steady state (HSS, 904

gray solid line, Figure 1 - figure supplement 1C) representing basal non-polarized state losses 905

stability via a symmetry-breaking pitchfork bifurcation (PB), which gives rise to a polarized 906

state represented via an inhomogeneous steady states (IHSS). The polarized state is stabilised 907

via saddle-node bifurcations (SNPB) (Figure 1 - figure supplement 1C, magenta branched 908

lines). There is a coexistence between the HSS and the IHSS before the PB, rendering it 909

sub-critical. The IHSS (Koseska et al., 2013) that gives rise to the stable polarized state is a sin- 910

gle attractor that describes a heterogeneous state with two branches corresponding to orientation 911

of the front-back-polarized state. The IHSS solution is therefore fundamentally distinct from a 912

bistable system where the high and the low phosphorylation states correspond to two different 913

homogeneous steady states. As the IHSS is a single attractor, the high and low phopshory- 914

lation state are interdependent, rendering the PB a unique mechanism for generating robust 915

front-back polarization. 916

We next describe the dynamical basis of the polarization and memory of polarization in 917

details. We assume that the steady state EGFR concentration at the plasma membrane corre- 918

sponds to organization at criticality, before the SNPB. For this receptor concentration, only the 919
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basal unpolarized state (HSS) is stable (Figure 1 - figure supplement 1A, top left, schematic 920

representation). In the presence of a spatially inhomogeneous EGF signal however, the sys- 921

tem undergoes a series of complex transitions through which the topology of the phase space 922

changes. In particular, the inhomogeneity introduced by the localized signal leads to unfolding 923

of the pitchfork bifurcation, such that for the same organization (the given EGFR concentration), 924

only the polarized state (the IHSS) is stable (Figure 1 - figure supplement 1A, top right). This 925

unfolding of the PB therefore enables robust transition from basal to polarized state. When the 926

EGF signal is removed, the system undergoes again topological phase space changes. However, 927

in this transition, the system does not revert back to the unpolarized state immediately, but rather 928

it is transiently maintained in the ”ghost” of the SNPB that is lost in this transition (Figure 1 929

- figure supplement 1A, low). This is manifested as a transient memory of the polarized state, 930

after which the system rapidly reverts to the basal state. 931

The reaction diffusion simulations were performed by assuming PTPN2 at quasi-steady 932

state. The cell boundary was represented with a 1D circular domain of length L = 2πR (where 933

R = 2µm ) which was then divided into 20 equal bins. The diffusion terms were approxi- 934

mated by central difference method, enabling for conversion of the PDE system to a system of 935

ordinary differential equations (ODEs). Stochastic simulations with additive white noise were 936

implemented by adding σ · dWt ( σ = 0.02, dWt is sampled from a normal distribution with 937

mean 0 and variance 0.01) in the equation for [Ep]. The stochastic sdeint Python package was 938

used. Parameters: DEp = DRGa = 0.008 µm2/min. DEp was taken from (Orr et al., 2005) 939

and scaled to correspond to a cell with perimeter L in the simulations. For organization in the 940

homogenous symmetric steady states (the basal and pre-activated states), organization at criti- 941

cality or in the stable polarized state (IHSS), Et ∈ {1.1, 1.85, 1.26, 1.35} respectively, time step 942

was set to 0.01min, other parameters as above. Periodic boundary conditions were used. To 943

mimic the dynamic nature of EGF 647 gradient, a Gaussian function on a periodic window with 944
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varying amplitude and standard deviation was used (shape shown in Figure 1D, top). To repre- 945

sent the state-space trajectory (Figure 1F, bottom), stochastic realization of the one-dimensional 946

projection of the full system (as for the bifurcation analysis) was used. 947

5.17 Physical model of single-cell chemotaxis 948

To describe signal-induced cell shape changes and subsequent cell migration, we combined the 949

dynamical description of the gradient sensing capability of the EGFR network (Eqs.14, Fig- 950

ure 1B) together with a physical model for cellular migration, thereby implicitly modeling the 951

signal-induced cell shape changes (Figure 1C). In order to couple a mechanical model of the cell 952

with the biochemical EGFR signaling model as a means to simulate large cellular deformations, 953

we utilized the Level Set Method (LSM) (Osher and Sethian, 1988) as described in (Yang et al., 954

2008). Briefly, the cell boundary at time t is described on a two-dimensional Cartesian grid by 955

the closed-contour Γ(t) = {x|Ψ(x, t) = 0}, that represent the zero-level set of the potential 956

function Ψ(x, t), taken to have an initial form: 957

Ψ(x, 0) =


−d(x,Γ), if x ∈ S
d(x,Γ), if x /∈ S
0, if x ∈ Γ

(27)

where S identifies the area occupied by the cell and d(x,Γ) is the distance of position x to 958

the curve Γ. Thus, the cell membrane is represented implicitly through the potential function 959

which is defined on the fixed Cartesian grid, eliminating the need to parameterize the boundary, 960

and thereby enabling to handle complex cell boundary geometries. 961

The shape of the cell (Γ(x, t)) evolves according to the Hamilton-Jacobi equation: 962

∂Ψ(x, t)

∂t
+ v(x, t) · ∇Ψ(x, t) = 0 (28)
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The vector v(x, t) is the velocity of the level set moving in the outward direction, thereby in- 963

trinsically describing the cell’s membrane protrusion and retraction velocities that are driven by 964

internally generated mechanical forces (e.g. actin polymerization or myosin-II retraction (Bray, 965

2000)). To determine how these forces translate to membrane velocity, a mechanical model that 966

describes the viscoelastic behavior of the cell represented as a viscoelastic cortex surrounding 967

a viscous core, is implemented. Following (Yang et al., 2008), the cortex connecting the cell 968

membrane and the cytoplasm is represented by a Voigt model (parallel connection of an elastic 969

element kc and a viscous element τc, whereas the cytoplasm is modeled as a purely viscous 970

element, τa, which is placed in series with the Voigt model. 971

Let l(x, t), x ∈ Γ(t) be the viscoelastic state of the cell at time t and at a position x on 972

the membrane, such that |l| represents the length of the numerous parallel unconnected spring- 973

damper systems. The viscoelastic state of the cell then evolves according to: 974

−kc
τc

l(t) +
1

τc
Ptotal(t) = ∇l · v(t) +

∂l(t)

∂t
(29)

where∇ is the gradient operator, the pressure Ptotal(t) = Pprot(t) +Pretr(t) +Parea(t)− 975

Pten(t) is sum of the protrusion, retraction, area conservation, and cortical tension pressures, 976

respectively. The EGFR signaling state ([Ep]) directly determines the protrusion/retraction pres- 977

sure, since high/low signaling activity triggers actin polymerization / myosin-II retraction fol- 978

lowing: 979

Pprot(t) = Kprot(([Ep](t)− < [Ep](t) >)/([Ep]max(t)− < [EP ](t) >))n and 980

Pret(t) = −Kretr((< [Ep] > −[Ep])/(< [EP ] > −[Ep]max))n, where < . > denotes mean at 981

the membrane, Kprot, Kretr - proportionality constants. The cell is assumed to be flat with uni- 982

form thickness, such that the 2D area (A(t)) of the cell is conserved (Parea(t) = Karea(A(0)− 983

A(t))n), Karea - proportionality constant. The pressure generated by the cortical tension there- 984
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fore depends only on the 2D local surface curvature and the 2D equilibrium pressure, rendering 985

the rounding pressure due to cortical tension to be Pten(t) = Kten(κ(Γ) − 1/R)n, with κ(x) 986

being the local membrane curvature, R - initial cell radius, was set to 2 µm, and Kten - propor- 987

tionality constant. The local membrane velocity v(x), x ∈ Γ(t) depends both on the viscoelastic 988

nature of the cell and on the effective pressure profile (Ptotal(t)) and is given by, 989

v =
−kc
τc

l + (
1

τc
+

1

τa
)Ptotal (30)

For the simulations in Figures 1, 4 and Figure 4 - figure supplement 1, 2 first the stochastic 990

PDEs (Eqs.(14)) are solved and the kymographs of the signalling ([Ep]) activity are generated. 991

The viscoelastic state is initialized with zero value on the membrane, l(x, 0) = 0. At each time 992

point, Ptotal is estimated, as well as the local membrane velocity using Eq. (30). This velocity 993

is then used to evolve both the viscoelastic state (Eq. (29)) and the potential function (Eq.(27)). 994

The spatial discretization of these advection equations (Eqs.(28), (29)) was performed us- 995

ing the upwindENO2 scheme, as described in the Level Set Toolbox (Mitchell, 2007) and was 996

integrated with first order forward Euler method. The time step was set to 0.01min and the 997

potential function was solved on a 2D Cartesian grid with spatial discretization of 5 points per 998

µm. All the codes were custom implemented in Python. Parameters: kc = 0.1 nN/µm3, 999

τc = 0.08 nNmin/µm3, τa = 0.1 nNmin/µm3, Kprot = 0.08 nN/µm2, Kretr = 1000

0.05 nN/µm2, Karea = 0.02 nN/µm4, Kten = 0.1 nN/µm. Kten was taken from 1001

the literature, corresponding to an experimentally measured range of cell cortical tension val- 1002

ues (Cartagena-Rivera et al., 2016). The rest of the parameters were selected to match the cell 1003

migration speed during gradient and memory phase, estimated from the experiments (Figure 1004

3A, v = 0.49± 0.173µm/min). 1005
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Figure 1 - figure supplement 1. Features of receptor activity for different organization in
parameter space.

A, Dynamical mechanism of signal-induced polarization and subsequent memory. Top, left:
critical organization before sub-critical pitchfork bifurcation (PB, grey shaded area). SNPB:
saddle-node bifurcation through which PB is stabilized. Top, right: Stimulus induces unfold-
ing of the PB. For the same organization (gray shaded area) the system is now in the stable
polarized state (inhomogeneous steady state, IHSS). Bottom: After stimulus removal and dis-
appearance of the SNPB, the systems is transiently trapped in the ”ghost” of this bifurcation,
causing memory of the polarized state. Stable/unstable steady states (solid/dashed lines): basal
(homogeneous, black) and polarized (inhomogeneous, magenta) receptor activity; stimulus in-
duced transitions between states: arrow lines; circles: schematic representation of cell; color
bar: receptor activity. B, Spatial representation of the EGFR sensing network shown in Figure
1B. Ep - phosphorylated EGFRR, PRG - PTPRG; PN2 - PTPN2, solid lines: causal interactions,
curved lines: diffusion. C, Bifurcation diagram of the EGFR sensing network. Notations and
line description as in A. Et: total EGFR on the plasma membrane. Parameters in Methods. D,
Top: Position of two subsequent dynamic EGF gradients in the numerical simulation. Bottom:
Representative in silico kymograph of EGFR phosphorylation (Ep) for organization of the sys-
tem at criticality. Shape changes depicted in Figure 1H, left. E, Same as in (D), only when the
second gradient (yellow) is from the opposite direction. Corresponding shape changes depicted
in Figure 1H, right. F, Position of dynamic EGF signals(s) in the numerical simulation (top)
and respective kymographs of EGFR activity changes (bottom) for organization of the system in
the stable inhomogeneous state (magenta attractor in (C)). Left: Single dynamic gradient; Mid-
dle: a temporally disrupted gradient represented by two subsequent dynamic gradients from
the same direction; Right: Second gradient (orange) from the opposite direction. G, Same as
in (E), only for organization in the homogeneous steady state representing symmetric basal
EGFR phosphorylation (lower solid black line in C). H, Same as in E, only for organization in
the homogeneous steady state representing uniform high EGFR phosphorylation (upper solid
black line in C). For C-H, parameters in Methods. Vertical green(orange)/red lines: stimulus
presence/absence.
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Figure 2 - figure supplement 1. Quantification of EGFRmCitrine phosphorylation polariza-
tion. A Representative images / overlay of EGFRmCitrine (cyan) and PTBmCherry (magenta)
prior to (0min), during (30min) and after (200min) MCF7-EGFRmCitrine cells were subjected
to 60min EGF647 gradient. Columns: non-activated (blue), transiently polarized (green) and
uniformly pre-activated (yellow). Scale bar: 15µm. B, Distribution of single-cell responses
corresponding to A from N = 7 experiments. C, Average profile of the spatial projection of the
fraction of phosphorylated EGFRmCitrine from single-cell kymographs. For each cell, temporal
average per spatial bin is calculated, and the final spatial profile was estimated as an average
of a moving window of 7 points. Peaks of the single-cell distributions were shifted to π before
averaging. Mean±s.d. from n=20 cells, N=7 experiments is shown. D, Additional exemplary
single-cell kymographs depicting polarized EGFRmCitrine phosphorylation. Data acquisition
and quantification as in Figure 2C. Triangle: gradient duration. E, Same as in D, only for
non-activated (basal, left) and uniformly pre-acivated (right) EGFRmCitrine phosphorylation.
Triangle: gradient duration. F, Quantification of direction of polarization of EGFRmCitrine

phosphorylation. Top: exemplary kymographs of EGFRp (left) and EGF647 outside the cells
(right) during the gradient stimulation (60min). Data corresponds to Figure 2C. Middle: respec-
tive spatial projection of EGFRp and EGF647. Average using a moving window of 7 bins is
shown. Bottom: Schematic representation of identifying direction of polarization. Left: angle
(α) between EGFRp and EGF647 is estimated as the angle between the maxima of the spatial
projections (shown in middle plots). Right: distribution of α calculate from n=20 cells, N=7
experiments. G, Temporal profiles of the estimated fraction of polarized area for single cells.
Green shaded area: EGF647 gradient duration. The mean±s.d. shown in Figure 2D.
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Figure 2 - figure supplement 2. Memory in polarized EGFRp results from a dynamical
”ghost”. A, Exemplary single-cell kymograph depicting phosphorylated EGFRmCitrine for data
acquired at 1min intervals in live MCF7-EGFRmCitrine cell subjected for 1h to EGF647 gradient,
and 3h duringr gradient wash-out with 1 µM Lapatinib. B, Average temporal profiles of plasma
membrane EGFRmCitrine phosphorylation of live MCF7-EGFRmCitrine cells subjected for 1h to
EGF647 gradient, and 3h during gradient was-out with 1 µM Lapatinib. Related to Figure 2G.
Mean±s.d. from n=9, N=2 is shown. Green shaded area: EGF647 gradient. C, In silico temporal
profiles of Ep (black) and E − Ep (gray), when the kinase activity of the receptor is inhibited
after gradient removal by decreasing the autocatalytic rate constant (α2 = 0.25). Green shaded
area: EGF gradient presence. D, State-space trajectory corresponding to the example in C,
with denoted trapping state-space areas (colored). Thick/thin line: signal presence/absence.
See also Figure 2 - video 3. E, Exemplary profiles of EGFRp (black) and corresponding fit
with an inverse sigmoid function after gradient removal (magenta) of MCF7-EGFRmCitirine cell
subjected for 1h to an EGF647 gradient, and 3h wash-out with 1 µM Lapatinib. F, Same as in
E, but for cells without Lapatinib treatment. G, Left: Hill coefficient estimated from single-cell
fits with inverse sigmoid function as in E, F. Right: Corresponding half-life estimates. n=23,
N=5, (without Lapatinib) and n=12 , N=5 (with Lapatinib). Error bars: median±95%C.I H,
Exemplary quantification of morphological changes using directed cell protrusion area for the
cell shown in Figure 2C. Estimated memory duration: 43min (blue arrow).
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Figure 3 - figure supplement 1. Characterization of MCF7-EGFRmCitrine and MCF10A
single-cell migration. A, Identification of optimal EGF647 dose range for single-cell gradi-
ent migration assay for MCF7-EGFRmCitrine (top) and MCF10A (bottom). Percentage of
cell having motility greater than a displacement threshold ((Number of cell tracks with track
length greater than threshold/Total number of cells)*100) is shown. B, Top: Quantifica-
tion of 5h dynamic EGF647 gradient at distinct time-points. Bottom: Corresponding quan-
tification of the temporal evolution of the gradient slope. Percentage of gradient steepness:
((EGF 647

(0) − EGF 647
(L) )/EGF 647

(0) ) ∗ 100 where L is the length across the chamber. Mean±s.d.
from N=4 is shown. C, Divergence plots depicting MCF7-EGFRmCitrine single-cell trajecto-
ries quantified, left: 5h during (green) and for 9h after (red) dynamic EGF647 gradient duration
(n=26, N=7); middle: 14h of 0ng/ml EGF647 (subset of n=207 from n=426 is shown, N=2);
and right: 14h of uniform 20ng/ml EGF647 stimulation (subset of n=200 from n=456 is shown,
N=2). D, Same as in C, only for MCF10A cells. Left: n=23, N=5; middle: n=245, N=3; right:
n=297, N=3. Related to Figures 3A-C. Black dots: end of tracks.
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Figure 3 - figure supplement 2. Characterization of single cell migration patterns. A,
Scheme of single-cell relative displacement angle estimation (cos θ). B, Average cos θ from
single MCF10A cell trajectories (mean±sd), estimated over a 2min interval upon, left: 0ng/ml
EGF647 (n=245, N=3); right: 20ng/ml uniform EGF647 stimulation (n=297, N=3). Related to
Figure 3A-C. C, Kernel density estimates (KDE) of the distributions in (B) and Figure 3C top, in
continuous EGF647 absence (gray), during 5h dynamic EGF647 gradient (green), after gradient
wash-out: t ∈ [300min, 350min] (blue) and t ∈ [350min, 840min] (red). p-values: ∗ ∗ ∗,
p≤0.001, ns: not significant, KS-test. D, Synthetic single-cell trajectories (Eq. (7), Methods).
Left: Persistent biased random walk PB(t)RW; middle: random walk (RW); right: Persistent
random walk (PRW). Parameters: for PB(t)RW, τ = 38.143, b(t) = 0.134, D = 2.207 for
t ∈ [0min, 350min] (green,blue), τ = 11.105, b(t) = 0, D = 0.425 for t ∈ [350min, 840min]
(red); for RW, τ = 11.105, b(t) = 0, D = 0.425; for PRW, τ = 38.143 and D = 2.207. E,
Same as in B., only from the synthetic trajectories. Left: PB(t)RW with τ = 38.143,D = 2.207,
b(t) = 0.134 for t ∈ [0min, 300min] (green shading), τ = 11.105, D = 0.425, b(t) = 0 for
t ∈ [300min, 840min], middle: RW; right: PRW. F, Same as in C, only from the synthetic
trajectories. p-values: ∗ ∗ ∗, p≤0.001, ns: not significant, KS-test. G, Synthetic single cell
trajectories generated when PBRW is considered only in the time frame during gradient duration
to mimic the experimental data in Figure 3G. Parameters as in (E, left). H, Same as in C, only
for MCF10A cells stimulated for 5h with EGF647 gradient and 9h after wash-out with 3 µM
Lapatinib. Related to Figure 3I. p-values: ∗ ∗ ∗, p≤0.001, ns: not significant, KS-test.
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Figure 3 - figure supplement 3. Quantifying duration of memory in directional migration
from single-cell cos θ profiles. A, Duration of memory in directional migration of MCF10A
cells treated with a 5h dynamic EGF647 gradient (n=23, N=5; single cell tracks in Figure 3 -
figure supplement 1D), and MCF10A cells treated with a 5h dynamic EGF647 gradient, fol-
lowed by 9h 3µM Lapatinib during gradient wash-out (n=12, N=5, single cell tracks in Figure
3G). p-values: ∗ ∗ ∗ p≤0.001, two-sided Welch’s t-test. Error bars: median±95%C.I. Values
estimated from single-cell cos θ plots. B, Exemplary cos θ plots estimated from MCF10A cell
motility trajectories. Cells were treated with a 5h dynamic EGF647 gradient, followed by 9h
3µM Lapatinib during gradient wash-out. Green shaded area denotes EGF647 gradient interval,
blue shaded area - time interval of identified memory in directional migration (Methods). C,
Same as in B, only without Lapatinib treatment. D, Divergence plots of the cells shown in B.
Green part of the tracks denotes migration during gradient, blue - migration during identified
memory phase after gradient removal, brown - random migration after gradient removal. Green
shaded triangle: gradient direction. Black dots: end of tracks. E, Divergence plots of the cells
in C. Color coding as in D. Red: random migration after gradient wash-out.
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Figure 4 - figure supplement 1. Single-cell navigation in changing growth factor fields.
A, In silico obtained Ep kymograph corresponding to Figure 4B. Parameters in Methods. B,
In silico cellular response to a sequence of gradients as depicted on top, showing changes in
EGFR activity, cellular morphology and respective motility trajectory over time. Trajectory
color coding corresponding to scheme on top, cell contour color coding with respective Ep
values as in Figure 1E. Cell size is magnified for better visibility. See also Figure 4 - video
2. C, Ep kymograph obtained for organization in the stable polarized state, when a cell is
subjected to the gradient filed in Figure 4A. D, Corresponding changes in cellular morphology
and respective motility trajectory over time. Trajectory and Ep color coding as in B. Cell size is
magnified for better visibility. See also Figure 4 - video 3. E, Quantification of a 15h dynamic
fluorescin at distinct time-points. Mean±s.d. from N=3 is shown. F, Divergence plots depicting
MCF10A single-cell trajectories quantified during migration in dynamic EGF647 gradient filed
shown in (E). n=12, N=5. Trajectory color-coding corresponding to the scheme in Figure 4A.
G, Zoomed exemplary single cell trajectories from F.
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Figure 4 - figure supplement 2. Resolving simultaneous signals with opposed localisation
is optimal at criticality. A, Top: Position of two simultaneous EGF gradients with different
amplitudes in the numerical simulation. Bottom: Representative in silico kymograph of EGFR
phosphorylation (Ep) for organization of the system at criticality. B, Corresponding changes in
cellular morphology and motility trajectory over time. Trajectory and Ep color coding as in A.
Cell size is magnified for better visibility. See also Figure 4 - video 5. C, Same as in A, only for
organization in the stable polarized state. D, Same as in B, only for organization in the stable
polarized state (corresponding to C). See also Figure 4 - video 6.

78



Source Data Files

Figure 2-source data 1: Source data for Figure 2.

Figure 2-figure supplement 1-source data 1: Source data for Figure 2-figure supplement 1.

Figure 2-figure supplement 2-source data 1: Source data for Figure 2-figure supplement 2.

Figure 3-source data 1: Source data for Figure 3.

Figure 3-figure supplement 1-source data 1: Source data for Figure 3-figure supplement 1.

Figure 3-figure supplement 2-source data 1: Source data for Figure 3-figure supplement 2.

Figure 3-figure supplement 3-source data 1: Source data for Figure 3-figure supplement 3.

Figure 4-source data 1: Source data for Figure 4.

Figure 4-figure supplement 1-source data 1: Source data for Figure 4-figure supplement 1.
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Supplementary videos

Figure 1 - video 1. Corresponding to Figure 1F. In silico temporal evolution of the state-

space trajectory of the EGFR sensing system in Ep - PRG - PN2 space.

Figure 2 - video 1: Corresponding to Figure 2F. State-space trajectory reconstructed from

experimentally obtained temporal EGFRmCitrine phosphorylation profile (1h during and 3h af-

ter EGF647 gradient duration) of a representative MCF7-EGFRmCitrine cell. 140min from the

reconstructed state-space trajectory are shown.

Figure 2 - video 2: Corresponding to Figure 2G. State-space trajectory reconstructed from

experimentally obtained temporal EGFRmCitrine phosphorylation profile of a representative

MCF7-EGFRmCitrine cell. Cells were stimulated for 1h with EGF647 gradient, and 3h with

1µM Lapatinib during gradient was-out. 140min from the reconstructed state-space trajectory

are shown.

Figure 2 - video 3: Corresponding to Figure 2 - figure supplement 2D. In silico temporal

evolution of the state-space trajectory of the EGFR sensing system in Ep - PRG - PN2 space,

mimicking administration of Lapatinib after gradient removal.

Figure 3 - video 1: Corresponding to Figure 3A. Migration trajectory of a representative

MCF10A cell subjected for 5h to dynamic EGF647 gradient (green) and 9h after gradient wash-

out (red).

Figure 3 - video 2: Corresponding to Figure 3G. Migration trajectory of a representative

MCF10A cell subjected for 5h to dynamic EGF647 gradient (green) and 9h after gradient wash-

out with 3µM Lapatinib (orange).

Figure 4 - video 1. Corresponding to Figure 4B. In silico evolution of a cellular response

to a dynamic chemical field for organization at criticality. EGFR phosphorylation (blue-to-

yellow/low-to-high), cell shape and migration trajectory are shown during (green/orange) and
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after (red) EGF gradient presence, as obtained from a physical model of single-cell chemotaxis.

Figure 4 - video 2. Corresponding to Figure 4 - figure supplement 1B. In silico evolution of

a cellular response to a dynamic chemical field for organization at criticality. Dynamic gradient

as shown in Figure 4 - figure supplement 1B, top. Timing of subsequent signals after memory

phase. Notations as in Figure 4 - video 1.

Figure 4 - video 3. Corresponding to Figure 4 - figure supplement 1C, D. In silico evolution

of a cellular response to a dynamic chemical field for organization in the stable cell polarization

state (inhomogenous steady state regime). Notations as in Figure 4 - video 1.

Figure 4 - video 4: Corresponding to Figure 4C. Migration trajectory of a representative

MCF10A cell subjected to a spatial-temporal EGF647 gradient field described in Figure 4A.

Figure 4 - video 5. Corresponding to Figure 4 - figure supplement 2A, B. In silico evo-

lution of a cellular response to simultaneous signals with different amplitudes from opposite

directions, for organization at criticality. Notations as in Figure 4 - video 1.

Figure 4 - video 6. Corresponding to Figure 4 - figure supplement 2C, D. In silico evo-

lution of a cellular response to simultaneous signals with different amplitudes from opposite

directions, for organization in the stable polarization state (inhomogenous steady state regime).

Notations as in Figure 4 - video 1.
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Supplementary Files

Supplementary File 1: Model parameters. Details included also in Methods.
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