

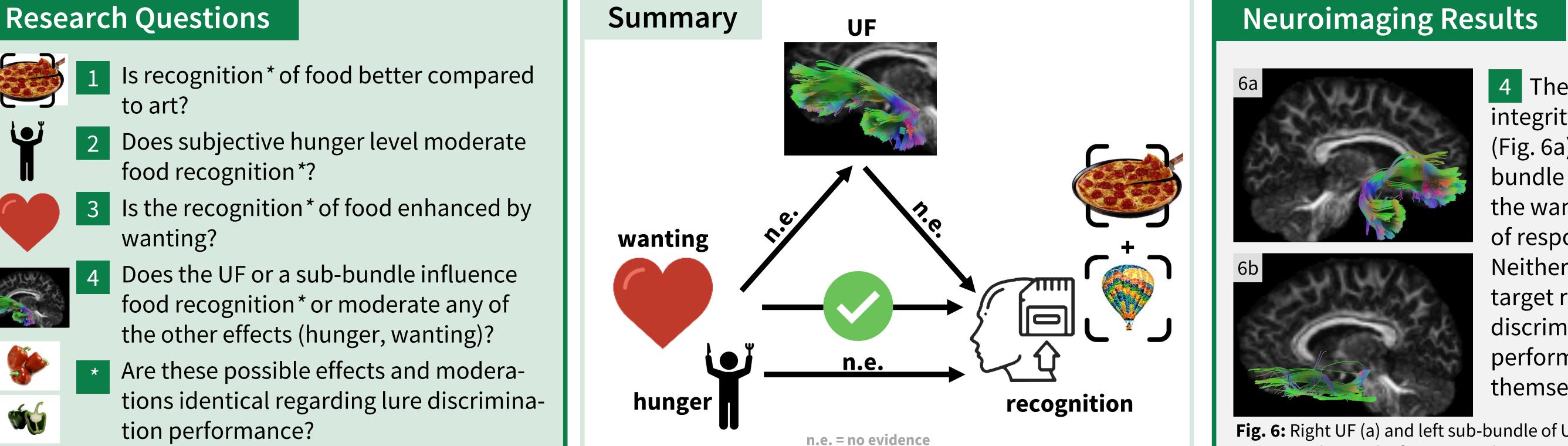
Do wanting, hunger and brain microstructure predict recognition performance and lure discrimination of food items?

- Results of a pre-registered analysis

Ronja Thieleking¹, Evelyn Medawar¹, Arno Villringer¹, A. Veronica Witte¹

¹ Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

@AgingObesity



Conclusions

- Background
- Unhealthy food decisions: major contributor to global obesity pandemic¹
- Food decisions influenced by wanting, hunger² and memory processes
- Implicated brain regions:
 - hippocampus (HC): recognition memory³ and lure discrimination⁴
 - amygdala (Amy)⁵ and entorhinal cortex (EC)⁶ input to HC: emotional value and hunger
- Food more relevant in every-day-life than art 1
- Previously detected effect of hunger on food memory not reproducible 2 → possibly due to missing sated state as contrast condition
- (Food) recognition enhanced by prior attribution of wanting to single items 3 but wanting effect possibly averaged out during categorisation
- Microstructure of UF neither moderator of wanting enhancement nor 4 influencing memory \rightarrow activity of OFC and HC, Amy and EC possibly more crucial for memory than structure of connection

- orbitofrontal cortex (OFC): reward processing⁷
- uncinate fasciculus (UF): fiber bundle connecting OFC and Amy & EC⁸
- → Possible top-down modulatory control of food memory by UF
- New insights in vicious cycle: food wanting increases food recognition \star \rightarrow wanting and memory influence unhealthy food decisions \rightarrow approaches for neurobehavioural weight-loss therapies

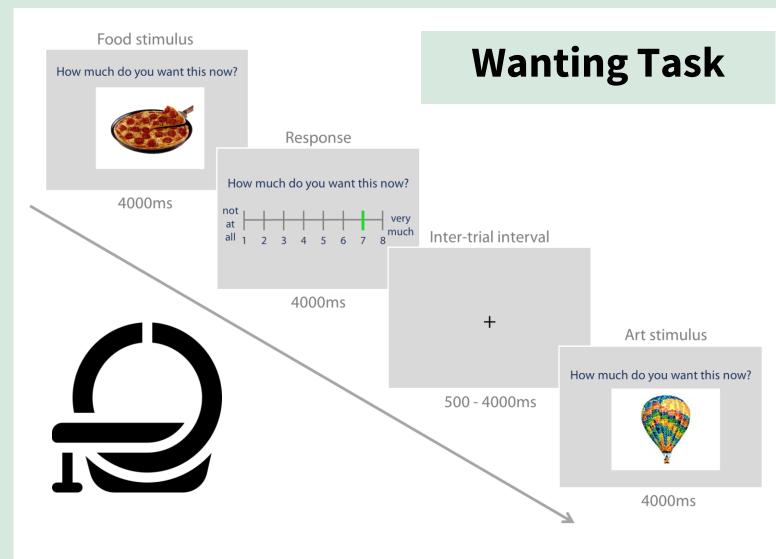

4 The microstructural integrity neither of the UF (Fig. 6a) nor of a subbundle (Fig. 6b) moderates the wanting enhancement of response accuracy. Neither do they influence target recognition or lure discrimination performance by themselves.

Fig. 6: Right UF (a) and left sub-bundle of UF (b). Examplary tractography results from two subjects.

Methods

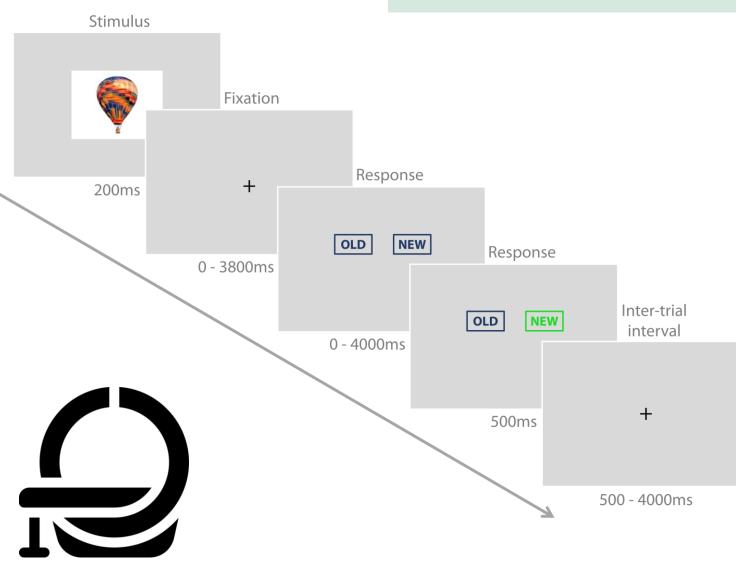
Study population: n = 60 (20f)

- 18-45 years of age
 - body-mass-index: 25-30 kg/m²
 - omnivorous diet
 - females: on hormonal contraception

Stimuli: 80 food and 80 art

Outcome measures:

wanting rating on 8-point-Lickert-scale


restrictive eating (vegan, vegetarian,

neurological or psychiatric disease

allergies, eating disorder, ...)

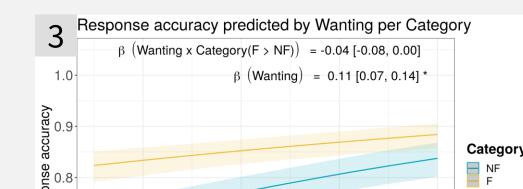
pre- & post-task hunger rating

Memory Task

Stimuli: 80 food and 80 art incl. 30 targets, 30 lures and 20 novels per stimulus type

Outcome measures:

d' = z (hit rate) – z (false alarm rate) = *z* (*p*("old" | *target*)) – *z* (*p*("old" | *lure/novel*))


Behavioural Results

Ų

1 Food is better recognized and discriminated than art (**Fig. 1**). Subjective hunger level 2 does not affect food memory performance.

Wanting categories do 3 not predict recognition or lure discrimination performance (**Fig. 2**). However, single item wanting enhances response accuracy (Fig. 3). The enhancement is strongest in old images, i.e. during memory encoding (**Fig. 4**). Odds ratios (exponentiated β) reveal the evident wanting effect and the memory performance differences between image categories and old, similar and new images (**Fig. 5**).

 β (Category (F > NF)) = 0.73 [0.20, 1.22] *

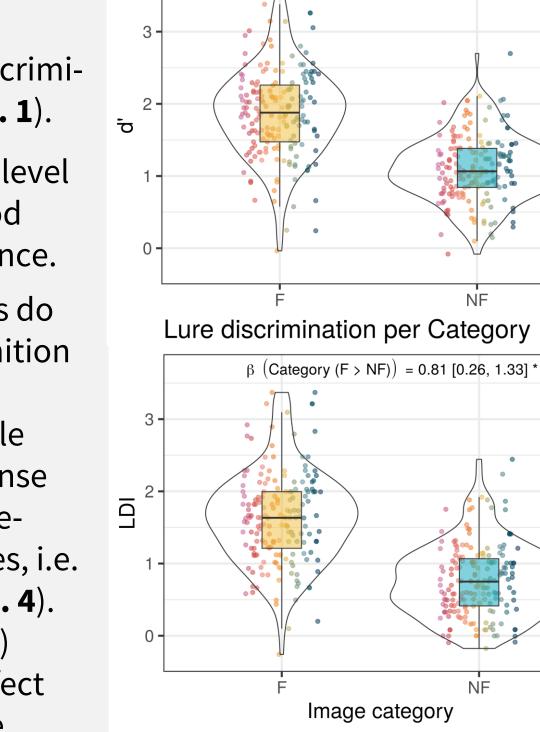
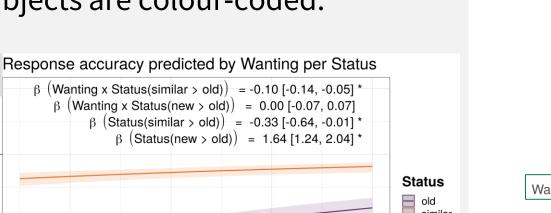
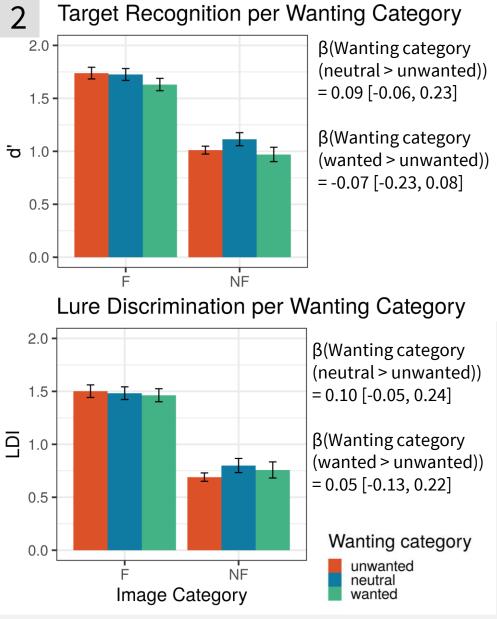
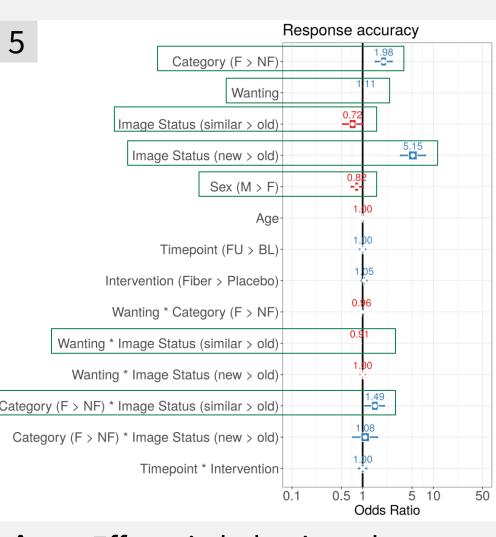
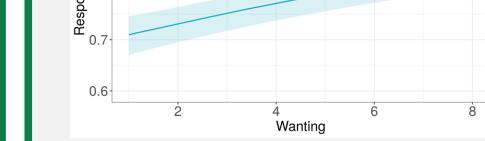



Fig. 1: Visually and statistically higher d' and LDI for food than art images. CI of β does not include 0. Subjects are colour-coded.


Fig. 2: No evident differences between wanting categories regarding memory performance in any image category.

- LDI = z (correct rejection of lures rate) – z (miss rate)
- Response accuracy = hit rate + correct rejection rate
- pre- & post-task hunger rating

Diffusion-weighted imaging $(3T, (1.7mm)^3)$

- model-free fiber reconstruction with generalized q-sampling (GQI)⁹
- tractography of entire UF:
 - seed region: UF from JHU atlas
 - end region: OFC and PFC (Brodmann areas 10, 11 & 47)¹⁰
- tractography of sub-bundle of UF:
- seed region: OFC
- end regions: amygdala or entorhinal cortex

Statistical Analysis:

Category | Set))

Fig. 3: Food and art response accuracy is evidently predicted by wanting.

Bayesian inference testing with

with fixed and random effects, e.g.

Bayesian Multilevel Modeling using Stan

d' ~ Image Category + Wanting Category + Image

Category * Wanting Category + Age + Sex +

*Intervention + Timepoint + Intervention * Timepoint*

+ (1 + (Image Category + Wanting Category + Image

Category * Wanting Category | Subject) + (Image

Fig. 4: Influence of wanting on res-

ponse accuracy is strongest during

memory encoding (in old images).

Fig. 5: Effects in behavioural response accuracy full model.

obesity epidemic & new insights for cognitive behavioural therapy

<u>References</u>	Gateway for Amygdala Influences on Memory Consolidation.
1. Harding , I. H. et al. Brain substrates of unhealthy versus	Neuroscience (2022).
healthy food choices: Influence of homeostatic status and	7. Lebreton, M. et al. An Automatic Valuation System in the
body mass index. Int. J. Obes. 42, 448–454 (2018).	Human Brain: Evidence from Functional Neuroimaging.
2. Morris, J. S. & Dolan, R. J. Involvement of Human Amygdala	00
and Orbitofrontal Cortex in Hunger-Enhanced Memory for	8. Briggs, R. G. et al. A Connectomic Atlas of the Human
Food Stimuli. J. Neurosci. 21, 5304–5310 (2001).	Cerebrum-Chapter 15: Tractographic Description of the
3. Wixted, J. T. & Squire, L. R. The role of the human	Uncinate Fasciculus. Oper. Neurosurg. (Hagerstown, Md.) 15,
hippocampus in familiarity-based and recollection-based	S450–S455 (2018).
recognition memory. Behav. Brain Res. 215, 197–208 (2010).). 9. Yeh , FC. et al. Generalized q-Sampling Imaging. IEEE Trans.
4. Yassa, M. A. & Stark, C. E. L. Pattern separation in the	Med. Imaging 29, 1626–1635 (2010).
hippocampus. Trends Neurosci. 34, 515–525 (2011).	10. Granger, S. J. et al. Integrity of the uncinate fasciculus is
5. McGaugh, J. L. The amygdala modulates the consolidation	associated with emotional pattern separation-related fMRI
of memories of emotionally arousing experiences. Annu.	signals in the hippocampal dentate and CA3. Neurobiol.
Rev. Neurosci. 27, 1–28 (2004).	Learn. Mem. 177, 107359 (2021).
6. Roesler, R. & McGaugh, J. L. The Entorhinal Cortex as a	

Relevance

© This poster has been designed using resources from Flaticon.com