Distinct neural circuits for tracking prosodic and statistical regularities in speech?

¹Max Planck Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. ²Language and Computation in Neural Systems Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands. ³Language and Computation in Neural Systems Group, Donders Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands. ⁴Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands. ⁵Research Group Neural interactions and dynamics, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. ⁶Clinic for Phoniatrics and Pedaudiology University Hospital Münster, Germany. titone@cbs.mpg.de

Introduction	Expos
Statistical learning	1
 Word learning relies on statistical regularities in speech 	
 These regularities are shaped by transitional probabilities (TPs) between syllables 	
 The extraction of TPs enables chunking and learning 	S
- Prosodic marking at chunk boundaries facilitates learning	
RQ : <u>Do brain oscillations support statistical learning?</u>	
Oscillations in language	
 Neural oscillations = rhythmic cycles of neural activity 	+
 Neural oscillations support language processing by phase alignment to: 1. Exogenous acoustic units in speech (syllables) 2. Higher order acoustic marking (prosody) 	
3. Endogenous abstract cues (TP patterns)	Testi
RQ : <u>Are TPs and prosodic cues concurrently tracked</u> by distinct neural circuits for learning and chunking?	3
RQ : <u>Does statistical learning of artificial words rely on</u> <u>top-down modulations from high-order cortical areas?</u>	
Methods	
Stimouli	(a) 100
 Controlled for frequency of use of syllables (L1: German) Controlled for overlap and periodicity of phonetic features 	(b) <u>100</u>
Data acquisition & analyses	(c) 100
Magnetoencephalography:Behavioral performance:Neural frequency tagging (NFT)Explicit learning:Inter-trial phase coherence- Word RecognitionEvent related fields (ERFs)- Confidence Rating	

Lorenzo Titone¹, Sanne ten Oever^{2,3,4}, Andrea E. Martin^{2,3}, Vadim V. Nikulin⁵, Lars Meyer^{1,6}

ng Phase

Expected Results

- M400 effect:
- ➤ M400 amplitude ↑ in response to non-words vs. part-words vs. words in TP-structured streams
- Tracking of TPs correlates with this effect

- Learning effect:
- Preference for words and partwords vs. non-words
- > Behavioral performance in both tasks signals explicit learning
- Learning should correlate with the NFT and ERF effects

MAX PLANCK INSTITUTE

