Differential encoding of melodic expectations across brain frequency bands

Introduction

Oscillations and prediction

- Neural oscillations synchronize with temporal structure of sensory events, aiding tracking and **prediction** [1,2]
- Predictive mechanisms have been associated with neural activity in specific frequency bands (beta-gamma interplay [3]). In particular, beta and delta bands have been related to timing predictions [2,4].
- **Prediction** and **prediction error** relate to informationtheoretical metrics (entropy and surprisal, respectively). In music, these values are calculated using computational such as Information Dynamics of Music (**IDyOM**) [5].
- EEG studies on music perception utilized IDyOM metrics and multivariate temporal response functions (mTRFs) and revealed that melodic expectations are encoded differently from acoustic features [6,7].
- mTRFs (Forward model): Set of weights obtained from a regularized linear regression of the EEG signal on several stimulus features. [8]

Multivariate Temporal Response Function (mTRFs)

- The current project aimed at showing a different neural encoding of temporal and content predictions across EEG frequency bands, during naturalistic music listening. In particular, we focused on the role of **delta-beta** dynamics in timing predictons [4], and **beta-gamma** for content predictions and prediction error [3].
- We expected entropy regressors related to note timing to increase reconstruction accuracy in the delta and beta bands and to show **TRF peaks** in pre-stimulus latencies, reflecting their role in timing prediction.
- After the stimulus onset, we expected surprisal regressors linked to prediction errors to be encoded in the beta and gamma bands [2,4,9,10].

Stimulus representation

∑ ____

> We found a **unique contribution of entropy** (Ho and Hp) in all bands, but none for surprisal (So and Sp).

Juan-Daniel Galeano-Otálvaro^{1,4,5}, Jordi Martorell^{1,2}, Lars Meyer^{1,3}, Lorenzo Titone¹

¹Max Planck Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. ²Basque Center on Cognition, Brain and Language (BCBL), Donostia-San Sebastián ³Clinic for Phoniatrics and Pedaudiology, University Hospital Münster, Germany. ⁴Techinische Universität München, Munich, Germany. ⁵Elitenetzwerk Bayern, Germany. daniel.galeano-otalvaro@tum.de

Methods

Paradigm and Dataset

Dataset from Di Liberto et al. (2020). 20 participants (10 musicians) 30 trials (ca. 150 s each) of listening to monophonic pieces by J.S. Bach

64 electrodes EEG recording

Stimulus features from Di Liberto et al. (2020) extracted using IdyOM [5].

- Acoustic variables (A): **Envelope** + 1st order derivative Melodic expectations (M):
- Entropy (H):
- Ho: Note onset time entropy
- Hp: Pitch entropy
- Surprisal (S):
- So: Note onset time surprisal
- Sp: Pitch Surprisal

EEG Preprocessing

• Split the EEG in frequency bands: delta (1-4 Hz); theta (4-8 Hz); alpha (8-12 Hz); beta (12-30 Hz); gamma (30-48 Hz).

TRF calculation

- Nested cross validation
- EEG reconstruction accuracy
- Pearson's correlation between the real and the reconstructed EEG

Analysis

- Compute **enhancement** in EEG reconstruction accuracy across different TRF models (after adding / removing one feature) [6,8].
- Get peaks of TRFs weights [11]
- Use linear mixed effects models to test the effects of feature type, musical expertise and frequency band on the enhancement.

Results

Reconstruction accuracy

Unique contribution of each feature to the full AM model $(r_{AM} - r_{AM'})$ where *AM*' is missing one feature of interest.

MAX PLANCK INSTITUTE

Discussion

Summary

- Full (AM) TRF model showed reconstruction accuracy enhancement in all frequency bands except for gamma. This goes beyond what was previously reported for delta and theta [6].
- Unique contribution of entropy regressors in EEG reconstruction accuracy suggests specific encoding of timing and content **prediction** in different frequency bands [2,4,9].
- No frequency band showed unique contributions of the surprisal values. However, our hypothesis expected effects mostly in the gamma band [2,10].
- Pre-stimulus contributions of Ho in delta-beta suggest their possible joint involvement in predictive timing [2,4]
- Significant peaks for both entropy regressors in the deltaband around 400 ms analogous to N400 components [12]
- Significant interaction (Ime models) between frequency band and musical expertise (beta in musicians and alpha in non-musicians). This suggests that musical training has an effect in the brain processing of time predictions [13].

Limitations

- Difficulty to study Gamma-frequency in EEG
- Lack of a factorial design in the paradigm
- No source identification
- Phase analysis needed to assess cross-frequency coupling.

Conclusions

- Our findings suggest an important role of brain activity in the delta and beta frequency ranges in timing prediction, consistent with previous literature on the topic [2,4].
- Future research should focus on the interplay between different brain rhythms in scenarios of varying levels of entropy and surprisal.

Acknowledgments: Giovanni M. Di Liberto for data sharing and project discussion

References

[1]	Meyer (2018). The Europ
[2]	Arnal and Giraud (2012)
[3]	Bastos et al. (2012). Neu
[4]	Arnal et al. (2015). Front
[5]	Pearce (2018). Annals o
[6]	Di Liberto et al. (2020). e
[7]	Kern et al. (2022). eLife
[8]	Crosse et al., (2016). Fro
[9]	Fujioka et al. (2012). Jou
[10] Wang et al. (2012. From
[11] Gillis et al. (2021). The
[12] Miranda and Ullman (2
[13] Hansen and Pearce (20