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Abstract

A two-step integrated metal-organic framework (MOF) and pressure/vacuum swing

adsorption (P/VSA) process design has been recently established for gas separation.

In the first step, selected MOF descriptors and process operating conditions are

simultaneously optimized to maximize the process performance. Based on the

obtained results, the second step (i.e., MOF matching) is addressed and exemplified

by propene/propane separation in this work. Computational MOF synthesis

and screening are explicitly carried out to find new advanced material candidates

for enhancing the separation process efficiency. First, model-based property-

performance relationships are developed for fast MOF screening. Then, MOF build-

ing blocks are extracted from 471 MOFs contained in the Computation-Ready Exper-

imental (CoRE) MOF database. With these building blocks, 45,472 hypothetical

MOFs are created. After model-based and molecular simulation-based screening, six

candidates are left and sent to P/VSA process optimization. Finally, three candidates

are found to meet the predefined separation specifications and one candidate shows

a better process performance than the best out of the 471 CoRE MOFs.
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1 | INTRODUCTION

Pressure/vacuum swing adsorption (P/VSA) has been widely used in

the chemical and energy industries for gas separation. In P/VSA pro-

cesses, gases are separated based on their different affinities on solid

adsorbents at different pressures. So far, extensive research works

have been done on adsorbent selection and P/VSA process optimiza-

tion. For adsorbent selection, various computational screening

methods have been developed to identify suitable candidates such as

metal-organic frameworks (MOFs) and zeolites for different

applications.1–5 In general, a set of adsorbents are collected and their

adsorption and diffusion properties are calculated using molecular

simulations. Then, simple performance metrics are calculated to iden-

tify promising candidates. On the other hand, P/VSA processes are

modeled with complicated partial differential equations and a number

of model reduction and substitution techniques as well as advanced

algorithms have been proposed for efficiently optimizing P/VSA

processes.6–8 Despite many progress in these two areas, it is worth

noting that to select adsorbents and optimize P/VSA processes sepa-

rately is insufficient to obtain a truly optimal P/VSA process. It has

been widely recognized that P/VSA process design is a multi-scale

design problem that incorporates inter-linked adsorbent material,

gas–solid phase, and P/VSA process levels.9–11 Variations of adsor-

bent materials and process operating conditions can simultaneously
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affect the adsorption behavior in the gas–solid phase and hence

jointly determine the final process performance. Therefore, integrated

adsorbent and P/VSA process design is highly desired to find high-

performance adsorbents that serve the process best.

Typically, an integrated material and process design task can be

formulated as an optimization problem. Different mathematical

models are used to represent different levels, which enables the opti-

mization of design variables at different levels simultaneously. For

adsorption processes, Khurana and Farooq12,13 simultaneously opti-

mized predefined isotherm characteristics and VSA process operating

conditions for carbon capture. Optimal isotherm shapes achieving the

best capture performance are obtained to serve as targets for adsor-

bent design. However, it is still unknown whether a specific adsorbent

can match the isotherm targets. There is always a danger that the iso-

therm targets cannot be satisfied by any adsorbent materials in the

world. Considering this issue, adsorbent material design should be

explicitly studied to completely solve the multi-scale P/VSA design

problem. In this way, the chemistry and structure of feasible adsor-

bent materials whose isotherms are close to the desired targets can

be identified. Currently, most adsorbents have been synthesized using

the experimental trial-and-error approach that is time-consuming and

inefficient. Importantly, it is difficult to find novel adsorbents with

desired isotherm properties. Alternatively, computational synthesis

approaches can explore a large design space and efficiently generate

new promising candidates to guide material scientists for experimental

validation.14,15

So far, much progress has been achieved on computational syn-

thesis and screening of adsorbents (e.g., MOFs and covalent-organic

frameworks) for gas storage16–19 and separation.20–23 In general, a

large number of hypothetical MOFs are first created using different

tools and their adsorption isotherms for target species are predicted

via molecular simulations or tailor-made models. Then, promising can-

didates are ranked with respect to desired storage (e.g., large delivery

capacity) or separation (e.g., large adsorption capacity and selectivity)

performance metrics at prespecified conditions (e.g., temperature,

pressure, and gas compositions). For instance, Lee et al.18 used

pormake to construct hypothetical MOFs. Machine learning models

are trained for isotherms prediction and the MOFs with highest meth-

ane delivery capacity were identified by evolutionary-based optimiza-

tion. In addition, Yao et al.20 developed a new machine learning-based

platform to design MOFs for carbon capture. As represented by a vec-

tor of building block symbols, new MOFs are computationally gener-

ated and screened based on their CO2 adsorption capacity and

selectivity that are calculated in fixed adsorption conditions. It is

noted that for gas storage, the adsorption and desorption conditions

are usually predefined and widely agreed. In this case, the use of sim-

ple performance metrics for adsorbent screening can rank potential

candidates reasonably. However, for gas separation, the process con-

figuration and operating conditions can vary significantly. Due to this

reason, simple performance metrics can neither tell whether specific

separation requirements are achieved with an adsorbent nor rank the

adsorbents correctly in terms of process performance.24–26 To fill this

gap, the insights drawn from phase and process levels should be

inserted into the procedures of adsorbent synthesis and screening.

Combined with process optimization and evaluation, optimal MOFs

with a real best process performance can be successfully identified.

Following the above strategy, the authors' group recently pro-

posed a two-step integrated MOF and P/VSA process design method-

ology (see Figure 1) to solve the multi-scale design problem. In the

first article of this series, Step 1 (i.e., descriptor optimization) has been

elaborated and published.11 Only optimal MOF descriptors have been

obtained, instead of any hypothesized MOFs with known topology

and chemistry. As a continuous effort, this work presents the subse-

quent step: MOF matching. The aim is to computationally synthesize

and screen hypothetical MOFs for enhancing equilibrium-based prop-

ene/propane (PE/PA) separation. The design guidelines and data-

driven models obtained from Step 1 are well adopted in the present

work for designing new MOFs that can eventually result in better sep-

aration performance using optimized P/VSA processes. The rest of

this article is organized as follows. First, a brief overview of Step 1 is

provided. Then, detailed property-performance relationships are

developed for fast preliminary MOF screening. Finally, MOF building

blocks are specified to perform in silico MOF design and the optimal

hypothetical MOF is discussed.

F IGURE 1 General methodology for integrated metal-organic framework and pressure/vacuum swing adsorption process design
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2 | REVIEW OF STEP 1: DESCRIPTOR
OPTIMIZATION

The workflow of Step 1 is shown in the right side of Figure 1. MOFs

are first represented as a set of 5009 chemical and 14 geometric

descriptors. Four hundred seventy one MOFs contained in the

Computation-Ready Experimental (CoRE) MOF database with consid-

erable diversity are selected and their descriptors are calculated

accordingly. In addition, the single-component adsorption isotherms

of PE and PA on these 471 MOFs at 300 K are collected.27 Based on

the calculated descriptors and collected isotherm data, 19 most influ-

ential descriptors are selected and treated as design variables rep-

resenting MOF variations, including

• 9 geometric descriptors: bulk density, pore limiting diameter, larg-

est cavity diameter, volumetric surface area, void fraction, unit

length a, unit length b, unit length c, volume per unit cell

• 10 chemical descriptors: number of atoms, non-H atoms, metal

atoms, transition metal atoms, double bonds, ring bonds, bond to

metal atoms, and alkyl groups as well as frequency of C N at topo-

logical distance 1 and C O at topological distance 2

Using the above 19 descriptors as input, two artificial neural

network (ANN) models predicting single-component adsorption

loadings of PE and PA were trained and further used to derive multi-

component dual-site Langmuir (DSL) isotherm models that can pro-

vide accurate mixture adsorption equilibrium predictions for the

PE/PA system. In addition, a support vector machine (SVM) based

classifier model was developed to define the valid design space of

the 19 descriptors. Finally, the design space, isotherms, and one-bed

four-step isothermal P/VSA process models were combined

together. Under specific separation requirements, that is, to produce

99% PE with no less than 30% recovery from a two-atmospheric

85%/15% PE/PA mixture, integrated MOF and P/VSA process

design problem was explicitly formulated as a nonlinear program-

ming (NLP) problem. Given prespecified input parameters (i.e., gas

properties, equipment specifications, etc. listed in Supporting Infor-

mation), the 19 MOF descriptors and 6 process operating conditions

(i.e., adsorption and desorption pressures as well as the durations of

four steps) were optimized simultaneously to minimize the total

energy consumption. As a result, the optimal descriptor values,

adsorption isotherms, and P/VSA operating conditions were

obtained. These information will be utilized for computational MOF

design in this work.

3 | PROPERTY-PERFORMANCE
RELATIONSHIPS FOR EFFICIENT MOF
SCREENING

Reliable material-property-performance relationships are crucial for

solving the multi-scale design problem. For MOF-based equilibrium

separation, the thermodynamic properties of MOFs (i.e., adsorption

isotherms) have dominant impact on the process performance. As

stated above, two ANN models have been trained in Step 1 to predict

single-component adsorption uptakes of PE and PA from 19 MOF

descriptors. This can serve as material-property relationships. The

next task is to build model-based property-performance relationships.

These mathematical relationships allow for a fast and preliminary

screening of MOFs, which prevents the conduction of process optimi-

zation for every MOF candidate. Here, proper property-performance

relationships are first developed on the basis of the optimal isotherms

obtained from Step 1. Their reliability is further verified with the

471 MOFs.

3.1 | Property-performance relationship for PE/PA
separation

Referring to the method proposed by Iyer and Hasan,28 property-

performance relationships of adsorbent materials are constructed by

sampling various adsorption isotherms followed by process optimiza-

tions. By doing so, the obtained results can reveal the inherent corre-

lations between adsorption equilibrium and process feasibility. To be

consistent with Step 1, the single-component DSL isotherm model in

Equation 1 and its binary extensions in Equation 2 are used to repre-

sent single-component and multi-component adsorption equilibria,

respectively.

qeq ¼ Q1 �b1 �P
1þb1 �P

� �þ Q2 �b2 �P
1þb2 �P

� � ð1Þ

qeqE ¼ Q1
E �b1E �P �yE

1þb1E �P �yEþb1A �P �yA
þ Q2

E �b2E �P �yE
1þb2E �P �yEþb2A �P �yA

ð2aÞ

qeqA ¼ Q1
A �b1A �P �yA

1þb1E �P �yEþb1A �P �yA
þ Q2

A �b2A �P �yA
1þb2E �P �yEþb2A �P �yA

ð2bÞ

where the subscripts E and A denote PE and PA, respectively. qeq is

the adsorption equilibrium loading at pressure P. y is the molar frac-

tion in the gas phase. Q and b are DSL model parameters. With the

DSL models, the thermodynamic properties of any MOF can be char-

acterized by the eight model parameters (i.e., Q1
E , b

1
E , Q

2
E , b

2
E , Q

1
A, b

1
A,

Q2
A, and b2A). From the process perspective, the eight parameters

directly determine the adsorption process performance. In this situa-

tion, different combinations of the eight parameters were sampled

and then used for rigorous P/VSA process optimization. Note that all

the model parameters refer to a fixed temperature of 300 K, since

only an isothermal P/VSA process at 300 K is focused in this series.

Here, the Latin Hypercube sampling approach was used to generate

samples randomly and uniformly. Additional constraints were added

to ensure that the samples were distributed around the optimal iso-

therms obtained in Step 1. This avoids redundant isotherm samples

and reduce unnecessary process optimizations. The detailed con-

straints are given below.
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• In the optimal isotherms, the PE and PA adsorption loadings at

2 atm are 3.7 and 1.4 mol/kg, respectively. Thus, the saturated

adsorption capacities Q1
E and Q2

E were sampled within 0.01–6 mol/kg

while Q1
A and Q2

A were varied within 0.01–4 mol/kg. The affinity

parameters b1E , b
2
E , b

1
A, and b2A were allowed to vary between 0.01 and

20 (1/bar). In addition, the samples whose PE and PA adsorption load-

ings at 2 atm exceed 5 and 2.5 mol/kg, respectively, were discarded.

• Since only PE-selective MOFs are studied, the adsorption capacity

on PE should be larger than that on PA when pressure exceeds

0.1 atm.

• Considering the separation specifications (i.e., 99% PE purity with

no less than 30% recovery), the isotherm samples were discarded

when the difference of the associated PE and PA adsorption load-

ings at 2 atm is less than 0.5 mol/kg.

Considering the computational burdens of complex P/VSA pro-

cess optimization, 400 samples were generated. Figure S1 shows the

single-component isotherms of PE and PA for all the 400 samples. It

can be seen that the samples span adequate isotherm spaces and are

well distributed around the optimal isotherms highlighted. These iso-

therm samples were directly used for P/VSA process optimization.

The P/VSA process configuration and models used here are exactly

the same as those employed in Step 1. The process is presumably

operated in one bed at 300 K. A complete process cycle consists of pres-

surization, adsorption, rinsing, and desorption steps. The resulting optimi-

zation problem is summarized in Equation 3. As indicated, the total

energy consumption per ton of purified PE product is minimized by opti-

mizing six design variables, namely adsorption (PAD) and desorption (PDE)

pressures as well as the durations of the four steps

(tPR,tAD,tRI,and tDE). The constraints include mass balances, mass trans-

fer kinetics, DSL isotherm models, pressure drop correlation, cyclic

steady state, boundary conditions, as well as purity (ξE) and recovery

(θE) specifications. For concision, the detailed model equations and

descriptions are not repeated here. They can be found in our first

article.11

min E PAD,PDE ,tPR,tAD,tRI,tDEð Þ ð3Þ

s:t:∂yi∂t ¼ f1 yi ,u,P,qE ,qAð Þ gas—phase component mass

balances

∂P
∂t ¼ f2 P,u,qE ,qAð Þ total mass balance

∂qi
∂t ¼ f3 qeqi ,qi

� �
solid—phase balances and mass

transfer kinetics

f4 qeqi ,P,yi
� �¼0 DSL isotherm models

f5 P,u,yA ,yEð Þ¼0 pressure drop

f6 yi ,qi ,P,uð Þ¼0 cyclic steady state and boundary

conditions

f7 ξE ,tDE ,u,P,yEð Þ¼0 purity specification

f8 θE ,tPR ,tAD, tRI , tDE ,u,P,yEð Þ ¼0 recovery specification

In total, 400 NLP optimization problems were solved. For easy

reference, all the sampled DSL model parameters and the

corresponding optimization results are summarized in Supporting

Information. It is obvious that not all the isotherms can satisfy the

separation specifications. After careful analysis of the optimization

results, two feasibility maps were obtained and shown in Figure 2.

Figure 2A shows the feasible regions with respect to the single-

component adsorption loadings at 2 atm. It is observed that within

the sampled isotherm space, when the PA adsorption loading at 2 atm

(q2A) exceeds 2 mol/kg, the isotherm samples cannot meet the separa-

tion requirements. Therefore, as written in Equation 4, q2A is expected

to be less than 2 mol/kg for feasible PE/PA separation.

q2A ≤2 ð4Þ

Figure 2B shows the feasible map with respect to adsorption

uptakes at 0.01 atm (q0:01) that are representative of the initial

(A)

0 0.3
0

0.2

0.4

0.6

Infeasible isotherm
Feasible isotherm

P
E

 a
ds

or
pt

io
n 

lo
ad

in
g 

at
 0

.0
1 

at
m

 (
m

ol
/k

g)

(B) 

0

0.1 0.2
PA adsorption loading at 0.01 atm (mol/kg)

0
2.5

1

2

3

4

5

6
Infeasible isotherm
Feasible isotherm

P
E

 a
ds

or
pt

io
n 

lo
ad

in
g 

at
 2

 a
tm

 (
m

ol
/k

g)

0.5 1 1.5 2
PA adsorption loading at 2 atm (mol/kg)

F IGURE 2 Feasibility maps based on (A) adsorption loadings at
2 atm and (B) adsorption loadings at 0.01 atm for deriving property-
performance relationships
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isotherm slopes (i.e., Henry constant). The samples can be roughly

divided into feasible and infeasible regions. After a linear classification

performed using the scikit-learn package in Python 3, a linear classifier

model (see black dot line) was obtained to separate the whole region

into two. With the extracted slope and intercept, the constraint in

Equation 5 must be satisfied to ensure that a sample is located in the

feasible region.

q0:01E ≥ 3:185�q0:01A �0:027 ð5Þ

Clearly, the above two constraints represent the quantitative cor-

relations between adsorption properties and process feasibility. Nota-

bly, the single-component PE and PA adsorption loadings at 300 K

can be directly predicted with the 19 MOF descriptors and pressure

using the established ANN models.

3.2 | Validation with 471 CoRE MOFs

To further validate the reliability of the above two constraints, the

process feasibility of the 471 CoRE MOFs were investigated. The

collected adsorption loadings of the 471 CoRE MOFs were used to

fit the single-component DSL isotherm models. The fitting was per-

formed using the lmfit package and the Levenberg–Marquardt algo-

rithm in Python 3.8. After model fitting, the resulting DSL models

were used to predict the adsorption uptakes of PE and PA at 0.01

and 2 atm. For simplicity, the fitted DSL model parameters and the

predicted adsorption loadings are tabulated in Supporting Informa-

tion. Based on the predicted loadings, the 471 CoRE MOFs were

verified against the two feasibility constraints. It can be found that

87 CoRE MOFs satisfy the first constraint (Equation 4) and 17 CoRE

MOFs meet the second constraint (Equation 5). As a result, Table 1

lists the 15 CoRE MOFs that meet the two constraints

simultaneously.

Moreover, P/VSA process optimization was performed for the

471 CoRE MOFs, which provides the true process performance

for these MOFs. To do so, the multi-component DSL isotherm

models in the form of Equation (2) were derived based on the

fitted single-component DSL model parameters and directly impo-

rted into the P/VSA process model for optimization. As listed in

Tables 1, 9 CoRE MOFs can meet the required PE/PA separation

specifications. It can be seen that 8 out of the 9 CoRE MOFs meet

the two feasibility constraints except FIQCEN (i.e., Cu-BTC or

HKUST-1). This is because its PA adsorption uptake at 2 atm is

7.76 mol/kg, which is unable to satisfy the first feasibility con-

straint. In summary, the results demonstrate that the two con-

straints can effectively filter out MOFs that are infeasible to

achieve the prespecified separation requirements. In addition, the

best of the 471 CoRE MOFs is SEYDUW that refers to (μ3-N-[pho-

sphonomethyl]iminodiacetato)-diaqua-yttrium-monohydrate.29 The

corresponding minimum energy consumption is 91.99 kWh/ton

PE. This can act as a new benchmark for the subsequent computa-

tional MOF design.

4 | COMPUTATIONAL MOF SYNTHESIS
AND SCREENING

As the core of Step 2, new MOFs were computationally designed for

efficient PE/PA separation. To do so, proper MOF building blocks

were first identified. Then, hypothetical MOFs were synthesized and

in silico screened to identify top candidates leading to better PE/PA

separation performance.

4.1 | Identification of MOF building blocks

In general, a MOF consists of metal nodes, organic nodes

(if applicable), and organic linkers assembled in a certain topology. For

MOFs, at least one type of metal node must exist and some topolo-

gies need to be constructed with more than one type of organic node.

Moreover, different types of metal/organic node have different coor-

dination numbers that determine the number of organic linkers con-

nected to it. Due to the complex structures of MOFs, there can be

multiple ways to dissect MOFs into different building blocks.30 Refer-

ring to the basic rules of constructing hypothetical MOFs, Figure 3

shows a general procedure of extracting MOF building blocks that can

be subsequently used for in silico MOF synthesis. For a MOF in the

form of Crystallographic Information Framework (.cif) file, the open-

source program ToposPro can be utilized to analyze its topology, and

its metal nodes and organic nodes (if applicable) can be identified as

well. Afterward, MOFs can be viewed in Material Studio. In doing so,

the organic linkers connecting two nodes (mainly metal node�metal

node and metal node�organic node) can be identified. Meanwhile,

the nodes and linkers can be manually extracted after deleting all the

other atoms in the MOF using Material Studio. The extracted nodes

and linkers can be subsequently used as building blocks for computa-

tional MOF synthesis. Following the above procedures, the topology,

TABLE 1 Results of the screening of 471 CoRE MOFs using the
two property-performance relationship constraints

CoRE MOFs fulfilling the two feasibility constraints

BERFIP, FAQVEA, MIDRAT, OSAXAI, QUJFUX, QUVDUH, SEYDUW,
SUJQOE, VASKOR, VISTUM, WABTOK, WIDZOA, XEHTUB, XOVVIO,
XUYXAR

CoRE MOF Energy consumption (kWh/ton PE)

SEYDUW 91.99

QUJFUX 97.95

XOVVIO 213.88

VISTUM 250.84

XEHTUB 257.45

FAQVEA 321.40

FIQCEN 505.02

QUVDUH 590.99

SUJQOE 649.17
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nodes, and organic linkers of the 471 CoRE MOFs were analyzed,

identified, and extracted. The detailed structural decompositions are

summarized in Supporting Information. Notably, the following heuris-

tics were considered to discard unusable building blocks.

• The Reticular Chemistry Structure Resource (RCSR) database col-

lected over 2300 different MOF topologies. Each topology is

named as a three-letter symbol with or without an extension

(i.e., pqr-a and pqr). In addition, the detailed information on each

topology (e.g., spatial structure and required types of connecting

nodes) has been well documented. In this work, only the extracted

topologies that are included in the RCSR database were considered

for MOF synthesis, since only the topological templates of these

topologies are available in the state-of-the-art MOF synthesis

tool.30

• Two-dimensional topologies were discarded due to their scarcity.

• The organic linkers and nodes that form over two connections or

double/triple bonds with a single metal/organic node were

removed, since linkers and nodes as well as nodes and nodes are

only allowed to form a single-bond connection in the state-of-the-

art MOF synthesis tool.30

• The organic nodes with one atom connecting to two different

metal nodes were discarded, since such nodes usually lead to infea-

sible MOFs.

• Asymmetric metal nodes with over 25 atoms were discarded since

those metal nodes rarely exist in MOFs.

Regarding the PE/PA separation example, the design guidelines

obtained from Step 1 were taken into account as well. They are:

• Only the metal nodes with transition metals were kept. This is

because transition metals are expected to introduce open metal

site and π-complexation, which can result in stronger interactions

with PE over PA.

• The organic nodes and linkers containing C O pairs at topological

distance 2 (i.e., C X O chains) were removed.

• Only the organic nodes and linkers consisting of rings, double

bonds, or C N bonds were retained.

Accordingly, in total 69 three-dimensional topologies, 90 transi-

tion metal nodes, 54 organic nodes, and 99 organic linkers were

obtained from the 471 CoRE MOFs (Figure 3). For the 69 topologies,

their three-letter symbols and the required types of linking nodes

are listed in Table S1. The atomic structures of the metal nodes,

organic nodes, and organic linkers are given in Tables S2–S4. In

addition, the corresponding “cif” files have been uploaded to the

Github folder (https://github.com/zx2012flying/Integrated-MOF-

and-PVSA-Process-Design).

4.2 | Computational MOF design

The large number of building blocks obtained above provide a huge

design space. Due to the limited computational resources, only the

27 topologies requiring one type of node (i.e., metal node) were

adopted. In other words, none of the organic nodes were considered

for MOF synthesis. Table 2 lists the three-letter symbols of the

27 topologies and the coordination of the required metal node

(i.e., number of free connections). Given this simplification, Figure 4 shows

the workflow for the computational MOF synthesis and screening. First,

using the finalized building blocks, hypothetical MOFs were generated

and their descriptors were calculated. Then, model-based screening was

performed to identify promising MOFs. Their feasibilities were further

assessed using rigorous GCMC simulations. Finally, P/VSA process

F IGURE 3 Generation of
metal-organic framework (MOF)
building blocks from the
471 CoRE MOFs
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optimization was performed to identify the real optimal MOFs. The

detailed procedures and models are elaborated below.

4.2.1 | In silico synthesis of hypothetical MOFs

The state-of-the-art constructor ToBaCCo 3 was employed for in silico

MOF synthesis. Hypothetical MOFs were constructed on the basis of

topological templates that guide the placement of metal nodes and

organic linkers. Each topological template consists of the information

on the number, coordination, and symmetry of the metal nodes. For the

27 topologies, the coordination of required metal node is given in

Table 2. Node symmetry denotes the spatial arrangement of connected

organic linkers. During construction, the coordination compatibility

between topology and metal node is tested. A topology is regarded

as incompatible with a metal node, when the node coordination

required for the topology is different from that of the metal node.

For the 90 metal nodes, their node coordinations are provided in

Table S2. As shown, there are 10 three-coordinated nodes, 37 four-

coordinated nodes, 6 five-coordinated nodes, 25 six-coordinated

nodes, 11 eight-coordinated nodes, and one 12-coordinated node. In

addition, based on the domain knowledge of MOF chemistry, some

other factors (e.g., node symmetry, bond connectivity, etc.) are also

checked to ensure that only sound feasible MOFs are created. The

detailed algorithms in ToBaCCo can be found in previous publica-

tions.30,31 In this work, the 90 metal nodes and 99 organic linkers in

the form of cif files were imported into the nodes and edges folders

in ToBaCCo, respectively. For the 27 topologies, their topological

templates can be found in the ToBaCCo template database. With

these information, the differential evolution algorithm implemented

in ToBaCCo was used for structural scaling. As a result, 45,472 hypo-

thetical MOFs were generated and stored in the form of cif files, as

shown in Figure 5.

Given the 45,472 hypothetical MOFs, the candidates leading to

the best process performance should be identified. For this,

TABLE 2 Twenty-seven topologies
considered for computational metal-
organic framework (MOF) design in the
PE/PA separation example

Topology Coordination of metal node Topology Coordination of metal node

srs 3 uni 4

ths 3 uog 4

atn 4 usf 4

cag 4 bnn 5

cds 4 sqp 5

dft 4 acs 6

dia 4 lcy 6

dmp 4 pcu 6

lon 4 rob 6

lvt 4 sol 6

qtz 4 sxb 6

sod 4 bcu 8

sra 4 hex 8

unc 4

F IGURE 4 Workflow of the computational metal-organic
framework (MOF) synthesis and screening for PE/PA separation
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calculating adsorption isotherms is a prerequisite. Obviously, it is quite

computational demanding to perform rigorous GCMC simulations

for all the MOF candidates. Alternatively, the ANN-based isotherm

models obtained in Step 1 can be applied for an efficient model-

based screening where only the 19 descriptors need to be calcu-

lated in advance. To do so, the open-source toolbox OpenBabel was

used to convert the original MOF cif files into molfiles (.mol) and

XYZfiles (.xyz).32 The molfiles were directly analyzed using the che-

minformatics package RDKit to get the detailed information of

atoms, bonds, and groups. Accordingly, the 10 chemical descriptors

can be calculated based on their definitions given in Step 1.11 Addi-

tionally, different from Step 1 where Zeo++ was used, the XYZfiles

and the PoreBlazer 4 program were applied for computing geomet-

ric descriptors. This is because PoreBlazer 4 is favored in Python

3 for parallel computing and with the same parameter settings the

geometric descriptors from PoreBlazer 4 and Zeo++ are almost con-

sistent.33 Depending on the topology, the computed geometric

descriptors were finally scaled to a primitive cell level. Due to the

large number of hypothetical MOFs synthesized, descriptor compu-

tation was carried out using the parallel computing cluster in our

institute that comprises 122 CPU nodes. On average, it takes

around 5 minutes for a single CPU node to compute the 19 descrip-

tors for a single MOF. The descriptors of the 45,472 hypothetical

MOFs have been uploaded to the Github folder.

4.2.2 | MOF screening via validity and feasibility
constraints

Model-based MOF screening was performed using the developed

material-property-performance relationships. The idea is to predict

adsorption loadings from MOF descriptors using the ANN-based iso-

therm models. This enables a fast verification of the feasibility con-

straints in Equations (4) and (5). The detailed screening process is

described below.

First, the values of the 19 descriptors were sent to verify whether

they were in the validity domain of the ANN-based models. This

improves the screening reliability due to the limited extrapolation

power of data-driven models. As consistent as Step 1, the constraints

on the lower and upper bounds (Equation 6) and the one-class SVM

classifier model (Equation 7) are considered here.

yL ≤ y ≤ yU y¼ y1,…,y19½ � ð6Þ

f yð Þ¼
X2

j¼1
wj �ϕj yð Þþρ>0 y¼ y1,…,y19½ � ð7aÞ

ϕj yð Þ¼ e�β� y�SV jk k2

SV j ¼ SV1,j,…,SV19,j

� � ð7bÞ

where y denotes the descriptor vector. yL and yU are the lower and

upper bounds, respectively. The bounds were set as the minimal and

maximal descriptor values of the 471 CoRE MOFs. wj, SVj, ρ, and β

are the SVM model parameters. All these parameters have been given

in the first article.11 After applying the above validity domain con-

straints, 4269 MOF candidates were remained. For these MOFs, their

PE and PA adsorption uptakes at 0.01 and 2 atm were predicted using

the ANN models in Equation (8). The detailed model descriptions and

parameters have been given in Step 1.11

qE ¼ANN1 y1,…,y19,Pð Þ at T¼300K ð8aÞ

qA ¼ANN2 y1,…,y19,Pð Þ at T¼300K ð8bÞ

With the predicted uptakes, the process feasibility constraints in

Equation 4–5 were tested for all the 4269 MOFs. As shown in

Figure 5, only 364 MOFs are left and considered as feasible for fur-

ther studies. These 364 MOFs and their corresponding descriptors

are tabulated in Supporting Information.

4.2.3 | MOF screening via GCMC simulations

Considering the error of ANN models, the single-component PE and

PA adsorption loadings at two pressure levels (0.01 and 2 atm) and

300 K were predicted with rigorous GCMC simulations for the

remaining 364 MOFs. The open-source software RASPA was

employed for this computation.34 The detailed GCMC settings are

described in the Appendix and the computed results are given in

Supporting Information. Based on the predicted loadings, it is found

that only six MOFs can meet the two feasibility constraints in Equa-

tions (4) and (5). In this case, these six MOFs were sent to P/VSA pro-

cess optimization for quantifying their practical process performance.

To do this, GCMC simulations were carried out to calculate the

adsorption loadings of PE and PA at five different pressure levels

(i.e., 0.01, 0.1, 1, 2, and 5 atm) and 300 K. The results were used to fit

the DSL isotherm models in Equation (2) for process optimization.

Again, for the six MOFs, their complete GCMC results are provided in

Supporting Information.

F IGURE 5 Statistics of screened hypothetical metal-organic
framework (MOF) candidates
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4.2.4 | MOF screening via P/VSA process
optimization

After fitting the eight DSL model parameters for the six MOFs, six iso-

thermal P/VSA process optimizations were performed. It is found that

three of the six candidates can meet the 99% purity and 30% recovery

requirements (see also Figure 5). These three computationally synthe-

sized MOFs are named as SMOF-1, SMOF-2, and SMOF-3. Figure 6

shows the building blocks of SMOF-1 and the corresponding projec-

tion to the X-Y plane, and Table S5 lists the crystallographic informa-

tion file (cif ) of this MOF. As indicated, SMOF-1 consists of

6-coordinated iron (Fe) metal node and pyrazine (C4H4N2) organic

linker assembled in the sxb topology. The metal node and organic

linker are extracted from CoRE MOF LEMNOH and FUDQIF, respec-

tively. The other two SMOFs are illustrated in Figure S2. Both of them

are assembled with an lcy topology. SMOF-2 comprises of

6-corrdinated cadmium (Cd) metal and N N linker. SMOF-3 owns

6-coordinated iron (Fe) metal connected with C N linkers. For the

three candidates, their fitted DSL model parameters and

corresponding minimum energy consumptions are listed in Table 3.

Compared with the benchmark MOF SEYDUW (i.e., the best CoRE

MOF, see Table 1), SMOF-1 can achieve a lower energy consumption

(72.43 vs. 91.99 kWh/ton PE). In this case, only the results led by

SMOF-1 is discussed below.

4.3 | Optimal results of SMOF-1

For SMOF-1, the optimal P/VSA process operating conditions are

listed in the second column of Table 4. The adsorption is performed at

1.44 atm that is lower than the initial pressure 2 atm of the feed gas

but higher than the atmospheric pressure. Thus, no gas compression

is needed at the pressurization and adsorption steps. Desorption

occurs in a vacuum condition of 0.3 atm. Energy is consumed for gas

evacuation during desorption and for gas compression at the rinsing

step. Comparing the results of SMOF-1 with SEYDUW, it is found that

their operating pressures are very different. For SEYDUW, the high

and low pressures are 2 and 0.41 atm, respectively. The energy con-

sumed at the rinsing step is 46.15 kWh/ton PE that is much larger

than that of SMOF-1 (24.68 kWh/ton PE). This is because SMOF-1

has a smaller gap between the high and low pressures and hence less

energy is needed to re-compress the gases during rinsing.

F IGURE 6 Computationally synthesized optimal metal-organic
framework (MOF) for PE/PA separation (visualized by VESTA
software)

TABLE 3 Fitted dual-site Langmuir (DSL) isotherm parameters and the minimum energy consumption for the three synthesized hypothetical
metal-organic frameworks (MOFs)

Synthesized MOFs SMOF-1 SMOF-2 SMOF-3

DSL model parameters Q1
E

0.4 0.01 2.56

b1E 1.48 69.66 0.17

Q2
E

1.16 4.14 3.35

b2E 1.48 0.1 0.12

Q1
A

0.06 0.65 1.03

b1A 2.3 0.12 0.13

Q2
A

1.09 0.65 1.19

b2A 0.1 0.12 0.13

Energy consumption (kWh/ton PE) 72.43 118.82 303.94
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TABLE 4 Optimization results of four-step isothermal pressure/vacuum swing adsorption (P/VSA) process with three different metal-organic
frameworks (MOFs)

Process using SMOF-1 Process using SEYDUW Optimal process from step 111

PR duration (s) 12.2 30 13.0

AD duration (s) 30.3 10.1 22.1

RI duration (s) 6.4 5.0 5.6

DE duration (s) 600 600 600

High pressure (atm) 1.44 2 2

Low pressure (atm) 0.3 0.41 1

PE purity 0.99 0.99 0.99

PE recovery 0.30 0.30 0.30

PE production rate (mol/h) 203.6 117.8 210.6

Initial selectivity at high pressure 10.1 7.2 33.9

Energy consumption at pressurization (kWh/ton PE) 0 0 0

Energy consumption at adsorption (kWh/ton PE) 0 0 0

Energy consumption at rinsing (kWh/ton PE) 24.68 46.15 12.8

Energy consumption at desorption (kWh/ton PE) 47.75 45.84 0

Total energy consumption (kWh/ton PE) 72.43 91.99 12.8
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F IGURE 7 Single-component adsorption isotherms for (A) SMOF-1, (B) SEYDUW, and (C) optimal hMOF from Step 1
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In fact, the root reasons for different results can be explained by

their different adsorption isotherms. As shown in Figure 7, SMOF-1

exhibits a larger gap of PE and PA isotherms than SEYDUW. With the

DSL parameters in Table 3, the initial selectivity of SMOF-1 at the

adsorption condition is calculated to be 10.1, larger than that of

SEYDUW. This helps producing high-purity PE product. In addition,

SMOF-1 provides a better condition for adsorption and desorption. Its

PE loading difference between 1.44 and 0.3 atm already reaches

0.58 mol/kg, which helps achieving the required 30% PE recovery. By

contrast, for SEYDUW, a large pressure drop between adsorption and

desorption (i.e., from 2 to 0.41 atm) is needed to ensure that enough

PE is adsorbed and recovered. This directly leads to a higher energy

consumption at the rinsing step. The forth column of Table 4 lists the

optimal process target obtained from Step 1 and Figure 7C shows its

corresponding optimal isotherms.11 Clearly, the process performance

led by SMOF-1 is worse than that of the optimal process target. In

other words, there are still substantial spaces for finding new MOFs

whose isotherms can be closer to the optimal isotherm target.

5 | CONCLUSION

This article presents the second step of our novel framework for the

integrated MOF and P/VSA process design, that is, the matching of

optimal MOF descriptors by existing MOF material structures. Multi-

ple open-source computational tools and in-house programs have

been used for in silico MOF synthesis and screening. First, based on

the optimal isotherm targets obtained from Step 1, the explicit rela-

tionships between adsorption properties and process feasibility were

identified to develop model-based constraints for fast preliminary

MOF screening. Afterward, MOF building blocks were generated from

471 MOFs in the CoRE MOF database and used to create new hypo-

thetical MOFs. The created MOF candidates were screened using the

developed model-based constraints. In addition, GCMC simulations

and P/VSA process optimization were performed to further screen

the MOFs. As a result, the best MOF candidate was identified, which

shows a much better PE/PA separation performance than the bench-

mark MOF SEYDUW.

To the best of our knowledge, this is the first attempt in the pro-

cess systems engineering community to perform a computer-aided

design of solid adsorbent materials. The major novelty of the present

work is the incorporation of insights from the phase and process

levels for efficient MOF design on the basis of a multi-scale design

framework. The optimal MOF found can better serve the P/VSA-

based separation process and improves separation efficiency signifi-

cantly. Despite the large progress achieved, there are still some limita-

tions. First, only a fixed cycle configuration is considered. In fact, the

synthesis of optimal P/VSA processes can provide additional benefits

for enhancing the separation efficiency, in particular when material

design is integrated.35 Given the huge complexity of the integrated

material and process synthesis problem, using short-cut or surrogate

process models can be a promising solution strategy. Second, since

only certain known rules regarding the building block compatibility are

accounted for in ToBaCCo, the hypothetical MOFs created can be

nonexistent or difficult to synthesize from the experimental perspec-

tive. Thus, additional constraints on MOF stability (e.g., chemical,36

mechanical,37 and thermal38,39) and synthesizability40 will be worth

adding into future screening procedures. Moreover, structural optimi-

zation should be carried out to rectify the bond lengths and angles of

the MOFs for further improving the reliability. Efforts will be made in

these directions in our next research activities.
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APPENDIX

GCMC SIMULATIONS

In the GCMC simulation, all the MOFs were assumed to be rigid while

propane and propene were regarded as flexible molecules including

intramolecular interactions for bonds, angles, and torsions. To obtain

statistically good results, 105 Monte Carlo cycles were simulated

including 5 � 104 initialization cycles and 5 � 104 equilibrium cycles.

Each cycle includes four possible motions (translation, rotation,

reinsertion, and swap) with equal probability. The fugacity coefficient

was simply set to 1, since only moderate operating pressures were

considered. The Ewald summation method was applied to calculate

electrostatic interactions with a relative precision of 10�6. Force field

parameters are required to compute interactions of adsorbate-

adsorbent and adsorbate-adsorbate pairs. As widely accepted, the

interaction energies were computed through the Lennard–Jones

(LJ) potentials. The LJ parameters for the adsorbent atoms were taken

from the Universal Force Field (UFF). The adsorbates propane and

propene were considered as combinations of CH3, CH2, and CH. Their

associated LJ parameters were taken from the standard TraPPE-UA

force field. It has been widely reported that the use of UFF for MOFs

and TraPPE-UA for hydrocarbons can produce reasonable adsorption

results. In addition, the Lorentz–Berthelot mixing rule was chosen as

the adsorbate-adsorbent interaction method and the cutoff distance

was defined as 12 Å. In order to validate the reliability of our GCMC

simulations, the adsorptions of propane and propene in ZIF-8 at

293 K and 0–1 bar were simulated. Figure S3 shows that the

predicted isotherms match closely with the experimental ones.
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