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I. ELECTRONIC ENERGY DECOMPOSITION OF LIQUID WATER

The electronic energy of the system can be decomposed in kinetic, electrostatic and exchange-

correlation terms. We report below learning curves for each of these terms.
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FIG. S1. Learning curves associated with the prediction of 500 randomly selected liquid water structures using

models constructed with an increasing number of sparse environments M . absolute RMSE in meV/atom of

the kinetic energies obtained by feeding the predicted electron densities into the density functional used to

generate the reference data. Full and dashed lines correspond to non-orthogonal and orthogonal learning

models, respectively.
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FIG. S2. Learning curves associated with the prediction of 500 randomly selected liquid water structures using

models constructed with an increasing number of sparse environments M . absolute RMSE in meV/atom of

the electrostatic energies obtained by feeding the predicted electron densities into the density functional used

to generate the reference data. Full and dashed lines correspond to non-orthogonal and orthogonal learning

models, respectively.
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FIG. S3. Learning curves associated with the prediction of 500 randomly selected liquid water structures using

models constructed with an increasing number of sparse environments M . absolute RMSE in meV/atom

of the exchange-correlation energies obtained by feeding the predicted electron densities into the density

functional used to generate the reference data. Full and dashed lines correspond to non-orthogonal and

orthogonal learning models, respectively.

II. QUADRATIC APPROXIMATION OF THE TOTAL ENERGY ERROR

Let us consider the decomposition of the predicted density in a reference and error term as

ρ(r) = ρ0(r) + ∆ρ(r). For small errors ∆ρ, we can approximate the total energy E through a

second-order functional expansion about ρ0:

E[ρ] ≈ E[ρ0] +

∫
dr

(
δE

δρ(r)

)
ρ=ρ0

∆ρ(r) +
1

2

∫
dr

∫
dr′

(
δ2E

δρ(r)δρ(r′)

)
ρ=ρ0

∆ρ(r)∆ρ(r′) (S1)

Given that
(

δE
δρ(r)

)
ρ=ρ0

= 0 ∀ r when ρ0 is the self-consistent density, the linear term in the error

vanishes and we are left with a quadratic approximation for the total energy error:

∆E[ρ] ≈ 1

2

∫
dr

∫
dr′

(
δ2E

δρ(r)δρ(r′)

)
ρ=ρ0

∆ρ(r)∆ρ(r′) (S2)

Note that as the Hartree energy is a quadratic functional of ρ, the second functional derivative

corresponds to the Coulomb potential 1
|r−r′| for the electrostatic term of the total energy, while it is

in general a functional of ρ0 for the kinetic and exchange-correlation terms.

We report below a loose numerical test of the approximation above by plotting the error made

in the prediction of the total energy of water as a function of the density error:
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FIG. S4. (blue line) RMSE of the total energy prediction for M = 2000 as a function of the %RMSE associated

with the prediction of the electron density. (dashed lines) linear, quadratic and quartic trend-curves.
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