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Abstract

Computational screening in heterogeneous catalysis relies increasingly on machine learning models
for predicting key input parameters due to the high cost of computing these directly using first-
principles methods. This becomes especially relevant when considering complex materials spaces,
e.g. alloys, or complex reaction mechanisms with adsorbates that may exhibit bi- or higher-dentate
adsorption motifs. Here we present a data-efficient approach to the prediction of binding motifs and
associated adsorption enthalpies of complex adsorbates at transition metals (TMs) and their alloys
based on a customized Wasserstein Weisfeiler-Lehman graph kernel and Gaussian Process Regres-
sion. The model shows good predictive performance, not only for the elemental TMs on which
it was trained, but also for an alloy based on these TMs. Furthermore, incorporation of minimal
new training data allows for predicting an out-of-domain TM. We believe the model may be useful
in active learning approaches, for which we present an ensemble uncertainty estimation approach.

Many surface catalytic reactions of vital impor-
tance to our society such as Fischer-Tropsch,
methanol, or higher oxygenate synthesis have
complex reaction mechanisms with numerous
intermediates ranging from atoms and simple
molecules to (possibly oxygenated) C1, C2 or
larger fragments. It is well-known that modeling of
these latter complex species at TM catalysts must
account for their ability to exhibit a wide range
of adsorption motifs, including mono-, bi- and

higher-dentate adsorption modes.[1–3] Density-
functional theory (DFT) with van der Waals
corrections can in principle provide the energet-
ics of such adsorption motifs at moderate cost
and satisfactory accuracy. Nevertheless, already
the identification of the most stable adsorption
motifs of adsorbates involved in ethanol synthesis
at a simple monometallic catalyst such as Rh(111)
is a formidable task,[4–7] and the investigation of
broader classes of materials such as TM alloys is
generally out of reach due to the combinatorial
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explosion of possible active sites and adsorption
motifs.

Machine learning (ML) models have already
shown their potential for replacing expensive DFT
calculations in order to tackle the screening of
large materials spaces for accelerated catalyst
discovery.[8–12] However, most works so far have
been limited in scope to the consideration of atoms
or small molecules with mono-dentate adsorp-
tion motifs. For these simple species, models now
routinely achieve the prediction of adsorption
enthalpies with a root-mean-square-error (RMSE)
around 0.1–0.2 eV, which is then comparable to
the intrinsic DFT accuracy. Unfortunately, most
of these methods cannot easily be extended to
complex adsorbates with bi- or higher-dentate
adsorption motifs. One notable attempt to treat
complex adsorbates is provided in the Open Cata-
lyst Project where the direct prediction of relaxed
adsorption enthalpies is achieved by incorporating
a graph representation of the initial structure into
a graph convolutional neural network.[13] How-
ever, approaches that rely purely on connectivity
and geometry-based features have revealed poor
data efficiency and thus cannot be used with-
out excessively large training databases.[13–15]
Moreover, the predictive performance for com-
plex adsorbates in the Open Catalyst Database is
still below practical usefulness with a mean abso-
lute error (MAE) for in-domain prediction around
0.6 eV.[13]

In this work we develop and test a data-
efficient, physics-inspired ML model applicable for
both simple and complex adsorbates based on
graph representation, the Wasserstein Weisfeiler-
Lehman (WWL) graph kernel [16], and Gaus-
sian Process Regression (GPR). We abbreviate
the model WWL-GPR. For comparison, we show
also results for predictions of simple and com-
plex adsorbates using two popular, fundamentally
different ML approaches that employ input in vec-
tor form instead of graph representation, namely
the Sure Independence Screening and Sparsify-
ing Operator (SISSO) approach [17, 18] and GPR
with a radial basis function kernel (RBF-GPR).
We train our ML models for complex adsorbates
on a relatively small database (around 1700 data
points) of DFT adsorption enthalpies relevant to
ethanol synthesis calculated at the fcc(211) and
fcc(111) facets of four TMs; Cu, Rh, Pd, and
Co. Compared to the Open Catalyst Dataset, our

dataset is smaller by about a factor of 300, covers
less diverse surfaces and adsorbates, but exhibits
a much denser sampling of diverse adsorption
motifs for each catalyst / adsorbate combination
considered.

More importantly, we do not rely on graph
representation alone, but augment it with
node attributes representing physically moti-
vated properties, e.g. d-band moments (sur-
faces), HOMO/LUMO energy levels (adsorbate
molecules) and features of the local geometry,
all derived from either the clean surfaces or the
adsorbates in the gas phase. The model achieves
an in-domain prediction of adsorption enthalpies
with a RMSE of about 0.2 eV and also shows
good extrapolative performance for two test cases;
the CuCo bimetallic alloy and an out-of-domain
element (Pt), the latter however only after incor-
poration of adsorption enthalpies of atomic species
on Pt into the training database. Finally, we
show that data points with large prediction errors
can be quite reliably captured from an ensemble
uncertainty estimation approach.

Results

WWL-GPR model

The ML task in our work is to directly predict the
relaxed adsorption enthalpies corresponding to a
range of plausible initial guesses of the adsorption
motif based on graph representation. Thereby, for
a given surface/adsorbate combination of interest,
both the most stable and all meta-stable adsorp-
tion motifs as well as their associated adsorption
enthalpies can be predicted. Our task is thus quite
similar to the task denoted as IS2RE (initial state
to relaxed energy) in the Open Catalyst Project,
however, we do not directly use the initial state
geometry, but only its graph representation. We
note that an entirely different approach to this
task is to train a ML interatomic potential [19, 20]
to relax the initial structure and thereby pre-
dict both the relaxed structure and adsorption
enthalpy – such approaches are however not a
topic of this work.

Fig. 1(a) depicts a schematic of our physics-
inspired WWL-GPR model. We rely on graph
representation, which is a versatile method for
representing isolated molecules [21, 22], crystal
structures,[23] or the combined surface/adsorbate
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system,[24–26] in which every atom in the struc-
ture is a node with edges representing chemical
bonds to neighboring atoms. Graph represen-
tation can be used in connection with neural
networks,[13–15] which however generally requires
very large training databases. Since we are here
interested in developing a data-efficient method,
we focus on a kernel-based method (GPR) in
connection with a customized version of the
recently developed WWL graph kernel.[16] Fig.
1(b) illustrates the node embedding scheme, the
calculation of the Wasserstein distance (distribu-
tion relationship) between the graphs, and the
subsequent WWL graph kernel calculation. The
WWL graph kernel allows for continuous node
attributes, for which we use physically motivated
electronic and geometric features calculated from
the clean surface and isolated adsorbate. Finally,
we incorporate into the WWL kernel some sur-
face adsorption motivated hyperparameters to
learn better representations, cf. Fig. 1(c); edge
weights, which differentiate chemical bonds in the
three classes adsorbate-adsorbate, surface-surface
and adsorbate-surface, as well as inner and outer
cutoffs and weights. The latter are used dur-
ing the computation of the Wasserstein distance
to emphasize the importance of various atomic
shells around the active site for the adsorption
energy prediction. We note that attention algo-
rithms widely used in neural networks serve a
similar purpose.[15]

Prediction of simple adsorbates

We begin by evaluating the performance of the
three considered ML models, SISSO, RBF-GPR
and WWL-GPR, for predicting a database of
simple adsorbates with mono-dentate adsorption
motifs (cf. Methods section). We carry out 5-fold
cross validation, that is, the database is shuffled
and partitioned into five equal-sized subsamples
stratified by adsorbates. The training is then car-
ried out based on four of the subsamples while
retaining the fifth subsample for validation. This is
repeated five times until all data points have been
used once for validation. Fig. 2 shows the result-
ing parity plot of DFT-calculated against ML-
predicted adsorption enthalpies as well as violin
plots of the absolute error distributions. It should
be noted here that the SISSO results are obtained

using similar hyperparameters as in our previ-
ous work [10, 27] (eight-dimensional rung three
descriptor). In principle, we would expect a bet-
ter performance than the here presented RMSE
of 0.24 eV for even more complex models, cf. Fig.
S5 in the Supporting Information (SI). However,
the identification of more complex models is com-
putationally intractable with the SISSO method.
Rather than raw performance, the merit of the
SISSO approach is that the identified descriptors
are (somewhat simple) analytical functions of the
features, which are thus easier to interpret than
black-box ML models. We also note that the rea-
son for the different performance of the descriptors
identified in the present work compared to our pre-
vious work is that here we train a single model on
the entire database (single-task learning) in order
to be able to make a direct comparison to the GPR
models, whereas in our previous work separate
fitting coefficients were used for each adsorbate
(multi-task learning). More information about the
identified SISSO descriptors is provided in Section
S3.2 in the SI.

For the GPR models the model complexity
can be more easily tailored and after optimiza-
tion of the relevant hyperparameters (cf. Section
S3.5 and Table S9 in the SI) we obtain a RMSE
of 0.13 eV independently of whether we use vec-
tor input (RBF-GPR) or graph representation
(WWL-GPR). Also the maximum absolute error
(maxAE) decreases from 1.11 eV (SISSO) to
around 0.60 eV in the GPR models. Based on the
similar performance of the two GPR models, we
can conclude that there is no added value from
employing graph representation for the simple
adsorbates. The reactivity is apparently already
captured by the averaged surface atom features
and the adsorbate-specific features used in the
RBF-GPR model.

Prediction of complex adsorbates

We next turn to a database of complex adsor-
bates with 41 different adsorbates in mono-, bi-,
and higher-dentate adsorption motifs (cf. Methods
section). Since we already concluded in the preced-
ing section on simple adsorbates that single-task
SISSO is not competitive in terms of performance,
we focus here only on the GPR models. The
5-fold cross validation results presented in Fig.
3 show that for this more challenging database
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Fig. 1 Schematic illustration of the WWL-GPR model. (a) The adsorption enthalpy of the relaxed structure is predicted
from a graph representation of the initial structure with node attributes computed from the gas-phase molecule and clean
surface via the WWL graph kernel and GPR. (b) Illustration of the WWL graph kernel. (c) Surface adsorption motivated
hyperparameters incorporated into the WWL kernel.

Fig. 2 Parity plot of DFT-calculated vs. ML-predicted adsorption enthalpies using (a) SISSO, (b) RBF-GPR, (c) WWL-
GPR with 5-fold cross validation for the simple adsorbates database. The violin plots in the insets illustrate the absolute
error distributions (in eV). The internal dashed line marks the mean.

the graph-based WWL-GPR model has a supe-
rior performance (RMSE of 0.18 eV) compared to
RBF-GPR (RMSE of 0.47 eV). Also the maxAE
decreases from 2.23 eV (RBF-GPR) to 0.91 eV in
the WWL-GPR model. A learning curve for the
WWL-GPR model is presented in Fig. S6 in the
SI, which shows that an RMSE of 0.3 eV can be
achieved by only training on 30% of the database

(∼ 500 data points) and a RMSE of 0.2 eV is
achieved at 70% of the database (∼ 1200 data
points).

In order to visualize what trends the WWL-
GPR model has identified in the complex adsor-
bates database, we present in Fig. 4 a kernel
principal component analysis (KPCA), which is
a non-linear dimensionality reduction technique.
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Fig. 3 Parity plot of DFT-calculated vs. ML-predicted adsorption enthalpies using (a) RBF-GPR and (b) WWL-GPR
with 5-fold cross validation for the complex adsorbates database. The violin plots in the insets illustrate the absolute error
distributions (in eV). The internal dashed line marks the mean.

Specifically, we here present the two dimensions
that explain the largest fraction of the variance.
Points that are close together in this space are
similar in the feature space. The analysis of the
entire complex adsorbate database in Fig. 4(a)
shows that the different metals are distinguished
as parallel clusters, where for each cluster there
is a similar distribution of sub-clusters contain-
ing the individual adsorbates. In Fig. 4(b) the
same analysis is presented for the Rh surfaces
only. Again, the different adsorbates form clusters,
where each point in a cluster corresponds to a sep-
arate adsorption motif of the adsorbate. A similar
clustering cannot be observed in KPCA plots for
the RBF-GPR model, cf. Fig. S7 in the SI, which
is probably related to the fact that this model does
not have any structural information about the dif-
ferent adsorbates and their associated adsorption
motifs due to the lack of graph representation.

Having established the excellent interpolation
performance of the WWL-GPR model, we next
assess the predictive performance of the model
for extrapolation tasks concerning data that are
dissimilar to those in the training database, i.e.
out-of-domain prediction. This is highly impor-
tant for the practical application of the model
to catalyst screening. The two tasks we consider
are a) predictions for a bimetallic CuCo cata-
lyst, i.e. an alloy of elemental metals present in
our database, and b) predictions for a new ele-
ment (Pt) when merely incorporating adsorption
enthalpies of atomic species (C, H, and O) at
Pt into the database. For these tasks we selected
8 adsorbates spanning both atomic species and

larger molecules, and including some with bi-
dentate adsorption motifs (cf. Table S4 in the SI).
Since it has previously been emphasized in the lit-
erature that in extrapolative, data-poor regimes,
a careful choice of regularization can substantially
improve the robustness of a model [28, 29], we
re-optimized the hyperparameters for the extrap-
olation tasks. Specifically, they were optimized by
minimizing the loss function (RMSEinterpolation +
2∗RMSEextrapolation), where RMSEextrapolation is
the RMSE of the combined dataset for the two
extrapolation tasks. Since these latter tasks are
more challenging, they were given a higher weight
(two) in the loss function than the weight of the
interpolation task (one). Comparing the hyper-
parameters obtained previously for the complex
adsorbates database (base case in Table S10 in
the SI) with the new hyperparameters optimized
specifically for the extrapolation tasks (base case
in Table S11 in the SI), we see that indeed both the
length scale and the regularization term increase
for the extrapolation tasks, resulting in a smoother
ML model, which is consistent with the previous
literature observations. The obtained RMSEs for
the new hyperparameters are 0.25 eV for inter-
polation within the complex adsorbate database,
0.23 eV for task a) (CuCo alloy) and 0.30 eV
for task b) (Pt). The higher RMSE obtained for
task b) reflects that an unknown element is much
harder to predict than an alloy of known ele-
ments, even when incorporating some minimal
information about the unknown element into the
training database through the atomic adsorption
enthalpies. We would expect the performance for
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Fig. 4 Two-dimensional kernel principal component (PC) analysis plots for the WWL-GPR model with hyperparameters
optimized for interpolation for (a) all metals and (b) Rh surfaces only. The locations and structures of selected adsorbates
are highlighted.

Pt to improve if more adsorbates were added to
the training database.

Uncertainty quantification

Up till now we have demonstrated that our WWL-
GPR model can be quite confidently applied with
RMSE around 0.2–0.3 eV to flat and stepped
metal and bimetallic catalysts, as long as some
(at least minimal) training data involving the
considered elemental metals are provided. How-
ever, apart from the average RMSE to expect,
it is also useful to be able to directly assess
the expected uncertainty on a single predicted
data point. For example, uncertainty quantifica-
tion (UQ) combined with sensitivity analysis of
microkinetic models[30–32] can be used to assess
error propagation and the extent to which con-
clusions drawn from a model are robust to input
parameter uncertainty.[33, 34] Furthermore, UQ
is used in active learning approaches, where the
training database is iteratively updated through
selected DFT calculations, e.g. of data points with
a high estimated uncertainty.[35, 36]

In view of these applications, we are here
primarily interested in the extent to which a
high estimated uncertainty correlates with a high

actual error of the model predictions. To assess
this point, we compare the intrinsic UQ provided
in a single GPR model through the standard devi-
ation (SD) of the posterior distribution to the UQ
provided by the SD of an ensemble (100 in total)
of GPR models with fixed hyperparameters opti-
mized for interpolation. The latter are constructed
through bootstrapping of the training data, i.e.
data points are drawn randomly with replacement.
Specifically, we here use a random 80%/20% train-
ing/test split of the complex adsorbates database
stratified by adsorbate. Note that the added com-
putational cost of establishing the ensemble model
is insignificant since we use a fixed training/test
split, and since the kernel between the training
and test set only needs to be computed once.

As expected, the prediction accuracy obtained
from the single and the ensemble model is almost
identical (RMSE of 0.17 eV versus 0.18 eV, respec-
tively). A plot of estimated uncertainties versus
absolute prediction errors of the two models is
presented in Fig. 5(a) and (b). For comparison,
we show also in Fig. 5(c-f) some distribution-
based measures of the quality of a UQ that have
recently been discussed in the literature, i.e. cal-
ibration, sharpness, and dispersion.[37] A useful
UQ method should have a small miscalibration
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area (a good match between the expected and
observed cumulative error distribution), a small
sharpness value (small error estimates) and a large
dispersion value (disperse error estimates). For
these latter quantities the performances of the sin-
gle and ensemble models are quite similar with the
single model having a slightly better calibration
and the ensemble model having a slightly better
sharpness and dispersion. However, with our pri-
mary interest being active learning, it is much
more intriguing to see that the ensemble model
does a better job than the single model at assign-
ing a high uncertainty to data points with a high
actual prediction error. In particular, the group
of points with an estimated uncertainty higher
than 0.2 eV in the ensemble model includes the
largest prediction errors, whereas this is not the
case for the single model, which actually assigns
a quite low uncertainty to some of the largest
prediction errors. We therefore conclude that the
ensemble model is best suited for active learning
approaches. We note here that we do not expect
any quantitative match between the absolute error
and the uncertainty in Fig. 5, partly because these
are not directly comparable quantities (one is a
SD and the other an absolute error), and partly
because it has been shown that specific calibration
measures [38, 39] are required for quantitatively
accurate UQ in both single and ensemble GPR
models.

Discussion

We begin by discussing the origin of the superior
performance of the WWL-GPR model over the
RBF-GPR model. First of all, we note that it is
not surprising that for complex adsorbates, sim-
ply accounting for the surface and adsorbate in
terms of features averaged over the atoms directly
involved in the bonding as well as global fea-
tures of the adsorbate (e.g. HOMO/LUMO levels)
and clean surface (e.g. work function) as done in
the RBF-GPR model is insufficient. In contrast,
the graph representation provides direct access
to structural information about the system, i.e.
the number and types of atoms in the adsorbate
and how these atoms connect to each other and
to the surface, possibly in complex bi- or higher-
dentate adsorption motifs. Atom-specific features
related to the local electronic or geometric struc-
ture can be directly used as node attributes, e.g.

through SOAP descriptors, and we can introduce
surface adsorption motivated hyperparameters as
discussed above and illustrated in Fig. 1(c). In this
connection, it is interesting to note that while the
WWL-GPR model finds that the optimal cutoff
values are one node distance for both inner and
outer cutoff for the simple adsorbates database
(i.e. mostly the atoms directly involved in sur-
face/adsorbate bonding are judged important),
the optimal inner and outer cutoffs (weights) are
one (0.60) and two (0.06) node distances, respec-
tively, for the complex adsorbates database, cf.
Table S9 in the SI (i.e. also atoms neighboring
the immediately bonding atoms are judged impor-
tant, although with smaller weights). The effect of
more distant atoms is not taken into account in the
RBF-GPR model, which then possibly relates to
its decreased performance for complex adsorbates.
Note also that during the node embedding scheme
of the WWL graph kernel, the node attribute of
every atom is updated with information about
the node attributes of the neighboring atoms, cf.
Section S3.4.2 in the SI. That is, even if weights
beyond the outer cutoff are zero, the atoms there
can still have a non-negligible influence on the
kernel value.

With its impressive performance for an alloy
made up of elements present in our database
(CuCo, RMSE of 0.23 eV) as well as its reason-
able performance for a new metal based on only
minimal training data (Pt, RMSE of 0.30 eV), we
trust that our WWL-GPR model could be useful
for catalyst screening purposes, e.g. for exploring
reactions with complex adsorbates on alloy sur-
faces. Here the complexity encountered from the
many possible adsorption motifs of each adsorbate
on each type of alloy surface makes direct DFT
investigations computationally intractable, while
reliable ML force fields or density-functional tight-
binding methods for the simultaneous treatment
of many different adsorbates and/or alloy surfaces
are still difficult to obtain.[2, 13]

We envision that it could be particularly
rewarding to apply our model in the context of
an active learning strategy, where the training
database is iteratively expanded towards cat-
alytically interesting and/or previously poorly
explored regions of the catalyst space. Since it
is important for active learning to have reliable
UQ, we compared the performance of the intrin-
sic UQ in a single GPR model with that from
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Fig. 5 The uncertainty vs. absolute error, calibration curve, and distribution plot of the predicted standard deviations
for (a), (c) and (e) the single GPR model and (b), (d) and (f) the ensemble GPR model, respectively.

an ensemble of GPR models, and find that the
ensemble model is the most reliable for captur-
ing large prediction errors by flagging them with
a high estimated uncertainty. Furthermore, it is
important to have a low model training cost, if the
model is to be iteratively improved by the incorpo-
ration of new data (e.g. an interesting new metal
or alloy surface) followed by model retraining.
This is a key advantage of our data-efficient GPR
model compared to e.g. deep neural networks. For
active learning purposes, we also recommend to
use the model with different hyperparameter set-
tings depending on the exploitative or explorative
nature of the task at hand. Specifically, we can
confirm previous literature reports that hyperpa-
rameters characterized, among others, by larger
length scale and regularization terms are benefi-
cial for accurate predictions in data-poor regions
of the catalyst space.

Methods

DFT databases

The ML models are trained and tested on two dif-
ferent databases termed ’simple adsorbates’ and
’complex adsorbates’. The database of simple
adsorbates is taken from Refs. [10, 40]. After a
post-processing step the database contains 1422
data points and includes adsorption enthalpies of
eight simple adsorbates with mono-dentate coordi-
nation; C, H, O, CO, OH, CH, CH2 and CH3. The
considered surfaces include the fcc(100), fcc(110),
fcc(111) and fcc(211) facets of pure Ni, Cu, Ru,
Rh, Pd, Ag, Ir, Pt and Au, the bcc(210) facet
of Fe as well as the stepped hcp(0001) facet of
Co. For alloy catalysts, the database contains the
adsorbates on the four single-atom alloys Ag@Cu,
Pt@Rh, Pd@Ir, and Au@Ni (i.e. the single atom
Ag, Pt, Pd or Au dispersed in the surface of
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another host metal) and the four AB bimetallic
alloys AgPd, IrRu, PtRh, and AgAu.

The complex adsorbates database contains
1679 data points and includes 41 different small
and large adsorbates involved in ethanol synthesis
on fcc(111) and fcc(211) facets of Cu, Rh, Pd, and
Co. Examples of complex adsorbates are CHCO,
CCHOH, CH2CH2O and CH3CH2OH, and the
full list of adsorbates is provided in Table S3 in
the SI. Furthermore, selected adsorbates are cal-
culated at the CuCo(111) surface and the Pt(111)
and Pt(211) surfaces for model testing purposes.
The adsorbates contain up to nine atoms and
cover mono-, bi-, and higher-dentate adsorption
modes. The database is constructed using an
automated workflow and DFT settings that are
compatible with the simple adsorbates database
(Quantum Espresso code [41], BEEF-vdW func-
tional [42]). Further computational details and
overviews of both databases are given below and
in Section S1 of the SI.

Database construction and workflow

The initial geometries of the surface/adsor-
bate systems are generated using the CatKit
software.[25] CatKit employs a graph representa-
tion of the surface atoms to enumerate mono- and
bi-dentate adsorption sites, where the latter are
defined by a neighboring node-edge pair of the
graph. For each adsorbate, a manual tagging of the
bonding atoms for mono- and bi-dentate adsorp-
tion motifs is required (see Table S3 in the SI).
CatKit then adds the adsorbates at the enumer-
ated adsorption sites by employing some simple
geometric procedures to produce good guesses for
the angles and bond lengths in the system. We
note that CatKit obviously does not generate all
possible adsorption motifs (which would be com-
putationally intractable), but only those that are
judged most plausible. This adds a human bias
into the generation of the database. Furthermore,
not all initial geometries generated are actually
stable, but could transform into other structures
during the DFT relaxation.

In order to overcome some of these limitations,
we added the following steps to our computational
workflow. During the DFT relaxation, we monitor
the graph representation of the system and assign
it to the following four cases. (i) if the graph rep-
resentation is unchanged, the data point is simply

added to our database (32.3 % of cases). (ii) if the
structure transforms into another graph which is
already covered in the CatKit-enumerated struc-
tures (28.4 % of cases), only the calculation with
the most favorable adsorption enthalpy is added to
the database to avoid duplicates. (iii) if the struc-
ture transforms into a non-valid graph, i.e. a graph
that is incompatible with our direct graph-based
ML model (e.g. adsorbate dissociation, surface
reconstruction) the calculation is discarded (23.4
% of cases). (iv) if the structure transforms into
a valid graph that was not enumerated by CatKit
(15.9 % of cases), the data point is added to the
database with updated initial graph representa-
tion and the new adsorption motif is tested also for
the other surfaces of interest. The latter case (iv)
as well as large adsorbates whose initial adsorp-
tion motifs cannot be well controlled by CatKit are
the source of all higher-dentate adsorption motifs
in our database (see examples in Fig. S3 in the
SI). Our workflow is implemented with AIIDA,[43]
which is a scalable computational infrastructure
providing advanced automation to allow interfac-
ing with external simulation software. In our case
this entails customized python scripts interfacing
with CatKit, the Atomic Simulation Environment
(ASE) software [44] and the Quantum Espresso
DFT code.

DFT computational details

The simple adsorbates database used here is taken
from Ref. [40] and [10]. For the DFT calculations
of the complex adsorbates database, the follow-
ing settings were used in full compliance with the
simple adsorbates database. We used the Quan-
tum ESPRESSO code [41] employing the Bayesian
error estimation functional with van der Waals
correlation (BEEF-vdW) [42] and ultrasoft pseu-
dopotentials. Pseudopotentials for Cu, Rh, Pd,
and Pt were generated using the ”atomic” code by
A. Dal Corso (v.5.0.2 svn rev. 9415) [45] and for
Co using the Vanderbilt code version 7.0.0 [46].
To relieve the interaction between the adsorbates,
we modelled the fcc(211) slab in a (3× 1) cell and
the fcc(111) slab in a (3 × 3) cell. In both cases
this corresponds to 9 atoms per atomic layer. The
CuCo(111) alloy surface is modelled in a (4 × 2)
cell and contains 16 atoms per layer. We used a
(4× 4) k-point grid for the pure metal slabs and a
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(3×3) grid for the CuCo alloy slab. All slabs con-
tained four atomic layers, where the bottom two
layers were kept fixed in their bulk-truncated posi-
tions, while the top layers and the adsorbates were
relaxed until the maximum force on each atom
fell below 0.05 eV/Å (cf. Fig. S1 in the SI). All
DFT calculations were carried out as periodic slab
calculations employing a vacuum region of 20 Å
perpendicular to the surface and a dipole correc-
tion. Spin polarization was taken into account for
the calculations involving Co. The cutoff energy
was set to 500 eV and 5000 eV for the orbitals, and
the charge density, respectively, and a Fermi level
smearing of 0.1 eV was used. The resulting adsorp-
tion enthalpies are formation energies referenced
to gaseous CH3OH, CO, and H2O.

The features that require DFT calculations
were obtained as follows. For the clean surfaces
involved in both the simple and complex adsorbate
databases, we first carried out a geometry relax-
ation as outlined above. The projected density of
states (PDOS) was calculated using the smearing-
free tetrahedron method and an energy spacing of
0.01 eV. We used a (14 × 14) k-point grid for the
pure metal fcc and bcc slabs, a (7 × 21) grid for
the SG225 fcc alloys, a (14×21) for the SG221 fcc
alloys, a (7 × 14) grid for the Co hcp slab, and a
(7×42) for the hcp alloy structures, except for the
CuCo(111) surface used in the complex adsorbate
database, where we used a (12 × 12) grid.

For the calculation of band moments, we inte-
grated empty bands up to the energy above the
Fermi level where the PDOS had fallen below a
value of 0.01 Å−3eV−1. The features involving the
density of states at the Fermi level were calculated
using a smearing of 0.1 eV in the PDOS calcula-
tion, and the PDOS was averaged over the interval
±0.1 eV around the Fermi level. For the calcula-
tion of adsorbate-specific features, we carried out
a structural optimization of the isolated adsorbate
positioned in a cubic supercell with a side length of
15.0 Å. We used a Fermi-level smearing of 0.01 eV
and the Brillouin zone integration was performed
using the Gamma point only.

Further details on ML models

The WWL-GPR model is compared to two other
ML models (SISSO and RBF-GPR) that do not
use graph representation, but input in vector form

with features of the clean surface and of the iso-
lated adsorbates. The features used in SISSO and
RBF-GPR are specific to the surface, site or adsor-
bate considered, where site-specific features are
calculated by averaging over the metal atoms to
which the adsorbate coordinates (clean surface
features) or the bonding atoms of the adsorbate
(isolated adsorbate features). The WWL-GPR
model also uses atom-specific features as node
attributes, for example, electronic properties of
individual surface atoms or features of the local
geometry of the clean surface and isolated adsor-
bate through Smooth Overlap of Atomic Positions
(SOAP) descriptors.[47] All details about the fea-
tures used in the three compared ML models
are provided in Section S2 in the SI and Section
S3 provides more information about each of the
models, including a more in-depth discussion of
hyperparameters.

It should be emphasized that the WWL-GPR
model leverages only features from the initial
guess geometry, specifically the graph connectiv-
ity, and electronic and geometric features calcu-
lated from the clean surface and isolated adsor-
bate. From a computational screening point of
view this is essential for keeping the computational
cost of model predictions low. The computation-
ally most intensive part of the model prediction is
the DFT calculation of the clean surface to obtain
the node attributes (e.g. d-band moments) for the
surface atoms. However, given that we target 41
different adsorbates in various possible adsorption
motifs for each surface, this is still a low cost per
ML prediction.

For SISSO, we previously used an approach to
target simple adsorbates where the free parame-
ters of the identified models were fitted to each
adsorbate separately.[10, 27]

A similar approach has been taken in most
other works targeting simple adsorbates.[11, 14,
48, 49]

In the present work we instead fit a sin-
gle model to all adsorbates, and the different
adsorbates are then instead distinguished from
each other via adsorbate-specific features such as
HOMO/LUMO energy levels.

Supplementary Information. Additional
details on DFT databases, primary features,
machine learning models, and kernel principle
component analysis are provided.
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