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Highlights 

 

 Comprehension of structurally complexed embedded sentences is correlated with individual alpha 

power attenuation during task but not with alpha power at rest. 

 These effects were localized in temporal-parietal brain regions known to be associated with 

language processing. 
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Abstract 

 

Alpha power attenuation during cognitive task performing has been suggested 

to reflect a process of release of inhibition, increase of excitability, and thereby 

benefit the improvement of performance. Here, we hypothesized that changes in 

individual alpha power during the execution of a complex language comprehension 

task may correlate with the individual performance in that task. We tested this using 

magnetoencephalography (MEG) recorded during comprehension of German 

sentences of different syntactic complexity. 

 Results showed that neither the frequency nor the power of the spontaneous 

oscillatory activity at rest were associated with the individual performance. However, 

during the execution of a sentences processing task, the individual alpha power 

attenuation did correlate with individual language comprehension performance. 

Source reconstruction localized effects in temporal-parietal regions of both 

hemispheres. While the effect of increased task difficulty is localized in both 

hemispheres, the difference in power attenuation between tasks of different 

complexity exhibiting a correlation with performance was localized in left temporal-

parietal brain regions known to be associated with language processing. 

Our results support the notion that in-task attenuation of individual alpha 

power is related to the essential mechanisms of the underlying cognitive processes, 

rather than merely to general phenomena like attention or vigilance. 
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1. Introduction 

 

The alpha band (8-12 Hz) typically forms the most stable and prominent peak 

in the EEG/MEG power spectrum (Berger, 1938; Schomer and Da Silva, 2012). 

These oscillations evidently play a major role in brain function at rest, as their power 

is changed, mostly attenuated, in the task-relevant brain regions during various 

movement or cognitive tasks, including finger tapping, driving, arithmetic 

calculations, and sentence comprehension (Gastaldon et al., 2020; Klimesch et al., 

1990; Kuhnke et al., 2017; Magosso et al., 2019; Mann et al., 1996; Meyer et al., 2013; 

Pfurtscheller, 1989; Van Schijndel et al., 2015; Vassileiou et al., 2018; Wang et al., 

2021). The power attenuation in the alpha band has also been shown to scale with task 

demand or engagement at the group level (Magosso et al., 2019; Wang et al., 2021). 

This phenomenon has been associated with cortical activation or release from 

inhibition due to the task (Klimesch, 2012; Meyer, 2018; Pfurtscheller, 2003). It has 

also been shown, at the individual level, that the alpha power at rest or immediately 

before the task correlates with task performance (Jones et al., 2010; Van Dijk et al., 

2008; van Ede et al., 2012), but evidence for such an individual relationship for the 

task-related power attenuation during task performance is scarce (Hilla et al., 2020). 

Therefore, the question remains whether the attenuation phenomenon is directly 

related to the essential mechanisms of the underlying cognitive processes, rather than 

merely to general phenomena like attention or vigilance that might be also present 

during resting periods in the same experiment. 

In order to contribute to the clarification of this question, we turn to the 

arguably most ‘human-like’ cognitive faculty, namely language. The ability to 

produce and understand language requires intense coordination of numerous cognition 

faculties, such as phonological perception, syntax processing, semantic association, 

working memory, attention, and motor control. It has already been shown that the 

alpha band power at rest is related to individual language abilities (Kwok et al., 2019). 

Specifically, larger alpha band power differences between eye-open and eye-close 

conditions was shown to be associated to lower language scores in young children.. 

Moreover, we have recently explored the alpha band power during a language 

training task with center-embedded German sentences at the group level (Wang et al., 

2021), and found training-related alpha power attenuation. Moreover, we also found 

                  



 

 

that the cortical (posterior superior temporal and adjacent parietal) alpha band power 

attenuation at the final embedding closure was significantly larger for double than for 

single embedded sentences. However, we do not yet know if the individual alpha 

power during task performance is predictive of the individual cognitive performance. 

In the present paper, we used the same data as in the previous study (Wang et 

al., 2021) to focus on the individual language performance prior to and independent of 

training and how it relates to the individual alpha power during task performance. We 

hypothesize that the difference in alpha power attenuation between language tasks of 

different complexity in task-relevant brain regions reflects the individual cognitive 

ability to handle the task, and hence might be associated with the observed 

performance. In particular, we examined the alpha power attenuation (at the 

individual peak frequency, determined at rest; see Methods) during the experimental 

task at different syntactic positions in the sentences, and the spatial localization on the 

cortex for the observed correlation effects.  

 

2. Materials and Methods 

As we are reusing the data from our previous study, many of the 

methodological details are already described elsewhere  (Wang et al., 2021). In the 

following, these aspects are presented as brief summary. 

2.1. Participants 

Thirty right-handed native German speakers (fifteen females) were enrolled in 

this study (mean age: 27, range from 20 to 34). Their reading span was 3.7 ± 0.9 

(mean ± SD).  No neurological diseases or hearing impairments were reported. 

Participants were naïve to the purposes of the experiment and gave written informed 

consent prior to the experiment. The study was approved by the ethics committee of 

the University of Leipzig (471/16-EK). 

2.2. Stimulus material  

Two types of German sentences with single and double hierarchical center-

embedding were auditorily presented (for examples, see Fig. S1). All sentences 

started with an introductory phrase followed by a relative clause initiated by a relative 

pronoun (e.g. dass / that). The beginning of each relative clause (brace) was labeled 

                  



 

 

with bxon while the final verb of it was labeled with bxoff to identify the same level of 

embedding. The place holder x represents the embedding level. The resulting 

structures were [seon [b1on [b2on … b2off] b1off] seoff] for single embedding, and 

[seon [b1on [b2on [b3on … b3off] b2off] b1off] seoff] for double embedding 

sentences, where seon/seoff represent sentence onset and offset, respectively. See also 

Fig. S1 & S4. 

2.3. Experimental procedures 

The experiment included four sessions carried out on four working days within 

one week. The stimuli were presented by the software ‘Presentation’ 

(www.neurobs.com). At each day, participants listened to 33 sentences of each 

sentence type (i.e., single and double embedded), while MEG was measured. Across 

all four days, each participant received an individual randomization of all 264 

sentences. None of the sentences was presented twice to the same participant. After 

each sentence, a content question was asked to test the understanding of the thematic 

role assignments (see Fig. S1 for examples). Each session comprised four blocks. 

Sentences were presented during the first three blocks. During the fourth block, 

resting-state MEG was recorded for at least 10 minutes. Participants were asked to 

close their eyes and stay awake.  

2.4. Behavioral data analysis 

Behavioral performance was measured through the accuracy of the 

participants’ responses to the question task. In contrast to our previous study, the 

single valued total performance accuracy of each participant was estimated by a 

simple mean across the 4 experimental days.  

2.5. MEG data acquisition and preprocessing 

After preprocessing, the data of the first three blocks (task sections) were 

epoched of 0.5 s length starting with the event triggers at b1on, b1off, b2on, b2off, 

b3on, and b3off (on for embedding‘s begin, and off for embedding‘s closure). Data of 

the fourth block (rest section, total 12min) were epoched into 36 trails of 20s length 

each to get a frequency resolution of 0.05 Hz for the determination of the peak 

frequency. After artifact rejection, the median value of number of valid trials was 34, 

ranging from a minimum of 6 to a maximum of 35.  

                  



 

 

2.6. Estimation of individual spontaneous peak frequency in sensor 

space  

The characteristics of the alpha peak (e.g., frequency and power) are specific for each 

individual (Furman et al., 2018; Grabot and Kayser, 2020; Gulbinaite et al., 2017; 

Horschig et al., 2014; Katyal et al., 2019; Migliorati et al., 2020; Minami et al., 2020; 

Sadaghiani and Kleinschmidt, 2016; Smit et al., 2006). Hence, the somewhat non-

univocal picture on the relationship between individual alpha power dynamics and 

task performance might also be rooted in the insufficient capture of the individual 

oscillations by using the classical broad frequency band (about 8-12 Hz). We 

therefore decided to first determine the individual alpha frequency from the pre-

processed resting state MEG, and base our further analysis on the power at that 

frequency. 

For each subject on each day, the power spectrum density (PSD) for each 

sensor was estimated using the multi-taper method via the function psd_multitaper 

from the MNE-python v.0.16 (Gramfort et al., 2013) (using default setup, except 

normalization = ‘full‘). The PSDs for each 20s-length trial were transformed to 

logarithmic scale (i.e., in dB) and then averaged across trials and sensors. After 

averaging, the 1/f pink noise background was estimated and subtracted from each 

average grand PSD. To estimate the 1/f trend line in the PSD, the PSD was first 

cropped to the frequency range 1 Hz to 120 Hz, which was transformed to logarithmic 

scale (base 10). Then, the PSD were fed to a first-degree polynomial fit function (in 

Python: use numpy.polyfit to get the polynomial parameters and use numpy.polyval to 

recover the trend line). In order to eliminate the impact of the local peaks in the PSD 

onto the fitting, we used an interactive procedure (see Fig. S2). We first estimated the 

trend line, then removed the parts in the PSD above that trend line (Fig. S2C), and 

then estimated the new trend anew from the remaining data (Fig. S2D). We repeated 

this procedure, until the root mean square error (RMS) between two subsequent trend 

lines was less than 0.005. The detrended PSDs for each participant and each training 

day are shown in Fig. S3. The global maxima within the band 7-29 Hz were identified 

as the individual peak frequency. Those participants with individual peak frequency 

higher than 13 Hz (thus in the beta range) were removed from further analysis. This 

resulted in the removal of 6 participants out of the 30 participants.  The motivation for 

this strategy was that these very dominant beta peaks were also very wide, with their 

                  



 

 

flanks overlapping with, and therefore potentially contaminating, the much smaller 

alpha peaks. Additional analyses using only the global maxima between 7 and 13 Hz 

and not excluding any subjects yielded equivalent significant results, albeit with 

generally lower correlation values. 

2.7. Estimation of alpha power during the task in source space 

For source localization, we used individual single shell volume conductor 

models and source models constructed from the individual T1-weighted MR data. We 

utilized Freesurfer 6.0.0 to segment the inner skull as well as the cortical surface. 

Finally, the cortical surfaces were labeled according to Glasser et al. (2016). Based on 

the rationale that activity related to cognitive performance should be sensitive to task 

difficulty, we focus on those left temporal-parietal regions (A4, A5, PSL, STV, 

TPOJ1-3, PF, PFm, and PGi, labels according to Glasser et al, 2016), which in our 

previous analysis (Wang et al., 2021) had shown significant sentence complexity 

effects for the alpha power (see Fig. 3A). 

To estimate the alpha power in source space, we used the LCMV beamformer 

method (Van Veen et al., 1997) via the function make_lcmv by MNE-python v.0.16. 

The reconstructed current density was restricted to being perpendicular to the cortical 

surface. The noise covariance matrix was computed by the mean noise covariance 

from the empty room measurements obtained before and after each recording session. 

A data covariance matrix was computed separately for each day based on the whole 

sentence data. The PSD (in dB) of each source was estimated using the multi-taper 

method (psd_multitaper, data zero-padding to 2 s), separately for each subject, ROI, 

sentence type, and day as mean over all presented sentences. The 1/f pink noise 

background was estimated and subtracted from each average PSD separately. To 

estimate the spectral power of the individual peak frequency at task, we averaged the 

spectral power of the two frequency bins, which define the interval around the 

individual peak frequency at rest. Finally, relative power attenuation was calculated 

by normalizing to the respective b1on power value separately for each subject, ROI, 

sentence type, and day. Hence, all subsequently reported spectral power values in task 

conditions are relative power attenuations with respect to b1on. 

For computing the individual frequency power in Yeo‘s 17-networks (Yeo et 

al., 2011; Fig. 5A), we first morphed the individual source space to the fsaverage 

                  



 

 

space via the source morph function in MNE-python v.0.16 (by setting fsaverage 

spacing „ico5“). The remaining steps were as same as for using the Glasser‘s ROIs. 

 

3. Results 

3.1. Individual resting-state peak frequency  

The individual peak frequency was estimated from the resting-state recordings 

at sensor level (for more details, see Materials and Methods Section 2.6.). We first 

estimated it for each subject on each day and then averaged it across the four days. 

The overall task performance was calculated for each subject by averaging the 

accuracy scores of the four experimental days, including, both, double and single 

embedded sentences.  We found no statistical difference among the estimated 

individual peak frequencies of the four experimental days (Friedman‘s test Q = 0.49, 

p = 0.92; Fig. 1A). We also found no significant association between the 4-day-

average individual peak frequency and the total performance accuracy (Spearman‘s 

correlation, r = 0.31, p = 0.14; Fig. 1B). 

Second, we examined the relationship between the power at the individual 

peak frequency during rest (average across four days) and the total performance 

accuracy. The power was also first estimated for each subject on each day and then 

averaged across the four days (Fig. 2C). There were no detectable power differences 

between the four experimental days (Friedman‘s test Q = 23.50, p = 0.4839; Fig. 2A). 

We found no clear association between the (average) power and the performance 

accuracy (Spearman‘s correlation, r = 0.01, p = 0.96; Fig. 2B). 

                  



 

 

 

 

Figure 1. Relationship between the individual spontaneous peak frequency and the 

language task performance. (A) Boxplot of the participants’ individual spontaneous 

peak frequencies on each training day. The boxes show the interquartile ranges that 

stretch from the first quartile (25
th

 percentile) to the third quartile (75
th

 percentile) 

with the black line marking the median (50
th

 percentile). The maximal whisker range 

is 1.5 times the interquartile range. Note that the displayed whisker length depends on 

values within whisker range. Diamonds represent outliers, that is, values outside the 

whisker range. (B) Scatter plot showing the correlation between the total performance 

accuracy and the spontaneous peak frequency, both averaged over experimental days.  

 

 

Figure 2. Relationship between the power of individual spontaneous peak frequency 

during rest and language task performance. (A) Boxplot of participants’ individual 

spontaneous peak frequency power for each training day (for details, refer to Fig. 1). 

(B) Scatter plot showing the correlation over participants between the total 

performance accuracy and the average spontaneous peak frequency power. Total 

                  



 

 

performance accuracy was calculated by averaging the accuracy scores of the four 

experimental days, including, both, double and single embedded sentences.  

3.2. Relationship between in-task alpha power and language performance  

Average time-frequency representations as well as alpha power over the entire 

sentence length are shown for both sentence types in Fig. S4. Note that the sentences 

were of different lengths, and so were the distances between adjacent syntactic 

positions. Therefore, the individual time-frequency spectra had to be piecewise scaled 

prior to averaging. 

We examined the power at the individual alpha peak frequencies (as 

determined during rest, see above) when participants were hearing the sentences, and 

tested its relationship with the language task performance at single subject level. We 

expected that the difference in power attenuation between the double embedded and 

single embedded sentences would reflect the subjects’ ability to process the sentences. 

To test this hypothesis, we focused on the brain regions (Fig. 3A), for which our 

previous study (Wang et al., 2021) found a significant difference in the alpha power 

(8-12 Hz) attenuation between the double and single embedding conditions at the final 

closure of the embedding structure (b1off; for the meaning of the trigger point labels 

b1on, b1off, b2on, b2off, see Section 2.2 and Fig. S1 & S4). We first examined, 

whether by using the individual resting-state peak frequency, we can replicate our 

previous result obtained with the broad alpha band (sentence effect: general power 

attenuation difference between double and singled embedded sentences). In Fig. 3B 

we show the power decrease at the individual peak frequency at b1off (b1off-b1on) for 

each sentence type and each day. A non-parametric ANOVA (Wobbrock et al., 2011) 

for the factors sentence (double vs. single) and day (1 through 4) yielded only a 

significant main effect for the factor sentence (F = 18.95, p < 0.00003), which is in 

alignment with our previous report using broad-band alpha band 8-12 Hz (Wang et al., 

2021). Averaged across all four days, for both types of sentences, the alpha power 

decreases when sentence unfolds (see also Fig. S4). The difference between the power 

attenuation between sentence types increased over the sentence and was most 

pronounced at b1off (Fig. 3C). The power attenuations at b1off for single and double 

embedded sentences were strongly correlated (Spearman‘s correlation r = 0.84, p < 

0.0000004; Fig. 3D).  

                  



 

 

Most importantly, as hypothesized, at b1off, the alpha power attenuation 

difference between single and double embedded sentences was correlated with the 

individual task performance (Spearman‘s correlation r = -0.70, p = 0.0004; Fig. 3E): 

participants who showed a larger power attenuation difference between the two 

sentence types at their individual peak frequency achieved better overall accuracy. 

Moreover, those participants, who showed a larger power attenuation for the double 

embedded sentences also performed better (Spearman‘s r = -0.59, p = 0.016 see Fig. 

3E). 

When using the classical frequency band (8-12 Hz, as used in (Wang et al., 

2021)) instead of the individual peak frequency, the by-subject correlation between 

b1off power attenuation difference (double vs. single) and the performance reduced to 

r = -0.50 (Spearman‘s correlation, p = 0.0049), and the correlation between the b1off 

power attenuation for double embedding and the performance dropped to r = -0.28 

(Spearman‘s correlation, p = 0.13; see Fig. S5).  

                  



 

 

 

                  



 

 

Figure 3. Relationship between the power attenuation at individual peak frequency 

during task and the language task performance. (A) Pre-selected ROIs that were 

reported to show significant power attenuation difference between double- and single 

embeddings at the final closure of the embedded structure in Wang et al., 2021. (B) 

Boxplot of the individual alpha power attenuation for each sentence type and each day. 

The individual alpha power attenuation was estimated by the power of the individual 

peak frequency at the final closure of the embedded structure (b1off) minus the power 

at the start of the embedded structure (b1on). (C) Four-days-average individual alpha 

power attenuation for each sentence type at different openings and closures of the 

embedded structure. Points show the mean value of the thirty participants, vertical 

lines show the standard error. The power of b1on (opening of the embeddings) was 

used as baseline for the other positions. (D) The individual alpha power attenuations 

at the final closures (b1off) for double and single embedded sentences were strongly 

associated (Spearman‘s correlation, p = 3.1710
-7

). (E) The power attenuation 

differences between double and single embedded sentences at the individual alpha 

frequency at the final closure were associated with the individual performance 

accuracy (Spearman‘s correlation r = -0.70); individual peak frequency power 

attenuation for double embedded sentences was associated with the performance 

accuracy (Spearman‘s r = -0.59). (F) Permutation-test of the association between the 

individual alpha power attenuation differences (double vs. single embedded sentence) 

at the final closure and the individual task performance. The power attenuations of the 

single as well as the double embedded sentences were permuted 5000 times. The 

mean of the randomized Spearman‘s correlation was 0.00 and the standard deviation 

was 0.21. The probability of appearance of a correlation value less than r = -0.7 was 

0.0004. (G) Same as F for double embedded sentences (mean correlation 0.00, 

standard deviation 0.20, probability of r < -0.59 was 0.016). 

 

3.3. Temporal exploration: association of alpha power attenuation and language 

performance at different embedding levels 

Fig. 4A shows the Spearman‘s correlation between the total performance accuracy 

and the individual peak frequency power attenuation (i.e., with respect to b1on) for 

both sentence types at different positions of the embedded structure. Fig. 4B shows, at 

individual peak frequency, the power attenuation difference between the two sentence 

                  



 

 

types at equivalent positions: innerOn/innerOff and outerOn/outerOff 

(opening/closure of the innermost/outermost embedded structures). After FDR-

correction, we found several significant correlations along the processing of the 

double embedded sentences (Spearman‘s correlation, b3on: r = -0.46, b3off: r = -0.55, 

b2off: r = -0.57, b1off: r = -0.59, FDR p<0.05; Fig. 4A). In addition to the power 

attenuation difference at the final embedding closure, which were already reported 

(Fig. 3E), we found a performance correlation with the power attenuation difference 

at the first embedding closure (innerOff; Spearman‘s r = -0.47 , FDR p<0.05; Fig. 4B). 

 

Figure 4. Association of the individual peak frequency power attenuation and the 

language performance at different positions of embedded structures. (A) 

Spearmans‘ correlation between the individual peak frequency power attenuation 

(with respect to baseline b1on) for double and single embedded sentences and the 

total performance accuracy. (B) Spearmans‘s correlation between the individual peak 

frequency power attenuation difference (double-single) and the total performance 

accuracy at different syntactically equivalent position. Position labels: outerOn: b1on 

for single and double; innerOn: b2on for single and b3on for double; innerOff: b2off 

for single and b3off for double; outerOff: b1off for single and double.  

 

3.4. Spatial exploration: association of alpha power attenuation and language 

performance at the functional network level 

We explored the correlation between the individual peak frequency power 

attenuation and the power attenuation difference (double vs. single embedding) of the 

                  



 

 

individual peak frequency at b1off and the total performance at the level of the entire 

cortex. In order to achieve maximum specificity to functional networks, we used the 

Yeo‘s 17-networks (Yeo et al., 2011) to define the brain ROIs (Fig. 5A). The power 

attenuation difference in the left as well as right temporal-parietal network (including 

the anterior and posterior superior temporal gyrus, Fig. 5A bright blue ROI) was 

significantly correlated with task performance (Spearman’s r = -0.62 for left side and 

Spearman‘s r = -0.61 for right side, FDR corrected p<0.05; Fig. 5B&C). Also, we 

found the power attenuation for double embedded sentence in the left and right 

temporal-parietal network as well as some adjacent networks (in particular in the right 

hemisphere: default networks A&B and control network B) was significantly 

correlated with the performance (FDR corrected p<0.05; Fig. 5D).  

Additional information about the spatial exploration of the correlation between 

the individual peak frequency power attenuation at the final closure of the embedded 

structure and the language performance based on the Glasser atlas (Glasser et al., 

2016) can be found in Fig. 6. We obtained similar results as for the Yeo’s 17-

networks: in the left anterior and posterior superior temporal gyri, the power 

attenuation difference between double and single embedded sentences was correlated 

with the language performance, while for the right hemisphere, we found a significant 

effect in the middle superior temporal gyri. Moreover, we found that in the right 

middle and posterior superior temporal as well as inferior frontal gyri, the power 

attenuation for double embedded sentences was correlated with the performance. This 

is also in agreement with the results obtained from the Yeo‘s 17-networks: in the right 

hemisphere, the default networks A&B and control network B, which are related to 

the several regions in the temporal, parietal, and frontal lobes, were associated with 

the power attenuation for double embedded sentences (Fig. 5D).  

 

                  



 

 

 

                  



 

 

Figure 5. Association of the individual peak frequency power attenuation and the 

language performance at the functional networks level. (A) ROIs of Yeo‘s 17-

networks. The temporal parietal network is painted in bright blue. (B) Individual peak 

frequency power attenuation difference (double minus single embeddings) at the final 

closure of the embedded structures (b1off) in the left and right temporal-parietal 

network was significantly associated with the performance (Spearmans‘ r = -0.62 and 

r = -0.61, FDR corrected p<0.05). (C)&(D) Spatial distribution of Spearman‘s 

correlation between individual peak frequency power attenuation difference (double 

minus single embeddings; C) as well as power attenuation of double (D) at the final 

closure of the embedded structures (b1off) and the individual performance accuracy 

on Yeo‘s 17-networks.  

 

 

 

Figure 6. Association of the peak frequency power attenuation and the language 

performance with the Glasser atlas. Spearman‘s correlation were calculated between 

the total performance accuracy and the (i) power attenuation difference (double vs. 

single embeddings) at the final closure of the embedded structure (b1off) as well as 

the power attenuation at the final closure for (ii) double and (iii) single embedded 

sentences for 360 ROIs. FDR-correction was based on all 1080 tests. Significant level 

is p<0.05 (A) ROIs that showed the association between power attenuation difference 

                  



 

 

(double vs. single embeddings) and the total performance accuracy. (B)&(C) ROIs 

that showed the association between power attenuation for double embedded 

sentences and the total performance accuracy. 

  

4. Discussion 

In this study, we investigated the association between individual language 

comprehension performance and alpha power under resting-state and in-task 

conditions. At rest, we did not find any significant changes over the course of the 

experiment nor any correlation with language performance for alpha power or 

individual alpha peak frequency. 

Next, we turned to the MEG data acquired during task, by studying the alpha 

power attenuation (at the individual peak frequency determined at rest). We tested our 

hypothesis that the individual power attenuation over the course of each sentence 

predicts the individual language comprehension performance. As candidate areas, we 

first used those left-hemispheric temporo-parietal regions that already showed a group 

effect of sentence complexity in the alpha band (Wang et al., 2021). Indeed, we found 

correlations for, both, the power attenuation observed for the more complex sentences 

(double embedding) and the difference in power attenuation between the two 

complexity levels.  

Interestingly, the subsequent whole-brain spatial analysis, using either Yeo’s 

17-networks or Glasser’s atlas, confirms that performance correlations with the 

difference between the power attenuations are present in a superior temporal and 

inferior parietal network that is very similar to the one reported in Wang et al., 2021. 

However, it turns out that not only the left hemispheric network, but also the right 

hemispheric homologue show this correlation.  

Moreover, the whole brain analysis also revealed that for the double embedded 

sentences, the performance correlated with the alpha power attenuation in the left 

hemisphere for similar regions as for the double-single power attenuation difference, 

but in the right hemisphere for more extended temporal, parietal, and even frontal 

areas (see especially Fig. 6). 

In summary, the following observations underscore the functional role of 

alpha oscillations in language processing: (i) individual performance was correlated 

                  



 

 

with alpha power attenuation during task but not with alpha power at rest, and (ii) 

these effects were localized in left temporal-parietal brain regions usually associated 

with language processing and, even more pronounced, in their right hemisphere 

homologues. 

 Cortical alpha activity has been proposed to play an important role in 

excitability regulation mechanisms underlying various human cognitive abilities, 

including memory, attention, perception, etc. Task irrelevant regions exhibit higher 

alpha power reflecting inhibition, while in task relevant regions alpha power is 

reduced, reflecting increased excitability (Foxe and Snyder, 2011; Jensen and 

Mazaheri, 2010; Klimesch, 2012; Klimesch et al., 2007). 

At rest, such an increased excitability could reflect a general predisposition of 

a person towards cognitive performance. In contrast, if observed during task within 

specific task relevant brain areas, it would index processes related to the particular 

task or experimental situation. Alpha power at rest has been found to be positively 

correlated with task performance in cognitive control (Mahjoory et al., 2019) and 

episodic memory (Sargent et al., 2021) tasks, but negatively correlated with language 

skills (Kwok et al., 2019). This somewhat non-univocal picture suggests that for 

different experimental situations, different levels of pre-inhibition and disinhibition of 

cortical areas are beneficial. On the other hand, during the actual task and within the 

task relevant areas, we would expect a clear attenuation of alpha, which scales with 

the actual engagement with the task reflected by task performance. There are a 

number of previous studies showing general alpha attenuation during task within task 

relevant areas (Hilla et al., 2020; Magosso et al., 2019; Wang et al., 2021). These 

works show that the alpha oscillation power is related to the specific task demand. 

This is reflected in our results by the finding that the individual alpha power 

attenuation is stronger for the more complex sentences and increases with increasing 

cognitive (including working memory) load along the sentence (Fig. 4). On the other 

hand, evidence for a correlation between alpha power modulation in specific task-

relevant brain areas and individual task performance is scarce. By clearly 

demonstrating this in our study, we show that in-task alpha power attenuation actually 

reflects processes that are involved in successful task completion. This is further 

corroborated by the fact that also the correlation between alpha power and task 

performance seems to build up over the course of the sentence and therefore increase 

with cognitive load (Section 3.3). 

                  



 

 

Along with the idea that the association of the alpha power and performance 

may indicate the task engagement of the brain regions, our whole brain results based 

on Yeo’s 17-networks suggest that the temporal-parietal network plays a crucial role 

in processing the embedding. We further cross-checked and refined this by exploring 

the association using the whole 360 ROI brain parcellation from the Glasser atlas and 

found a particularly high association between power attenuation difference (double vs. 

single) and performance in the superior temporal gyrus (Fig. 6). This is in alignment 

with the literature showing that the posterior superior temporal gyrus plays an 

important role in processing embedded structures (Friederici, 2011; Friederici et al., 

2006; Kinno et al., 2008; Röder et al., 2002). Regarding the findings in the two 

homologue networks in the left and right hemispheres, we infer that even though the 

areas in the left hemisphere may form the classical language network (Friederici, 

2011; Hickok and Poeppel, 2004; Poeppel et al., 2012; Vigneau et al., 2006), 

homologue areas in the right hemisphere may increasingly engage when task demands 

are high as a result of enhanced working memory loads (Fridriksson and Morrow, 

2005). Moreover, it has been shown that increased difficulty in language learning 

tasks leads to increased involvement of right hemisphere areas (Chen et al., 2021; Qi 

et al., 2019). This would explain why we find such widespread right hemispheric 

effects specifically for the double embedded sentences. However, why did we not find 

a similar asymmetry for the double-single difference and no significant results for the 

single condition? We may assume that the performance correlation of the alpha power 

does exist in both complexity conditions, but is much weaker for the single 

embedding sentences, such that escapes detectability. Assuming that the main sources 

of variance are random (i.e., not correlated between complexity conditions), the 

correlation for the difference double-single must be weaker than that for the double 

condition alone. Therefore, it may only be detected in areas with stronger attenuation. 

These might be the core language areas shown in Fig. 6A,C and Fig. 5A (blue 

network). For the double condition, we have the strongest correlation, which is also 

seen in additional areas, especially in the right hemisphere. 

  

5. Conclusion 

In summary, in this present paper, we used a language comprehension 

experiment to demonstrate that by manipulation of the task complexity, the alpha 

                  



 

 

power attenuation in the task relevant brain regions, reflect the increase of the 

cognitive load and predict the individual performance outcome. Individual alpha 

power could be a useful biomarker to highlight the relevant brain regions and monitor 

the brain states during the cognitive processing.     
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