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Gravitational waves (GWs) create correlations in the arrival times of pulses from different pulsars. The
expected correlation μðγÞ as a function of the angle γ between the directions to two pulsars was calculated
by Hellings and Downs for an isotropic and unpolarized GW background, and several pulsar timing array
(PTA) collaborations are working to observe these. We ask: given a set of noise-free observations, are they
consistent with that expectation? To answer this, we calculate the expected variance σ2ðγÞ in the correlation
for a single GW point source, as pulsar pairs with fixed separation angle γ are swept around the sky. We
then use this to derive simple analytic expressions for the variance produced by a set of discrete point
sources uniformly scattered in space for two cases of interest: (1) point sources radiating GWs at the same
frequency, generating confusion noise, and (2) point sources radiating GWs at distinct nonoverlapping
frequencies. By averaging over all pulsar sky positions at fixed separation angle γ, we show how this
variance may be cleanly split into cosmic variance and pulsar variance, also demonstrating that
measurements of the variance can provide information about the nature of GW sources. In a series of
technical appendices, we calculate the mean and variance of the Hellings-Downs correlation for an arbitrary
(polarized) point source, quantify the impact of neglecting pulsar terms, and calculate the pulsar and cosmic
variance for a Gaussian ensemble. The mean and variance of the Gaussian ensemble may be obtained from
the previous discrete-source confusion-noise model in the limit of a high density of weak sources.
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I. INTRODUCTION

The idea of observing low-frequency gravitational waves
(GWs) via their influence on radio pulsar arrival times first
appears in work of Sazhin [1]. Subsequently Detweiler [2]
described the improvements obtained by cross-correlating
data from multiple pulsars. Such detectors, called “pulsar
timing arrays” (PTAs), have been studied in detail by many
authors [3–5]. Currently, a number of groups are working to
detect gravitational waves in the nano-Hz regime with these
techniques [6–8].
The basic idea is as follows. Select a pulsar which is a

very stable clock, emitting pulses at uniform intervals in its
rest frame. Determine the arrival times t of the pulses at the
solar system barycenter (SSB) (calculated based on the
arrival times at Earth [9,10]). In the absence of GWs, those
pulses would have uniform time offsets from each other,
whereas in the presence of a GW, the offsets Δτ from

regular arrival times are nonzero. These form a time series
of timing residuals ΔτðtÞ that vary at the frequency of the
GW, with an amplitude proportional to the strain amplitude
of the GW.
In 1983, Hellings and Downs [11] predicted an important

property of pulsar timing residuals, which is central to their
detection with PTAs. The timing residuals from different
pulsars are correlated, in a way that depends upon the angle
γ between the lines of sight to the pulsars as viewed from
Earth. This is “on the average” because the correlation
depends upon the actual positions of the pulsars on the sky,
even if the angle between them is fixed. A clear explanation
of these effects may be found in [12]. To observe this, one
averages the product of the timing residual time-series over
years or decades to form a correlation

ρ ¼ Δτ1ðtÞΔτ2ðtÞ; ð1:1Þ

where the overbar denotes a time average, and 1 and 2 label
the pulsars. The expected value of ρ vanishes if the timing
residuals are uncorrelated, and is nonzero if they are
correlated.
The function which describes the behavior of the average

or expected correlation hρi as a function of the angle γ
between the directions to the two pulsars is called the
Hellings-Downs curve μuðγÞ, where the subscript means
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“unpolarized.” This function is given in Eq. (2.4) and
illustrated in Fig. 1. On the average, the expected corre-
lation is largest when the two pulsars are along the same
line of sight, and (for example) vanishes when the two
pulsars are separated by about 50°. A convincing PTA
detection of GWs is expected to show this pattern of
correlation among the different possible pulsar pairs [13].
Here, we ask: how close to this expectation would the

observed correlations lie, in the absence of experimental
noise or errors? Simulations have demonstrated that fluc-
tuations away from the mean can be large [14,15]. These
fluctuations away from the mean have two contributions: a
“pulsar variance” and a “cosmic variance.” The first, which
can in principle be measured and removed, reflects the
variations in correlation between pairs of pulsars at differ-
ent sky locations, but separated by the same angle γ. The
second cannot be directly observed but can be inferred.
It arises because GW sources radiating at overlapping
frequencies generate interference patterns, whose average
over pulsar pairs differs from the Hellings-Downs curve.
Previous work on estimating the variance relies on

“Gaussian ensemble” techniques which were developed
for the detection of audio-frequency GW stochastic back-
grounds with interferometric detectors [16,17]. These meth-
ods were extended to PTAs in [18,19], and used to estimate
the variances in [20–22]. In contrast, our calculations use a
finite collection of discrete sources and smoothly transition
from one source to many. Similar models have been
employed in the context of audio-frequency GW stochastic
backgrounds [23]. If we let the density of sources approach
infinity while keeping the mean-squared GW amplitude at
Earth fixed, then our discrete source models reproduce the
results of the Gaussian ensemble (see Appendix C 3).
One of the most important contributions of this paper is a

straightforward method to separately identify the pulsar and
the cosmic variance contributions to the total variance. The
distinction is relevant, because observations with access to
enough low-noise pulsars, uniformly distributed around the

sky, could reduce the impact of pulsar variance as much as
desired, by averaging the Hellings-Downs correlation over
many pairs of pulsars separated by the same angle. However,
the effects of cosmic variance cannot be removed. Our
calculational technique to distinguish these effects corre-
sponds closely to experimental practice. To compute the
cosmic variance, we average the correlation over pulsar pairs
separated by the same angle, before the first and second
moments of the correlation are calculated with ensemble
averages. The same technique can also be applied to the
traditional Gaussian ensemble (see Appendix C 5).
Simulations modeling sources in the nearest few hundred

Mpc to Earth suggest that these can cause significant
deviations from isotropy [15,24]. It has been argued that
thesewill not lead to substantial variations from theHellings-
Downs curve [13,25]. Our findings tend to support this
conclusion for the mean of the correlation, but not for the
variance, which is also an observable quantity. In this sense,
the predicted variance of the Hellings-Downs curve contains
additional information about the nature of the sources.
A brief outline of the paper is as follows. In Sec. II, we

present and discuss pulsar variance for a single unpolarized
point source, neglecting pulsar terms. In Sec. III, we show
how those single-point results can be used to estimate the
variance for a large collection of point sources, based on a
simple model for the ensemble of sources, also including
pulsar terms. As a simple example of the calculation
technique (unrelated to PTAs) we calculate the expected
value and variance of the GWenergy density. In Sec. III A,
we consider point sources which are all radiating at the
same GW frequency, resulting in confusion noise, and in
Sec. III B, we consider point sources radiating at distinct
frequencies. Finally, in Sec. IV, we show how these
variances can be cleanly split into pulsar variance and
cosmic variance. This is followed by a short Conclusion.
The paper relies on detailed calculations given in a series

of technical appendices, which are referenced throughout.
In Appendix A, we calculate the mean and variance of the
Hellings-Downs correlation for a general GW point source
and explicitly demonstrate that the “pulsar average” over
three variables is equivalent to the “GW sky direction”
average over two variables. As an example, including Earth
terms only, we calculate the mean and variance for a binary
inspiral GW source model (which is polarized if the orbit is
not face-on or face-off) and its population average.
In Appendix B, we examine the effects of the pulsar

terms on the mean and variance of the Hellings-Downs
correlation. These do not affect the mean, but for sources
with slow evolution they increase the variance by a factor of
four. As an example, we calculate the mean and variance
for a nonevolving (single frequency) binary inspiral GW
source model, and its population average.
In Appendix C, we employ the standard Gaussian

ensemble from [17]. We first estimate the importance of
the pulsar terms in the Hellings-Downs correlation. We
then compute the total variance (one pulsar pair) and the

FIG. 1. The Hellings-Downs correlation mean hρi ¼ μuðγÞ and
standard deviation Δρ ¼ σuðγÞ for a single unpolarized point
source with the pulsar term neglected, from Eqs. (2.4) and (2.6).
The dashed lines show a �1σu range about the mean.
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cosmic variance (many pulsar pairs) of the Hellings and
Downs correlation for the Gaussian ensemble. We also
compute the variance of the GW energy density. These
Gaussian ensemble results are limits of our discrete-source
confusion-noise ensemble results from Secs. III A and IV.
Finally, we derive the cosmic variance as a harmonic sum.
Appendix D is the first of three in which we carry out

the integrals needed to obtain the second moments of the
Hellings-Downs correlation. Appendix D does the unpo-
larized case corresponding to the “I” term in the Stokes
parameters. Appendix E does the polarized case corre-
sponding to the “Q” Stokes parameter, and Appendix F
does the cross term.
Appendix G calculates the Hellings-Downs two-point

function μðγ; βÞ and its second moment μ̃2ðγÞ with respect
to β.
Notes on terminology and notation:
(i) The term “Hellings-Downs correlation” refers to

correlations among pulsar timing residuals, which
might or might not follow the “Hellings-Downs
curve” μuðγÞ.

(ii) Correlations between pulsar timing residuals or
redshifts are denoted by ρ, and we use μ and σ2

for the mean and variance of ρ. These symbols are
used for general purposes, for specific models or
systems, or for the Universe as a whole.

(iii) In contrast, the expressions μuðγÞ, σ2uðγÞ, σ2pðγÞ,
σ2cðγÞ, μðγ; βÞ and μ̃2ðγÞ are used for specific mean
and variance functions which are calculated in the
Appendix and given in Eqs. (D29), (D37), (E8),
(F2), (G5), and (G11).

(iv) Angle brackets hQi indicate the average or expect-
ation value of a function Q, with respect to certain
variables. This is always normalized so that h1i ¼ 1.
If unclear from context, we add a subscript after the
right-hand bracket to indicate the type of averaging.

(v) Three-vectors are indicated in boldface x; spatial
indices a, b, c and d denote vector or tensor
components. For these indices, we adopt the
Einstein summation convention.

(vi) Indices A; A0;… denote one of two orthogonal GW
polarizations “þ” and “×”. For these, repeated
indices are not summed.

(vii) We use fixed Cartesian coordinates centered at the
SSB with x̂; ŷ; ẑ constant unit-length vectors along
three orthogonal directions. Time t is that of a clock at
rest at the SSB. Since the distance from Earth to the
SSB (which is located near the Sun, about 500 seconds
from Earth) is much less than the GWwavelengths or
other distance of interest here (years tomillenia), quan-
tities evaluated at the SSB are called “Earth” terms.

(viii) Unit vectors on the two-sphere are written Ω.
(ix) The angles θ ∈ ½0; π� and ϕ ∈ ½0; 2πÞ are conven-

tional spherical-polar coordinates on the two-sphere,
where θ is the angle down from the z-axis and ϕ is

the angle counterclockwise from the x-axis after
projection into the x–y plane.

(x) Indices j, k, l, and m in the range 1; 2;…; N
label GW sources. For these, repeated indices are
not summed.

(xi) The two pulsars with correlated pulse arrival times or
redshifts are labeled “1” and “2” and are at distances
L1 and L2 from Earth. Unit vectors pointing to them
are p1 and p2, and we use γ ∈ ½0; π� for the angle
between them on the sky: cos γ ¼ p1 · p2.

(xii) Some calculations incorporate a variable χ which is
set to unity to properly incorporate pulsar terms, or
set to zero to neglect pulsar terms.

(xiii) Unless indicated, we use units in which the speed of
light c ¼ 1. We assume that GWs also propagate
at this speed, since observations demonstrate
that the fractional difference is at most a few parts
in 1015 [26–28].

II. MEAN AND VARIANCE OF THE
HELLINGS-DOWNS CORRELATION FOR
ONE UNPOLARIZED GW POINT SOURCE

Here, we briefly describe the mean and variance of the
Hellings-Downs correlation for a single unpolarized point
source, which are computed in Appendix D and used
throughout the paper. In this section, we neglect pulsar terms.
Hellings and Downs calculate the effect (on pulse

redshift or timing residual) from a plane GW with unit
amplitude traveling in direction Ω. For a wave with
polarization A ¼ þ or A ¼ ×, this effect is proportional
to the antenna pattern function

FAðΩÞ ¼ 1

2

papb

1þΩ · p
eAabðΩÞ; ð2:1Þ

where p is a unit-length spatial vector pointing from
Earth to pulsar, and the eAabðΩÞ are a pair of normalized
orthogonal spin-two polarization tensors, defined in
Eq. (D6). Clear derivations of these equations starting
from first principles may be found in Appendixes A and B
of Ref. [18], noting the redshift sign correction in [29].
The correlation between two pulsars (subscripts 1 and 2)

summed uniformly over both GW polarizations is

ρ ¼ Fþ
1 ðΩÞFþ

2 ðΩÞ þ F×
1 ðΩÞF×

2 ðΩÞ: ð2:2Þ
The Hellings-Downs curve [[11], Eq. 5] is obtained by
averaging this correlation over the directions of the GWs.
We use angle brackets to denote this uniform average over
directions: if QðΩÞ is any function of direction, define

hQi ¼ 1

4π

Z
dΩQðΩÞ

¼ 1

4π

Z
π

0

sin θ dθ
Z

2π

0

dϕQðθ;ϕÞ: ð2:3Þ
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If we average the correlation ρ of Eq. (2.2) in this way, we
obtain the Hellings-Downs curve

μuðγÞ ¼ hρi

¼ 1

4
þ 1

12
cos γþ 1

2
ð1− cos γÞ log

�
1− cos γ

2

�
; ð2:4Þ

where γ is the angle between the lines of sight to the two
pulsars cos γ ¼ p1 · p2. A detailed calculation is given in
Appendix D; this result is obtained in Eq. (D29) and is
plotted in Fig. 1.
Note that we follow the Hellings-Downs normalization

convention μuð0Þ ¼ 1=3. Some authors normalize this
correlation function to 1=2 at γ ¼ 0, and some incorporate
an additional delta-function term which only contributes if
pulsar 1 is identical to pulsar 2 (same distance and
direction) as shown in Eq. (C15). This additional delta-
function comes from the “pulsar terms,” and doubles the
correlation for time-stationary GW sources. It arises from
Eq. (3.41) for individual sources and from Eq. (C24) for a
Gaussian ensemble of sources.
Our interpretation of the function μuðγÞ is based on an

important argument from [25]. Place an unpolarized point
source of GWs at a fixed point on the sky. Then consider
the correlation Eq. (2.2) as a function of the three variables
that define the positions of the two pulsars on the sky, with
fixed angle γ between them. As the pulsar pair is shifted
around the sky, keeping the angle between them fixed, the
correlation will vary. Map that function ρ of three variables
(a mountainous landscape) and add a flat level surface at
the mean value μuðγÞ ¼ hρi, where the angle brackets now
refer to that average over three variables. The deviations of
ρ from that level surface are the amount Δρ by which the
correlation for a particular configuration of pulsars at
separation angle γ differs from the mean. The scale of
those variations away from the mean (in the absence of any
other sources of noise) is characterized by the (in this case
“pulsar”) variance

σ2uðγÞ ¼ hΔρ2i ¼ hðρ − hρiÞ2i ¼ hρ2i − hρi2; ð2:5Þ

where the subscript “u”means “unpolarized.” This variance
cannot be determined from the Hellings-Downs curve
itself, which is the first moment hρi. A new integral needs
to be evaluated, to obtain the second moment of the product
of the antenna patterns: hρ2i.
There are two equivalent ways to calculate that second

moment, which give exactly the same result. One can
(a) fix the source position and average over the three
variables that define the directions to the pulsars at fixed
relative angle γ (we do this in Appendix A) or one can
(b) fix the pulsar locations, with angle γ between them,
and average over the two variables that define the direction
to the source (we do this in Appendix D). Both approaches
give the second moment of Eq. (D36). From that second

moment, one finds the variance from Eqs. (2.4) and (2.5),
obtaining

σ2uðγÞ ¼
97

80
þ 1

24
cosγ−

839

720
cos2γ

þ 1

12
ð1− cosγÞ log

�
1− cosγ

2

�
ð2:6Þ

×

�
18−10cosγ−3ð1−cosγÞ log

�
1−cosγ

2

��
:

A detailed calculation is given in Appendix D; this result
is obtained in Eq. (D37).
The square root of the variance is the standard devia-

tion Δρ ¼ σu. This is also plotted in Fig. 1. The standard
deviation indicates the approximate range in which, with
the Hellings and Downs assumptions, the correlation for
any particular pulsar pair should fall, if the Universe
contains a single distant pointlike unpolarized GW source,
and the pulsar terms can be neglected. To indicate this
graphically, the dashed lines in Fig. 1 show the�1Δρ range
about hρi. (Figure 3 shows a similar plot for a constant
amplitude GW source, to which the pulsar terms neces-
sarily contribute.)
In Appendix A we show that the mean correlation

produced by a single (possibly polarized) point source is
always described by the Hellings-Downs curve μuðγÞ.
However, the variance is a sum of two functions, if pulsar
terms are neglected, or three functions, if pulsar terms are
included.

III. VARIANCE OF THE HELLINGS-DOWNS
CORRELATION WITH MANY SOURCES

The mean and variance of the correlation for a single
point source are not directly applicable. We expect that our
Universe contains large numbers of PTA point sources,
probably in the form of supermassive black-hole binaries
[30,31] with the closest at 50–100 Mpc from Earth, and the
most distant at the Hubble radius≈ 4 Gpc. Here, we use the
single point source results to predict the mean and variance
for a large collection of such point sources.
We begin by constructing a model Universe containing

N point sources at sky locations −Ωj, where j ¼ 1;
2;…; N. The minus sign ensures that the GWs of relevance
to us propagate in direction Ωj, in agreement with our
conventions elsewhere in this paper. (Nevertheless, we often
callΩj the “source direction.”) Each source has its own GW
waveforms hþj ðtÞ and h×j ðtÞ for the two GWpolarizations, as
measured at Earth. We adopt simple but realistic statistical
models for the locations andwaveforms of these sources, and
use them to compute the mean and variance of the Hellings-
Downs correlation. For convenience, we describe the corre-
lation in terms of pulse redshifts rather than timing residuals.
At fixed GW frequency, these are proportional, see [18] for
further discussion.
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For this fixed set of GW sources, the pulse redshift of
pulsar n ¼ 1, 2 at time t is a sum over the individual sources

ZnðtÞ ¼
X
j

Δhþj ðt; LnpnÞFþ
n ðΩjÞ þ Δh×j ðt; LnpnÞF×

n ðΩjÞ;

ð3:1Þ
where Lnpn is the vector from Earth to pulsar n, and pn has
unit length. (This is derived starting from the fundamentals
of general relativity in Appendixes A and B of [18].) The
antenna pattern functions Fþ;× are defined in Eq. (2.1), or
more explicitly as functions of the pulsar positions in
Eq. (A16), and the strain differences are

ΔhAj ðt; LpÞ ¼ hAj ðtÞ − χhAj
�
t − Lð1þ p ·ΩjÞ

�
; ð3:2Þ

where the first term is called the “Earth term” and the
second is called the “pulsar term.” Here, A ¼ þ;× denotes
polarization, and we have assumed that the sources are
distant enough that their GWs are described by plane waves
in the Earth/pulsar neighborhood. Note that (consistent
with the notation) the right-hand side (rhs) of Eq. (3.2) is a
function of time t and of the pulsar position Lp,
since L ¼ ðLp · LpÞ1=2.
The constant χ in Eq. (3.2) allows us to control the pulsar

term. Setting χ ¼ 1 is physically correct: the redshift then
properly incorporates the pulsar term. However, by setting
χ ¼ 0, we can “turn off” the pulsar term, and thus isolate and
identify its effects. We will see that for the models of most
interest, the mean value of the Hellings-Downs correlation is
independent of χ, but the variance depends on χ [32].
Note that the ensembles of GW sources which we employ

in Secs. III A and III B have frequencies and amplitudes that
do not changewith time. For such ensembles, or for any time-
stationary ensemble such as the Gaussian ensemble of
Appendix C, the pulsar terms cannot be neglected when
computing the variance, since they make contributions
comparable to the Earth terms. Hence, for such ensembles,
one must set χ ¼ 1 to make physically meaningful predic-
tions for the variance. Setting χ ¼ 0 should only be done as a
computational check and to gain insight.
To calculate the correlations between the pulse redshifts,

it is sometimes convenient to work in a circular polarization
basis rather than in a linear polarization basis. For this,
define the complex waveforms

hjðtÞ ¼ hþj ðtÞ þ ih×j ðtÞ ð3:3Þ
and the corresponding complex antenna pattern functions

FnðΩÞ ¼ Fþ
n ðΩÞ − iF×

n ðΩÞ; ð3:4Þ

where n ¼ 1, 2 labels the pulsar. In this circular polariza-
tion basis the redshift Eq. (3.1) of pulsar n is the real part

ZnðtÞ ¼ ℜ
X
j

Δhjðt; LnpnÞFnðΩjÞ; ð3:5Þ

where the complex strain differences are

Δhjðt; LpÞ ¼ Δhþj ðt; LpÞ þ iΔh×j ðt; LpÞ
¼ hjðtÞ − χhjðt − Lð1þ p ·ΩÞÞ: ð3:6Þ

This can be verified by using Eqs. (3.3), (3.4), and (3.6) to
obtain Eq. (3.1).
We now compute the correlation between two pulsars.

For each, take the real part of Eq. (3.5) by summing
half of the rhs and its complex conjugate, then multiply and
time average. The resulting correlation is the sum of N2

terms

Z1Z2 ¼
1

4

XN
j¼1

XN
k¼1

h
Δhjðt;L1p1ÞΔhkðt;L2p2ÞF1ðΩjÞF2ðΩkÞ

þΔh�jðt;L1p1ÞΔhkðt;L2p2ÞF�
1ðΩjÞF2ðΩkÞ

þΔhjðt;L1p1ÞΔh�kðt;L2p2ÞF1ðΩjÞF�
2ðΩkÞ

þΔh�jðt;L1p1ÞΔh�kðt;L2p2ÞF�
1ðΩjÞF�

2ðΩkÞ
i
; ð3:7Þ

where the overbars denote the time averages of the
quantities beneath them. Here, we explicitly indicate that
there are N2 terms in the double sum, but henceforth we use
a single summation symbol over j, k for this. Note that for
distant sources, this equation is exact. If we were given the
GW source locations and their waveforms, then we could
use Eq. (3.7) to compute the redshift correlation for any pair
of pulsars.
Since we do not know the locations or waveforms of the

relevant PTA sources, to estimate the correlation and its
variance, we need to adopt some statistical model. This
creates an ensemble of universes, which we can then
employ for averaging. We will pick the minimum set of
assumptions that will permit us to derive an estimate.

A. Confusion-noise case

PTAs measure timing residuals with a cadence of about a
week. Since the observations span several decades, this
means that the fluctuations are spread among Oð103Þ
distinct frequency bins. Since it is expected that there will
be at least Oð106Þ sources, on average each frequency bin
will have at least Oð1000Þ sources, though it may be more
at low frequencies and fewer at high frequencies. In the bins
containing many sources, the amplitudes will add like a
random walk (i.e., with random phases) producing a
central-limit theorem Gaussian process. Here, we consider
this “confusion-noise” case. Section III B examines the
opposite situation, where the distinct sources do not
“interfere” because they radiate at distinct frequencies.
For our model, we give all sources an identical fixed GW

angular frequency ω so that they all lie in the same
frequency bin, picking ω to be an integer multiple of the
Rayleigh frequency 2π=T, where T is the total observation
time (typically decades) [33]. Assume that the sources are
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unpolarized, with the same intrinsic GW amplitude (at
some fiducial distance) in both polarizations. Thus,

hþj ðtÞ ¼ Aj cosðωtþ ϕjÞ; and

h×j ðtÞ ¼ Aj sinðωtþ ϕjÞ: ð3:8Þ
(Note that, consistent with Eq. (3.1), these equations define
plus and cross polarization amplitudes with respect to a
polarization basis that depends upon the direction Ω to the
source according to Eq. (D6): see the first line of Eq. (3.11)
below.) Here, the Aj are real amplitudes, and the ϕj are
phases associated with each source. We assume that these
phases are uniformly distributed on ½0; 2π�, and are sta-
tistically independent for different sources. These indepen-
dent random phases create the “confusion noise.”
We locate the sources uniformly in 3-dimensional space,

labeling them with increasing distance from Earth, so j ¼ 1
is the closest source, j ¼ 2 is the next closest source, and so
on. Each source has the same intrinsic GW amplitude, so
the amplitude at Earth is proportional to the inverse
distance. Thus, a uniform density of sources corresponds to

A1 ¼ A; A2 ¼ 2−1=3A;

A3 ¼ 3−1=3A;…; AN ¼ N−1=3A; ð3:9Þ
where the dimensionless real positive quantity A ¼ A1

denotes the GW amplitude of the closest source to Earth.
(Rather than fixed amplitudes, we could also have drawn
the amplitudes from some probability distribution.) To
avoid a GW Olbers’ paradox [34], the number of sources
N is finite.
Finally, to finish specifying our statistical ensemble of

model universes, we need to specify the directionsΩj to the
sources. We assume that these are drawn from a uniform
distribution on the sphere, independent of the phases ϕj

and independent of the directions to the other sources.
These two assumptions (independent random phases,
independent random directions) are sufficient.
We begin by computing the time average s ¼ habhab of

the squared GWamplitude at Earth for any representative of
the ensemble, and the ensemble average and variance of s.
This is partly for illustration: the variance in s arises from the
same mechanism which is responsible for the variance in the
Hellings and Downs correlation, but is easier to calculate. In
additional, s is directly related to physically observable
quantities, since the energy density in GWs is given by
c2ω2s=32πG [[17], Eq. (2.13)], where we explicitly include
the gravitational constant G and speed of light c.
The value of s in any representative universe depends

upon the specific values of ϕj and Ωj in that universe. We
find s starting from the complex GW strain for each GW
source, obtained from Eqs. (3.3) and (3.8) as

hjðtÞ ¼ hþj ðtÞ þ ih×j ðtÞ ¼ AjeiðωtþϕjÞ: ð3:10Þ
The total GW strain at Earth is obtained by summing this
over all sources

habðtÞ¼
X
j

hþj ðtÞeþabðΩjÞþh×j ðtÞe×abðΩjÞ

¼ℜ
X
j

hjðtÞeabðΩjÞ ð3:11Þ

¼1

2

X
j

Aj½eiðωtþϕjÞeabðΩjÞþe−iðωtþϕjÞe�abðΩjÞ�;

where eab ¼ eþab − ie×ab and its complex conjugate are a
circular-polarization basis. For any representative of the
ensemble, the time average of the squared GWamplitude at
Earth is

s ¼ habhab ¼
1

4

X
j;k

AjAk

h
eiðϕj−ϕkÞeabðΩjÞe�abðΩkÞ þ e−iðϕj−ϕkÞe�abðΩjÞeabðΩkÞ

i

¼ 2
X
j

A2
j þ

1

4

X
j≠k

AjAk

h
eiðϕj−ϕkÞeabðΩjÞe�abðΩkÞ þ e−iðϕj−ϕkÞe�abðΩjÞeabðΩkÞ

i
ð3:12Þ

To obtain the second equality of Eq. (3.12), square the final
line of Eq. (3.11), contract polarization tensor indices and
average over time: two terms vanish because the frequency
is an integer multiple of the inverse observation time. For
the final equality, break the sum into diagonal terms (j ¼ k)
and off-diagonal terms (j ≠ k) and use eabðΩÞe�abðΩÞ ¼ 4.
While s is time-independent, its value in any particular

representative universe depends upon the values of the
phases ϕj and source directions Ωj in that particular
realization. What is the expected value of s and of its square,
averaged over the entire ensemble? To evaluate such ensem-
ble averages, we will need to compute averages over the
random phases ϕj. Those averages are defined as follows. If

Qðϕ1;ϕ2;…;ϕNÞ is any function of those phases, its
expected value is

hQiϕ ¼
Z

2π

0

dϕ1

2π
� � �

Z
2π

0

dϕN

2π
Qðϕ1;…;ϕNÞ; ð3:13Þ

where the subscript on the angle brackets indicates an
average over random phases. For example, if we pick
Q ¼ eiðϕj−ϕkÞ, then Eq. (3.13) gives an ensemble average

heiðϕj−ϕkÞiϕ ¼ δjk; ð3:14Þ

where δjk is the Kronecker delta.
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The expected value of s is the ensemble average of
Eq. (3.12). Evaluating this with Eq. (3.14) eliminates the
off-diagonal terms j ≠ k, leaving

hsiϕ ¼ 2
X
j

A2
j ¼ 2H2: ð3:15Þ

Since hsiϕ is independent of the sky positionsΩj of the GW
sources, it is the final ensemble expectation value:
hsi ¼ hsiϕ. Here, the mean squared strain at Earth is

H2 ¼
XN
j¼1

A2
j ¼ A2

XN
j¼1

j−2=3 ¼ A2Ns: ð3:16Þ

For any fixed þ;× linear polarization basis at Earth,
habhab ¼ 2ðhþÞ2 þ 2ðh×Þ2, so Eq. (3.15) implies that the
average squared strain in either linear polarization isH2=2.
The energy density c2ω2H2=16πG in GW follows directly
from Eq. (3.15).
In Eq. (3.16) we define the number of shells Ns by

Ns ¼
XN
n¼1

n−2=3 ≈
Z

N

0

n−2=3dn ≈ 3N1=3; ð3:17Þ

where the approximation is valid for larger numbers of
sources. Ns may be thought of as the number of radial
“shells” containing the sources, if the radial thickness
of each shell is the same, and if the radius of the first
shell is just sufficient to enclose the nearest source to Earth.

Thus, Ns is the ratio of the distance to the farthest typical
source and the distance to the nearest typical source. If
all PTA sources were in a single frequency bin, then
Ns ≈ 4000 Mpc=50Mpc ≈ 80, where the numerator is
the Hubble radius and the denominator is the distance to
the closest supermassive black-hole binary in the PTA
frequency band. (An exact formula for Ns as a function of
N may be given in terms of the generalized harmonic
numbers, or the Hurwitz zeta function.)
For later use, it is also helpful to define another measure

of strain

H4 ¼
XN
j¼1

A4
j ¼ A4

XN
j¼1

j−4=3; ð3:18Þ

noting that if there is a single source, thenH4 ¼ H2
2 ¼ A4.

On the other hand, if the number of sources is large, then

H4 ≈A4ζð4=3Þ; ð3:19Þ
where ζð4=3Þ ≈ 3.601 is the Riemann zeta function. So as
the number of sources grows, H2 increases without bound,
but H4 converges to a maximum value.
Having found the first moment of s ¼ habhab in

Eq. (3.15), we now compute the second moment. For this,
we square s as given in Eq. (3.12) and then take its ensemble
average over the source phases ϕj. The square of Eq. (3.12)
consists of three terms: the square of the first term, twice the
cross-term, and the square of the second term. The cross-term
has j ≠ k, so its ensemble average vanishes because of
Eq. (3.14). The remaining two terms are

hs2iϕ ¼
�
2
X
j

A2
j

�
2

þ 1

16

X
j≠k

X
l≠m

AjAkAlAm

h
eabðΩjÞe�abðΩkÞecdðΩlÞe�cdðΩmÞheiðϕj−ϕkþϕl−ϕmÞiϕ

þ e�abðΩjÞeabðΩkÞe�cdðΩlÞecdðΩmÞhe−iðϕj−ϕkþϕl−ϕmÞiϕ þ eabðΩjÞe�abðΩkÞe�cdðΩlÞecdðΩmÞheiðϕj−ϕk−ϕlþϕmÞiϕ
þ e�abðΩjÞeabðΩkÞecdðΩlÞe�cdðΩmÞhe−iðϕj−ϕk−ϕlþϕmÞiϕ

i
. ð3:20Þ

The four ensemble averages which appear in Eq. (3.20) are
evaluated using Eq. (3.13). Since j ≠ k and l ≠ m, the first
two give heiðϕj−ϕkþϕl−ϕmÞiϕ ¼ δjmδkl, and the second two
give δjlδkm. Thus, Eq. (3.20) simplifies to a double sum.
The four products of polarization tensors are equal (just
relabel the indices a, b, c, d) so one obtains

hs2iϕ¼ð2H2Þ2

þ1

4

X
j≠k

A2
jA

2
ke

abðΩjÞe�cdðΩjÞecdðΩkÞe�abðΩkÞ:

ð3:21Þ
To complete our calculation of the second moment
of s, we now average hs2iϕ over the directions Ωj to the
GW sources. Because the sum in Eq. (3.21) only contains

terms with j ≠ k, these spherical averages may be easily
computed using Eq. (C33) from the Appendix. Each
average yields a term ηabcd, as given by Eq. (C34) with
α ¼ −4=15 and β ¼ 2=5. Thus, we obtain the second
moment

hs2i ¼ hs2iϕ;Ω
¼ ð2H2Þ2 þ

1

4

X
j≠k

A2
jA

2
kη

ab
cdη

cd
ab

¼ 4H2
2 þ

4

5

X
j≠k

A2
jA

2
k; ð3:22Þ

where we have used ηabcdη
cd

ab ¼ ηabcdη
abcd ¼ 16=5 as

found after Eq. (C38).
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The variance of the average squared strain s ¼ habhab

follows immediately from Eqs. (3.15) and (3.22), and is

σ2s ¼ hs2i − hsi2 ¼ 4

5

X
j≠k

A2
jA

2
k ¼

4

5
ðH2

2 −H4Þ; ð3:23Þ

where we used Eq. (3.47) to evaluate the double sum.
Thus, the fractional (cosmic) variance in the squared
strain is

σ2s
hsi2 ¼

1

5

�
1 −

H4

H2
2

�
: ð3:24Þ

The fractional fluctuation σs=hsi vanishes for a single
source, is ≈21% for N ¼ 2 sources, ≈32% for N ¼ 4
sources, ≈40% for N ¼ 14 sources and approaches ≈45%
for large numbers of sources. The corresponding result for
the Gaussian ensemble is computed in Appendix C 4 and
given by Eq. (C40). The confusion-noise model of this
section corresponds to h4=h4 ¼ 1=2, so in the large N
limit, the model presented here gives the same variance as
the Gaussian ensemble.
We now compute the variance in the Hellings-

Downs correlation for this confusion noise model. As a
first step, we need to compute the correlation Z1Z2 given by
Eq. (3.7) and its square for any one of our model universes.
Inserting Eq. (3.10) into Eq. (3.6), the complex strain
differences are

Δhjðt; LpÞ ¼ AjeiðωtþϕjÞ
h
1 − χe−iΔjðLpÞ

i
; ð3:25Þ

where the Earth-pulsar phase offset for a given GW source
and pulsar is

ΔjðLpÞ ¼ ωLð1þ p ·ΩjÞ: ð3:26Þ

(As discussed earlier, in Eq. (3.25) the physically correct
value is χ ¼ 1, whereas setting χ ¼ 0 corresponds to
dropping the pulsar term.) The redshift of the pulse from
pulsar n is given by Eqs. (3.5) and (3.25) as

ZnðtÞ ¼ ℜ
X
j

AjeiðωtþϕjÞ
h
1 − χe−iΔjðLnpnÞ

i
FnðΩjÞ

¼ 1

2

X
j

Aj

h
eiðωtþϕjÞRnðΩjÞ þ e−iðωtþϕjÞR�

nðΩjÞ
i
;

ð3:27Þ

where the modified antenna pattern function is defined
from Eq. (3.27) by

RnðΩjÞ ¼
h
1 − χe−iΔjðLnpnÞ

i
FnðΩjÞ: ð3:28Þ

Thus, setting n ¼ 1 and n ¼ 2 in Eq. (3.27), the redshifts of
pulsars 1 and 2 are given by

Z1ðtÞ ¼
X
j

h
cjeiðωtþϕjÞ þ c�je

−iðωtþϕjÞ
i
; and

Z2ðtÞ ¼
X
k

h
dkeiðωtþϕkÞ þ d�ke

−iðωtþϕkÞ
i
; ð3:29Þ

where the coefficients that appear in the sums are

cj ¼
1

2
Aj

h
1−χe−iωL1ð1þp1·ΩjÞ

i�
Fþ
1 ðΩjÞ− iF×

1 ðΩjÞ
�
; and

dk ¼
1

2
Ak

h
1−χe−iωL2ð1þp2·ΩkÞ

i�
Fþ
2 ðΩkÞ− iF×

2 ðΩkÞ
�
:

ð3:30Þ
Note that the cj coefficients are for pulsar 1, and the dk
coefficients are for pulsar 2. The correlation is given by the
time-averaged product of the redshifts. Taking these from
Eq. (3.29), the time-averaged product is

ρ¼Z1ðtÞZ2ðtÞ¼
X
j;k

h
cjd�ke

iðϕj−ϕkÞþc�jdke
−iðϕj−ϕkÞ

i

¼
X
j

�
cjd�jþc�jdj

�
þ
X
j≠k

h
cjd�ke

iðϕj−ϕkÞþc�jdke
−iðϕj−ϕkÞ

i
;

ð3:31Þ
where two terms have been eliminated on the first line of
Eq. (3.31) by assuming that the angular frequency ω is an
integer multiple of 2π divided by the observation time. In
the final line of Eq. (3.31) we have broken up the double
sum over sources into “diagonal” terms for which j ¼ k
and “off-diagonal” terms j ≠ k. Equation (3.31) gives the
pulsar-pair correlation for any representative member of
our ensemble of model universes, which are defined by
specific values of the phases ϕj and source positions Ωj.
To obtain the mean (first moment) of the Hellings-

Downs correlation, we calculate the ensemble average of ρ
in Eq. (3.31) by making use of Eq. (3.14). Since the
Kronecker delta in Eq. (3.14) vanishes for j ≠ k, the
average of Eq. (3.31) over the random phases eliminates
the off-diagonal terms, leaving

hρiϕ ¼
X
j

�
cjd�j þ c�jdj

�
: ð3:32Þ

To complete the ensemble average, we average this over
random source directions Ωj, obtaining

hρi ¼ hρiϕ;Ω ¼
X
j

�
hcjd�jiΩ þ hc�jdjiΩ

�
: ð3:33Þ

Here, the angle bracket with subscript Ω indicates an
average over statistically independent source directions
Ωj uniformly distributed on a sphere. This corresponds
to integratingΩj over a unit two-sphere and dividing by 4π.
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To evaluate the source-direction average of the pro-
duct cjd�j that appears in Eq. (3.33), first examine the
definitions of c and d in Eq. (3.30). If the interpulsar
separation L1p1 − L2p2 is much larger than the typical
GW wavelength 2π=ω, then the product of the terms in
square brackets from Eq. (3.30) can be replaced by unity

h
1 − χe−iωL1ð1þp1·ΩjÞ

ih
1 − χeiωL2ð1þp2·ΩjÞ

i
≈ 1: ð3:34Þ

This is because the product of the terms in square brackets
yields four terms. Three are rapidly oscillating (complex
exponential) functions of the source direction Ωj. When
multiplied by the slowly varying antenna pattern functions,
these three terms average to zero, as illustrated in Fig. 16 of
Ref. [35]. Only the unity term remains, so the average over
source directions gives

D
cjd�j

E
Ω
¼ 1

4
A2

j

D
ðFþ

1 ðΩÞ− iF×
1 ðΩÞÞðFþ

2 ðΩÞþ iF×
2 ðΩÞÞ

E
Ω

¼ 1

4
A2

j

hD
Fþ
1 ðΩÞFþ

2 ðΩÞþF×
1 ðΩÞF×

2 ðΩÞ
E
Ω

þ i
D
Fþ
1 ðΩÞF×

2 ðΩÞ−F×
1 ðΩÞFþ

2 ðΩÞ
E
Ω

i
¼ 1

4
A2

jμuðγÞ; ð3:35Þ

where γ is the angle between the lines of sight to
pulsars 1 and 2. The second and third line of Eq. (3.35)
has two source-direction averages, which are evaluated in
Appendixes D and E respectively. The first average is the
mean value of the standard Hellings-Downs “unpolarized”
correlation. This is given by Eq. (D3), and evaluates to μu,
given in Eq. (D29). The second average is the mean value
of the “polarized” integrand Eq. (E1). That mean value
evaluates to zero, as explained after Eq. (E3), which means
that the imaginary part of hcjd�jiΩ vanishes.
The mean or first moment of the Hellings-Downs corre-

lation is found by substituting Eq. (3.35) and its complex
conjugate into Eq. (3.33) and summing over the sources:

μðγÞ ¼ hρi ¼ 1

2
H2μuðγÞ: ð3:36Þ

The result is expressed in terms of the squared strain
amplitude at Earth, defined by Eq. (3.16).
Next, we compute the second moment of ρ. For this, we

first square ρ from expression Eq. (3.31) and average it over
the random phases. The diagonal term does not depend
upon the random phases, so its square appears “as is.” The
product of the diagonal and off-diagonal terms contains
heiðϕj−ϕkÞiϕ, whose phase average vanishes for j ≠ k as
shown by Eq. (3.14). Thus, only the squares of the diagonal
and off-diagonal terms remain, giving

hρ2iϕ ¼
�X

j

�
cjd�j þ c�jdj

��2

þ
X
j≠k

X
l≠m

h
cjd�kcld

�
mheiðϕj−ϕkþϕl−ϕmÞiϕ þ cjd�kc

�
ldmheiðϕj−ϕk−ϕlþϕmÞiϕ

þ c�jdkc
�
ldmhe−iðϕj−ϕkþϕl−ϕmÞiϕ þ c�jdkcld

�
mhe−iðϕj−ϕk−ϕlþϕmÞiϕ

i
: ð3:37Þ

The four ensemble averages which appear in Eq. (3.37) may be easily evaluated using Eq. (3.13). Since j ≠ k and l ≠ m,
the first gives heiðϕj−ϕkþϕl−ϕmÞiϕ ¼ δjmδkl. The remaining three ensemble averages give δjlδkm, δjmδkl, and δjlδkm
respectively. Thus, Eq. (3.37) simplifies to the double sum

hρ2iϕ ¼
�X

j

�
cjd�j þ c�jdj

��2

þ
X
j≠k

h
cjd�kckd

�
j þ cjd�kc

�
jdk þ c�jdkc

�
kdj þ c�jdkcjd

�
k

i
: ð3:38Þ

To evaluate the ensemble average over source directions, it is helpful to rewrite the first term (a perfect square) as a double
sum, also breaking it into “diagonal” and “off-diagonal” terms. Noting also that the second and fourth term of the double
sum in Eq. (3.38) are each equal to jcjj2jdkj2, we obtain

hρ2iϕ ¼
X
j

�
cjd�j þ c�jdj

�
2 þ

X
j≠k

h�
cjd�j þ c�jdj

��
ckd�k þ c�kdk

�
þ cjd�kckd

�
j þ c�jdkc

�
kdj þ 2jcjj2jdkj2

i

¼
X
j

�
cjd�j þ c�jdj

�
2 þ 2

X
j≠k

h
cjd�jckd

�
k þ c�jdjckd

�
k þ c�jdjc

�
kdk þ jcjj2jdkj2

i
; ð3:39Þ

where we have used symmetry in the sum over j, k to combine terms in the final line. To obtain the second moment, we now
average this expression over source directions. The off-diagonal terms factor into products of two first moments, because
j ≠ k. In contrast, the diagonal terms give second moments of the types evaluated in Appendixes D–F.
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The source-direction averages that appear in the double-
sum terms of Eq. (3.39) are evaluated by first factoring
them (since j ≠ k) then using the definitions of Eq. (3.30)
and proceeding exactly as for Eq. (3.35). This gives

hjcjj2jdkj2iΩ ¼ hjcjj2iΩhjdkj2iΩ ¼ 1

16
A2

jA
2
kð1þ χ2Þ2μ2uð0Þ;

hcjd�jckd�kiΩ ¼ hcjd�jiΩhckd�kiΩ ¼ 1

16
A2

jA
2
kμ

2
uðγÞ;

hc�jdjckd�kiΩ ¼ hc�jdjiΩhckd�kiΩ ¼ 1

16
A2

jA
2
kμ

2
uðγÞ; and

hc�jdjc�kdkiΩ ¼ hc�jdjiΩhc�kdkiΩ ¼ 1

16
A2

jA
2
kμ

2
uðγÞ. ð3:40Þ

In the first line above, the factors of 1þ χ2

arise because in the expression for jcjj2, the products

of the terms in square brackets from Eq. (3.30)
give���1− χe−iωL1ð1þp1·ΩjÞ

���2 ¼ 1þ χ2− 2χ cosðωL1ð1þ p1 ·ΩjÞÞ
≈ 1þ χ2; ð3:41Þ

and a similar factor arises within jdkj2. The reasoning
is similar to that given after Eqs. (3.34) and (3.35), but here
two of the four terms contribute, rather than just one.
The source-direction average of the single-sum term in

Eq. (3.39) may be evaluated by first expanding it asD
ðcjd�j þ c�jdjÞ2

E
Ω
¼

D
ðcjd�jÞ2 þ ðc�jdjÞ2 þ 2jcjj2jdjj2

E
Ω
:

ð3:42Þ
From the definitions of Eq. (3.30), the first two terms on the
rhs of Eq. (3.42) give

D�
cjd�j

�
2 þ

�
c�jdj

�
2
E
Ω
¼ 1

16
A4

j

�
2
�
Fþ
1 ðΩÞFþ

2 ðΩÞ þ F×
1 ðΩÞF×

2 ðΩÞ
�
2
− 2

�
Fþ
1 ðΩÞF×

2 ðΩÞ − F×
1 ðΩÞFþ

2 ðΩÞ
�
2
�

Ω

¼ 1

16
A4

j

�
2
�
μ2uðγÞ þ σ2uðγÞ

�
− 2σ2pðγÞ

�

¼ 1

8
A4

j

�
2μ2uðγÞ þ 2σ2uðγÞ − σ2cðγÞ

�
: ð3:43Þ

The first term on the rhs of the first line of Eq. (3.43) is the second moment of the standard unpolarized Hellings-Downs
correlation Eq. (D5). This is given in Eq. (D36) of Appendix D, and we write it as hρ2i ¼ μ2u þ σ2u. The second term on the
rhs of the first line of Eq. (3.43) is the second moment of the “polarized” Hellings-Downs correlation Eq. (E1), evaluated in
Appendix E. This is given by the variance σ2p of Eq. (E8), since the first moment vanishes. For the final line of Eq. (3.43) we
have used the identity σ2c ¼ σ2u þ σ2p þ μ2u from Eq. (F4) to eliminate σ2p.
The final term of Eq. (3.42) is evaluated using the definitions of Eqs. (3.30) and (3.41) to obtain

D
2jcjj2jdjj2

E
Ω
¼ 2

16
A4

jð1þ χ2Þ2
D�

Fþ
1 ðΩÞFþ

1 ðΩÞ þ F×
1 ðΩÞF×

1 ðΩÞ
��

Fþ
2 ðΩÞFþ

2 ðΩÞ þ F×
2 ðΩÞF×

2 ðΩÞ
�E

Ω

¼ 1

8
A4

jð1þ χ2Þ2σ2cðγÞ: ð3:44Þ

This is evaluated by noting that the product of antenna pattern functions on the first line is the same as Eq. (F1), whose
source-direction average is evaluated in Appendix F, giving Eq. (F2).
Combining the results of Eqs. (3.42)–(3.44), we obtain the source-direction average for the single-sum term of

Eq. (3.39) as

D�
cjd�j þ c�jdj

�
2
E
Ω
¼ 1

8
A4

j

�
μ2uðγÞ þ σ2uðγÞ − σ2pðγÞ þ ð1þ χ2Þ2σ2cðγÞ

�
¼ 1

8
A4

j

�
2μ2uðγÞ þ 2σ2uðγÞ þ

�
ð1þ χ2Þ2 − 1

�
σ2cðγÞ

�
: ð3:45Þ

This completes the evaluation of the source-direction averages for the different terms appearing in the Eq. (3.39) expression
of hρ2iϕ.
We now compute the total variance for this simple confusion-noise model. The ensemble-averaged second moment

hρ2i ¼ hρ2iϕ;Ω is obtained by starting with hρ2iϕ as given by Eq. (3.39), using Eqs. (3.40) and (3.45) to average over source
directions, and summing over the sources. This gives
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hρ2i ¼ 1

8
H4

�
2μ2uðγÞ þ 2σ2uðγÞ þ

�
ð1þ χ2Þ2 − 1

�
σ2cðγÞ

�
þ 1

8
ðH2

2 −H4Þ
�
3μ2uðγÞ þ

�
1þ χ2

�
2
μ2uð0Þ

�
; ð3:46Þ

where we have used Eqs. (3.16) and (3.18) to carry out the sums over sources, noting that

X
j≠k

A2
jA

2
k ¼

X
j;k

A2
jA

2
k −

X
j

A4
j ¼

�X
j

A2
j

�
2

−
X
j

A4
j ¼ H2

2 −H4: ð3:47Þ

To obtain the variance σ2 ¼ hρ2i − hρi2, we subtract the square of the mean given in Eq. (3.36) from Eq. (3.46). This
eliminates the first H4 term and 2=3 of the first H2

2 −H4 term from Eq. (3.46), giving

σ2 ¼ 1

8
H4

�
2σ2uðγÞ þ

�
ð1þ χ2Þ2 − 1

�
σ2cðγÞ

�
þ 1

8
ðH2

2 −H4Þ
�
μ2uðγÞ þ

�
1þ χ2

�
2
μ2uð0Þ

�
: ð3:48Þ

This is one of the main results of the paper: the ex-
pected variance in the Hellings-Downs correlation for a
confusion-noise model containing N sources (set χ ¼ 1 to
include the pulsar terms, or χ ¼ 0 to exclude them). Note
that this variance includes both pulsar variance and cosmic
variance. In Sec. IV, we calculate the cosmic variance,
which can be subtracted from Eq. (3.48) to obtain the pulsar
variance.
As a consistency check, consider the case where there is

only a single source, so that H4 ¼ H2
2 ¼ A4. In this case

Eq. (3.48) reduces to

σ2 ¼ A4

8

�
2σ2uðγÞ þ

�
ð1þ χ2Þ2 − 1

�
σ2cðγÞ

�
: ð3:49Þ

If the pulsar term is neglected (set χ ¼ 0) we obtain the
correct σ2 ¼ A4σ2uðγÞ=4 for a single unpolarized point
source. (This agrees with the general result Eq. (A30):
set c1 ¼ c2 ¼ A2=2 and c3 ¼ c4 ¼ 0.) This also demon-
strates that Eq. (3.48) includes both the pulsar variance and
cosmic variance, because in the case N ¼ 1 there is no
cosmic variance: the expected correlation for pulsars at
angle γ is independent of the source location. If the pulsar
term is included by setting χ ¼ 1, we obtain the correct
result σ2 ¼ A4ð2σ2uðγÞ þ 3σ2cðγÞÞ=8. This agrees with
Eq. (B10) after setting Ac ¼ As ¼ A.
Another important limit is that of many sources. For

current PTAs, with at least N ¼ Oð103Þ sources per
frequency bin, one can see immediately from Eqs. (3.16)
and (3.18) that H2

2 ≫ H4, because H2 grows proportional
to Ns ∝ N1=3, whereas H4 → A4ζð4=3Þ ≈ 3.6A4 con-
verges to a constant for large N. Hence, the second term
in Eq. (3.48) dominates, and (setting χ ¼ 1 to properly
include the pulsar term)

σ2 ≈
1

8
H2

2

�
μ2uðγÞ þ 4μ2uð0Þ

�
: ð3:50Þ

This shouldbecomparedwith themean taken fromEq. (3.36):

μðγÞ ¼ 1

2
H2μuðγÞ ð3:51Þ

Notice that for large numbers of sources the standard
deviation σ does not become small in comparison with the
mean μ. The fractional variations in the Hellings-Downs
correlation are determinedby the ratio of the square root of the
variance from Eq. (3.50) to the mean value from Eq. (3.51),
which are shown in Fig. 2. When there are many confusion-
noise sources,

σ

μ
≈

ffiffiffi
1

2

r 

1þ 4

μ2uð0Þ
μ2uðγÞ

�
1=2

ð3:52Þ

FIG. 2. The Hellings-Downs correlation mean μ [from
Eq. (3.51)] and standard deviation σ [from Eq. (3.50)] for an
unpolarized confusion-limited stochastic background from
many point sources, where all sources have the same fre-
quency. The dashed lines show a �1σ range about the mean.
In Sec. IV, we show that this variance includes both pulsar and
cosmic variance. In the plot, μ and σ are divided by a factor
H2=2 ¼ hðhþÞ2i ¼ hðh×Þ2i, which is the mean squared GW
strain (per polarization) at Earth.
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for the sources in one frequency bin. (Note: if the source
frequency is not commensurate with the observation time,
then the factor

ffiffiffiffiffiffiffiffi
1=2

p
in Eq. (3.52) can increase to be as large

as unity; see comments and footnote before Eq. (3.8) and the
discussion following Eq. (C30).)
The effective number of frequency bins may be quite

small (≲4). This is because the spectrum of characteristic
strain from black-hole binaries falls steeply with increasing
frequency. One might be concerned that the low-frequency
growth in the spectrum could invalidate our results, which
assume that the GW frequency is a multiple of the inverse
observation time T. However, in practice, frequencies
below 1=T are effectively cut off, because pulsar timing
residuals at lower frequencies are typically well-matched by
a change in the intrinsic rotation parameters of the pulsar,
which are fit to the data to reduce the timing residuals as
much as possible [36]. For further details, see the “trans-
mission functions” illustrated in Fig. 2 of Ref. [36].
If there areM independent confusion-noise limited frequ-

ency bins labeled by i ¼ 1;…;M, then the means will add
linearly and the variances will add in quadrature, giving

μ ¼ μuðγÞ
XM
i¼1

h2i ; and

σ2 ¼ 1

2

�
μ2uðγÞ þ 4μ2uð0Þ

�XM
i¼1

h4i ; ð3:53Þ

where h2i ¼ ðH2=2Þi denotes themean-squaredGW strain at
Earth from the ith frequency bin. (The justification may be
found in Appendix C 5: compare Eqs. (C30) and (C32).) If
the squared strain is distributed uniformly over frequency,
then the fractional fluctuations σ=μ will be proportional to
M−1=2. Note: for the fractional fluctuation in the correlation
of timing residuals (rather than redshifts) a factor of GW
frequency f−2i should be added on the rhs of the definition
of h2i .
In Appendix C 3 we calculate the variance for a Gaussian

ensemble of sources as employed in [17,20,21]. The
Gaussian ensemble variance has the term proportional to
μ2uðγÞ þ 4μ2uð0Þ, but not the other terms found in Eq. (3.48).
This is because the Gaussian ensemble corresponds to the
limit as the number of sources N goes to infinity with
A2N1=3 held constant, which keeps the mean squared strain
at Earth constant. The terms proportional to H4 in our
calculation arise from the handful of closest sources. In the
Gaussian ensemble limit, those become arbitrarily weak
and hence do not contribute.
Why does the standard deviation σ not decrease in

comparison with the mean μ as the number of shells
increases? This can be traced back to the behavior of the
sum of the diagonal and off-diagonal terms in Eq. (3.31). In
our simple model, the diagonal terms have nonzero mean
but zero variance. The off-diagonal terms have zero mean
but nonzero variance. Moreover, (if we turn off the pulsar

terms) the variance of the second quantity is the squared
mean of the first quantity. So, on average, the square of the
second term contributes as much as the square of the first
term. The situation is identical to that which describes the
errors in periodogram estimation of power spectra [[37] see
discussion on the final page of Sec. 13.4].

B. Noninterfering source case

The previous subsection considers a set of sources
radiating at the same GW frequency, which generate
confusion noise from interference between the sources.
Here, we consider the opposite extreme, in which each
source is radiating at a different GW frequency, or follow-
ing a different track in time-frequency space, so that their
waveforms are uncorrelated in time.
The calculation is very similar to that of the previous

Sec. III A for the confusion-noise case. The fundamental
difference is that in the place of the GW waveforms of
Eq. (3.8), we use waveforms

hþj ðtÞ ¼ Aj cosðωjtþ ϕjÞ; and

h×j ðtÞ ¼ Aj sinðωjtþ ϕjÞ; ð3:54Þ
where we assume that the GW angular frequencies ωj are
different for all of the j ¼ 1;…; N sources. As before, we
also assume that the ωj are integer multiples of 2π=T,
where T is the total observation time. We use the same set
of GW amplitudes Aj as in Eq. (3.9), corresponding to a
uniform density of sources, as well as the same set of
random phases ϕj, and the same ensemble of source
directions Ωj.
In this model, it is easy to see that the variance of the time-

averaged squared strain s ¼ habhab is zero. This is because,
in the equivalent of Eq. (3.12), all of the j ≠ k terms are
absent. The reason is simple: since the waveforms from
different sources oscillate at different frequencies, their time-
averaged products vanish. Thus s¼hsi¼2H2, hs2i ¼ 4H2

2,
and σ2s ¼ 0. Because the time-averagedGWenergydensity is
proportional to s, its variance also vanishes.
The effect on the Hellings and Downs correlations is

more subtle: while the one-pulsar-pair (total) variance does
not vanish, it is reduced. Again, the critical difference
between the independent source model of this subsection
and the confusion-noise model of the previous subsection
lies in the form taken by the time-averaged correlation ρ,
which in the confusion-noise case is given by Eq. (3.31).
With the “independent source” assumptions we have made
here, because every source is emitting GW at a different
frequency, ρ has the simple “diagonal” form

ρ ¼ Z1ðtÞZ2ðtÞ ¼
X
j

�
cjd�j þ c�jdj

�
: ð3:55Þ

The off-diagonal j ≠ k terms in Eq. (3.31) are absent. In
contrast to the confusion-noise case of Eq. (3.31), ρ has no
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dependence on the random phases ϕj. In fact, the random
phases play no role for noninterfering sources, and are not
needed in our source-model ensemble. (Note: in the
definitions of cj and dk given in Eq. (3.30), the quantity
ω should be replaced by ωj and ωk respectively.)
For the independent sources which we consider here, the

ensemble average of the correlation ρ over random phases
is also given by Eq. (3.55), since ρ has no dependence on
the random phases. This is the same expression as the
ensemble average of ρ over random phases in the con-
fusion-noise case Eq. (3.32). Thus, after completing the
average over source directions, the independent-source
case has the same first moment as the confusion-noise case

μðγÞ ¼ hρi ¼ 1

2
H2μuðγÞ; ð3:56Þ

which is identical to Eq. (3.36).
Because ρ does not depend upon random phases, its

second moment is smaller than in the confusion-noise case.
(In the confusion-noise case, both the random phases and
the random sky positions contribute to the second moment.
Here, only the random sky positions contribute.) In
comparison with the confusion-noise expression given in
Eq. (3.37), for the case of independent sources, all of
the double-sum terms are absent. So, in contrast with
Eq. (3.38), one has the simpler expression

hρ2iϕ ¼
�X

j

�
cjd�j þ c�jdj

��2

: ð3:57Þ

The notation here correctly indicates an average over the
random phases, but note that ρ (and hence ρ2) are indepen-
dent of the random phases. Thus, the averaging over
random phases is trivial, and Eq. (3.57) follows directly
from Eq. (3.55). Hence, the equivalent of Eq. (3.39) is

hρ2iϕ ¼
X
j

�
cjd�j þ c�jdj

�
2

þ
X
j≠k

h
cjd�jckd

�
kþ 2c�jdjckd

�
kþ c�jdjc

�
kdk

i
: ð3:58Þ

The average of Eq. (3.58) over source directions is
obtained from Eqs. (3.40) and (3.45). After summing over
j and k we obtain the final ensemble-averaged second
moment

hρ2i ¼ 1

8
H4

�
2μ2uðγÞ þ 2σ2uðγÞ þ

�
ð1þ χ2Þ2 − 1

�
σ2cðγÞ

�

þ 1

8
ðH2

2 −H4Þ
�
2μ2uðγÞ

�
: ð3:59Þ

This may be compared with the confusion-noise second
moment given in Eq. (3.46).
The variance in the Hellings-Downs correlation is

obtained by forming σ2 ¼ hρ2i − hρi2 from Eqs. (3.56)

and (3.59). This cancels the H2
2 terms, giving the variance

for noninterfering sources

σ2ðγÞ ¼ 1

8
H4

�
2σ2uðγÞ þ

�
ð1þ χ2Þ2 − 1

�
σ2cðγÞ

�
: ð3:60Þ

For any number of sources, this is exactly proportional to
the single-point-source variance (without the pulsar term,
if χ ¼ 0, or with the pulsar term, if χ ¼ 1) as discussed
after Eq. (3.49). This is shown in Fig. 3, including the
pulsar term.
The variance Eq. (3.60) lacks the term proportional to

H2
2, which dominates the variance in the confusion-noise

case when there are many sources. Here, for independent
sources, the mean of the correlation is the sum of the
correlations arising from each source term individually, and
the variance of the correlation is the sum of the variances
arising from each source term individually. This has an
important consequence in the limit of large numbers of
sources. In that limit, using Eqs. (3.16) and (3.19) in
Eq. (3.60), and setting χ ¼ 1 to properly include the pulsar
term, the fractional fluctuations of the correlation are

σ

μ
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζð4=3Þp
Ns

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2uðγÞ þ 3σ2cðγÞ=2

μ2uðγÞ

s
; ð3:61Þ

where ζð4=3Þ ≈ 3.601 is the Riemann zeta function, and the
number of shells Ns is the ratio of the distance to the
farthest source divided by the distance to the closest source.
In contrast to the confusion-noise case, the fractional
fluctuations in the correlation vanish for large numbers
of sources.
For independent noninterfering sources with cons-

tant amplitude and frequency, in contrast with the

FIG. 3. The Hellings-Downs correlation mean and standard
deviation for a single unpolarized point source, including the
pulsar terms. These are given by Eqs. (3.56) and (3.60) with χ ¼ 1,
H2¼2 andH4 ¼ 4, so thatμ¼ μuðγÞ andσ2 ¼ σ2uðγÞ þ 3σ2cðγÞ=2.
The dashed lines show a �1σ range about the mean. If there are
many independent point sources, then σ has the same shape but
smaller relative amplitude. Comparison with Fig. 1 shows that
including the pulsar term increases the variance by about a
factor of four.
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confusion-noise case given in Eq. (3.52), the variance is
dominated by the closest handful of sources in the
numerator, whereas the mean in the denominator is propor-
tional to the total number of radial shells of sources. So, for
large numbers of sources, the standard deviation σ drops in
comparison with the mean μ. The shape of the variance is
the same as that shown in Fig. 3 for a single unpolarized
point source, but the fractional fluctuations are reduced in
proportion to the number of source shells Ns.

IV. COSMIC VARIANCE

The variance quantifies the uncertainty in the correlation
between pairs of pulsars. Part of this uncertainty arises
because, for a given source, different pairs of pulsars,
separated by the same angle on the sky, have different
correlations. This is called “pulsar variance.” The remain-
der of the uncertainty arises because of interference
between GW sources radiating at the same frequency,
which creates interference patterns on the sky. These do
not average to give the Hellings-Downs curve μuðγÞ and are
called “cosmic variance.”Here, we show how to distinguish
these, and how to remove the pulsar variance from our
calculations, thus obtaining the cosmic variance alone.
How do we eliminate the pulsar variance? The variance

calculated in Secs. III A and III B is the sum of both cosmic
and pulsar variance. We can remove the pulsar variance
from these calculations, by replacing the correlation ρ with
a pulsar-averaged correlation ΓðγÞ. ΓðγÞ is obtained by
averaging ρ over all pairs of pulsars separated by angle γ,
before determining the ensemble mean and the ensemble
second moment. This approach lets us calculate the pure
cosmic variance, because it completely removes the pulsar
variance.
This also reflects observational reality. In experiments

with many pulsars, the correlation is typically “binned” by
separation angle and averaged within each bin. In fact, an
experiment with access to large numbers of pulsars can
produce a correlation curve ΓðγÞ, which is only a function
of angle γ, by averaging the measured correlation over all
pulsars separated by angle γ, uniformly distributed around
the sky. This is what we mean by a “pulsar-averaged
correlation curve.” (Note that the optimal way to perform
such averaging takes into account the expected correlations
between different pairs of pulsars. Careful consideration of
this point provides an alternative way to derive the cosmic
variance [38]. It also shows that PTAs are sensitive to GW
energy density in a way which differs from “local”

measurements of s ¼ habhab or _hab _h
ab.)

For our Universe, where we believe that the GW sources
interfere with one other, this pulsar-averaged correla-
tion curve will probably not agree exactly in shape with
the Hellings-Downs curve μuðγÞ. In our approach, this
deviation arises from cosmic variance. How large do we
expect it to be? The reply to this statistical question depends
upon the ensemble of universes that we select to answer it.

For example, consider the ensemble of independent
noninterfering GW point sources used in Sec. III B, and
look closely at Eq. (3.55), which is the correlation ρ for any
member of the ensemble, making reference to the defi-
nitions of cj and dk given in Eq. (3.30). If we average ρ over
all pulsar positions p1 and p2 separated by angle γ (we
denote such averages by appending a subscript “p” after the
angle brackets) only the Earth terms survive [39] and we
obtain

ΓðγÞ ¼ hρip
¼

X
j

D
cjd�j þ c�jdj

E
p

¼ 1

2

X
j

A2
j

D
Fþ
1 ðΩjÞFþ

2 ðΩjÞ þ F×
1 ðΩjÞF×

2 ðΩjÞ
E
p

¼ 1

2
H2μuðγÞ: ð4:1Þ

Thus, after averaging over pulsar positions, we obtain a
correlation curve ΓðγÞ which is exactly proportional to the
Hellings-Downs curve μuðγÞ for any member of the
ensemble, regardless of the source locations Ωj. (Note:
both [25] and Appendix A prove that the pulsar average of
the antenna pattern functions in Eq. (4.1) yields μu.)
Moreover, in this ensemble, the amplitude is exactly the
same for every realization. So, in that ensemble of uni-
verses, there is no cosmic variance. Stated another way:
for any realization in this ensemble, the curve ΓðγÞ obtai-
ned by an experimenter with access to large numbers of
low-noise pulsars would always agree exactly with μuðγÞ
in shape, and would always have the same overall
normalization.
In contrast, consider the confusion-noise-limited ensem-

ble of Sec. III A, where Eq. (3.31) gives the correlation ρ
for any member of the ensemble. If we pick a single
representative universe from the ensemble, and average ρ
over all pulsar positions p1 and p2 separated by angle γ, we
will get a function ΓðγÞ that is not proportional to the
Hellings-Downs curve μuðγÞ [40]. However, if we examine
many representatives from the ensemble, we’ll find that on
the average the curve ΓðγÞ is proportional to μuðγÞ. How
much variation should be expected between the ΓðγÞ found
in any particular realization of this ensemble, and the
ensemble average? Our answer: the cosmic variance.
To calculate the cosmic variance, we must remove the

pulsar variance. To do this, begin with the general expres-
sion for the correlation between pulsar redshifts given in
Eq. (3.7), and average it over pulsar positions using the
method from [25], which also eliminates the pulsar terms.
In Appendix A, we show how to compute such averages
over the three variables (θ, ϕ, λ) that define the pulsar
positions at fixed separation angle γ. In Appendix G, we
evaluate these averages for the four products of real
antenna pattern functions which appear in Eq. (3.7).
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The corresponding complex averages are

hF1ðΩjÞF�
2ðΩkÞip ¼ μþþðγ; βjkÞ þ μ××ðγ; βjkÞ ¼ μðγ; βjkÞ; and

hF1ðΩjÞF2ðΩkÞip ¼ μþþðγ; βjkÞ − μ××ðγ; βjkÞ ¼ μðπ − γ; π − βjkÞ: ð4:2Þ
The two-point function μðγ; βÞ which appears here is calculated and illustrated in Appendix G, and given by Eq. (G5). The
individual polarization functions μþþ and μ×× are defined by Eq. (G6) and given in Eq. (G9). The function μðγ; βÞ is a
function of the angle γ between pulsar directions and of the angle βjk between the jth and kth sources: cos βjk ¼ Ωj ·Ωk.
This two-point function is a generalization of the normal Hellings-Downs curve and reduces to it in the limit β ¼ 0, where
μðγ; 0Þ ¼ 2μþþðγ; 0Þ ¼ 2μ××ðγ; 0Þ ¼ μuðγÞ. Using Eq. (4.2) to compute the pulsar average of Eq. (3.7) gives

ΓðγÞ ¼ hZ1Z2ip ¼ 1

4

X
j;k


�
hjðtÞh�kðtÞ þ h�jðtÞhkðtÞ

�
μðγ; βjkÞ þ

�
hjðtÞhkðtÞ þ h�jðtÞh�kðtÞ

�
μðπ − γ; π − βjkÞ

�

¼
X
j;k

�
hþj ðtÞhþk ðtÞ μþþðγ; βjkÞ þ h×j ðtÞh×k ðtÞ μ××ðγ; βjkÞ

�
: ð4:3Þ

Here, we have given equivalent expressions for complex
and real waveforms. As previously mentioned, because the
pulsar averaging eliminates the pulsar terms, the time
averages in Eq. (4.3) only include the Earth terms.
We now evaluate this pulsar-averaged correlation for the

confusion-noise case of Sec. III A. Substitute the complex
GWwaveform Eq. (3.10) into the first line of Eq. (4.3). The
time averaging eliminates the second term, giving

ΓðγÞ¼ 1

4

X
j;k

AjAk

�
eiðϕj−ϕkÞ þ e−iðϕj−ϕkÞ

�
μðγ;βjkÞ

¼ 1

2
H2μuðγÞ

þ1

4

X
j≠k

AjAk

�
eiðϕj−ϕkÞ þ e−iðϕj−ϕkÞ

�
μðγ;βjkÞ: ð4:4Þ

On the second line we have partitioned the sum into
diagonal and off-diagonal terms; for the diagonal terms
with j ¼ k, the two-point function reduces to the normal
Hellings-Downs curve since βjj ¼ 0. One can see immedi-
ately from Eq. (4.4) that the pulsar-averaged correlation
curve ΓðγÞ in a typical representative universe will not
have the same shape as the Hellings-Downs curve
μuðγÞ.This is because the terms contributed by the double
sum, which arise from the interference between different
GW sources radiating in the same frequency bin, are cross
sections (at various fixed β values) of the function plotted in

Fig. 12. Those cross-sections have a shape that differs from
μuðγÞ. It is these deviations which give rise to the cosmic
variance.
We stress that in obtaining Eq. (4.4) from Eq. (3.7), we

have not done anything to the sources, which have the exact
waveforms and sky positions appropriate to that represen-
tative of the ensemble. All that we have done is to average
over the pulsar locations, as would be done if the average
correlation at separation angle γ were measured with many
pulsar pairs in that representative universe.
To compute the ensemble average mean and variance of

Γ, we first average Eq. (4.4) over the random phases. From
Eq. (3.14) we know that heiðϕj−ϕkÞiϕ vanishes for j ≠ k, so
the ensemble average of Γ is

hΓðγÞi ¼ hΓðγÞiϕ ¼ 1

2
H2μuðγÞ: ð4:5Þ

Thus, on the average, an observer in this ensemble of
model universes would obtain a pulsar-averaged correlation
curve ΓðγÞ that follows the shape of the Hellings-Downs
curve μuðγÞ perfectly.
To compute the second moment of Γ, we first square

Eq. (4.4) and evaluate the average over random phases. The
square of the first term is independent of random phases
and averages to itself. The cross term is zero because
heiðϕj−ϕkÞiϕ vanishes for j ≠ k. The square of the double
sum simplifies in the same way as for Eq. (3.37), giving

hΓ2ðγÞiϕ ¼ 1

4
H2

2 μ
2
uðγÞ þ

1

8

X
j≠k

X
l≠m

AjAkAlAmðδjmδkl þ δjlδkmÞμðγ; βjkÞμðγ; βlmÞ

¼ 1

4
H2

2 μ
2
uðγÞ þ

1

8

X
j≠k

A2
jA

2
k

�
μðγ; βjkÞμðγ; βjkÞ þ μðγ; βjkÞμðγ; βkjÞ

�

¼ 1

4
H2

2 μ
2
uðγÞ þ

1

4

X
j≠k

A2
jA

2
kμ

2ðγ; βjkÞ; ð4:6Þ
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where to obtain the final line we have used βjk ¼ βkj, since
theanglebetween twosources is independentof theordering.
To complete the ensemble average, we now need to

average Eq. (4.6) over the random directions Ωj and Ωk to
the sources, which enter via the angle βjk ¼ cos−1 Ωj ·Ωk.
This gives

hΓ2ðγÞi ¼ 1

4
H2

2 μ
2
uðγÞ þ

1

4

X
j≠k

A2
jA

2
k μ̃

2ðγÞ; ð4:7Þ

where μ̃2ðγÞ is the average of μ2ðγ; βÞ with respect to β,
with measure sin βdβ. This is computed in Appendix G and
given in Eq. (G11). Subtracting the square of the first
moment Eq. (4.5) from Eq. (4.7) gives the cosmic variance

σ2cosmicðγÞ ¼
D
Γ2ðγÞ

E
−
D
ΓðγÞ

E
2

¼ 1

4

X
j≠k

A2
jA

2
k μ̃

2ðγÞ

¼ 1

4

�
H2

2 −H4

�
μ̃2ðγÞ ð4:8Þ

for our confusion-noise-limited ensemble. This is another
one of the main results of this paper: the cosmic variance
for the discrete-source confusion-noise model. It may be
compared with the total variance given earlier in Eq. (3.48).
For large numbers of sources H2

2 ≫ H4, so we can use
Eqs. (3.16), (3.50), (4.5), and (4.8) to write the mean,
cosmic variance, and total variance as

hΓðγÞi ¼ μðγÞ ¼ 1

2
H2 μuðγÞ ¼

1

2
NsA2μuðγÞ;

σ2cosmicðγÞ ≈
1

4
H2

2 μ̃2ðγÞ ¼ 1

4
N2

sA4μ̃2ðγÞ; and

σ2ðγÞ ≈ 1

8
H2

2

�
μ2uðγÞ þ 4μ2uð0Þ

�
¼ 1

8
N2

sA4
�
μ2uðγÞ þ 4μ2uð0Þ

�
: ð4:9Þ

Thus, the predicted scale of fluctuations in the pulsar-
averaged correlation for the confusion-noise ensemble is

σcosmic

hΓi ¼ σcosmic

μðγÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
μ̃2ðγÞ
μ2uðγÞ

s
: ð4:10Þ

This is illustrated inFig. 4, and canbegeneralized tomultiple
frequency bins as shown in Eq. (3.53). In Appendix C 5 we
use the Gaussian ensemble to derive the same results in
the limit of large numbers of weak sources.
If the cosmic variance were zero, then an experiment

could (at least in principle) average the correlation over
large numbers of low-noise pulsar pairs, and approach the
Hellings-Downs curve with arbitrary precision. If the
cosmic variance is nonzero, then this is not possible. In
that case, once enough pulsar pairs have been employed,

the pulsar variance will be reduced to well below the
cosmic variance and a fundamental limit is reached. The
shape mismatch between the correlation measured in our
Universe and the Hellings-Downs curve can no longer be
reduced by incorporating additional low-noise pulsar pairs.
This topic is studied in more detail in [38], which
determines the number of pulsar pairs required to reach
the limits imposed by the cosmic variance.

V. CONCLUSION

Thegoalof this paper is to assesshowclosely theHellings-
Downs correlation curvewould bematched in our Universe,
in the absence of any experimental or pulsar noise.
We show that the variance in the Hellings-Downs

correlation has two parts. Pulsar variance arises from the
fluctuations that occur when the correlation is measured
with pulsar pairs at different sky locations, but separated by
the same angle. In principle, this can be eliminated by using
many pulsar pairs and averaging. Cosmic variance arises
because the waveforms of the different GW sources
interfere with one another. This gives rise to a deviation
between the angle-average correlation ΓðγÞ and the
Hellings-Downs curve μuðγÞ. We constructed two ensem-
bles of point sources to study these effects.
The first ensemble consists of sources radiating GWs at

the same frequency and with constant (in time) amplitude.
When there are many such sources, uniformly distributed in
space, the sum of the pulsar variance and the cosmic
variance is described by Eq. (3.48) with χ ¼ 1. It has a
term proportional to the variance expected for a single
unpolarized point source, which arises from the closest
sources. But for large numbers of sources, this term
becomes insignificant in comparison with the sum of
variances arising from the interference between the more

FIG. 4. The cosmic variance for an ensemble of confusion-
noise universes in the limit of large numbers of sources (with the
mean GW amplitude at Earth NsA2 ¼ H2 ¼ 2). The mean
pulsar-averaged correlation is hΓðγÞi ¼ μuðγÞ. The dashed curves
show μuðγÞ � σcosmic. The upper solid curve shows 5σcosmic from
Eqs. (4.10) and (G11) (scaled ×5 so that it does not overlap the
other plots).
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distant sources, which creates a central-limit-theorem
Gaussian process. For this ensemble, the cosmic variance
is given by Eq. (4.8).
We also constructed a similar ensemble of point sources,

but with each radiating GWs at a different frequency. For
these, the variance is given by Eq. (3.60). It is proportional
to the variance expected for a single unpolarized point
source, because it arises from the closest sources only.
There is no interference term, and in this ensemble, the
cosmic variance vanishes.
Comparison of these two models leads to an important

conclusion. For PTAs, information is carried not just in the
mean μðγÞ of the pulsar timing residuals, but also in how
the variance σ2ðγÞ behaves with angular separation, and
perhaps also with GW frequency. This variance carries
information about the nature of the sources.
Recent work [38] provides an alternative way to under-

stand the cosmic variance for a Gaussian ensemble.
Suppose that our goal was to determine the pulsar-averaged
correlation Γ at angle γ, and that we had a collection of
pulsar pairs separated by that angle, with measured
correlation values for those pairs. The optimal estimator
for ΓðγÞ is not obtained by uniformly averaging the sets of
measured values, because there are correlations between
different pairs. For a Gaussian ensemble, we can form an
optimal estimator for ΓðγÞ. In [38], we demonstrate that the
variance of that optimal estimator, when there are many
pulsars, is exactly σ2cosmic.
The work in this paper could be usefully extended. Our

expectation is that the variance in the Hellings-Downs
correlation is not described by either of the simple models
presented here, but rather by some combination of them
[20]. Our formalism can still be employed, but more
realistic statistical ensembles of sources are needed.
Specifically, we need better models for the ensemble of
amplitudes Eq. (3.8) which create the correlations between
the GW waveforms of different sources. One could con-
struct a statistical model containing a realistic distribution
of supermassive black-hole binary systems with different
masses and other properties [31]. This could then be used to
define the correlation ρ [41], which in turn can be used to
predict the mean of the Hellings-Downs correlation, and the
pulsar and cosmic variance. A promising approach for
creating such ensembles is to create synthetic catalogs
based on cosmological simulations, which can be used to
predict and model the mean and variance of the Hellings-
Downs correlation [15].
It may be some years before there is a definitive detection

of the gravitational-wave background with pulsar timing
arrays. Even when that takes place, the correlations
between individual pulsar pairs may be dominated by
pulsar timing noise and experimental noise. So it is difficult
to predict if the variance can be observed in the near future.
But we are hopeful that as telescopes improve and pulsar
populations increase, this will eventually become possible.
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APPENDIX A: GENERAL FORM OF THE
HELLINGS-DOWNS CORRELATION

MEAN AND VARIANCE FOR A
SINGLE POINT SOURCE

Here, we derive the general form of the mean and
variance of the Hellings-Downs correlation for a single
distant GW point source, without making the assumption
that the source is unpolarized or that the pulsar terms can be
neglected. Such single point source results can be com-
bined for a collection of sources following the argument
given in Sec. III.
In electromagnetism, the polarization of a light or

radio source may be described in terms of four Stokes
parameters. The same is possible for gravitational waves.
For example, see Eq. (31) of [42] for the GW Stokes
parameters of a binary system in a circular orbit
emitting GWs.
In the literature an unpolarized source is often assumed

to be one for which the time correlation between the cross
and plus polarizations vanishes. For example, in [25],
the authors remark following their Eq. (10), “it has been
assumed that hRþR×i ¼ 0, which holds for cosmological
stochastic backgrounds and binary systems.” This assump-
tion is enough to obtain the Hellings-Downs correlation
mean μuðγÞ, but unless the squared amplitudes of the two
polarizations have the same amplitude, the variance in the
correlation contains both polarized and unpolarized com-
ponents. For example, we will see that for a binary system
in a circular orbit, the “unpolarized” variance is only
obtained for inclination angles of ι ¼ 0° or ι ¼ 180°, for
which the cross and plus components have the same
amplitude.
We now derive the general formula for the mean and

variance of the Hellings-Downs correlation. Our starting
point is the effect on pulse arrival times or redshifts induced
by a gravitational wave propagating in direction Ω, where
Ω is a unit vector on the two-sphere (celestial sphere).
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This is derived starting from the fundamentals of general
relativity in [[18], Appendixes A and B].
A plane gravitational wave propagating in direction Ω is

completely described by two arbitrary functions of a single
variable, one for each polarization, which we call hþ and
h×. In terms of these functions, the spatial components
of the metric perturbation (away from the flat-space
Minkowski metric) are

habðt; xÞ ¼ hþðt − x ·ΩÞeþab þ h×ðt − x ·ΩÞe×ab; ðA1Þ

where t is the time coordinate and x are spatial coordinates,
and the transverse traceless symmetric polarization tensors
are defined in Eq. (D6).
The effect of the gravitational wave on the pulse

arrival times is most simply described by the redshift Z
in those arrival times. (One may integrate Z with respect
to time to obtain timing delays. For a fixed-frequency
GW source, this amounts to dividing by the angular
frequency of the GWs.) Consider a pulsar located at
position pL in the sky, where p is a unit vector and L is
the pulsar distance. The redshift of the pulse arriving at
time t is

ZðtÞ ¼ 1

2

papb

1þΩ · p
ΔhabðtÞ; ðA2Þ

where the gravitational wave enters through two terms

ΔhabðtÞ ¼ habðt; 0Þ − habðt − L; pLÞ; ðA3Þ

which are called the “Earth term” and the “pulsar term”
respectively, since they are the amplitude of the gravi-
tational wave at the time and spatial location where the
pulse is received on Earth, and at the time and spatial
location where it departed the pulsar. These terms may
be simplified and written in terms of the two free
functions that define the wave, by

ΔhabðtÞ ¼RþðtÞeþab þ R×ðtÞe×ab
¼
h
hþðtÞ − hþðt − Lð1þ p ·ΩÞÞ

i
eþab

þ
h
h×ðtÞ − h×ðt − Lð1þ p ·ΩÞÞ

i
e×ab: ðA4Þ

As shown in [18], for a combination of waves propa-
gating in different directions, these effects may be
summed. But for our purposes, it is sufficient to
consider the waves coming from individual sources,
under the assumption that they are uncorrelated over the
(decades-long) pulsar observations.
Here, without loss of generality, we will place our source

on the −z axis, so that Ω ¼ ẑ, and assume that the source is
much farther from Earth than the pulsars being timed, so
that we can treat the GWas a plane wave over the extent of

the Earth-pulsar systems. The two polarization tensors are
then

eþab ¼ x̂ax̂b − ŷaŷb; and

e×ab ¼ x̂aŷb þ ŷax̂b: ðA5Þ

Note that GW waveforms are often calculated with respect
to one set of polarization axes, which must be rotated (often
by an angle denoted ψ ) to the set of axes appropriate to the
application. In this case, because we will be averaging the
correlation over all pulsar sky locations, we may assume
that our x and y axes are aligned with the ones in which the
waveform was obtained. This simplifies matters, with no
loss of generality.
To compute the correlations between pulsars 1 and 2, it is

convenient to define “antenna pattern” functions

Fþ
1 ¼ 1

2

pa1p
b
1

1þΩ · p1
eþab; and

F×
1 ¼ 1

2

pa1p
b
1

1þΩ · p1
e×ab; ðA6Þ

where p1 is a unit vector pointing to the first pulsar, and
similar functions for the second pulsar, containing p2.
The correlation ρ ¼ Z1Z2 between the pulse redshifts,

averaged over time, then takes the form

ρ ¼ c1F
þ
1 F

þ
2 þ c2F×

1F
×
2 þ c3F

þ
1 F

×
2 þ c4F×

1F
þ
2 ; ðA7Þ

where the coefficients are the time averages:

c1 ¼ Rþ
1 ðtÞRþ

2 ðtÞ;
c2 ¼ R×

1 ðtÞR×
2 ðtÞ;

c3 ¼ Rþ
1 ðtÞR×

2 ðtÞ; and

c4 ¼ R×
1 ðtÞRþ

2 ðtÞ: ðA8Þ

Here, the subscripts on R are needed because of the pulsar
term in Eq. (A4). But note that if the pulsar terms can be
neglected, then the subscripts on R are not needed,
and c3 ¼ c4.
Although we are treating the general case, it is helpful to

have a specific example in mind. For this, take a pair of
orbiting point masses m1 and m2 in a slow circular orbit at
distance r from Earth, with orbital angular frequency ω.
The angle between the orbital angular momentum and the
line of sight (the orbital inclination angle) is ι. To fully
define the orbit (for orbital inclination angles other than 0
or 180 degrees) we must specify the orientation of the
ellipse that is formed when the orbit is projected onto
the plane of the sky. To do this, examine the line formed by
the major axis of the ellipse, which lies in the xy plane. For
convenience, but without loss of generality, take this line to
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be parallel to the x-axis. Finally, let ϕc denote the orbital
phase at the time of coalescence, which is equivalent to
picking an origin of time.
For this system, if we neglect the pulsar terms, we have

RþðtÞ ¼ hþðtÞ ¼ 1

2
Að1þ cos2ιÞ cos 2ðωtþ ϕcÞ; and

R×ðtÞ ¼ h×ðtÞ ¼ A cos ι sin 2ðωtþ ϕcÞ; ðA9Þ
where the dimensionless GW strain amplitude is

A ¼ 4

r

�
G
c2

�
5=3

�
ω

c

�
2=3 m1m2

ðm1 þm2Þ1=3
; ðA10Þ

and we assume that the orbital evolution is slow enough to
treat ω as a constant but fast enough to decorrelate the
pulsar terms. (Notes: in the Appendix B, we will treat the
other case, where the pulsar term is significant. Also, to
accompany the gravitational constant G, we include the
speed of light c in the equation for the amplitudeA; it is set
to unity everywhere else.) So for this system, radiating
GWs of angular frequency 2ω, the four coefficients
appearing in the correlation Eq. (A7) are:

c1 ¼
1

8
A2ð1þ cos2ιÞ2;

c2 ¼
1

2
A2cos2ι;

c3 ¼ 0; and

c4 ¼ 0: ðA11Þ
For the most general source, all four coefficients can be
nonzero and different from one another.
We want to compute the average correlation and its

variance as the two pulsars sweep around the sky with a
fixed angle between them. The first pulsar at distance L1 is
located on the sky at angular position ðθ; λÞ with familiar
Cartesian components

p1 ¼ x̂ cos λ sin θ þ ŷ sin λ sin θ þ ẑ cos θ: ðA12Þ

(Note: it is deliberate that we are using the variable λ rather
than the more conventional ϕ for the polar angle.) We could
parametrize the location p2 of the second pulsar using the
identical form with different angles θ0;ϕ0, but that com-
plicates the calculations.
To parametrize the location of the second pulsar, we

adopt a nice trick from [25], and use variables γ and ϕ, via

p2¼ x̂
h
cosλðsinθcosγ−cosθsinγcosϕÞþsinλsinγ sinϕ

i
þ

ŷ
h
sinλðsinθcosγ−cosθsinγcosϕÞ−cosλsinγ sinϕ

i
þ

ẑ
h
cosθcosγþsinθsinγcosϕ

i
: ðA13Þ

The variable γ is the angular separation between p1 and p2,
as we have been using it throughout this paper. The variable
ϕ ∈ ½0; 2πÞ is illustrated in Fig. 5, and uniformly para-
metrizes the position of p2 in the cone around p1. The
reader can confirm this picture, by showing that the
“velocity vector” ∂p2=∂ϕ has constant length and is
orthogonal to both p1 and p2, and that p2 has unit length
and satisfies p1 · p2 ¼ cos γ.
This parametrization of p2 and p1 makes it easy to

average over all pairs of pulsars at a given angular
separation γ. To do this, we have to average over the three
variables that define the positions of the pulsars. Generally
speaking, we will do that averaging in two steps, which we
denote with square brackets and angle brackets. Given a
function Qðθ;ϕ; λÞ, the first average (over λ) is

½Q�ðθ;ϕÞ ¼ 1

2π

Z
2π

0

dλQðθ;ϕ; λÞ; ðA14Þ

and the second average (over θ and ϕ) is

h½Q�i ¼ 1

4π

Z
π

0

dθ sin θ
Z

2π

0

dϕ½Q�ðθ;ϕÞ: ðA15Þ

These averages are properly normalized, ½1� ¼ h1i ¼ 1,
and they treat all pulsars with angular separation γ on equal
footing (see Fig. 5).
The geometric antenna pattern functions for the first

pulsar can now be evaluated by substituting the polarization
tensors Eq. (A5) and pulsar-position vector Eq. (A12) into
Eq. (A6). One finds

Fþ
1 ¼ 1

2

pa1p
b
1

1þΩ · p1
eþab ¼ U cos 2λ; and

F×
1 ¼ 1

2

pa1p
b
1

1þΩ · p1
e×ab ¼ U sin 2λ; ðA16Þ

where the function U ¼ ð1 − cos θÞ=2. For the second
pulsar we use the other pulsar-position vector Eq. (A13),
and obtain

FIG. 5. The direction to the first pulsar p1 is specified with
conventional spherical polar angles ðθ; λÞ in Eq. (A12). The
direction to the second pulsar p2 is specified in Eq. (A13) via
variables γ and ϕ. Here γ is the angle between p1 and p2, and
ϕ ∈ ½0; 2πÞ is the location along the dashed circle, which lies in
the plane perpendicular to p1 and has radius sin γ.
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Fþ
2 ¼ V cos 2λþW sin 2λ; and

F×
2 ¼ V sin 2λ −W cos 2λ; ðA17Þ

where to simplify notation we have introduced three
functions that are independent of λ:

U ¼ 1 − cos θ
2

;

V ¼ 1

2

A2 − B2

1þ q
;

W ¼ 1

2

2AB
1þ q

: ðA18Þ

Here, we have introduced the three functions

A ¼ sin θ cos γ − cos θ sin γ cosϕ;

B ¼ sin γ sinϕ; and

q ¼ cos θ cos γ þ sin θ sin γ cosϕ: ðA19Þ

One can use Eq. (A19) to verify that

A2 − B2 ¼ ð1 − qÞð1þ qÞ − 2 sin2 γ sin2 ϕ: ðA20Þ

We are now ready to average over pulsar positions.
We first compute the average correlation h½ρ�i. Starting

with the definition of ρ in Eq. (A7), we insert the antenna
pattern functions from Eqs. (A16) and (A17) and integrate
over λ, obtaining

½ρ� ¼ 1

2
ðc1 þ c2ÞUV −

1

2
ðc3 − c4ÞUW: ðA21Þ

If we now do the remaining average, we obtain

h½ρ�i ¼ 1

2
ðc1 þ c2ÞhUVi; ðA22Þ

because hUWi ¼ 0. To see this, consider the ϕ dependence
of UW, which is of the form

q1 sinϕð1þ q2 cosϕÞ
1þ q3 cosϕ

; ðA23Þ

where the qi are independent of ϕ. One can see that UW
changes sign under reflection about π, i.e., the trans-
formation ϕ → 2π − ϕ, because under that reflection
cosϕ is even and sinϕ is odd. Hence, the integral over
ϕ ∈ ½0; 2π� vanishes.
The careful reader will have noticed that the coefficients

c1;…; c4 have an implicit dependence on the pulsar
distances and locations, whereas we are treating them as
constants. If we ignore the pulsar terms, then the ci are
independent of the pulsar positions, and this is justified. In
Appendix B, we will show how to include these pulsar

terms if desired: one simply replaces these constants by
their mean values obtained by averaging over the pulsar
distances, which eliminates their dependence on the pulsar
directions.
It is easy to see that hUVi is exactly the Hellings-

Downs mean correlation μuðγÞ. Use Eq. (A15) to define the
average, replace U and V by their definitions in Eq. (A18),
and use Eq. (A20) to simplify the integrand. One immedi-
ately obtains the form Eq. (D14) computed in Appendix D,
where the pulsars are fixed and the average is over wave
directions. Thus,

h½ρ�i ¼ 1

2
ðc1 þ c2ÞμuðγÞ: ðA24Þ

We now compute the second moment of the correlation
ρ. Starting with Eq. (A7), replace the antenna pattern
functions with Eqs. (A16) and (A17), and combine the trig
functions to obtain

ρ ¼ 1

2



ðc1 þ c2ÞUV þ ðc4 − c3ÞUW

�
þ

1

2



ðc1 − c2ÞUV − ðc3 þ c4ÞUW

�
cos 4λþ

1

2



ðc1 − c2ÞUW þ ðc3 þ c4ÞUV

�
sin 4λ: ðA25Þ

(Note that the average of this over λ immediately gives
Eq. (A21).) Square Eq. (A25) and average over λ. One
immediately obtains

½ρ2� ¼U2

4

h
ðc1 þ c2ÞV þ ðc4 − c3ÞW

i
2þ

U2

8

h
ðc1 − c2ÞV − ðc3 þ c4ÞW

i
2þ

U2

8

h
ðc1 − c2ÞW þ ðc3 þ c4ÞV

i
2
: ðA26Þ

Now average this over θ and ϕ using Eq. (A15).
The average hU2VWi vanishes by the same symmetry

argument as before, giving a second moment (we now drop
the square brackets in the averaging)

hρ2i ¼1

8

h
2ðc1 þ c2Þ2 þ ðc1 − c2Þ2 þ ðc3 þ c4Þ2

i
hU2V2i þ

1

8

h
2ðc3 − c4Þ2 þ ðc1 − c2Þ2 þ ðc3 þ c4Þ2

i
hU2W2i:

ðA27Þ

In the same way we demonstrated that hUVi was equal to
Eq. (D14), one can show that hU2V2i is equal to Eqs. (D31)
and (D36), that hU2W2i is equal to Eq. (E8), and that
hU2ðV2 þW2Þi is equal to Eq. (F2). This means that the
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averages above can be replaced by quantities that we
calculate in the Appendix:

hUVi ¼ μuðγÞ;
hU2V2i ¼ μ2uðγÞ þ σ2uðγÞ;
hU2W2i ¼ σ2pðγÞ; and

hU2ðV2 þW2Þi ¼ σ2cðγÞ ¼ μ2uðγÞ þ σ2uðγÞ þ σ2pðγÞ: ðA28Þ

Because the final line above is the sum of the two previous
lines, there aremany equivalentways towrite the expressions
for the second moment and variance of the correlation ρ.
Using Eqs. (A27) and (A28), the second moment may be

written

hρ2i ¼ 1

4
ðc1 þ c2Þ2ðμ2u þ σ2uÞ þ

1

4
ðc3 − c4Þ2σ2p þ

1

8

h
ðc1 − c2Þ2 þ ðc3 þ c4Þ2

i
σ2c: ðA29Þ

The variance is calculated by subtracting from the second
moment Eq. (A29) the square of the mean given in
Eq. (A24). We find

μ ¼ 1

2
ðc1 þ c2ÞμuðγÞ; and

σ2 ¼ 1

4
ðc1 þ c2Þ2σ2uðγÞ þ

1

4
ðc3 − c4Þ2σ2pðγÞþ

1

8

h
ðc1 − c2Þ2 þ ðc3 þ c4Þ2

i
σ2cðγÞ; ðA30Þ

which are our final expressions for the mean and variance
of the Hellings-Downs correlation in the general case. The
mean μuðγÞ is given in Eq. (D29), the unpolarized variance
σ2u is given in Eq. (D37), the polarized variance σ2p is given
in Eq. (E8), and the cross variance σ2c is given in Eq. (F2).
The sums and differences of the ci coefficients, which

are defined by Eq. (A8), play the role of Stokes parameters
in this formula. If the pulsar terms can be neglected, then
c3 ¼ c4 and the polarized σ2p term is absent. If, in addition,
c1 ¼ c2, then only the unpolarized σ2u term remains.
Returning now to the binary inspiral example from

Eq. (A9), where pulsar terms are neglected, and inserting
the Stokes coefficients from Eq. (A11) into Eq. (A30), the
mean and variance of the Hellings-Downs correlation for a
single source are

μ ¼ hρi ¼ A2

16

h
1þ 6 cos2ιþ cos4ι

i
μuðγÞ; and

σ2 ¼ hΔρ2i ¼ A4

256

h
1þ 6 cos2ιþ cos4ι

i
2
σ2uðγÞ

þ A4

512

h
sin8ι

i
σ2cðγÞ: ðA31Þ

If ι is 0° or 180°, corresponding to a face-on or face-off orbit
with c1 ¼ c2, then only the unpolarized term is present in
the variance. If not, then the cross term also appears.
To estimate these for a typical circular binary, we average

the mean and variance from Eq. (A31) over orbital
inclinations, assuming that cos ι is uniformly distributed
on ½−1; 1�. We obtain

μaverage ¼
1

5
A2μuðγÞ; and

σ2average ¼
71

1260
A4σ2uðγÞ þ

1

1260
A4σ2cðγÞ: ðA32Þ

These are plotted in Fig. 6. In this population average, the
sin8 ι term averages to a very small value, and so the σ2c
polarization term has very little effect on the variance: the
effect of removing this term for the average system is shown
by the dashed curve, and is small. The σ2c polarization term
has the largest effect on the variance for an edge-on binary
(ι ¼ 90°) also shown in the figure (σ2average as defined here
does not include all sources of variance [43]).
In the next Appendix, we will consider an example

where the pulsar terms have the same magnitude as the
Earth terms, so that the polarization term proportional to
ðc3 − c4Þ2 is also present.

APPENDIX B: THE HELLINGS-DOWNS
CORRELATION MEAN AND VARIANCE

INCLUDING PULSAR TERMS

Here, we calculate the mean and variance of the
Hellings-Downs correlation for GWs emitted by a slowly

FIG. 6. Mean μaverage ¼ hρi and standard deviation σaverage ¼ffiffiffiffiffiffiffiffiffiffiffiffi
hΔρ2i

p
of the Hellings-Downs correlation ρ for a single circular

binary GW source drawn from a uniform population, from
Eq. (A32) with the amplitude set to A2 ¼ 15. The dashed curve
shows the standard deviation σaverage if the term proportional to σ2c
in Eq. (A32) is set to zero; the term has no significant effect on the
average. The case where the polarization term has the largest
effect (an edge-on binary, ι ¼ 90°) is also shown, taken from
Eq. (A31). In this case the amplitude is set to A2 ¼ 48, which
gives the same mean μ shown in the plot.
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evolving binary system, including the pulsar terms. Wewill
see that the mean is unchanged from the case where only
the Earth terms are included, but that the variance gets
larger by about a factor of four and has a slightly different
functional form.
The GW source is the same binary system as in the

previous Appendix [defined around Eq. (A9)] but now we
will assume that it is a very long time before the system will
merge. Thismeans that the timescale onwhich thewaveform
is changing in frequency and amplitude is much longer than
the light travel time between the pulsars and Earth. This
system violates the original Hellings and Downs assump-
tions, because (depending upon the exact separations) there
can be perfect correlation or anticorrelation (or anything in
between) between the Earth and pulsar terms. In this model,
the GW waveforms at the Earth and pulsars are identical in
frequency and amplitude, and only differ in phase.
The time averages Eq. (A8) that define the coefficients

c1;…; c4 give:

c1 ¼ 2 sinΔ1 sinΔ2 cosðΔ2 − Δ1ÞA2
c;

c2 ¼ 2 sinΔ1 sinΔ2 cosðΔ2 − Δ1ÞA2
s ;

c3 ¼ 2 sinΔ1 sinΔ2 sinðΔ2 − Δ1ÞAcAs; and

c4 ¼ −c3: ðB1Þ

Here, the phase offsets are determined by the pulsar
positions relative to the GW source. If L1 and L2 are
the distances from Earth to the two pulsars, then the phase
offsets are

Δ1 ¼ ωL1ð1þ ẑ · p1Þ; and

Δ2 ¼ ωL2ð1þ ẑ · p2Þ: ðB2Þ

The amplitudes of the two polarization components are

Ac ¼ A
1

2
ð1þ cos2ιÞ; and

As ¼ A cos ι: ðB3Þ
Now that we are including the pulsar terms, which have the
same amplitude and frequency as the Earth terms (but a
different phase) one can see that c3 and c4 are unequal and
do not vanish.
One can work through the calculation of the previous

Appendix, and everything carries through up to the point
where one averages over pulsar positions on the sky. Then
the calculation breaks down, because the ci depend upon
the pulsar positions through the Δ1 and Δ2 terms, whereas
our calculation assumed that the ci have constant values
that are independent of the pulsar positions.
However, it is easy to work around this. We are interested

in the angular correlation function for pulsars at different
distances as well as at different sky locations. So, before
averaging over the sky positions of the pulsars, we first

average over their distances. This is easy, because
the distances L1 and L2 only enter via the terms propor-
tional to the sine and cosine of Δ1 and Δ2 and their
difference.
We average by letting L1 and L2 vary independently over

intervals ½Lmin; Lmax� where 0 ≪ ωLmin ≪ ωLmax. This
means that the lower limits and averaging intervals are
much larger than the GW wavelength 2π=ω. This is
sensible, because PTAs detect GW with wavelengths
measured in years, whereas typical distances to pulsars
are thousands of years. In the limit where the ranges are
large compared to the GW wavelength, the result does not
depend upon the starting values. In practice, this corre-
sponds to treating Δ1 − Δ2 and Δ1 þ Δ2 as independent
variables, averaging them over any ranges which are large
compared to 2π.
This averaging removes the pulsar-position dependence

of the ci. Since

2 sinΔ1 sinΔ2 cosðΔ2 − Δ1Þ
¼ ½cosðΔ2 − Δ1Þ − cosðΔ1 þ Δ2Þ� cosðΔ2 − Δ1Þ; ðB4Þ

we can immediately see that after averaging over
pulsar distances in the expressions for ρ and ρ2 one
obtains:

hc1 þ c2i ¼
1

2
ðA2

c þ A2
sÞ;

hc1 − c2i ¼
1

2
ðA2

c − A2
sÞ;

hðc1 þ c2Þ2i ¼
5

8
ðA2

c þ A2
sÞ2; and

hðc1 − c2Þ2i ¼
5

8
ðA2

c − A2
sÞ2: ðB5Þ

Here and in the next few equations, the angle brackets mean
“average over L1 and L2.” (To reproduce these: the average
of cos2 is 1=2 and the average of cos4 is 3=8.)
To do the averaging for c3 and c4, first note that since

c3 þ c4 ¼ 0, one has

hc3 þ c4i ¼ hðc3 þ c4Þ2i ¼ 0: ðB6Þ

For the other two terms, use

2 sinΔ1 sinΔ2 sinðΔ2 − Δ1Þ
¼ ½cosðΔ2 − Δ1Þ − cosðΔ1 þ Δ2Þ� sinðΔ2 − Δ1Þ ðB7Þ

to obtain

hc3 − c4i ¼ 0; and

hðc3 − c4Þ2i ¼
3

2
A2
c A2

s : ðB8Þ
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The mean of the Hellings-Downs correlation follows imme-
diately from Eq. (A24). Using hc1þc2i from Eq. (B5) gives

μ ¼ 1

4
ðA2

c þ A2
sÞμu; ðB9Þ

which agrees with the result Eq. (A31), where only the Earth
terms were included. This makes sense, since after averag-
ing over pulsar distances, the pulsar terms have averaged
away. (However, their squares will not average away, so the
variance will change.)
To compute the variance, it is tempting to substitute the

averages from Eqs. (B5) and (B8) into Eq. (A30). However,
those expressions were obtained by subtracting the square
of the mean from the second moment, and the pulsar
distance averaging has hðc1 þ c2Þ2i ≠ hðc1 þ c2Þi2. So we
have to return to the original expression for the second
moment Eq. (A27), evaluate that using Eqs. (B5) and (B8)
and then form the variance using Eq. (B9).
For this binary-inspiral source model, which includes

pulsar terms that have the same magnitude and frequency as
the Earth terms, the variance of the Hellings-Downs
correlation is

σ2ðγÞ ¼ 1

16

�
A2
c þ A2

s

�
2
σ2uðγÞ −

3

32

�
A2
c − A2

s

�
2
σ2pðγÞ

þ


3

32

�
A2
c þ A2

s

�
2 þ 5

64

�
A2
c − A2

s

�
2
�
σ2cðγÞ: ðB10Þ

This should be compared with the Earth-term only equiv-
alent Eq. (A31). The presence of pulsar terms (which here
have the same magnitude as the Earth term) have left the
mean unchanged but have modified the variance.

Averaging Eqs. (B9) and (B10) over the inclination
angles ι gives the population averages

μaverage ¼
1

5
A2μuðγÞ; and

σ2average ¼
71

1260
A4σ2uðγÞ þ

109

1260
A4σ2cðγÞ −

1

420
A4σ2pðγÞ:

ðB11Þ
These are plotted in Fig. 7 and should be compared with
Eq. (A32), which only include the Earth term. While the
means are identical, the variance is larger by a factor of
about four, because of the presence of the pulsar terms.
While these terms average to zero (hence not affecting the
mean) their squares do not average to zero, so they increase
the variance (σ2average as defined here does not include all
sources of variance [43]).

APPENDIX C: THE CONVENTIONAL
ENSEMBLE-AVERAGE APPROACH

In this Appendix, we discuss and employ the conven-
tional frequency-domain Gaussian ensemble introduced
in [16,17] and used for example in [21]. The Gaussian
ensemble is introduced in Appendix C 1. Note that for
PTAs these frequency-domain methods may be less appro-
priate than time-domain ones, see [22,44–46].
Appendix B demonstrated that including the pulsar

terms in the Hellings-Downs correlation does not affect
the mean μðγÞ but tends to increase the variance σ2ðγÞ. In
Appendix C 2 we investigate the conditions (on the GW
spectrum) which justify dropping the pulsar terms, and
compute the mean of the Hellings-Downs correlation.
In Appendix C 3 we compute the variance of the

Hellings-Downs correlation, and show that the Gaussian
ensemble results correspond exactly to the discrete con-
fusion-noise source model of Sec. III A, in the limit of large
numbers of weak sources. Hence, the Gaussian ensemble
corresponds to a confusion-noise limit in which the closest
(idealized) sources are arbitrarily close to Earth, and not at a
fixed distance as in Sec. III. (Note that our calculations are
based on a plane-wave radiation-zone description of GWs
[47,48]. For this to apply, a real GW source would have to
be at least a few times as distant as the PTA pulsars, say tens
of kpc. This is still about three orders of magnitude closer to
Earth than the closest relevant supermassive black-hole
binaries [30,31].)
In Appendix C 4 we use identical techniques to compute

the variance of the time-averaged squared strain s ¼ habhab

and the variance the GW energy density ρGW, which is
proportional to the time average of _hab _h

ab. For GW back-
grounds dominated by a single low frequency, these (cosmic)
variances can be a large fraction of the (squared) mean.
In Appendix C 5, we use the pulsar-position-averaging

technique introduced in Sec. IV to compute the cosmic
variance. As for the mean and total variance, the cosmic
variance corresponds exactly to the discrete confusion-noise

FIG. 7. The effect of the pulsar terms on the mean μ and
standard deviation σ of the Hellings-Downs correlation, for a
population-averaged binary inspiral GW source. The Earth-term
only case is Eq. (A32), and the case including the pulsar terms is
Eq. (B11). They have identical means, but including the pulsar
terms makes the variance about four times as large. (For
convenience these plots are normalized by setting the squared
GW amplitude A2 ¼ 15 in the equations.)
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source model of Sec. III A in the limit of large numbers of
sources.
Finally, in Appendix C 6, we provide an alternative

derivation of the cosmic variance for the Gaussian ensem-
ble, using harmonic analysis methods originally developed
for characterizing cosmic background radiation temper-
ature fluctuations.

1. The Gaussian ensemble

We start by writing the general weak gravitational-wave
solution as a plane wave expansion [16,17]. In this, we
include two arbitrary functions associated with any propa-
gation direction as a Fourier integral, obtaining

habðt; xÞ ¼
X
A

Z
df

Z
dΩ e2πifðt−Ω·xÞhAðf;ΩÞeAabðΩÞ:

ðC1Þ
Here, A ¼ þ;× denotes polarization, and hAðf;ΩÞ are two
arbitrary complex functions of three variables, obeying
hAðf;ΩÞ ¼ ðhAð−f;ΩÞÞ�, where � denotes complex con-
jugate. The polarization tensors eAabðΩÞ are defined in
Eq. (D6), integration over frequency is f ∈ ð−∞;∞Þ
unless specified otherwise, and the integral over the two-
sphere is defined in Eq. (2.3).
Now, we imagine that the GW background arises as a

central-limit-theorem process, so the functions hAðf;ΩÞ
become random variables. We have an ensemble E of many
such functions, drawn from some distribution. From the
central-limit theorem, these create a Gaussian process.
Quantities of interest, which we denoteQ, are characterized
by their expectation values, which are the average value
over the ensemble of functions. If we use h as shorthand for
hAðf;ΩÞ, and ifQ½h� is some quantity that depends upon h,
then the expectation value is

hQi ¼ 1

jEj
X
h∈E

Q½h�; ðC2Þ

where jEj denotes the number of functions in the ensemble.
We make two assumptions about our Gaussian ensem-

ble. First, we assume that the mean of h vanishes

hhAðf;ΩÞi ¼ 0: ðC3Þ

(A nonzero mean would be appropriate to describe
fluctuations around a specific GW source.) Second, we
assume that

hh�Aðf;ΩÞhA0 ðf0;Ω0Þi ¼ δAA0δ2ðΩ;Ω0Þδðf − f0ÞHðfÞ;
ðC4Þ

where HðfÞ is a positive real symmetric function HðfÞ ¼
Hð−fÞ and δ2ðΩ;Ω0Þ denote a two-dimensional delta
function on the unit sphere [[49], first edition Eq. (3.56)].

The delta function in polarization indices means that the
statistical properties of the two polarization degrees of
freedom are identical but uncorrelated: an unpolarized
ensemble. The delta function in frequency implies an
ensemble that is second-order stationary in time, and the
delta function on the sphere implies an ensemble that is
second-order stationary in space. Some further discussion
of these points may be found in [17,22].
The real function H is a measure of the squared

amplitude of perturbations at GW frequency f. It is related
to the conventional stochastic background spectral function
ΩgwðfÞ defined in [17] by

HðfÞ ¼ 3H2
o

32π3
1

jfj3ΩgwðjfjÞ; ðC5Þ

where H0 is the present-day Hubble expansion rate.
Much of the PTA literature uses a different measure of
the spectrum known as the characteristic strain hcðfÞ.
Estimates for PTAs may be found, for example, in
[30,31]. These quantities are related via

h2cðfÞ ¼
3H2

o

2π2
1

jfj2 ΩgwðjfjÞ ðC6Þ

or equivalently via

HðfÞ ¼ 1

16π

1

jfj h
2
cðjfjÞ: ðC7Þ

An estimate of the characteristic strain hcðfÞ over the
frequency band relevant to PTAs is shown in Fig. 8. This is
reproduced from a semianalytic estimate of the GW
stochastic background [[50], red dashed curve of Fig. 3].
This estimate includes both the effects of attenuation from
environmental hardening effects as well as the emission of

FIG. 8. Semi-analytic prediction for the spectrum of gravita-
tional waves in the band relevant for PTAs, taken from [[50], red
dashed curve of Fig. 3]. The dashed lines show how we cut off the
spectrum to compute the autocorrelation function.
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GWenergy in n > 2 harmonics of the orbital period arising
from eccentric orbits.

2. Neglecting pulsar terms and the GW
autocorrelation function

Now we examine the Hellings-Downs correlation for a
Gaussian ensemble. The pulse redshift at Earth time t
produced by the gravitational wave is obtained by summing
Eq. (A2) via Eq. (C1) and making use of Eq. (A3), giving

ZðtÞ ¼
X
A

Z
df

Z
dΩFAðΩÞhAðf;ΩÞ

× e2πift
h
1 − e−2πifLð1þΩ·pÞ

i
; ðC8Þ

where the antenna pattern functions FAðΩÞ for A ¼ þ;×
are defined in Eq. (A6), with the polarization tensors andΩ
coming from Eqs. (D6) and (D7). Here, the pulsar is at
distance L and spatial position Lp. If needed, we add a
subscript to F to label the pulsar, which enters via p.
The corresponding formula for the timing residual is

obtained by integrating once with respect to time, giving

ΔτðtÞ ¼
X
A

Z
df

Z
dΩFAðΩÞ hAðf;ΩÞ

2πif

× e2πift
h
1 − e−2πifLð1þΩ·pÞ

i
: ðC9Þ

Both of these formulas give us exact values for any
representative hAðf;ΩÞ in the ensemble.
The expected correlation between the arrival time resid-

uals for pulsars 1 and 2 is the expectation value of the
quantity

ρ ¼ Δτ1ðtÞΔτ2ðtÞ: ðC10Þ

We can evaluate hρi by substituting Eq. (C9) into Eq. (C10)
and using Eq. (C4) to evaluate the expectation value,
allowing us to carry out two of the integrals. We arrive at

hρi ¼
Z

df
HðjfjÞ
4π2f2

Z
dΩ

h
1 − e−2πifL1ð1þΩ·p1Þ

i
×
h
1 − e2πifL2ð1þΩ·p2Þ

iX
A

FA
1 ðΩÞFA

2 ðΩÞ: ðC11Þ

A similar formula can be written for the redshift correlation,
which removes the 4π2f2 factor from the denominator. No
time averaging is needed to define ρ because our GW
statistical ensemble is stationary, and we have assumed
ideal noise-free pulsars. In practice, time-averaging is
needed to fit to a pulsar timing model [36,51,52]. It is
also needed to compute the second moment of ρ.
Note that the same formula is obtained if we define (as

we have done earlier in this paper) the correlation as the

time average of Eq. (C10) over the interval ½−T=2; T=2�. In
this case, during the calculation, before the expectation
value is taken, a factor of sincðπðf − f0ÞTÞ is introduced,
where sincðxÞ ¼ sinðxÞ=x [53]. However, this disappears
after taking the expectation value. [Many authors define the
correlation via a time integral rather than a time average, so
a factor of the integration time T appears on the rhs of
Eq. (C11).]
It is instructive to compare Eq. (C11) with the mean of

the Hellings-Downs correlation calculated in Appendix D
and given by Eq. (D3). This is obtained from Eq. (C11) if
the product of the two quantities in square brackets is set to
unity. This corresponds to discarding the non-Earth terms.
We now return to the question of whether this is justified.

The product of the quantities in square brackets on the final
line of Eq. (C11) yields four terms. The product of “1” with
“1” is the “Earth” term, the products of “1” with the
exponentials are the Earth-pulsar interference terms, and
the product of the two exponentials is the pulsar-pulsar
interference term. If one averages over pulsars at different
distances, then it is clear that all but the Earth term vanish.
However, for a given set of pulsars in a particular experi-
ment, such averaging is not justified: the pulsars have some
particular positions and these do not change.
To understand when it might make sense to neglect the

final three terms, it is helpful to introduce the autocorre-
lation function

CðTÞ ¼ 1

4π2

Z
df e2πifT

HðjfjÞ
f2

¼ 3H2
0

128π5

Z
df e2πifT

ΩgwðjfjÞ
f5

¼ 1

64π3

Z
df e2πifT

h2cðjfjÞ
f3

; ðC12Þ

which we have written in three equivalent forms. The
autocorrelation function is well known in digital and analog
signal processing, where the Wiener-Khinchin theorem
states that the Fourier transform of a signal’s power
spectrum is its autocorrelation function, and vice versa.
The autocorrelation function CðTÞ provides useful infor-

mation about the time/length scales on which a random
process is correlated. Several properties of CðTÞ follow
immediately from its definition. First, it is symmetric,
CðTÞ ¼ Cð−TÞ. Second, since HðjfjÞ=f2 is non-negative,
it follows immediately from the Schwarz inequality that
CðTÞ has its maximum at T ¼ 0. Lastly, it follows from the
definition (and can be proved via steepest descents or
stationary phase) that for smooth functions of the types
encountered in physics, the autocorrelation CðTÞ vanishes
for large T. The correlation time/length of a random process
is typically defined as the smallest value of T for which
CðTÞ=Cð0Þ drops below 1=2 or 1=e. Figure 9 shows the
autocorrelation CðTÞ for the GW stochastic background
spectrum shown in Fig. 8.
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The useful information in the autocorrelation function is
the value at the origin Cð0Þ and the rate of falloff. It is
helpful to separate these two properties, defining a “total
power” Cð0Þ and a normalized ratio CðTÞ ¼ CðTÞ=Cð0Þ.
Using the autocorrelation function, we can carry out the

integration over frequency in Eq. (C11), and the timing
residual correlations may be written

hρi ¼ Cð0Þ
Z

dΩ
X
A

FA
1 ðΩÞFA

2 ðΩÞ

×



1þ C

�
L1ð1þΩ · p1Þ

�
þ C

�
L2ð1þΩ · p2Þ

�

þ C
�
L1ð1þΩ · p1Þ − L2ð1þΩ · p2Þ

��
: ðC13Þ

The three terms where the autocorrelation function
appears are the two pulsar-Earth terms, and the pulsar-
pulsar term.
If pulsars 1 and 2 are different, then we are justified in

neglecting the pulsar terms in Eq. (C13) if CðTÞ is much
smaller than unity when T is comparable to the pulsar
separations from Earth and each other. From Fig. 9, this is
justified if the typical pulsar distances are thousands of
years. In this case, the final three terms in Eq. (C13) will be
small compared to unity, and it is valid to drop them. Only
the Earth term in Eq. (C13) survives, and the timing
residual correlations become

hρi ¼ Cð0Þ
Z

dΩ
X
A

FA
1 ðΩÞFA

2 ðΩÞ

¼ 4πCð0ÞμuðγÞ; ðC14Þ

where the spherical average Eq. (2.3) of the antenna pattern
functions Eq. (2.2) is given by Eq. (2.4) as μuðγÞ. The
amplitude of the correlation is set by the GW power, as

defined by Cð0Þ in Eq. (C12). This is the Gaussian
ensemble equivalent of Eq. (3.36) in the discrete source
calculation of Sec. III.
An interesting special case of Eq. (C13) is when pulsars

1 and 2 are the same (identical). Since they have the
same direction, p1 ¼ p2, which implies that γ ¼ 0. Since
they are at the same distance, L1 ¼ L2. In that case, the
last normalized autocorrelation function that appears in
Eq. (C13) becomes Cð0Þ ¼ 1, since its argument vanishes.
Hence, the expected correlation between a pulsar and itself
is twice as large as the expected correlation between that
pulsar and another pulsar which lies along the same line of
sight, but at a significantly different distance. Thus, for
general choices of pulsars α and β, which might be the same
or different, one has

ραβ ¼ hρi ¼ 4πCð0Þ
�
μuðγαβÞ þ δαβμuð0Þ

�
; ðC15Þ

where γαβ is the angle between the lines of sight to the
two pulsars. Equation (C15) for hρi reduces to Eq. (C14) in
the case where α ≠ β, but adds an overall factor of two
when α ¼ β. Equation (C15) holds if the GW background
is (statistically) stationary in time and has a normalized
autocorrelation function that falls off at typical Earth-pulsar
separations.

3. Total variance for the Gaussian ensemble

Here, we derive the total variance of the Hellings-Downs
correlation for a Gaussian ensemble. A similar result is also
given in the text before Eq. (9) of [21], and comes from a
calculation corresponding to the last line of Eq. (5.4)
in [17]. The result corresponds to a limit of the confu-
sion-noise model for discrete point sources Eq. (3.48)
found in Sec. III A.
For this derivation, and for the cosmic variance calcu-

lation in Sec. C 5, we exploit an important feature of a zero-
mean Gaussian process first proved by Isserlis [54]: the
expectation value of products of more than two h can be
written as sums of all possible products of the h with at
most two terms. This means that the expectation value of
any even power of h can be evaluated using Eq. (C4), and
also implies that the expected values of odd powers of h
will vanish.
Begin with Eq. (C8) for the arrival time redshift of pulses

at Earth time t, multiply its complex conjugate by the
identical expression for the second pulsar, and form the
time-averaged product over the range t ∈ ½−T=2; T=2�.
This gives

ρ¼Z1Z2

¼
X
A

X
A0

Z
df

Z
df0

Z
dΩ

Z
dΩ0RA�

1 ðf;ΩÞRA0
2 ðf0;Ω0Þ

×h�Aðf;ΩÞhA0 ðf0;Ω0Þsinc
�
πðf−f0ÞT

�
; ðC16Þ

FIG. 9. Normalized autocorrelation function CðTÞ for the GW
spectra shown in the previous figure. This falls off significantly
for times T greater than a few hundred years.
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where the subscripts “1” and “2” label the pulsars, and
sincðxÞ ¼ sinðxÞ=x [53]. The pulsar term is incorporated
via a modified antenna pattern function

RA
nðf;ΩÞ ¼

h
1 − e−2πifLnð1þΩ·pnÞ

i
FA
nðΩÞ; ðC17Þ

where n ¼ 1 or n ¼ 2 denotes the pulsar, and (as before) Ln
is the distance from the Earth to the pulsar. For any particular
realization drawn from the ensemble, Eq. (C16) gives the
correlation between the two pulsars. To compute the vari-
ance, we need the mean and second moment of Z1Z2.
The mean is easily computed by taking the ensemble

average of Eq. (C16) by using Eq. (C4). One obtains

hρi ¼ hZ1Z2i ¼ h2μuðγÞ; ðC18Þ
where we have assumed that the normalized autocorrelation
function C is small for typical Earth-pulsar and pulsar-
pulsar separations, which means that the three remaining

exponential terms may be neglected. This is the same
expression obtained in Eq. (C14), provided that a factor of
ð2πfÞ2 is put into the numerator of Eq. (C12), since
redshifts rather than timing residuals are being correlated.
For convenience, the overall scale in Eq. (C18) is

expressed as

h2 ¼ 4π

Z
HðfÞdf ¼ 8π

Z
∞

0

HðfÞdf: ðC19Þ

This is a measure of the (squared) strain, expressed as an
integral of the spectral functionHðfÞ. In Eq. (C19) we have
also expressed this in terms of one-sided integrals, making
use of the symmetry HðfÞ ¼ Hð−fÞ intrinsic in the defi-
nition Eq. (C4) of the two-point function for the Gaussian
ensemble.
For the second moment, we multiply the correlation

Eq. (C16) for any representative of the ensemble by its
complex conjugate [55], obtaining

ρ2 ¼
X
A

X
A0

X
A00

X
A000

Z
df

Z
df0

Z
df00

Z
df000

Z
dΩ

Z
dΩ0

Z
dΩ00

Z
dΩ000sinc

�
πðf − f0ÞT

�
sinc

�
πðf00 − f000ÞT

�
× RA�

1 ðf;ΩÞRA0
2 ðf0;Ω0ÞRA00

1 ðf00;Ω00ÞRA000�
2 ðf000;Ω000Þh�Aðf;ΩÞhA0 ðf0;Ω0ÞhA00 ðf00;Ω00Þh�A000 ðf000;Ω000Þ: ðC20Þ

To compute the ensemble average of ρ2, we need the ensemble average of the four-point function. Isserlis’ theorem [54]
implies that for a Gaussian ensemble the four-point function is the sum of three two-point functions:

hh�Aðf;ΩÞ hA0 ðf0;Ω0ÞhA00 ðf00;Ω00Þ h�A000 ðf000;Ω000Þi ¼
h h�A ð f; ΩÞ hA0 ðf0;Ω0Þi hh�A00 ð−f00;Ω00ÞhA000 ð−f000;Ω000Þi þ
hh�Aðf;ΩÞ hA00 ðf00;Ω00Þi hh�A0 ð−f0;Ω0Þ hA000 ð−f000;Ω000Þi þ
hh�Aðf;ΩÞ hA000 ð−f000;Ω000Þihh�A0 ð−f0;Ω0Þ hA00 ðf00;Ω00Þi; ðC21Þ

where we have used hAðf;ΩÞ ¼ h�Að−f;ΩÞ to write each of the three terms in a form directly computable from Eq. (C4).
Using Eq. (C4) to evaluate Eq. (C21) givesD

h�Aðf;ΩÞhA0 ðf0;Ω0ÞhA00 ðf00;Ω00Þh�A000 ðf000;Ω000Þ
E
¼

δAA0 δA00A000 δ2ðΩ;Ω0Þ δ2ðΩ00;Ω000Þδðf−f0Þ δðf00−f000ÞHðfÞHðf00Þ þ
δAA00 δA0A000 δ2ðΩ;Ω00Þ δ2ðΩ0;Ω000Þ δðf−f00Þ δðf0−f000ÞHðfÞHðf0Þ þ
δAA000δA0A00 δ2ðΩ;Ω000Þδ2ðΩ0;Ω00Þ δðfþf000Þδðf0 þf00Þ HðfÞHðf0Þ; ðC22Þ

where we have used δðfÞ ¼ δð−fÞ in several terms. To evaluate the second moment of ρ we take the ensemble average of
Eq. (C20) and use Eq. (C22) to obtain three terms. In the same order as Eq. (C22), the three terms are

hρ2i ¼
Z

dfHðfÞ
Z

df00Hðf00Þ
X
A

Z
dΩRA�

1 ðf;ΩÞRA
2 ðf;ΩÞ

X
A00

Z
dΩ00RA00

1 ðf00;Ω00ÞRA00�
2 ðf00;Ω00Þ þ

Z
dfHðfÞ

Z
df0Hðf0Þsinc2

�
πðf − f0ÞT

�X
A

Z
dΩRA�

1 ðf;ΩÞRA
1 ðf;ΩÞ

X
A0

Z
dΩ0RA0

2 ðf0;Ω0ÞRA0�
2 ðf0;Ω0Þ þ

Z
dfHðfÞ

Z
df0Hðf0Þsinc2

�
πðf − f0ÞT

�X
A

Z
dΩRA�

1 ðf;ΩÞRA
2 ðf;ΩÞ

X
A0

Z
dΩ0RA0

1 ðf0;Ω0ÞRA0�
2 ðf0;Ω0Þ: ðC23Þ

This second moment hρ2i takes a simpler form if the normalized autocorrelation function C is small for typical Earth-pulsar
and pulsar-pulsar separations.
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In this case, replace the modified antenna pattern
functions RA

n which appear in Eq. (C23) by their definitions
from Eq. (C17). In the first and third line of Eq. (C23), all of
the terms which contain exponentials may be neglected,
and only the product of the unity terms remains (see Fig. 16
of Ref. [35]). In the second line of Eq. (C23), one has

RA�
1 ðf;ΩÞRA

1 ðf;ΩÞ ¼
���1 − e−2πifL1ð1þΩ·p1Þ

���2FA
1 ðΩÞFA

1 ðΩÞ

¼


2 − 2 cos

�
2πfL1ð1þΩ · p1Þ

��
× FA

1 ðΩÞFA
1 ðΩÞ

≈ 2FA
1 ðΩÞFA

1 ðΩÞ; ðC24Þ
and a similar expression for the second pulsar term, since
the rapidly varying cosine term, which arises from the two
remaining exponential terms, may be neglected. Thus we
obtain

hρ2i ¼ ðC25Þ

h4
X
A

Z
dΩ
4π

FA
1 ðΩÞFA

2 ðΩÞ
X
A0

Z
dΩ0

4π
FA0
1 ðΩ0ÞFA0

2 ðΩ0Þ

þ4h4
X
A

Z
dΩ
4π

FA
1 ðΩÞFA

1 ðΩÞ
X
A0

Z
dΩ0

4π
FA0
2 ðΩ0ÞFA0

2 ðΩ0Þ

þh4
X
A

Z
dΩ
4π

FA
1 ðΩÞFA

2 ðΩÞ
X
A0

Z
dΩ0

4π
FA0
1 ðΩ0ÞFA0

2 ðΩ0Þ:

The factor of four on the third line arises from (C24)
because the pulsar terms contribute the same amount as the
Earth terms. Fundamentally, this is because the Gaussian
ensemble is stationary in time. Hence, when a pulsar is
correlated with itself, the time-averaged square of the pulsar
term is equal to the time-averaged square of the Earth term.
Two different scale factors appear in the second moment.

The first is the squared strain h2 defined by Eq. (C19). The
second is

h4 ¼ ð4πÞ2
Z
df
Z
df0sinc2

�
πðf − f0ÞT

�
HðfÞHðf0Þ;

ðC26Þ
which is (another)measure of strain, determined by the spec-
tral function HðfÞ and the observation interval (averaging
time)T. (In theAppendixof [38], this integral is evaluated for
a simple cosmological model with HðfÞ ∝ jfj−7=3.)
The second moment Eq. (C25) can now be expressed in

terms of the Hellings-Downs curve μuðγÞ. This is because
each of the integrals over solid angle in Eq. (C25) has the
“unpolarized” Hellings-Downs term in Eq. (2.2) as an
integrand, whose average on the sphere is μuðγÞ as given in
Eq. (2.4). Thus we find

hρ2i ¼ h4μ2uðγÞ þ 4h4μ2uð0Þ þh4μ2uðγÞ: ðC27Þ

Note that each of the integrals over solid angle on the
second line of Eq. (C25) has the same form as the integrals
on the following line, but with the directions to pulsars
being identical, thus giving μuð0Þ.
The variance σ2 is formed by subtracting the square of

the mean given in Eq. (C18) from the second moment of
Eq. (C27). The variance σ2 ¼ hρ2i − hρi2 of the Gaussian
ensemble is then

σ2ðγÞ ¼ h4
�
μ2uðγÞ þ 4μ2uð0Þ

�
: ðC28Þ

These results can be compared to the confusion-noise model
of Sec. III A in the limit of large numbers of weak sources.
The Gaussian ensemble variance Eq. (C28) equals the
confusion-noise model variance of Eq. (3.50) if h4¼H2

2=8,
and the mean Eq. (C18) of the Gaussian model equals the
mean of the confusion-noise model Eq. (3.51) if h2 ¼ H2=2.
Thus, the confusion noise model has h4 ¼ h4=2.
The Gaussian ensemble variance has two interesting

limits. To obtain these two limits, it is helpful to rewrite the
definition of the strain measure h4 given by Eq. (C26) in
terms of one-sided integrals, analogous to the second form
given in Eq. (C19):

h4 ¼ 1

2
ð8πÞ2

Z
∞

0

dfHðfÞ
Z

∞

0

df0Hðf0Þ

×
h
sinc2

�
πðf−f0ÞT

�
þ sinc2

�
πðfþf0ÞT

�i
: ðC29Þ

Now consider the “single-sided” function HðfÞ defined on
the interval f ≥ 0.
In the “narrowband” case, we assume that the support

of HðfÞ on the interval f ≥ 0 has a narrow band-
width Δf ≪ 1=T and that the central frequency f0 of this
support satisfies f0T ¼ z for some integer z. In this
case, the first sinc function that occurs in Eq. (C29) gives
sincð0Þ ¼ 1. The second sinc function vanishes since
sincð2πzÞ ¼ 0 [53]. Comparison of Eqs. (C19) and (C29)
then implies that in this narrowband caseh4 ¼ h4=2, so the
mean of Eq. (C18) and the variance of Eq. (C28) become

μðγÞ ¼ h2μuðγÞ; and

σ2ðγÞ ¼ 1

2
h4
�
μ2uðγÞ þ 4μ2uð0Þ

�
: ðC30Þ

These apply for a narrowband signal, such as that considered
in Sec. III A. In fact, Eq. (C30) for the Gaussian ensemble
mean and variance can be obtained from Eqs. (3.36) and
(3.48) of Sec. III A, in the limit where Ns becomes large
with NsA2 held constant, which identifies h2 ¼ H2=2 and
sends H4 → 0.
The assumption that the narrowband frequency f0

satisfies f0T ¼ integer appears quite restrictive. But it is
easy to see that dropping this assumption does not have
much effect: it can increase the variance by up to a factor of
two. This is because the narrow bandwidth assumption
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implies that the second sinc2 in Eq. (C29) can be treated as
a constant that lies in the range [0, 1]. Thus, allowing f0T to
be noninteger means that the factor 1=2 on the second
line of Eq. (C30) could instead lie anywhere in the
interval ½1=2; 1�.
The second case of interest is the “broadband signal”

case, for which the observation time is long compared with
the inverse bandwidth: T ≫ 1=Δf. Here, one may replace
sinc2ðπfTÞ with δðfÞ=T, to obtain

h4 ¼ ð4πÞ2
T

Z
H2ðfÞdf ¼ 32π2

T

Z
∞

0

H2ðfÞdf: ðC31Þ

In this broadband case the (single-pair or total) variance of
the Hellings and Downs correlation is

σ2ðγÞ ¼ 32π2

T

Z
∞

0

H2ðfÞdf
�
μ2uðγÞ þ 4μ2uð0Þ

�
: ðC32Þ

The relative size of the variance σ compared with the mean
μ then depends upon the form of HðfÞ and the observation
time T. The scale of σ2 is determined by the integral of
H2ðfÞ divided by T, whereas the scale of μ2 is determined
by the square of the integral of H.
In contrast to the narrowband case of Eq. (C30), the

broadband variance Eq. (C32) decreases with time. This is
because in the Gaussian ensemble, the distinct frequency
bands are independent. So, as the observation time T
increases, more frequency bands become “distinct.” The
variances then add in quadrature, resulting in a total
variance that drops as 1=T with increasing observation
time, as the effective number of distinct frequency bands
grows. A related discussion may be found in [45].
Frequency-domain formulas for σ2 that exhibit the same

angular dependence as Eqs. (C30) and (C32) are implicitly
given in [20,21]. Those formulas are also obtained from
Gaussian ensemble calculations corresponding to the last
line of Eq. (5.4) in [17]. For example, the text before Eq. (9)
of [21] gives the variance as σ2abðfÞ ¼ SaaðfÞSbbðfÞ þ
S2abðfÞ where a and b denote two pulsars. In our notation
the autocorrelation is Saa ¼ Sbb ¼ 2ð4πHðfÞμuð0ÞÞ where
the factor of two arises from the pulsar term, and the cross
correlation is SabðfÞ ¼ 4πHðfÞμuðγabÞ. One thus obtains
σ2abðfÞ ¼ ð4πHðfÞÞ2ðμ2uðγabÞ þ 4μ2uð0ÞÞ where γab ¼ γ is
the angle between the lines of sight to pulsars a and b. This
variance has the same dependence on angle γ as Eqs. (C30)
and (C32), and integrating it over frequency gives the
broadband result Eq. (C32).

4. Variance of the squared GW strain and
GW energy-density for the Gaussian ensemble

Here, we find the variance of the time-averaged squared

strain s ¼ habhab for the Gaussian ensemble. This is

straightforward to compute, and has the same origins
as the cosmic variance. This computation also gives
the variance of the time-averaged GW energy density

ρGW ¼ c2 _hab _h
ab=32πG [[17], Eq. (2.13)], provided that

two factors of πc2f2=8G are inserted into the correct
equations.
To carry out the calculation, we will need the spheri-

cal average Eq. (2.3) of the product of two polarization
tensors, given by Eq. (D6). This spherical average is
defined by

ηabcd¼
1

4π

Z
dΩeabðΩÞe�cdðΩÞ

¼ 1

4π

Z
dΩ

�
eþabðΩÞeþcdðΩÞþe×abðΩÞe×cdðΩÞ

�
: ðC33Þ

For completeness we have expressed this average both
in terms of the linear polarization basis A ¼ þ;× and
in terms of the (complex) circular polarization basis
eab ¼ eþab − ie×ab, which was introduced after Eq. (3.11).
While ηabcd could be evaluated by carrying out the integrals
explicitly, symmetry arguments are simpler.
From rotational symmetry and index symmetries it

follows that

ηabcd ¼ αδabδcd þ βðδacδbd þ δadδbcÞ; ðC34Þ

where δab is the three-dimensional Kronecker delta and α
and β are dimensionless numerical constants. (The sym-
metry arguments are those of Ref. [[56] Appendix B].)
The constants α and β in Eq. (C34) are easily found.
Since the polarization tensors are traceless, Eq. (C33)
implies that ηaacd ¼ 0, which in Eq. (C34) implies that
3αþ 2β ¼ 0. Since we have normalized the polarization
tensors so that eabe�ab¼4, Eq. (C33) implies that ηabab¼4,
which from Eq. (C34) implies that 3αþ 12β ¼ 4. The
solution to this pair of linear equations is α ¼ −4=15
and β ¼ 2=5. This simple formula for ηabcd may also
be obtained by taking the α → 0 limit of the more
general overlap reduction function given in Ref. [[17],
Eq. (3.34)].)

The first and second moments of s ¼ habhab are
computed by replacing ρ by s in the calculations of
Appendix C 3. The value of s for any realization
from the ensemble, which is analogous to Eq. (C16), is
given by

s ¼
X
A

X
A0

Z
df

Z
df0

Z
dΩ

Z
dΩ0 sinc

�
πðf − f0ÞT

�
× eAabðΩÞeabA0 ðΩ0Þh�Aðf;ΩÞhA0 ðf0;Ω0Þ: ðC35Þ
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The ensemble expectation value of s is evaluated using Eq. (C4). This gives

hsi ¼
X
A

Z
dfHðfÞ

Z
dΩ eAabðΩÞeabA ðΩÞ ¼ 4π ηab

ab

Z
HðfÞdf ¼ 4h2; ðC36Þ

where h2 is defined by Eq. (C19). The second moment of s is obtained from the analog of Eq. (C20), which is

s2 ¼
X
A

X
A0

X
A00

X
A000

Z
df

Z
df0

Z
df00

Z
df000

Z
dΩ

Z
dΩ0

Z
dΩ00

Z
dΩ000sinc

�
πðf − f0ÞT

�
sinc

�
πðf00 − f000ÞT

�
× eAabðΩÞeabA0 ðΩ0ÞeA00

cdðΩ00ÞecdA000 ðΩ000Þh�Aðf;ΩÞhA0 ðf0;Ω0ÞhA00 ðf00;Ω00Þh�A000 ðf000;Ω000Þ: ðC37Þ
Taking its expectation value for the Gaussian ensemble of universes gives the analog of Eq. (C25), where the four antenna-
pattern functions are replaced by contractions of polarization tensors. The three terms arising from Isserlis’ theorem are

hs2i ¼ h4ηababηcdcd þh4
�
ηabcdη

abcd þ ηabcdηabcd
�
¼ 16h4 þ 32

5
h4; ðC38Þ

where h4 is defined by Eq. (C26). The final equality
follows by using Eq. (C34) to compute ηabab ¼
3αþ 12β ¼ 4 and ηabcdη

abcd ¼ 6ðαþ 4βÞβ ¼ 16=5.
Note that the h4 terms on the rhs of Eq. (C38) are equal.

In contrast, when computing the variance of the Hellings
and Downs correlation in Eq. (C25), the effect of the
“pulsar term” is to make the second term four times as large
as the third. Here, the squared strain is a local quantity:
there are no pulsar terms.
The (cosmic) variance in s is easily evaluated from

Eqs. (C36) and (C38), giving

σ2s ¼ hs2i − hsi2 ¼ 32

5
h4: ðC39Þ

This implies that a local measurement of the squared GW
strain or GW energy density has a fractional uncertainty

σs
hsi ¼

ffiffiffi
2

5

r
h2

h2
; ðC40Þ

where we have used Eqs. (C36) and (C39).
Corresponding formulas may be obtained for the mean

GWenergy density and its variance by inserting a factor of
πc2f2=8G into the integral Eq. (C19) which defines h2 and
two such factors (one for f and one for f0) into the integral
Eq. (C26) which defines h4.
For the commensurate-frequency narrowband case with

h4=h4 ¼ 1=2 this ratio corresponds to typical fluctuations
of�1=

ffiffiffi
5

p
≈ �45%. These large fluctuations arise because

in the narrowband case, the Universe contains a combina-
tion of standing and traveling waves. Depending upon the
relative phases of the GW sources, Earth may be located
near a node (small average squared GW strain) or an
antinode (large average squared GW strain) of that pattern.
In contrast, for a broadband signal Eq. (C31) shows

that the ratio of the fluctuations to the mean decreases
proportional to 1=

ffiffiffiffi
T

p
where T is the observation or

averaging time.

5. Cosmic variance of the Hellings and Downs
correlation for the Gaussian ensemble

Here, we derive the cosmic variance of the
Gaussian ensemble, using the same technique that we
used for the discrete-source confusion-noise model
in Sec. IV.
As explained at the start of Sec. IV, to compute the

cosmic variance, we average the pulsar correlation
Eq. (C16) over all pulsar-pair directions separated by
angle γ to obtain ΓðγÞ before computing the first and
second moments. This removes the pulsar variance. If the
pulsar distances are much larger than the wavelength
1=f, then the exponential terms that appear from
Eq. (C17) are rapidly oscillating functions of the pulsar
directions. In contrast, the functions FA

n only vary slowly
with the pulsar directions (like a quadrupole) so the
product averages to zero. Thus, we can replace the RA

n

with FA
n . Using Eqs. (G6) and (G10) from Appendix G,

the pulsar average converts the antenna patterns in
Eq. (C16) into the Hellings-Downs two-point functions
μAA0 ðγ; βÞ. We obtain

ΓðγÞ ¼ hZ1Z2ip ¼
X
A

X
A0

Z
df

Z
df0sinc

�
πðf − f0ÞT

�

×
Z

dΩ
Z

dΩ0μAA0
�
γ; βðΩ;Ω0Þ

�
h�Aðf;ΩÞ

× hA0 ðf0;Ω0Þ; ðC41Þ

where βðΩ;Ω0Þ ¼ cos−1ðΩ ·Ω0Þ is the angle between the
source vectors Ω and Ω0. For any realization in the
ensemble, ΓðγÞ is the pulsar-averaged Hellings-Downs
correlation that would be obtained via measurement of
and averaging over many pulsars, hence ΓðγÞ only
contains cosmic variance. To estimate the magnitude of
that variance, we compute hΓ2i − hΓi2, where the angle
brackets now mean “ensemble average.”
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The ensemble average of ΓðγÞ is easily computed from
Eq. (C41) by using Eq. (C4). It is

hΓðγÞi ¼
X
A

Z
df

Z
dΩ μAAðγ; 0ÞHðfÞ

¼ 4π

Z
df HðfÞμðγ; 0Þ

¼ h2μðγ; 0Þ ¼ h2μuðγÞ; ðC42Þ

where we have used Eq. (G7) to evaluate the polarization
sum in the first line. Here, μðγ; βÞ is the two-point function
from Appendix G, μðγ; 0Þ ¼ μuðγÞ is the conventional
Hellings-Downs curve, and h2 is defined by Eq. (C19).
Thus, hΓðγÞi is identical to the mean of ρ before the pulsar
average, given in Eq. (C18).
For the second moment, we start with the square of the

pulsar-averaged correlation Eq. (C41) for any representa-
tive of the ensemble

Γ2ðγÞ ¼
X
A

X
A0

X
A00

X
A000

Z
df

Z
df0

Z
df00

Z
df000

Z
dΩ

Z
dΩ0

Z
dΩ00

Z
dΩ000μAA0

�
γ;βðΩ;Ω0Þ

�
μA00A000

�
γ;βðΩ00;Ω000Þ

�

× h�Aðf;ΩÞhA0 ðf0;Ω0ÞhA00 ðf00;Ω00Þh�A000 ðf000;Ω000Þsinc
�
πðf − f0ÞT

�
sinc

�
πðf00 − f000ÞT

�
: ðC43Þ

We evaluate its ensemble average by using the four-point ensemble average Eq. (C22). This gives [compare Eq. (C44) with
Eqs. (C25) and (C27)]

hΓðγÞ2i ¼
X
A

X
A00

Z
dfHðfÞ

Z
df00Hðf00Þ

Z
dΩ

Z
dΩ00μAAðγ; 0ÞμA00A00 ðγ; 0Þ þ

X
A

X
A0

Z
dfHðfÞ

Z
df0Hðf0Þsinc2

�
πðf − f0ÞT

�Z
dΩ

Z
dΩ0μAA0

�
γ; βðΩ;Ω0Þ

�
μAA0

�
γ; βðΩ;Ω0Þ

�
þ

X
A

X
A0

Z
dfHðfÞ

Z
df0Hðf0Þsinc2

�
πðf − f0ÞT

�Z
dΩ

Z
dΩ0μAA0

�
γ; βðΩ;Ω0Þ

�
μA0A

�
γ; βðΩ0;ΩÞ

�

¼ h4μ2ðγ; 0Þ þ 2h4

Z
dΩ
4π

Z
dΩ0

4π



μ2þþ

�
γ; βðΩ;Ω0Þ

�
þ μ2××

�
γ; βðΩ;Ω0Þ

��

¼ h4μ2ðγ; 0Þ þh4

Z
π

0

sin βdβ



μ2þþðγ; βÞ þ μ2××ðγ; βÞ

�

¼ h4μ2uðγÞ þ 2h4μ̃2ðγÞ; ðC44Þ

where h4 is defined by Eq. (C26), and we have used
Eq. (G10) to set μþ× and μ×þ to zero. Note that the first
term on the rhs of Eq. (C44) is the square of the mean from
Eq. (C42), and that the last two integrals over solid angle

are equal. These are evaluated in Eq. (G12), where μ̃2 is the
spherical average of the Hellings-Downs two-point func-
tion computed in Appendix G and given in Eq. (G11).
We obtain the variance σ2 from the second moment hΓ2i

by subtracting the square of the mean, which eliminates the
first term in Eq. (C44), giving a cosmic variance

σ2cosmicðγÞ ¼ hΓðγÞ2i − hΓðγÞi2 ¼ 2h4μ̃2ðγÞ: ðC45Þ

This should be compared with the total variance (pulsar
plus cosmic) given in Eq. (C28). The cosmic variance of
Eq. (C45) corresponds exactly to the cosmic variance
Eq. (4.8) for the confusion-noise model of Sec. III A in
the limit of large numbers of weak sources, where
h4 ¼ H2

2=8. That is the same identification needed to
make the total variances match in this limit. As discussed

following Eq. (C29), the overall amplitude in Eq. (C45)
takes different forms for narrowband and broadband
signals, as in Eqs. (C30) and (C32).

6. Cosmic variance from harmonic analysis

An alternative approach to obtaining the cosmic variance
for the Gaussian ensemble uses techniques which were
originally developed for the analysis of cosmic background
radiation temperature fluctuation maps [57–60]. In [61,62],
pulsar timing redshift maps are analyzed using these har-
monic analysis methods. The existence of such a map is
equivalent to assuming that one has data from a large number
of low-noise pulsars, uniformly distributed on the sky.
The pulsar redshift Z induced by a GW background as a

function of the pulsar sky direction Ω is decomposed into
spherical harmonics

ZðΩÞ ¼
X
lm

almYlmðΩÞ; ðC46Þ
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where Ω denotes coordinates on S2 or equivalently the
coordinate pair θ;ϕ. The complex expansion coefficients
alm have specific values in any given realization of the
universe. An ensemble of universes corresponds to an
ensemble of alm; here angle brackets denote averages over
that ensemble. While the physical redshift is real, the Z
defined by Eq. (C46) is complex because it corresponds
to the Fourier transform of data from a single frequency
bin [61].
In [61] the complex coefficients alm are first found

for a point source of gravitational waves located along the
z-axis. From these, one can infer the values of the alm for a
point source with an arbitrary sky position. These co-
efficients are characterized by the “rotation invariant”
quantity

Cl ¼
1

2lþ 1

Xl

m¼−l
jalmj2: ðC47Þ

The redshift Z is a linear functional of the GW amplitude
hab, as shown in Eqs. (A2) and (A3). Thus, if the GW
background is described by a Gaussian ensemble, it follows
from Eq. (C46) that the alm are also Gaussian random
variables. We can then employ Eq. (C47) to (statistically)
characterize the alm.
For a given value of l, there are 2lþ 1 coefficients alm,

for m ¼ −l;…; l. Each coefficient is a complex number,
whose real and imaginary parts are independent random
variables. These 4lþ 2 independent variables are all drawn
from the same zero-mean Gaussian distribution. The
second moment of that distribution (up to a factor of
4lþ 2) is determined by Eq. (21) of [61] as

hCli ¼
8<
:

0 if l < 2
4π

ðlþ 2Þðlþ 1Þlðl − 1Þ h
2 if l ≥ 2

: ðC48Þ

The statistical independence of the real and imaginary
parts of alm for different l and m imply that for the
Gaussian ensemble, each of the Cl is an independent
random variable. These are drawn from a (central) chi-
squared distribution χ2k with k ¼ 4lþ 2 degrees of free-
dom, rescaled so that the mean is hCli rather than
k ¼ 4lþ 2.
Note that since we use the normalization μuð0Þ ¼ 1=3

whereas [61] have 1=2, in Eq. (C48) we have changed their
6π to 4π. We have also inserted a factor of h2 to permit easy
comparison with the earlier parts of this Appendix.
The Hellings and Downs correlation for any member of

the ensemble is given by Eq. (19) of [61] as

μðγÞ ¼
X∞
l¼0

Cl
2lþ 1

4π
Plðcos γÞ; ðC49Þ

where PlðxÞ denotes the Legendre polynomial of order l in
x. In [63] it is shown that the expected value of this sum is
precisely the Hellings and Downs curve:

hμðγÞi ¼ h2μuðγÞ

¼ h2
X∞
l¼2

2lþ 1

ðlþ 2Þðlþ 1Þlðl − 1ÞPlðcos γÞ: ðC50Þ

That is to say, the Hellings-Downs curve may be expressed
as this particular sum of Legendre polynomials of cos γ.
It is also straightforward to compute the variance of the

Hellings and Downs correlation from the results of [61].
Start with Eq. (C49), take the ensemble average of its square
and subtract the square of its ensemble average to obtain

σ2ðγÞ ¼ hμ2i − hμi2

¼
X∞
l;l0¼0

�
hClCl0 i − hClihCl0 i

� ð2lþ 1Þð2l0 þ 1Þ
ð4πÞ2

× Plðcos γÞPl0 ðcos γÞ

¼
X∞
l¼0

�
hC2

l i − hCli2
��2lþ 1

4π

�
2

P2
l ðcos γÞ: ðC51Þ

To obtain the final line, we have used hClCl0 i ¼ hClihCl0 i
for l ≠ l0, which follows from the statistical independence
of the Cl for different values of l. Now consider the other
case, for which l ¼ l0. Since a χ2k-distributed random
variable has variance 2k, after rescaling we find

hC2
l i − hCli2 ¼ 2k


hCli
k

�
2

¼ hCli2
2lþ 1

: ðC52Þ

The rescaling factor hCli=k is discussed immediately after
Eq. (C48); ourEq. (C52) is consistentwithEq. (22) from [61].
The cosmic variance is obtained by substituting

Eq. (C52) into Eq. (C51) and using Eq. (C48), giving

σ2cosmicðγÞ ¼ h4
X∞
l¼2

2lþ 1

ðlþ 2Þ2ðlþ 1Þ2l2ðl − 1Þ2

× P2
l ðcos γÞ ¼ h4μ̃2ðγÞ: ðC53Þ

While we have not given a rigorous proof, a simple
numerical check (it is sufficient to include l ¼ 2;
3;…; 10 in the sum) convincingly demonstrates the final
equality in Eq. (C53). Comparison of Eq. (C50) with
Eq. (C18) and Eq. (C53) with Eq. (C45) shows that this is
exactly the cosmic variance, with h4 ¼ h4=2 as discussed
before Eq. (C30). This agreement makes sense, since as
stressed earlier, the existence of the sky map is predicated
on the existence of a large number of low-noise pulsars.
The cosmic covariance may be found with a similar
calculation, see Ref. [38].
(Note: several weeks after Eq. (C53) appeared on the

arXiv the same result was derived independently in [64].)
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APPENDIX D: UNPOLARIZED POINT SOURCE
MEAN μuðγÞ AND VARIANCE σ2uðγÞ

Here, we calculate the mean and variance of the
standard “unpolarized” term in the pulsar redshift or
timing residual correlation between two pulsars. The
mean is the pulsar correlation for a single GW source
of unit amplitude at a fixed point in the sky, averaged
over all possible sky positions of the pulsar pair where
their separation angle is fixed at γ. The variance
characterizes the scale of the fluctuations in that
correlation.
As shown in [25], and as we have also demonstrated in

Appendix A, this is equivalent to fixing the pulsar pair at
definite positions, and calculating the mean and variance
as the location of the GW source is shifted uniformly
around the sky. So this is how our calculation is
structured, which is also how it was conceived by
Hellings and Downs. Our calculation closely follows
that given in Appendix C of Ref. [18], where the mean
(but not the variance) is found. Note the sign typo one
line before Eq. (C9) of Ref. [18].
Our starting point is the correlation of pulsar timing

residuals Eq. (C14) for an unpolarized unit amplitude
source

ρðΩÞ ¼ Fþ
1 ðΩÞFþ

2 ðΩÞ þ F×
1 ðΩÞF×

2 ðΩÞ; ðD1Þ

where 1 and 2 label the pulsars at sky directions p1 and p2.
Note that different authors use different choices of nor-
malization for this expression. Ours is consistent with
Hellings and Downs and corresponds to the normalization
condition hρiðγ ¼ 0Þ ¼ μuðγ ¼ 0Þ ¼ 1=3.
Here, we use hQi to denote the direction average of some

functional of Ω, so that

hQi ¼ 1

4π

Z
dΩQðΩÞ; ðD2Þ

where the normalization ensures that h1i ¼ 1. Hence, the
Hellings-Downs function is the mean

μuðγÞ ¼ hρi ¼ 1

4π

Z
dΩ

X
A

FA
1 ðΩÞFA

2 ðΩÞ; ðD3Þ

and the variance in the Hellings-Downs function is

σ2uðγÞ ¼
D
ðΔρÞ2

E
¼

D
ðρ − hρiÞ2

E
¼ hρ2i − hρi2; ðD4Þ

where the subscript “u” means “unpolarized” and

hρ2i ¼ 1

4π

Z
dΩ

�X
A

FA
1 ðΩÞFA

2 ðΩÞ
�
2 ðD5Þ

is the second moment.

To evaluate these quantities, we follow the approach of
[[18], Appendix C]. We write the transverse traceless
symmetric polarization tensors as

eþabðΩÞ ¼ mamb − nanb; and

e×abðΩÞ ¼ manb þ namb; ðD6Þ

where n and m are a pair of orthogonal unit vectors which
are both orthogonal to the propagating direction Ω. Note
that while eþab and e

×
ab depend uponΩ, we only indicate this

functional dependence when needed for clarity.
Closed forms for Ω, n and m are given by [17] as:

Ω ¼ x̂ cosϕ sin θ þ ŷ sinϕ sin θ þ ẑ cos θ;

m ¼ x̂ sinϕ − ŷ cosϕ;

n ¼ x̂ cosϕ cos θ þ ŷ sinϕ cos θ − ẑ sin θ:

ðD7Þ

The reader unfamiliar with these forms should quickly
verify that the three vectors are unit length and mutually
orthogonal. We note in passing that m and n could be
replaced by any orthogonal linear combination

m0 ¼ m cos ϵþ n sin ϵ; and

n0 ¼ −m sin ϵ þ n cos ϵ; ðD8Þ

where ϵ is an arbitrary function of Ω. This has the effect of
“rotating” the polarization vectors into linear combinations
of each other, defining a different basis for “þ” and “×”,
but not making any difference to the treatment. The angle ϵ
may vary arbitrarily as a function ofΩ, because we are free
to pick any GW polarization basis, provided that the two
basis vectors are orthogonal to one another, and orthogonal
to the wave propagation direction Ω.
Without loss of generality, let pulsars 1 and 2, separated

by angle γ, have unit direction vectors

p1 ¼ ẑ and p2 ¼ x̂ sin γ þ ẑ cos γ: ðD9Þ

Employ the definitions Eq. (A6) for F, Eq. (D6) for the
polarization tensors, and Eq. (D7) for the vectors Ω, m
and n. For the first pulsar, one has

F×
1 ðΩÞ ¼ 0; and

Fþ
1 ðΩÞ ¼ 1

2

pa1p
b
1

1þΩ · p1
eþabðΩÞ

¼ 1

2

ðp1 ·mÞ2 − ðp1 · nÞ2
1þΩ · p1

¼ −
1

2

sin2θ
1þ cos θ

¼ 1

2
ðcos θ − 1Þ: ðD10Þ
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For the second pulsar, the expression for F×
2 ðΩÞ is not needed, since according to Eq. (D10) it would be multiplied by zero.

The plus polarization term is

Fþ
2 ðΩÞ ¼ 1

2

ðp2 ·mÞ2 − ðp2 · nÞ2
1þΩ · p2

¼ ðsin γ sinϕÞ2 − ðsin γ cosϕ cos θ − cos γ sin θÞ2
2ð1þ sin γ cosϕ sin θ þ cos γ cos θÞ

¼ sin2γ sin2ϕ − sin2γ cos2ϕ cos2θ − cos2γ sin2θ þ 2 sin γ cos γ sin θ cos θ cosϕ
2ð1þ sin γ cosϕ sin θ þ cos γ cos θÞ : ðD11Þ

Since the product of the × terms vanishes, the product of
Eqs. (D10) and (D11) gives ρðΩÞ ¼ Fþ

1 F
þ
2 .

We want to compute the mean and variance of ρðΩÞ. To
put it into computationally tractable form, a bit of algebra is
helpful. Let q denote part of the expression in the
denominator of Fþ

2 in the final line of Eq. (D11), namely

q ¼ sin γ cosϕ sin θ þ cos γ cos θ: ðD12Þ
The product ð1þ qÞðq − 1Þ can be simplified to

ð1þ qÞðq − 1Þ ¼ −sin2γ sin2ϕ − sin2γ cos2ϕ cos2θ

− cos2γ sin2θ

þ 2 sin γ cos γ sin θ cos θ cosϕ; ðD13Þ
which is identical to the numerator that appears in the final
line of Eq. (D11), apart from the sign of the first term,
sin2 γ sin2 ϕ. Hence, by adding twice this term, we can write

ρðΩÞ ¼ Fþ
1 F

þ
2

¼ 1

2
ðcos θ − 1Þ ð1þ qÞðq − 1Þ þ 2 sin2γ sin2ϕ

2ð1þ qÞ

¼ 1

4
ðcos θ − 1Þ



q − 1þ 2 sin2γ sin2ϕ

1þ q

�
: ðD14Þ

We now proceed to the integrals.
Our goal is to average ρðΩÞ and its square over the GW

directions. In that averaging, we’ll do the integral with
respect to ϕ first, so it is helpful to show the ϕ dependence
explicitly. For this, we write

ρðΩÞ ¼ 1

4



uþ v cosϕþ w

sin2ϕ
rþ s cosϕ

�
; ðD15Þ

where the quantities u, v, w, r and s are independent of ϕ.
From Eq. (D14) and the definition of q, we read off:

u ¼ ðcos θ − 1Þðcos γ cos θ − 1Þ;
v ¼ ðcos θ − 1Þ sin γ sin θ;
w ¼ ðcos θ − 1Þ2 sin2γ;
r ¼ 1þ cos γ cos θ; and

s ¼ sin γ sin θ: ðD16Þ

In integrating ρðΩÞ and ρ2ðΩÞ with respect to ϕ, we can
now see that there are six different types of integrals which
appear.
Three are trivial: the integral of a constant, of cosϕ and

of cos2 ϕ. The three nontrivial integrals are

I1ðθÞ ¼
Z

2π

0

sin2ϕ
rþ s cosϕ

dϕ;

I2ðθÞ ¼
Z

2π

0

sin2ϕ cosϕ
rþ s cosϕ

dϕ; and

I3ðθÞ ¼
Z

2π

0

sin4ϕ
ðrþ s cosϕÞ2 dϕ: ðD17Þ

For reasons that will be clear later, we indicate their depen-
dence on θ, but not the dependence on γ. Fortunately, all three
of these integrals can be easily evaluated using the same
contour integration technique. (The reader who is unfamiliar
with these methods is advised to first study the textbook
Example 3-38 from [65].) We first carry out this evaluation
and then return to the main calculation.
To evaluate the integrals I1;2;3, we make the change of

variable z ¼ eiϕ and write them as contour integrals along
the closed path shown in Fig. 10, which loops once around
the origin in the counterclockwise direction, at unit distance

FIG. 10. The contour of integration for the integrals in
Eq. (D20) goes around the unit circle once in the counterclock-
wise direction. The integrands have poles along the negative real
axis at z ¼ z1 and z ¼ z2, and a third pole at the origin. If
θ < π − γ, then z1 lies within the circle, and z2 is outside. We
have depicted the other case: if θ > π − γ, then z2 is within and z1
is outside. The residues of the poles are listed in Table I.
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from the origin. Since cosϕ ¼ ðzþ 1=zÞ=2, one can write
the denominators as

rþ s cosϕ ¼ sin θ sin γ
2z

ðz − z1Þðz − z2Þ; ðD18Þ

or as the square of this quantity. The two roots are found by
substituting r and s into the lhs, rewriting cosϕ in terms of
z, and factoring the quadratic. Both roots lie on the negative
real axis, at locations

z1 ¼ −
ð1 − cos γÞð1 − cos θÞ

sin γ sin θ
; and

z2 ¼ −
ð1þ cos γÞð1þ cos θÞ

sin γ sin θ
: ðD19Þ

Making use of sinϕ ¼ ðz − 1=zÞ=2i and dϕ ¼ −idz=z,
one has:

I1 ¼
i

2 sin θ sin γ

I
dz

ðz − 1=zÞ2
ðz − z1Þðz − z2Þ

;

I2 ¼
i

4 sin θ sin γ

I
dz

ðz − 1=zÞ2ðzþ 1=zÞ
ðz − z1Þðz − z2Þ

; and

I3 ¼
−i

4sin2θsin2γ

I
dz

zðz − 1=zÞ4
ðz − z1Þ2ðz − z2Þ2

: ðD20Þ

The path of integration is shown in Fig. 10. Note that the
locations of the poles depend upon θ and γ. If θ < π − γ,
then z1 lies within the unit circle, and z2 is outside,
otherwise z2 is within the circle and z1 is outside.
All three integrands are ratios of polynomials, so are

analytic on the entire plane apart from the poles at z ¼ 0,
z ¼ z1 and z ¼ z2. There are no branch points, branch cuts,
essential singularities, or other complications. By the
residue theorem, the integrals are just 2πi times the sum
of the residues within the unit circle. These residues are
computed by expanding the integrands in a Laurent series
at the three poles; we have listed them in Table I. In effect,
these integrals are evaluated by taking derivatives to find
the residues.
The first integral is evaluated as follows. For θ < π − γ,

there are contributions from the poles at z ¼ 0 and z ¼ z1,
and one obtains

I1< ¼ ið2πiÞðR0 þ R1Þ
2 sin θ sin γ

¼ 2π

ð1þ cos γÞð1þ cos θÞ ; ðD21Þ

whereas for θ > π − γ, there are contributions from the
poles at z ¼ 0 and z ¼ z2, and one obtains

I1> ¼ ið2πiÞðR0 þ R2Þ
2 sin θ sin γ

¼ 2π

ð1 − cos γÞð1 − cos θÞ : ðD22Þ

Here, R0, R1, and R2 are the appropriate residues from
Table I, and we have added “<” and “>” as subscripts to I
to indicate the range of θ.
The behavior is similar for the remaining two integrals.

For θ < π − γ, the second integral is

I2< ¼ ið2πiÞðR0 þ R1Þ
4 sin θ sin γ

¼ −πð1 − cos γÞð1 − cos θÞ
sin γ sin θð1þ cos γÞð1þ cos θÞ ; ðD23Þ

and for θ > π − γ, we obtain

I2> ¼ ið2πiÞðR0 þ R2Þ
4 sin θ sin γ

¼ −πð1þ cos γÞð1þ cos θÞ
sin γ sin θð1 − cos γÞð1 − cos θÞ : ðD24Þ

For θ < π − γ, the third integral evaluates to

I3< ¼ −ið2πiÞðR0 þ R1Þ
4 sin2 θ sin2 γ

¼ 3π

ð1þ cos γÞ2ð1þ cos θÞ2 ; ðD25Þ

and for θ > π − γ, it is

I3> ¼ −ið2πiÞðR0 þ R2Þ
4 sin2 θ sin2 γ

¼ 3π

ð1 − cos γÞ2ð1 − cos θÞ2 : ðD26Þ

With these three integrals in hand, only integration over θ
remains.
We begin by computing the Hellings-Downs function

hρi, starting from Eqs. (D2) and (D15), which give

hρi ¼ 1

16π

Z
dΩ



uþ v cosϕþ w

sin2ϕ
rþ s cosϕ

�
: ðD27Þ

The integral over ϕ gives

hρi ¼ 1

16π

Z
π

0

dθ sin θ
h
2πuþ wI1ðθÞ

i
; ðD28Þ

TABLE I. Residues of integrals in Eq. (D20), without the factors that appear before the integral symbol. Note that
the final row can be obtained from the previous row by swapping z1 and z2.

Location Name Value for I1 Value for I2 Value for I3

z ¼ 0 R0
z1þz2
z2
1
z2
2

− z2
1
z2
2
−z2

1
−z1z2−z22

z3
1
z3
2

− 4z2
1
z2
2
−3z2

1
−4z1z2−3z22

z4
1
z4
2

z ¼ z1 R1
ðz1−1Þ2ðz1þ1Þ2

z2
1
ðz1−z2Þ

ðz1−1Þ2ðz1þ1Þ2ðz2
1
þ1Þ

z3
1
ðz1−z2Þ

ðz1−1Þ3ðz1þ1Þ3ð3z3
1
−5z2

1
z2þ5z1−3z2Þ

z4
1
ðz1−z2Þ3

z ¼ z2 R2 − ðz2−1Þ2ðz2þ1Þ2
z2
2
ðz1−z2Þ − ðz2−1Þ2ðz2þ1Þ2ðz2

2
þ1Þ

z3
2
ðz1−z2Þ

ðz2−1Þ3ðz2þ1Þ3ð−5z1z22−3z1þ3z3
2
þ5z2Þ

z4
2
ðz2−z1Þ3
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where the v cosϕ term has integrated to zero, I1 is defined by Eq. (D17) and u and w are given by Eq. (D16). The integral of
u sin θ is easily evaluated, but because of the different functional dependencies in Eqs. (D21) and (D22), the remaining
integral must be split into two ranges, giving

μuðγÞ ¼ hρi ¼ 1

4



1þ cos γ

3
þ 1

4π

�Z
π−γ

0

dθ sin θ wI1<ðθÞ þ
Z

π

π−γ
dθ sin θ wI1>ðθÞ

��

¼ 1

4



1þ 1

3
cos γ þ ð1 − cos γÞ

�
1þ cos γ þ 2 log

�
1 − cos γ

2

��
− sin2γ

�

¼ 1

4
þ 1

12
cos γ þ 1

2
ð1 − cos γÞ log

�
1 − cos γ

2

�
: ðD29Þ

This is the standard Hellings-Downs curve. As γ → 0, this expression approaches 1=3, which agrees with the Hellings-
Downs normalization (Eq. 5 in Ref. [11]) but note that many authors normalize it to 1=2 at zero angle.
Now we proceed to the second moment and variance. To simplify the notation in what follows, we define the function

ΨðγÞ ¼ ð1 − cos γÞ log
�
1 − cos γ

2

�

¼ 4sin2ðγ=2Þ log
�
sin ðγ=2Þ

�
: ðD30Þ

To calculate hρ2i, we begin with Eqs. (D2) and (D15), squaring the latter to obtain

hρ2i ¼ 1

64π

Z
dΩ



u2 þ 2uv cosϕþ v2cos2ϕþ 2uw

sin2ϕ
rþ s cosϕ

þ 2vw
cosϕ sin2ϕ
rþ s cosϕ

þ w2
sin4ϕ

ðrþ s cosϕÞ2
�

¼ 1

64π

Z
π

0

dθ sin θ


2πu2 þ πv2 þ 2uwI1ðθÞ þ 2vwI2ðθÞ þ w2I3ðθÞ

�
; ðD31Þ

where the functions u, v and w are defined in Eq. (D16). On
the second line, we integrated over ϕ, making use of the
functions defined in Eq. (D17).
The θ integration of Eq. (D31) is straightforward.

We can integrate the u2 and v2 terms immediately,
obtaining

13

120
þ 1

12
cos γ þ 1

120
cos2 γ: ðD32Þ

The remaining three integrals in Eq. (D31), containing
I1, I2, and I3 respectively, are computed in the same
way as hρi was computed in Eq. (D29). Each θ
integral is the sum of an integral from 0 to π − γ and
an integral from π − γ to π, and may be evaluated using
the explicit forms in Eqs. (D21)–(D26). The logarithmic
divergences around π − γ cancel, and the three integrals
simplify to

I1∶
1

24

�
1 − cos2γ

��
3þ 6 cos γ þ cos2γ

�
þ 1

2
ð1þ cos γÞΨðγÞ; ðD33Þ

I2∶
1

24

�
1 − cos γ

�
2
�
7þ 8 cos γ þ cos2γ

�
þ 1

2
ð1 − cos γÞΨðγÞ; and ðD34Þ

I3∶
3

4
ð1 − cos γÞ

�
1þ cos γ þΨðγÞ

�
: ðD35Þ

Summing together Eqs. (D32)–(D35) yields

hρ2i ¼ 51

40
þ 1

12
cos γ −

139

120
cos2 γ þ 1

4
ð7 − 3 cos γÞΨðγÞ:

ðD36Þ

This completes the θ integration in Eq. (D31).
From the first and second moments of ρ in Eqs. (D29)

and (D36), we can compute the variance in the unpolarized
term, which is

σ2uðγÞ¼ hΔρ2i¼ hρ2i− hρi2

¼ 97

80
þ 1

24
cosγ−

839

720
cos2γ

þ 1

12

�
18−10cosγ−3ΨðγÞ

�
ΨðγÞ: ðD37Þ
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We note that cubic and higher moments of ρ could be
computed with the same methods.

APPENDIX E: POLARIZED POINT SOURCE
MEAN AND VARIANCE σ2pðγÞ

Here, we calculate the mean and variance of the
polarized correlation term in the Hellings-Downs
correlation

ρðΩÞ ¼ Fþ
1 ðΩÞF×

2 ðΩÞ − F×
1 ðΩÞFþ

2 ðΩÞ: ðE1Þ

The formalism and notation are the same as those of
Appendix D, apart from using the subscript “p” for “pola-
rized.”Wewill see that the mean value μpðγÞ ¼ hρi vanishes
so that the variance is equal to the second moment
σ2pðγÞ ¼ hρ2i.
Following the same steps as in Appendix D, we

arrive at

ρðΩÞ ¼ 1

4



ū sinϕþ v̄ sinϕ cosϕ

rþ s cosϕ

�
; ðE2Þ

which should be compared with Eq. (D15). Here, we have
defined:

ū ¼ −2ðcos θ − 1Þ sin γ cos γ sin θ;
v̄ ¼ 2ðcos θ − 1Þsin2γ cos θ;
r ¼ 1þ cos γ cos θ; and

s ¼ sin γ sin θ: ðE3Þ

Note that the quantity in square brackets in Eq. (E2) is
precisely the quantityUW ¼ ð1 − cos θÞ2AB=ð1þ qÞ from
Eq. (A18), whose square appears as the polarization term
hU2W2i in the variance Eq. (A28).
The integral of Eq. (E2) over ϕ ∈ ½0; 2π� vanishes,

because the integrand changes sign under reflection about
ϕ ¼ π. This shows that the mean hρi vanishes, so this term
does not contribute to the mean correlation.
To calculate the variance hρ2i of this polarization term,

three integrals are needed:

I4ðθÞ ¼
Z

2π

0

sin2ϕ
ðrþ s cosϕÞ2 dϕ;

I5ðθÞ ¼
Z

2π

0

sin2ϕ cosϕ
ðrþ s cosϕÞ2 dϕ; and

I6ðθÞ ¼
Z

2π

0

sin2ϕ cos2ϕ
ðrþ s cosϕÞ2 dϕ: ðE4Þ

Following exactly the same methods as used in Appendix D
starting from Eq. (D17), these evaluate to:

I4ðθÞ ¼
∓ 2π

ðcos γ þ cos θÞð1 ∓ cos γÞð1 ∓ cos θÞ ;

I5ðθÞ ¼
�2πð1� cos γÞð1� cos θÞ

ðcos γ þ cos θÞ sin γ sin θð1 ∓ cos γÞð1 ∓ cos θÞ ;

I6ðθÞ ¼
∓ 2π

ðcos γ þ cos θÞð1 ∓ cos γÞð1 ∓ cos θÞ
−

∓ 3π

ð1 ∓ cos γÞ2ð1 ∓ cos θÞ2 : ðE5Þ

Here, the upper sign is for θ > π − γ and the lower sign is
for θ < π − γ.
The integrals needed to evaluate the variance are

1

4π

Z
π−γ

0

dθ sin θ
h
ū2I4ðθÞ þ 2ū v̄ I5ðθÞ þ v̄2I6ðθÞ

i

¼ 1

3

�
cos2γ − 1

��
cos3γ þ 3cos2γ þ 58

�
þ 4

�
3 cos γ − 7

��
1 − cos γ

�
log

1 − cos γ
2

ðE6Þ
and

1

4π

Z
π

π−γ
dθ sin θ

h
ū2I4ðθÞ þ 2ū v̄ I5ðθÞ þ v̄2I6ðθÞ

i

¼ 1

3

�
1 − cos2γ

��
cos3γ þ 3cos2γ þ 2

�
: ðE7Þ

Note that in Appendix D, the integrals for I1, I2 and I3 were
carried out separately. That is not possible here, because the
integrands formed from I4, I5 and I6 have a pole at
θ ¼ π − γ, which leads to a logarithmic divergence if they
are integrated individually. However, this divergence can-
cels when the three terms are summed, so we have
evaluated them together.
Adding together Eqs. (E6) and (E7) and reinserting the

factor of ð1=4Þ2 from Eq. (E2), we obtain the second
moment hρ2i. Since the mean hρi is zero, the second
moment is also the variance. Thus, we obtain

σ2pðγÞ ¼ hρ2i

¼ 7

6

�
cos2γ − 1

�
þ 1

4

�
3 cos γ − 7

��
1 − cos γ

�
× log

�
1 − cos γ

2

�
ðE8Þ

for the variance of the polarized term in the Hellings-
Downs correlation.
The square root of this quantity (the standard deviation)

is shown in Fig. 11, where it is compared with that of
the unpolarized Hellings-Downs expressions in Eqs. (2.4)
and (2.6).
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APPENDIX F: CROSS-POLARIZED
VARIANCE σ2cðγÞ

The final quantity needed to describe the variance of the
Hellings-Downs correlation for a general polarized GW
source is the average value of the cross term

�
Fþ
1 F

þ
2 þ F×

1F
×
2

�
2 þ

�
Fþ
1 F

×
2 − F×

1F
þ
2

�
2

¼
�
Fþ
1 F

þ
1 þ F×

1F
×
1

��
Fþ
2 F

þ
2 þ F×

2F
×
2

�
: ðF1Þ

In the final line, the terms associated with the first pulsar
are collected on the left, and those with the second
pulsar on the right, which is particularly convenient for
computation.
Starting from the final line of Eq. (F1), the cross term in

the variance is defined as the sky average

σ2cðγÞ ¼
1

4π

Z
dΩ

�
Fþ
1 ðΩÞFþ

1 ðΩÞ þ F×
1 ðΩÞF×

1 ðΩÞ
��

Fþ
2 ðΩÞFþ

2 ðΩÞ þ F×
2 ðΩÞF×

2 ðΩÞ
�

¼ 1

4π

Z
dΩ

�
1 − cos θ

2

�
2
�
1 − sin γ cosϕ sin θ − cos γ cos θ

2

�
2

¼ 1

32

Z
π

0

dθ sin θð1 − cos θÞ2
�
ð1 − cos γ cos θÞ2 þ 1

2
sin2γ sin2θ

�

¼ 13

120
þ 1

12
cos γ þ 1

120
cos2γ: ðF2Þ

Note that the second line follows directly from the equality

ðp ·mÞ2 þ ðp · nÞ2 ¼ 1− ðp ·ΩÞ2 ¼ ð1þ p ·ΩÞð1− p ·ΩÞ;
ðF3Þ

which holds for the unit vectors pointing to either pulsar,
since m, n and Ω form an orthonormal basis. The third line
in Eq. (F2) is obtained by integrating ϕ ∈ ½0; 2π� and the
last line from evaluating the integral over θ.
A helpful consistency check follows from the first line of

Eq. (F1), which implies that

σ2cðγÞ ¼ μ2uðγÞ þ σ2uðγÞ þ σ2pðγÞ: ðF4Þ
The first two terms on the rhs of Eq. (F4) are given by
Eq. (D36). The third term on the rhs of Eq. (F4) is given by
Eq. (E8). Adding them together correctly reproduces the
final line of Eq. (F2).

APPENDIX G: THE TWO-POINT
HELLINGS-DOWNS FUNCTION μðγ;βÞ
AND ITS AVERAGES μ̃ðγÞ AND μ̃2ðγÞ

Here, we calculate the two-point Hellings-Downs func-
tion μðγ; βÞ and its second moment with respect to the

angular separation β between GW sources. The function is
a generalization of the Hellings-Downs correlation, giving
the average cross correlation produced by two unpolarized
coherent GW sources [66] at different locations on the sky.
It is defined by

μðγ; βÞ ¼ hFþ
1 ðΩAÞFþ

2 ðΩBÞ þ F×
1 ðΩAÞF×

2 ðΩBÞi; ðG1Þ

where the average is over all pulsar directions p1 and p2
separated by angle γ. After averaging over pulsar direc-
tions, the rhs is only a function of the two variables
cos γ ¼ p1 · p2 and cos β ¼ ΩA ·ΩB, where β is the angle
between the directions to the two sources A and B.
A potentially related function of two variables, denoted

by γðx; yÞ, is defined in Eq. (24) and plotted in Fig. 6 of
Ref. [25]. (Note that in Ref. [25], the symbol γ is the
name given to the function, and is unrelated to the angle γ
that we use in this work.) However, no closed form is
given for γðx; yÞ in [25], and we have been unable to
establish, based on its definition, if γðx; yÞ is related to
our two-point function μðx; yÞ. One conjecture is that
γðx; yÞ ¼ cðμðx; yÞÞ2, where c is a positive constant.
Our computation of μðγ; βÞ employs the same techniques

as previous calculations in Appendixes D and E of this

FIG. 11. The standard deviation σpðγÞ of the polarization term
in the correlation. The polarization term has zero mean, so does
not affect the expectation for the correlation μðγÞ. For comparison
the dashed curve is the standard deviation for the unpolarized
Hellings-Downs term.
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paper. We locate the two pulsars following Eqs. (A12) and
(A13), and place the GW sources at ΩA ¼ x̂ sin β þ ẑ cos β
and ΩB ¼ ẑ with corresponding choices for the polariza-
tion vectors m and n from Eq. (D7) and polarization
tensors from Eq. (D6). The antenna pattern functions
are then defined by Eq. (A6) and the combination ρ ¼
Fþ
1 ðΩAÞFþ

2 ðΩBÞ þ F×
1 ðΩAÞF×

2 ðΩBÞ is formed. Note that
we have assigned the more “complicated” source (in the
sense of computational complexity) to the “simpler” pulsar
and vice versa.
We now need to average ρ over the three variables θ,ϕ and

λ that define the possible pulsar pairs at separation angle γ,
where Eq. (A14) followed by Eq. (A15) defines the average.
The first integral to perform is over λ and is evaluated as a
contour integral, defining z ¼ expðiλÞ and writing ρ as
a function of z. The denominator of ρ can be written as a

quadratic function of z using the transformations in
Eqs. (D18) and (D19) with γ replaced by β. The integrand
has a fourth-order pole at the origin and first-order poles
along the negative real axis, exactly as depicted in Fig. 10,
provided that in the caption of that figure, γ is replaced by β.
As shown there, the sums of residues for θ < π − β and for
θ > π − β are different. The sums of the residues are nonzero
for θ < π − β but vanish for θ > π − β. Multiplying the sum
of the residues by 2πi completes the first integral.
The integral over ϕ is also done as a contour integral,

this time with z ¼ expðiϕÞ. One can use the same trans-
formations as in Eqs. (D18) and (D19), and now the descri-
ption of Fig. 10 applies without modification. The integrand
has a pole of secondorder at z ¼ 0 and poles of first order at z1
and z2. After some simplification, one obtains the following
quantities, which must still be integrated with respect to θ:

Iðθ; γ; βÞ ¼

8>>>>><
>>>>>:

0 for θ > π − β

I<ðθ; γ; βÞ ¼
ðcos θ − 1Þ2ðcos θ þ cos βÞðcos θ cos γ þ 2 cos γ − 1Þ

ð1þ cos θÞ2ð1þ cos βÞ2 for θ ≤ π − β and θ < π − γ

I>ðθ; γ; βÞ ¼
ðcos θ þ cos βÞðcos θ cos γ − 2 cos γ − 1Þ

ð1þ cos βÞ2 for θ ≤ π − β and θ > π − γ:

ðG2Þ

Note that (because of the integral over λ) the integrand vanishes if θ > π − β.
Integration of these expressions then yields μðγ; βÞ. For β < γ, one has

μðγ; βÞ ¼ 1

4

Z
π−γ

0

dθ sin θ I<ðθ; γ; βÞ þ
1

4

Z
π−β

π−γ
dθ sin θ I>ðθ; γ; βÞ ðG3Þ

and for β > γ, one has

μðγ; βÞ ¼ 1

4

Z
π−β

0

dθ sin θ I<ðθ; γ; βÞ: ðG4Þ

These integrals evaluate to

μðγ; βÞ ¼

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

1
48

�
33 − 18 cos β − 3cos2β þ ð32 − 21 cos β − 6cos2β − cos3βÞ cos γ

�
sec4

�
β
2

�

þ
�
1 − 1

2
cos β − 1

2
cos γ

�
sec4

�
β
2

�
log

�
sin2

�
γ
2

�� for β < γ; and

1
24

�
33 − 3 cos β − ð16þ 5 cos β þ cos2βÞ cos γ

�
sec2

�
β
2

�

þ
�
1 − 1

2
cos β − 1

2
cos γ

�
sec4

�
β
2

�
log

�
sin2

�
β
2

�� for β > γ;

ðG5Þ

which is shown in Fig. 12. The function μðγ; βÞ reduces to
the normal Hellings-Downs function in the limit β → 0,
where the two GW sources are at the same sky location.
In addition to the two-point function defined by the sum

in Eq. (G1) we also require the two-point functions for the
individual polarizations. These are defined by

μþþðγ; βÞ ¼ hFþ
1 ðΩAÞFþ

2 ðΩBÞi; and

μ××ðγ; βÞ ¼ hF×
1 ðΩAÞF×

2 ðΩBÞi; ðG6Þ

where the averages are over all pulsar pairs whose
directions are separated by angle γ, and β is the angle
between the source directions ΩA and ΩB. It follows
immediately from Eqs. (G1) and (G6) that

μðγ; βÞ ¼ μþþðγ; βÞ þ μ××ðγ; βÞ: ðG7Þ

With some simple symmetry arguments, we can obtain
both μþþ and μ×× from μ.
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Consider the effect on these three functions of changing
the sign of the direction to pulsar 1, and simultaneously
changing the sign of the direction to the source point ΩA.
This involution transformation moves one pulsar and one
source to their antipodal points on the celestial sphere. It
corresponds to shifting γ → π − γ and β → π − β, which
reflects both angles about π=2. How does this transforma-
tion affect the two-point functions?
Under this transformation, the polarization basis vectors

corresponding to the source directionΩA transform asm →
−m and n → n. To see this, changeΩ to−Ω via ϕ → ϕþ π
and θ → π − θ in Eq. (D7). This means that the polarization
basis tensors defined in Eq. (D6) transform as eþabðΩAÞ →
eþabðΩAÞ and e×abðΩAÞ → −e×abðΩAÞ. Since both p1 and ΩA

have changed sign, the quantity 1þ p1 ·ΩA is invariant.
Hence, the antenna pattern functions defined by Eq. (A6)
transform as Fþ

1 ðΩAÞ→Fþ
1 ðΩAÞ and F×

1 ðΩAÞ→−F×
1 ðΩAÞ.

Referring back to the two-point function definitions
Eq. (G6) this implies that

μþþðγ; βÞ ¼ μþþðπ − γ; π − βÞ; and

μ××ðγ; βÞ ¼ −μ××ðπ − γ; π − βÞ; ðG8Þ

since the antenna pattern functions at the second pulsar are
unaffected by the transformation.
These simple transformation rules make it straight-

forward to obtain both μ×× and μþþ from μ. It follows
immediately from Eqs. (G7) and (G8) that the two-point
functions for the individual polarizations may be obtained
from Eq. (G5) as

μþþðγ; βÞ ¼
1

2

�
μðγ; βÞ þ μðπ − γ; π − βÞ

�
; and

μ××ðγ; βÞ ¼
1

2

�
μðγ; βÞ − μðπ − γ; π − βÞ

�
: ðG9Þ

If desired, these relations may be used to obtain explicit
closed forms analogous to Eq. (G5).
Similar symmetry arguments show that if we average

uniformly over all pulsar locations at fixed angular sepa-
ration γ, the products that involve one plus and one cross
polarization vanish:

μþ×ðγ; βÞ ¼ hFþ
1 ðΩAÞF×

2 ðΩBÞi ¼ 0; and

μ×þðγ; βÞ ¼ hF×
1 ðΩAÞFþ

2 ðΩBÞi ¼ 0: ðG10Þ

The argument is straightforward: shift the pulsar locations
p1 and p2 to −p1 and −p2, and shift the source locations
from ΩA and ΩB to −ΩA and −ΩB. This cannot affect the
pulsar average, since β and γ are unchanged. But under
this transformation Fþ is invariant and F× changes sign.
Thus, the average value of the product must vanish, since
zero is the only value which is invariant under a change
of sign.
We stress that the relationships expressed in Eqs. (G9)

and (G10) have nothing to do with the GW sources, which
might all be highly polarized and not symmetrically placed
or distributed. They are consequences of the pulsar aver-
aging, which erases these terms for any configuration of
sources.
In Sec. IV, the second moment of μðγ; βÞ with respect

to β is needed to compute the cosmic variance in the
confusion-noise limit. This moment is an average over
all separation angles βjk between the source directions,
with cos βjk uniformly distributed on ½−1; 1�. We indi-
cate this average with an over-tilde, so the second
moment is [67]

μ̃2ðγÞ ¼ 1

2

Z
π

0

dβ sin β μ2ðγ; βÞ

¼ −
5

48
þ 49

432
cos2γ −

1

6

�
cos2γ þ 3

�
log

�
1 − cos γ

2

�
log

�
1þ cos γ

2

�

þ 1

12
ðcos γ − 1Þðcos γ þ 3Þ log

�
1 − cos γ

2

�
þ 1

12
ðcos γ þ 1Þðcos γ − 3Þ log

�
1þ cos γ

2

�
; ðG11Þ

FIG. 12. The two-point function μðγ; βÞ is given by Eq. (G5).
It is the mean correlation between two pulsars separated by
angle γ arising from two coherent GW point sources separated by
angle β. When β ¼ 0, it reduces to the normal Hellings-Downs
correlation μuðγÞ.
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which is illustrated in Fig. 4. The second moment μ̃2ðγÞ
is symmetric under reflection about γ ¼ π=2, which is
equivalent to γ → π − γ or cos γ → − cos γ.
For computing the cosmic variance, we also need the

spherical average of μ2þþ þ μ2××. This is easily obtained
from the previous integral, since

1

2

Z
π

0

dβ sin β



μ2þþðγ; βÞ þ μ2××ðγ; βÞ

�

¼ 1

4

Z
π

0

dβ sin β



μ2ðγ; βÞ þ μ2ðπ − γ; π − βÞ

�

¼ 1

4

Z
π

0

dβ sin β



μ2ðγ; βÞ þ μ2ðπ − γ; βÞ

�

¼ 1

2



μ̃2ðγÞ þ μ̃2ðπ − γÞ

�
¼ μ̃2ðγÞ: ðG12Þ

On the second line of Eq. (G12) we used Eq. (G9) to write
μþþ and μ×× in terms of μ, since the cross terms cancel. The
third line follows by changing variables in the second term
to μ ¼ π − β and using sin β ¼ sin u and dβ ¼ −du. The
fourth line comes from the definition Eq. (G11) of μ̃2, and

the final equality follows because μ̃2ðγÞ is symmetric under
reflection about γ ¼ π=2.

We conclude this part of the Appendix with some com-
ments about the behavior of the two-point functions under a
change of GW polarization basis as given by Eq. (D8). A
useful discussion of the physical interpretation (in terms of
the spin) may be found in Sec. 3.4 of Ref. [68]. This change
of polarization basis corresponds to a local gauge trans-
formation of the gravitational field: any physical observ-
ables such as the cosmic variance must be invariant under
such a basis change. The calculations in this paper corre-
spond to a particular choice of GW gauge: in Eqs. (D6) and
(D7) we have defined a specific basis for the polarization
vectors and tensors, as a function of the GW propagation
directionΩ. However, one is free to choose any other basis,
defined by Eq. (D8) where the angle ϵðΩÞ is an arbitrary
function of the propagation direction.
Under this gauge transformation of the gravitational

field, the quantities Fþ
1 ðΩÞFþ

2 ðΩÞ and F×
1 ðΩÞF×

2 ðΩÞ are
not gauge-invariant, but their sum is. Since this sum
is the integrand for the normal Hellings-Downs curve,
that quantity is gauge-invariant. In contrast, the quantity
Fþ
1 ðΩÞFþ

2 ðΩ0Þ þ F×
1 ðΩÞF×

2 ðΩ0Þ which appears in the two-
point function μðγ; βÞ is not gauge-invariant, because
the gauge transformations ϵðΩÞ and ϵðΩ0Þ may differ.
However, combinations such as the one that appears in
Eq. (G12) are gauge-invariant, as can be easily seen from
working in a circular polarization basis.
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