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Brownian coating thermal noise in detector test masses is limiting the sensitivity of current
gravitational-wave detectors on Earth. Therefore, accurate numerical models can inform the on-
going effort to minimize Brownian coating thermal noise in current and future gravitational-wave
detectors. Such numerical models typically require significant computational resources and time,
and often involve closed-source commercial codes. In contrast, open-source codes give complete
visibility and control of the simulated physics and enable direct assessment of the numerical accu-
racy. In this article, we use the open-source SpECTRE numerical-relativity code and adopt a novel
discontinuous Galerkin numerical method to model Brownian coating thermal noise. We demon-
strate that SpECTRE achieves significantly higher accuracy than a previous approach at a fraction
of the computational cost. Furthermore, we numerically model Brownian coating thermal noise in
multiple sub-wavelength crystalline coating layers for the first time. Our new numerical method
has the potential to enable fast exploration of realistic mirror configurations, and hence to guide
the search for optimal mirror geometries, beam shapes and coating materials for gravitational-wave

detectors.

I. INTRODUCTION

Brownian coating thermal mnoise is the limit-
ing noise source for current-generation, ground-based
gravitational-wave detectors in their most sensitive fre-
quency bands. For instance, following the A+ upgrade
anticipated for completion in the mid 2020s, the Laser
Intererometer Gravitational-Wave Observatory (LIGO)
detector noise is dominated by Brownian coating ther-
mal noise at frequencies f ~ 100Hz [1]. This noise arises
from thermal fluctuations in the reflective coatings of the
detectors’ test masses [2].

Therefore, a reduction of the Brownian coating ther-
mal noise directly increases a detector’s sensitivity and
thus its astronomical reach. Theoretical models of Brow-
nian coating thermal noise are important for working to-
ward this goal. Thermal noise modeling typically fol-
low the approach pioneered by Levin [3], which computes
the thermal noise in terms of an auxiliary elasticity cal-
culation using the fluctuation-dissipation theorem [4-6].
While an approximate analytic solution is well known in
the limit where coating thickness and edge effects can
be neglected, numerical calculations of thermal noise are
necessary to study effects that arise from the finite test-
mass size, the finite coating thickness, and from crys-
talline materials.

In this article we calculate Brownian coating thermal
noise by numerically solving the auxiliary linear elastic-
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ity problem. Such numerical simulations typically adopt
a conventional finite-element approach, as some of the
authors did in Ref. [7]. These methods are widely used,
but achieving high accuracy with them can require signif-
icant computational resources and time, because of their
relatively slow rates of convergence.

For the first time to our knowledge, we apply a dis-
continuous Galerkin (DG) method to model Brownian
coating thermal noise. In particular, we implement the
relevant elastostatic equations in SpECTRE [8], an open-
source, next-generation numerical-relativity code. While
SpECTRE’s primary aim is to model merging neutron stars
and black holes, the elliptic solver needed to construct
initial data for such simulations is also very well posi-
tioned to solve the elastostatics equations for thermal-
noise modeling [9, 10]. As an open-source code, our
approach has advantages compared to the closed-source
and commercial solutions that are often adopted: we can
directly control the physics incorporated in the calcula-
tion, and we can assess the accuracy and convergence
rate of our simulations in a straightforward way. Our
code also benefits from SpECTRE’s task-based parallelism
approach, implemented using the Charm++ [11] library,
enabling our code to efficiently scale to large numbers of
compute cores [12].

This article is organized as follows. Section II summa-
rizes the elastic problem to be solved and presents the
discontinuous Galerkin approach which we adopt. We
use this approach to model thermal noise for cylindrical
mirrors in Section ITI. We discuss our results and future
work in Section IV.
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II. METHODS

In this section, we formulate the auxiliary elasticity
problem based on Refs. [3, 7], discretize it with the dis-
continuous Galerkin scheme developed in Ref. [10], and
outline the numerical method we employ to solve the
discretized problem with the SpECTRE code [9]. Sec-
tion IIB 3 details a novel extension of this method to
handle discontinuous material properties at layer inter-
faces.

A. Auxiliary elasticity problem

We consider a gravitational-wave detector that mea-
sures the position of a test mass with a laser beam with
a Gaussian intensity profile

1 22
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p) = o (1)
Here, r is the cylindrical radial coordinate from the cen-
ter of the beam with width ro. The intensity profile is
normalized so that

/0 "o /0 S drrp(r) = 1. )

The laser beam effectively measures a weighted average ¢
of the displacement Z of the test mass surface,
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As shown by Levin [3], Brownian thermal noise can be
calculated from the energy dissipated in an auxiliary elas-
tic problem. Specifically, to compute the thermal noise
at frequency f, one applies an oscillating pressure to the
face of the mirror with frequency f, with a pressure dis-
tribution profile p(r) equal to the beam intensity, and
with an amplitude Fy. In this auxiliary problem, en-
ergy Waiss will be dissipated in each cycle of the oscil-
lation. The fluctuation-dissipation theorem relates this
dissipated energy Wyiss to the thermal noise, specifically
to the power spectral density S, associated with g,

2ksT Waiss
Sq = 7T2f2 F02 9 (4)

where T is the mirror temperature and kg is Boltzmann’s
constant. Because Wiss FOQ, it follows that S, does not
depend on the overall amplitude Fyp.

For frequencies f ~ 100 Hz much lower than the res-
onant frequencies f ~ 10*Hz of the test-mass materials,
the dissipated power can be computed using the qua-
sistatic approximation. In this approximation, a static

I See e.g. Eq. (11.90) in Ref. [13].

pressure is applied to the mirror with amplitude Fy and
profile p(r), and the dissipated energy can be written as

Wdiss = U(ba (5)

where U is the potential energy stored in the deforma-
tion of the test-mass and ¢ is the material’s loss angle
determined by the material’s imaginary, dissipative elas-
tic moduli.

Therefore, our goal in this article is to solve the equa-
tions of elastostatics for the deformation of the test mass,

ViTY = (), (6)

when its surface is subjected to an applied pressure with
profile p(r). Here, T% is the stress and we adopt the
Einstein summation convention so that repeated tensor
indices are summed over. f7 is the force density acting
on each volume-element of the mirror as a function of
position @, which vanishes in our situation, f7 = 0. The
pressure acting on the external surface of the test-mass
will be reflected in suitable boundary conditions.

Eq. (6) is an equation for the displacement vector field
u*(x), which describes the deformation of the elastic ma-
terial as a function of the undeformed coordinates. The
symmetric part of the gradient of the displacement vector
field is the strain

Sk = Vuy. (7)

For sufficiently small Fjy, the strain is proportional to the
applied stress,

T4 = —yiikg,,. (8)

where the constitutive relation Y ¥ (x) captures the elas-
tic properties of the material in the linear regime. The
constitutive relation is symmetric on its first two indices,
on its last two indices, and under exchange of the first
pair of indices with the second pair of indices.

Inserting Eqgs. (7) and (8) into Eq. (6) yields the equa-
tions of linear elasticity,

— VYR gy = (), 9)

which we will solve numerically.

We consider amorphous and cubic-crystalline consti-
tutive relations. The amorphous constitutive relation is
isotropic and homogeneous,

Yijkl _ )\(sij(skl +u (51766]1 + 5il6jk> , (10)

with Lamé parameter A and shear modulus 1.> A cubic-
crystalline material is characterized by the constitutive

2 The Lamé parameter can also be replaced by the bulk modulus
K = A\+2u/3. Alternatively, the two parameters can be replaced
by the Young’s modulus Y = 9K p/(3K+p) = u(3A+2p)/(A+up)
and the Poisson ratio o = (3K —2u)/(2(3K+u)) = A/ (2(A+p)).
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(11)
where c11, c12 and cy44 are three independent material
parameters.
After solving Eq. (9), the potential energy is finally
evaluated by an integral over the volume of the test-mass,

1 g
U= _7/ AV ST, (12)
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The constitutive relation Y**! can be discontinuous,
representing a mirror composed of different materials,
for instance thin coating layers. For a test-mass with
a thin, reflective coating with different elastic properties
than the substrate, the dissipated energy (5) decomposes
as [14]

Wdiss = Usub ¢sub + Ucoat ¢coat7 (13)

where Ugyp and ¢g,p are the potential energy and loss
angle of the substrate, respectively, while Ucpat and ¢eoat
are the potential energy and the loss angle of the coating.
Note that a material can also have different loss angles
associated with the different independent elastic moduli
of a material. We do not consider further decompositions
of the elastic potential energy in this article, but note that
such quantities can straightforwardly be extracted from
our simulations.

An approximate analytic solution exists for amorphous
materials in the limit where the coating thickness d is
small compared to both the size of the mirror and the
width 7o of the pressure profile. The approximate coating
thermal noise is *

— kBT 1 - o-szub d ¢Coat
B 7T2f r0Ysub To }/sub}/coat(l - Jgoat)(l - o—'gub)
X (Y::%nt(l + Usub)z(l - 2‘7sub)2Jr (14)
Yts?lb(]- + Ucoat)Q(l - 2Jcoat))~

coat
Sq

B. Numerical scheme

We employ the discontinuous Galerkin (DG) scheme
detailed in Ref. [10] to discretize the elasticity problem,
Eq. (9). We summarize the discretization scheme in this
section, and extend it here to problems with discontinu-
ous material properties.

3 See Eq. (22) in Ref. [14], where w = V270, ¢ = ¢y = dcoat,
and we consider only the coating contribution.
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FIG. 1.  Top: Geometry of our layered cylindrical domain,
with the laser beam indicated in red. Four wedge-shaped el-
ements envelop a cuboid. Another set of wedges extends to
the outer radius of the cylinder. In z-direction the cylinder is
partitioned into layers that can have different material prop-
erties (black and gray). The substrate layer has a logarithmic
coordinate map in z-direction and is split in two twice in this
example (thin lines). Bottom: The coordinate transforma-
tion &(x) maps an element to a reference cube [—1,1]*. with
logical coordinate-axes & = (£, 7, (). In this example we chose
Nie = 3 and Ny, = 4 Legendre-Gauss-Lobatto collocation
points along £ and 7, respectively.

1. Domain decomposition

Our goal is to simulate a three-dimensional cylindri-
cal mirror with radius R and height H. The cylinder
axis coincides with the z-axis of our coordinates, and the
plane z = 0 represents the surface of the mirror on which
the external pressure p(r) is applied. We decompose the
cylindrical domain © = [0, R] x [0, 27) x [0, H] into a set of
non-overlapping elements 2 C 2 shaped like deformed
cubes, as illustrated in Fig. la (h-refinement). Each el-
ement carries a coordinate map from the Cartesian co-
ordinates x € €y, in which the elasticity equations (9)
are formulated, to logical coordinates & € [—1,1] repre-
senting the reference cube, as illustrated in Fig. 1b. The
coordinate map to the reference cube is characterized by
its Jacobian,

;o

(15)

with determinant J and inverse (J=!)] = 9¢7/0x'. On
the reference cube we choose a set of Nj; Legendre-
Gauss-Lobatto (LGL) collocation points in each dimen-
sion ¢ (p-refinement).



Fields are represented numerically by their values at
the collocation points. We denote the set of discrete field
values within an element Qj as u® = (uy,...,un, ), and
the collection of discrete field values over all elements
as u. The field values at the collocation points within
an element define a three-dimensional Lagrange interpo-
lation,

with =€,  (16)

where the basis functions v, (&) are products of Lagrange
polynomials,
3
(&) =[] (€) with €e[-1,17°.  (17)
i=1

based on the collocation points in dimension ¢ of the ele-
ment. Since Egs. (16) and (17) are local to each element,
fields over the entire domain are discontinuous across el-
ement boundaries.

2. DG residuals

To formulate the elasticity equations in first-order form
for the DG discretization, we use the symmetric strain
Sk as auxiliary variable. According to Ref. [10], we first
compute the discrete auxiliary variables on the compu-
tational grid as

Skt =D -upy + L ((n(kul))* - n(kul))a (18)

where we make use of the discrete differentiation matrix
D; = M~'MD;, the mass matrix

My = / Bp(€)(€) T %€, (19)
[—1,1)3

the stiffness matrix

MW= [ 6O5HOO I (20)
[—1,1]

the lifting operator

MLy =

(—1,1]2
and L := M ' ML on the element Qj, [10]. The integral in
Eq. (21) is over the boundary of the element, 0, where
n; is the outward-pointing unit normal one-form and J*
is the surface Jacobian. The operation - denotes matrix
multiplication with the field values over the computa-
tional grid of an element. In a second step, we compute
the DG residuals in strong form [10],

—MD; - YR Sy — ML - (Y 9% Sy *
—n YRGS = M - fi(z),
(22)
which represent the set of algebraic equations for the val-

ues of the displacement vector field on the computational
grid that we solve numerically.

Vp(€)q(€) IZ A%, (21)

8. Numerical flux

The quantities (nuy))* and (n;Y9kLS1)* in Eq. (22)
denote a numerical flux that couples grid points across
nearest-neighbor element boundaries. We employ the
generalized internal-penalty numerical flux developed in
Ref. [10], with one notable extension. Contrary to
Ref. [10] we allow neighboring elements to define different
constitutive relations, meaning Y**(z) can be double-
valued on shared element boundaries.* Therefore, we
define the quantity

. 1 iy .
YR = 2 (Ve 4+ YA, (23)
where “int” denotes the interior side of an element’s
shared boundary with a neighbor, and “ext” denotes the
exterior side, i.e. the neighbor’s side. With this quantity
we can define the numerical flux

1 . .
() = 5 [mlituly® = ngitus] (24a)
yridklg Ve 1 intyriskly int _ extyriskly | oxt
(n; k)" = B Ny Ying O(kUpy — Ty Texy O(kU)
— [nimY,fjklni(I,‘;u}?t _ n(;xtyjjkln((eztu?)xt:l ,
(24b)
where ng** = —ni" for the purpose of this article. Equa-

tion (24) is the generalized internal-penalty numerical
flux defined in Ref. [10], with a choice between Y; 7%

int
nijtkl and Y7* for every occurrence of the constitu-
tive relation. The particular choice in Eq. (24) ensures
that the numerical flux remains consistent, meaning that
(n;YMSp)* = —ni™T% when both nint}ﬁfftkla(ku}’g‘t =
—n?XtY;ftk la(ku?)xt = —niT% and n‘(r,;tu}?t = —n‘f}c‘tu‘f)xt.
In particular, note that the penalty term in Eq. (24Db)
vanishes when the displacement is continuous across the
boundary, and that the numerical flux admits solutions
where the stress is continuous across the boundary but
the strain is not. Such solutions may arise in a layered
material under stress, because the layers remain “glued
together” but each layer responds to the stress differently.

The penalty function in Eq. (24Db) is

int . ext 2

min(hint , hext )

where we make use of the polynomial degree p and a
measure of the element size, h, orthogonal to the element
boundary on either side of the interface, as detailed in
Ref. [10]. We choose C' = 100 in this article.

4 In the language of Ref. [10] we allow the fluxes F, *[ua,va; ] to
be double-valued on shared element boundaries.



4. Boundary conditions

We impose boundary conditions through fluxes, i.e. by
a choice of exterior quantities in the numerical flux (24).
Specifically, on external boundaries we set

(n(kul))c"t = (n(kul))int — Qni(’,;tu})) and  (26a)
(niyijklskl)ext _ (niyijklskl)int + Qn;ntng, (26b)

where we choose either uj to impose Dirichlet bound-
ary conditions, or n™7}” to impose Neumann boundary
conditions, and set the respective other quantity to its
interior value.

For the thermal noise problem we impose the pressure
induced by the laser beam,

ni”tTéj = —njp(r)7 (27)

as Neumann boundary condition on the z = 0 side of the
cylindrical mirror, where p(r) is the laser beam profile
given in Eq. (1). On the side of the mirror facing away
from the laser we impose

ul, =0 (“fixed”) (28)

as Dirichlet boundary condition, and on the mantle we
impose

ni“tng =0 (“free”) (29)

as Neumann boundary condition. Equation (28) means
that the back of the mirror is held in place, whereas
Eq. (29) implies no pressure on the sides, which however,
are free to deform in response to the pressure applied to
the front.

C. SpECTRE elliptic solver

Since the DG residuals (22) are linear algebraic equa-
tions for the discrete primal field values u® on all elements
and grid points in the computational domain, Eq. (22)
defines a matrix equation

Au =b. (30)

We solve the matrix equation (30) with the elliptic solver
component of the open-source SpECTRE code, detailed
in Ref. [9]. It employs a GMRES linear solver with a
Multigrid-Schwarz preconditioner to solve Eq. (30) to
the requested precision, and a task-based parallelization
paradigm to distribute the computation across a comput-
ing cluster.

III. RESULTS

Our simulations with SpECTRE were performed on one
or more 16-core compute nodes, each with 64 GB of mem-
ory and two eight-core Intel Haswell E5-2630v3 proces-
sors clocked at 2.40 GHz, connected with an Intel Omni-
Path network. We distribute the elements that compose

the computational domain evenly among cores, leaving
one core per node free to perform communications.

We compare our results with SpECTRE to previous work
using an open-source finite-element code to calculate the
Brownian coating thermal noise for amorphous and crys-
talline materials. Its methods are described in detail in
Secs. 2.4-2.6 of Ref. [7]. The code was built using the
deal.ii [15, 16] finite-element framework and we hence-
forth refer to it as deal.ii. It adopted a standard weak
form of the elastostatic equations, discretized them us-
ing a conventional finite-element approach, and solved
them using deal.ii with the PETSc [17] conjugate gra-
dient linear solver and the ParaSAILS preconditioner in
the hypre [18] package. The deal.ii code relies on the
Message Passing Interface (MPI) for parallelization.

A. Single-coating comparison

First, we consider the single-coating scenario investi-
gated in Ref. [7] and demonstrate the superior perfor-
mance of our new approach. We choose the parameters
listed in Ref. [7], Table 1 for a cylindrical mirror of radius
R = 12.5mm with a single d = 6.83 pm thin effective-
isotropic AlGaAs coating. We simulate the scenario both
with the deal.ii approach employed in Ref. [7] and with
our new approach with the SpECTRE code.

Figure 2 presents the numerical precision and compu-
tational cost of both approaches. To assess the numerical
precision we successively increase the resolution in both
codes. In SpECTRE we increase the resolution by incre-
menting the number of grid points in all dimensions of all
elements in the domain by one, and in deal.ii we em-
ploy an adaptive mesh-refinement scheme [7]. We com-
pute the error in the elastic potential energy relative to a
high-resolution reference simulation. We use a reference
configuration simulated in SpECTRE where we have split
all elements in two along all three dimensions, relative to
the highest-resolution configuration included in Fig. 2.

We find that both codes converge to the same solution,
but our new approach in SpECTRE achieves about four
orders of magnitude higher accuracy than the deal.ii
approach using the same number of grid points. Fur-
thermore, our new approach simulates this scenario with
sub-percent error in only 30s on 15 cores, for which the
deal.ii approach required multiple hours on 324 cores.
Our new approach also achieves a fractional error below
10~ in only half a core-hour, or two minutes of real time,
which was prohibitively expensive with the deal.ii ap-
proach.

B. Accuracy of the approximate analytic solution

Second, we study the accuracy of the approximate
analytic solution for the single-coating thermal noise,
Eq. (14), using the superior numerical precision we can
now achieve over the results presented in Ref. [7]. The
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FIG. 3. Thermal noise in an AlGaAs-coated mirror com-

puted from the approximate analytic solution (14) and from
our numerical simulations. The effective-isotropic simulation
(black) retains the amorphous approximation for the mate-
rial, but includes finite-size effects. The crystalline simula-
tion (red) eliminates this approximation. Previous simula-
tions with the deal.ii approach are shown in lighter colors
to the left.

approximate solution holds for a thin coating, d/ry < 1,
a semi-infinite mirror, ro/R < 1 and d/R < 1, and for
isotropic-homogeneous materials. Therefore, it does not
capture the finite-size effects included in our simulations,
and approximates the crystalline AlGaAs coating as an
amorphous material.

To assess the magnitude of the finite-size effects, we
employ the simulations detailed in Section III A, which
use the same effective-isotropic model for the AlGaAs
coating that underpins the approximate analytic solu-
tion. Figure 3 presents both the thermal noise com-
puted from the simulations and the approximate an-
alytic solution (black). Error bars are computed as
A/Sgoat [\ /Sgomt = 1/2 AUcoat/Ucont from the relative
numerical error in the elastic potential energy. While
Ref. [7] estimated the magnitude of finite-size effects for
this problem to 7%, we can now report that their sim-
ulations captured the effect to 7.5(2) %. With our new
numerical method, we can make this statement more pre-
cise and report a finite-size effect of 7.616 649(6) %.

To assess the magnitude of the amorphous approxima-
tion to the crystalline coating material, we repeat the
simulations with a crystalline constitutive relation. The
thermal noise computed from these simulations is pre-
sented in Fig. 3 as well (red). We refine the estimate of
4% from Ref. [7] to 4.5(2) %, and report 4.667990(6) %
using our new numerical method.
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C. Multiple sub-wavelength crystalline coatings

Finally, we apply our new computational approach to
a scenario that presents many of the challenges we ex-
pect for applications to realistic mirror configurations.
We simulate a cylindrical mirror of the same radius
R = 12.5mm as before, but split the d = 6.83 pm thin
coating into nine layers, so the thickness of each coat-
ing layer is below the typical 1pm wavelength of the
laser. The coating layers alternate between fused silica
and crystalline AlGaAs, with the elastic moduli ¢11, ¢12
and cyq listed in Ref. [7], Table 1. Neither sub-wavelength
coatings nor multiple layers were simulated in Ref. [7],
but our new computational approach in SpECTRE achieves
both.

Figure 4 presents our numerical solution of this sce-
nario. Our new computational approach based on discon-
tinuous Galerkin methods resolves the thin coating layers
at high accuracy without spurious oscillations. Figure 5
presents the numerical precision of the solution. We in-
crease the resolution by incrementing the number of grid
points per element and dimension and compute the rela-
tive error to a high-resolution reference configuration, as

we did in Section IIT A.

IV. DISCUSSION

We have presented a new numerical method to model
Brownian thermal noise in thin mirror coatings based
on a discontinuous Galerkin (DG) discretization. With
our new method, we model thermal noise in a one-inch
cylindrical mirror with a microns-thick coating at un-
precedented accuracy at a fraction of the time needed
in a previous, conventional finite-element approach [7].
Using these high-accuracy simulations, we find that a
commonly-used approximate analytic solution overesti-
mates the coating thermal noise for this problem by 7.6 %
when taking only finite-size effects into account, and by
4.7% when modeling it as a crystalline material, which
refines a previous estimate in Ref. [7]. We also demon-
strate that, unlike the approach in Ref. [7], our new
method is capable of resolving multiple sub-wavelength
coatings, including coatings of a cubic-crystalline mate-
rial. Our new numerical method is implemented in the
open-source SpECTRE code and the results presented in
this article are reproducible with the supplemental input-
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file configurations.

We found that it is crucial for the success of our new
method that the interfaces between layers of different
materials coincide with element boundaries in our com-
putational domain. Then, our discontinuous Galerkin
discretization with a suitable choice of numerical flux
converges exponentially, achieving high accuracy with a
small number of grid points. The scheme can potentially
be improved in future work. Most notably, an adaptive
mesh-refinement (AMR) algorithm that distributes the
resolution in the computational domain to regions and
dimensions where it is most needed would have great po-
tential to further improve the accuracy and efficiency of
the scheme.

Furthermore, the elliptic solver in the SpECTRE code
that we employ to solve the discretized problem numeri-
cally can be improved to accelerate thermal-noise calcu-
lations. The calculations we have presented in this article
require a few hundred solver-iterations to converge, or up
to ~ 1400 for our highest-resolution simulation with mul-
tiple sub-wavelength crystalline coatings. While simple
configurations complete in seconds or minutes of real-
time on 15 cores, where the previous approach needed
hours on 324 cores, the more challenging configurations,
which were prohibitively expensive with the previous ap-
proach, solve in about an hour on 45 cores.

We expect additional speedup with further improve-
ments to the elliptic solver algorithm in SpECTRE. In
particular, improvements to its multigrid preconditioner

have great potential to speed up the simulations. The
multigrid algorithm relies on solving the problem approx-
imately on coarser grids to resolve large-scale modes in
the solution. It currently cannot coarsen the grid any fur-
ther than the size of each coating layer because the layers
define the material properties. To accelerate the calcula-
tions, we intend to let the multigrid algorithm combine
layers with different materials into fiducial coarse layers
with effective material properties. This approach is pos-
sible because the partitioning of the domain into layers is
necessary only to define material properties, not to define
the geometry of the domain. Reference [9] shows that the
multigrid algorithm can achieve resolution-independent
iteration counts when the domain can be coarsened suf-
ficiently.

Our numerical models of thermal noise have the po-
tential to inform upgrades that increase the sensitiv-
ity of gravitational-wave detectors, using the advanced
computational technology that we develop for numerical-
relativity simulations in the SpECTRE code. In the fu-
ture, we intend to apply our new numerical method to
simulate Brownian thermal noise in more realistic mirror
configurations and materials that are under considera-
tion for current and future gravitational-wave detectors,
such as the optimized configuration found in Ref. [19].
While approximate analytic solutions can provide use-
ful estimates, only numerical models can precisely quan-
tify the finite-size effects of changing the mirror geome-
try. In particular, finite-size effects are more important
for real gravitational-wave detectors than for tabletop
experiments measuring thermal noise. Tabletop exper-
iments often use small beam sizes to enlarge the ther-
mal noise and hence make it easier to measure, whereas
gravitational-wave detectors prefer large beam sizes to
minimize thermal noise. Therefore, we plan to employ
our new numerical method to explore realistic mirror con-
figurations, with the goal of finding configurations that
minimize Brownian coating thermal noise.
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