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ABSTRACT

Automatic structures are infinite structures that are finitely rep-

resented by synchronized finite-state automata. This paper con-

cerns specifically automatic structures over finite words and trees

(ranked/unranked). We investigate the “directed version” of Ram-

sey quantifiers, which express the existence of an infinite directed

clique. This subsumes the standard “undirected version” of Ramsey

quantifiers. Interesting connections between Ramsey quantifiers

and two problems in verification are firstly observed: (1) reach-

ability with Büchi and generalized Büchi conditions in regular

model checking can be seen as Ramsey quantification over tran-

sitive automatic graphs (i.e., whose edge relations are transitive),

(2) checking monadic decomposability (a.k.a. recognizability) of au-

tomatic relations can be viewed as Ramsey quantification over co-

transitive automatic graphs (i.e., the complements of whose edge

relations are transitive). We provide a comprehensive complexity

landscape of Ramsey quantifiers in these three cases (general, tran-

sitive, co-transitive), all between NL and EXP. In turn, this yields a

wealth of new results with precise complexity, e.g., verification of

subtree/flat prefix rewriting, as well as monadic decomposability

over tree-automatic relations. We also obtain substantially simpler

proofs, e.g., for NL complexity for monadic decomposability over

word-automatic relations (given by DFAs).

CCS CONCEPTS

• Theory of computation → Logic and verification; Regular
languages; Tree languages.

KEYWORDS

Ramsey quantifier, automatic structures, recurrent reachability,

monadic decomposability

1 INTRODUCTION

Automatic structures are infinite structureswhose domains are reg-

ular sets (represented by finite automata over finite words/trees)

and whose relations are regular relations (represented by synchro-

nized finite word/tree automata) [4, 5]. They have been intensively

studied in the logic and automata community, and have been also

applied to infinite-state verification, especially the area of regular

model checking. In this paper, we are interested in algorithmic as-

pects of the Ramsey quantifiers [28], which state the existence of in-

finite cliques. [Ramsey quantifiers are also known in model theory

asMagidor-Malitz quantifiers, e.g., see [13].] Similar clique-like ob-

jects were also considered in the proofs of two seemingly different

problems over automatic structures; namely, the problems of ver-

ification of liveness properties in regular model checking [31, 32],

as well as monadic decomposability of regular relations (a.k.a. fi-

nite recognizability) [3, 6]. In this paper, we investigate a more

general notion of quantifiers that generalize the classic Ramsey

quantifiers and these aforementioned clique-like objects studied in

the context of liveness and monadic decomposability. Through our

new notion of quantifiers, we establish a comprehensive picture

of the computational complexity landscape of Ramsey quantifiers

over automatic structures, as well the aforementioned verification

problems. We first discuss the state-of-the-art of these seemingly

disconnected problems.

Ramsey Quantifiers over Automatic Structures. Blumensath and

Grädel were the first to systematically study automatic struc-

tures [4, 5]. A fundamental fact is that, given a first-order formula

i (x) and a word/tree automatic structure A (with domain �), one

can effectively compute a synchronized word/tree automaton rep-

resenting the set [[i]]A = {a ∈ � |x | | A |= i (a)} of solutions of

i . In other words, regular relations are effectively closed under all

first-order operations. Consequently, first-order (FO) model check-

ing over automatic structures is decidable.

In the seminal paper [4] on automatic structures, it was already

observed that FO can be enriched with the quantifier “there exist

infinitely many” — i.e., ∃∞G : i (G,~), which is true iff there exist

infinitely many G such that i (G,~) — while preserving the above

effective closure property and decidability of model checking. In

fact, assuming nondeterministic automata as finite representations

of [[i]]A , one can compute [[∃∞G : i]]A in polynomial-time. A few

years later, in the case of word automatic structures, Rubin [28]

studied Ramsey quantifiers, which generalize ∃∞ by enforcing that

these infinitely many elements form an infinite undirected clique,

and showed that Ramsey quantifiers preserve regularity as well,

meaning FO extended with Ramsey quantifiers is still decidable.

Upon closer inspection, Rubin’s construction runs in doubly expo-

nential time. Is this optimal? Does the same extend to tree-automatic

structures?

Liveness in Regular Model Checking. Regular model checking

(RMC) is a generic verification framework that exploits regular

languages and relations (e.g., over finite/l-words or trees) as sym-

bolic representations of infinite systems [1, 2, 22]. Various flavors
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of automata and transducers for representing the transition rela-

tions are employed, e.g., word/tree automatic relations (or subsets

thereof), l-automatic relations (or subsets thereof), and rational

relations. Since safety and reachability are undecidable in RMC

(e.g., over automatic graphs), one focus of RMChas been to develop

acceleration/widening techniques, which are semi-algorithms for

computing reachability sets (i.e., ?>BC∗ (()) and reachability rela-

tions (i.e., transitive closure '∗ of the edge relation in the graph),

that may terminate on many interesting cases. Some of these semi-

algorithms have general completeness and termination guaran-

tee, e.g., bounded local-depth acceleration for automatic relations

are guaranteed to compute reachability relations for pushdown

systems (PDS) and ground-tree rewrite systems (GTRS) [1, 21],

while flattable acceleration for Presburger-definable relations is

guaranteed to compute reachability relations for reversal-bounded

counter systems and 2-dimensional vector addition systems with

states [18].

Reachability sets/relations can be directly used to solve safety.

The challenge of verifying liveness is the necessity to deal with

genuinely infinite paths (with no repeated configurations). To and

Libkin [31, 32] showed that one can decide liveness (in the form

of recurrent reachability) over word- and tree-automatic graphs,

when the transitive closure '∗ of the edge relation is additionally

supplied (e.g., by the aforementioned acceleration methods or oth-

erwise). The algorithm runs in time polynomial in the size of the

problem, with '∗ supplied as part of inputs. Their technique uses

a kind of “staircase argument” combined with Ramsey’s Theorem

to construct a Büchi automaton that represents some witnessing

infinite runs.

Monadic Decomposability and Recognizability. A classic task in

the theory of finite-state transductions is the problem to decide

whether a given regular relation ' ⊆ (Σ∗): is recognizable, i.e., if

it can be expressed as a finite union of cartesian products of reg-

ular languages (in symbols: ' =
⋃=

8=1 !8,1 × · · · × !8,: for some

= ∈ N and regular sets !8, 9 ⊆ Σ
∗). In the formal verification ter-

minology [35], such a relation is said to be monadically decom-

posable, i.e., that it can be expressed as a Boolean combination of

monadic predicates. The first important result was by Stearns [30]

and Valiant [33]: Their algorithms for checking regularity of deter-

ministic pushdown automata imply that given deterministic ratio-

nal relation—i.e., a relation ' ⊆ Σ
∗ × Σ

∗ recognized by determin-

istic asynchronous automata, which is strictly more general than

binary automatic relations—can be checked to be recognizable in

doubly exponential time. This decidabilitywas extended to general

:-ary deterministic rational relations by Carton et al. [6], which

yields decidability as well for the subclass of automatic relations.

As noted by Löding and Spinrath [25], the complexity of the al-

gorithm for automatic relations in [6] runs in doubly exponential

time. Using their new polynomial-time algorithm for checking reg-

ularity for deterministic visibly pushdown automata, Löding and

Spinrath showed that this could be improved to single exponen-

tial time for binary automatic relations. The complexity for auto-

matic relations was fully settled by Barceló et al. [3] by showing

that this problem isNL-complete (resp. PSPACE-complete) when '

is presented as a deterministic (resp. nondeterministic) automaton.

The proof technique in [3] is an extremely intricate refinement and

analysis of the staircase argument used by To and Libkin [31] for

recurrent reachability for automatic relations.

Contributions. Our account of the state-of-the-art of the afore-

mentioned three research directions seems to suggest that there

might be some connections between them. To what extent are they

connected? Is there a more fundamental notion that unifies them?

These questions are hitherto open, but as we shall see in this pa-

per the answer is a resounding yes. We pinpoint that the directed

Ramsey quantifiers—which ask for the existence of infinite directed

cliques (instead of infinite undirected cliques as in [28])—is a funda-

mental concept that underlies the above three problems, and lets us

study them under the same umbrella, while inferring the optimal

complexity and even new results. On the one hand, the directed

Ramsey quantifiers subsume the standard Ramsey quantifiers.

On the other hand, recurrent reachability over automatic

graphs [31] can be seen as a Ramsey quantifier over a transitive

binary relation, whereas monadic decomposability over automatic

relations [3, 6, 25] can be construed as a Ramsey quantifier over co-

transitive binary relations. Our results are summarized in Table 1.

Firstly, from the proof by Barceló et al. [3], it is possible to infer

that the Ramsey quantifier can be evaluated on regular relations

in NL, which substantially improves the doubly exponential-time

algorithm of Rubin [28]. Unfortunately, their argument relies on

an intricate Ramsey argument on the transition monoid of the au-

tomaton. Our contribution is a substantially simpler argument that

avoids the use of the transition monoid altogether, which we show

to generalize to the case of tree-regular relations (which is not the

case with the proof of [3]). More precisely, our approach divides

the proof for regular relations into two steps: (i) First, we argue

that one can assume infinite cliques witnessed by accepting runs

that form a comb of combs. (ii) Then, we argue that the runs can be

“merged” together so that it can be witnessed by a single run of a

polynomial-size Büchi automaton. This way, we obtain the same

complexity as [3].

For tree-regular relations we can easily extend step (i). The

comb of combs structure of the accepting runs can be witnessed by

an alternating Büchi tree automaton, which yields the complexity

of EXP for the Ramsey quantifier on tree-regular relations. How-

ever, step (ii) is provably impossible over tree-regular relations,

since as we show, the infinite clique problem is EXP-hard. For the

special cases of transitive and co-transitive relations we need fur-

ther separate arguments that enable us to evaluate the Ramsey

quantifier in P. The case for transitive relations can be inferred

from the proof in [31], but not so for the co-transitive case.

Finally, we apply our results to decidability and complexity of

recurrent reachability with generalized Büchi conditions, and au-

tomatic structures over unranked trees. We show, for example, de-

cidability (in fact in polynomial-time) of recurrent reachability of

subtree/flat prefix rewriting, answering an open question by Löd-

ing and Spelten [24] and decidability (in fact, EXP-completeness) of

recurrent reachability with generalized Büchi conditions of ground

tree rewrite systems, answering an open question by Löding [23].

Organization. We provide amore detailed summary of ourmain

results in Section 2. We fix notation and basic terminologies in
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Section 3. We then start with the word case in Section 4 and pro-

ceed to the tree case in Section 5. Applications and generaliza-

tions to unranked trees are given in, respectively, Section 6 and

Section 7.

2 DETAILED SUMMARY OF MAIN RESULTS

To improve readability, we provide a detailed summary of ourmain

results in this section before we take a deeper dive into the proofs.

Unless otherwise specified, the completeness results mentioned in

this section (and Table 1) hold for NFAs and DFAs in the word case

and NTAs, D↑TAs, and D↓TAs in the tree case. We define the di-

rected Ramsey quantifier:

Definition 2.1. Let A be a structure with domain�. The Ramsey

quantifier ∃ram over an A-formula i with : + 2 free variables is

defined for all c ∈ �: by A |= ∃ramG,~ : i (G,~, c) if and only if

there is an infinite sequence (08)8≥1 of pairwise distinct elements

08 ∈ � so that A |= i (08 , 0 9 , c) for all 1 ≤ 8 < 9 .

We deviate from the definition of the Ramsey quantifier found

in the literature, see [11], requiring A |= i (08, 0 9 , c) for all 8 ≠ 9 ,

in the definition above. Over (tree-)regular relations the two quan-

tifier definitions can be simulated by each other, see Appendix A.

Furthermore, there are also higher-dimensional versions ∃3-ram of

the Ramsey quantifier, which will not be considered in this paper.

Evaluating Ramsey quantifiers. If ' is a binary (tree-) regular re-

lation, then evaluating ∃ramG,~ : '(G,~) is the problem of checking

whether ' contains an infinite (directed) clique, i.e., an infinite se-

quence (08)8≥1 of distinct elements of � such that (08 , 0 9 ) ∈ ' for

all 1 ≤ 8 < 9 . It follows from [3] that the infinite clique problem

over word-regular relations is NL-complete. We provide a much

simpler proof by considering a slightly more general setting. In-

stead of the infinite clique problem we consider the evaluation

of the Ramsey quantifier on a (: + 2)-ary (tree-)regular relation

' ⊆ �:+2, i.e., compute an automaton for [[∃ramG,~ : '(G,~, z)]] =

{c ∈ �: | ∃ramG,~ : '(G, ~, c)}.

Theorem 2.2. Given a regular relation ' ⊆ (Σ∗):+2 by an NFA

A1, one can construct an NFA for the relation [[∃ramG,~ : '(G,~, z)]]

in logspace. In particular, the infinite clique problem over regular re-

lations is in NL.

We show that the complexity of the infinite clique problem in-

creases from NL to EXP when considered over tree-regular rela-

tions given by NTAs or D↓TAs. Let TΣ denote the set of ranked

trees over alphabet Σ.

Theorem 2.3. The infinite clique problem over tree-regular rela-

tions ' ⊆ TΣ×TΣ is EXP-complete if ' is given as NTA or D↓TA, and

P-complete if ' is given as D↑TA.

For the exponential lower bound, we present a reduction from

intersection nonemptiness for NTAs and D↓TAs. This is surprising,

because an analogue reduction in theword case does not exist: This

would yield a PSPACE lower bound for the infinite clique problem

over words, but the latter belongs to NL.

For the exponential upper bound of Theorem 2.3, we prove the

tree analogue of Theorem 2.2. It even holds when the relation ' is

1In this and the following theorems, the parameter : is part of the input.

given as an alternating tree automaton (ATA), which allows us to

apply it to recurrent reachability with generalized Büchi condition.

Theorem 2.4. Given an ATA (D↑TA)A for a tree-regular relation

' ⊆ (TΣ)
:+2, one can construct in exponential (polynomial) time an

NTA for the relation [[∃ramG, ~ : '(G,~, z)]] .

If we make further assumptions on the relation ', we obtain a

better complexity for NTAs. We say that a (: + 2)-ary relation '

over � is transitive if the binary relation {(0,1) | (0,1, c) ∈ '} is

transitive for all c ∈ �: .

Theorem 2.5. Given an NTA A for a transitive tree-regular ' ⊆

(TΣ)
:+2, one can construct in polynomial time an NTA for the rela-

tion [[∃ramG, ~ : '(G,~, z)]] . In particular, the infinite clique problem

over transitive tree-regular relations is in P.

A binary relation ' ⊆ � × � is co-transitive if its complement

(� ×�) \ ' is a transitive relation.

Theorem 2.6. The infinite clique problem over co-transitive tree-

regular relations ' ⊆ TΣ × TΣ given as NTA is P-complete.

In Section 7 we show by a reduction that the Ramsey quanti-

fier can be evaluated over unranked tree-regular relations with the

same complexity as in the ranked case.

Recurrent reachability. Since reachability in automatic graphs is

in general undecidable [5], we will instead use transitive paths, i.e.,

infinite sequences (08)8≥1 with (08 , 0 9 ) ∈ ' for all 1 ≤ 8 < 9 . Given

sets !1, . . . , !: ⊆ �wewrite Rec(!1, . . . , !: )['] for the set of all ini-

tial vertices 01 of transitive paths (08)8≥1 that visit each set !9 infin-

itely often. Recurrent reachability with generalized Büchi condition

is the problem of testing 01 ∈ Rec(!1, . . . , !: )['] for a given (tree-

)regular relation' ⊆ �×�, (tree-)regular languages !1, . . . , !: ⊆ �,

and an initial element 01 ∈ �. If : = 1 this problem is simply called

recurrent reachability.

Since the infinite clique problem and recurrent reachability are

logspace equivalent (Proposition 6.1), we obtain:

Corollary 2.7. Recurrent reachability is NL-complete over reg-

ular relations. It is EXP-complete over tree-regular relations given by

NTAs or D↓TAs, and P-complete if the tree-regular relations are tran-

sitive or given by D↑TAs.

We also apply Theorems 2.2 and 2.4 to obtain tight upper

bounds for recurrent reachability with generalized Büchi condi-

tion. The lower bounds result from a reduction from intersection

nonemptiness.

Theorem 2.8. Recurrent reachability with generalized Büchi con-

dition is PSPACE-complete over regular relations, and EXP-complete

over tree-regular relations.

Monadic Decomposability. Recall that a relation ' ⊆ �: is

monadically decomposable if it is of the form
⋃=

8=1�8,1 × · · · ×�8,:

for some = ∈ N and (tree-)regular languages �8, 9 . The traditional

approach to deciding monadic decomposability [3, 6, 9, 19, 25] is

to associate with ' certain equivalence relations ∼ 9 for 1 ≤ 9 ≤ :

such that ' is monadically decomposable if and only if each ∼ 9

has finite index. An equivalence relation has infinite index if and

only if there exist infinitely many elements that are pairwise in dif-

ferent equivalence classes which is witnessed by an infinite clique

3
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regular relations tree-regular relations

Automaton construction

for Ramsey quantifier
logspace exponential time

poly-time for transitive relations

Recurrent reachability

& infinite clique
NL-complete∗

EXP-complete for NTA, D↓TA

P-complete for transitive∗ or

co-transitive relations or D↑TA

Recurrent reachability with

generalized Büchi condition
PSPACE-complete EXP-complete

Monadic decomposability NL-complete for DFA∗

PSPACE-complete for NFA∗
P-complete for D↑TA, D↓TA

EXP-complete for NTA

Table 1: Complexity results. Those marked with ∗ were known, but we provide simpler proofs. The other results are new.

in the complement relation. Therefore, monadic decomposability

amounts to checking that ∼ 9 ’s complement ≁ 9 does not have an in-

finite clique for any 9 . If ' is given by a DFA (resp. NFA), then one

can construct an NFA for each ≁ 9 in logspace (resp. in PSPACE)

and thus Theorem 2.2 yields a tight upper bound:

Corollary 2.9. Given a regular relation ' ⊆ (Σ∗): by a DFA

(resp. NFA), it is NL-complete (resp. PSPACE-complete) to decide

whether ' is monadically decomposable.

While this approach yields optimal complexity for words, this

is, unexpectedly, not the case for trees. For a tree-regular rela-

tion given as D↓TA or D↑TA (resp. NTA), one can also construct

an NTA for each ≁ 9 in logspace (resp. PSPACE). Then, applying

Theorem 2.4 would yield an EXP (resp. 2EXP) algorithm. However,

perhaps surprisingly, monadic decomposability for trees has much

lower complexity:

Corollary 2.10. Given a tree-regular relation ' ⊆ T:
Σ

by a

D↓TA or D↑TA (resp. NTA), it is P-complete (resp. EXP-complete) to

decide whether ' is monadically decomposable.

To get the P (resp. EXP) algorithm, we exploit the co-transitivity

of each ≁ 9 and apply Theorem 2.6 instead of Theorem 2.4. This

shows the importance of the co-transitivity notion: In the word

case, monadic decomposability requires only the generic clique de-

tection, but the tree case is more nuanced—we need one algorithm

for the general case and a specialized algorithm for co-transitive

relations.

3 PRELIMINARIES

We assume familiarity with the basic models of (non)deterministic

and alternating finite automata on words and trees as well as with

standard complexity classes (e.g., NL, P, PSPACE, EXP). We refer

the reader to the textbooks [7, 15] for more details. We often ab-

breviate a finite or infinite sequence of elements 01, 02, . . . by a

boldface letter a.

Trees. A tree domain is a nonempty set � ⊆ N∗ such that (i) �

is prefix closed, i.e., DE ∈ � implies D ∈ � , (ii) for all E ∈ N∗ and

9 ≤ 8 if E8 ∈ � , then E 9 ∈ � , and (iii) each node E ∈ � has only

finitely many children E8 ∈ � where 8 ∈ N. An unranked tree over

an alphabet Σ is a function C : dom(C) → Σwhere dom(C) is a finite

tree domain. A ranked alphabet is a finite alphabet Σ where every

symbol 0 ∈ Σ has a rank rk(0) ∈ N. A ranked tree is an unranked

tree C such that every node E ∈ dom(C) has rk(C (E)) many children.

We denote the set of all ranked and unranked trees over Σ by TΣ
and UΣ , respectively.

Let G ∉ Σ be a variable. The set CΣ of all contexts over Σ

contains all unranked trees over Σ ∪ {G} such that every node

D ∈ dom(C) with C (D) = G is a leaf, called hole. We partition

dom(C) = nodes(C) ∪ holes(C) into nodes and holes. The size of a

context C is |nodes(C) |. For contexts B, C1, . . . , C= with |holes(B) | = =

we denote by B [C1, . . . , C=] the context obtained by replacing the 8-

th hole in lexicographic order by C8 . For two contexts B1, B2 ∈ CΣ ,

we call B1 a prefix of B2, denoted by B1 ≤p B2, if B1 [C1, . . . , C=] = B2
for some contexts C1, . . . , C= . If = > 0 and each context C8 has size at

least one, then B1 is a proper prefix of B2, denoted by B1 <p B2.

We define an infinite unranked tree and an infinite ranked tree

as in the finite case but with infinite domains. We denote the set

of all finite and infinite unranked trees over the alphabet Σ byU∞
Σ

and the set of all finite and infinite ranked trees over Σ by T∞
Σ

.

Regular and tree-regular languages. A nondeterministic finite au-

tomaton (NFA) over the alphabet Σ is a tuple A = (&, Σ, Δ, @0, � )

where& is a finite set of states, Δ ⊆ &× (Σ∪{Y})×& is a transition

relation, @0 ∈ & is an initial state, and � ⊆ & is a set of final states.

We denote by !(A) ⊆ Σ
∗ the regular language recognized byA. In

our algorithms, the alphabet Σ is not part of the representation of

an automaton. Instead, we will always work with the subalphabet

of all symbols occurring in the transitions. This will be important

later when the implicitly given alphabet is significantly smaller.

A nondeterministic (top-down) tree automaton (NTA) over the

ranked alphabet Σ is a tupleA = (&, Σ, Δ, @0) where& is a finite set

of states, @0 ∈ & is an initial state, and Δ ⊆
⋃

0∈Σ & × {0} ×&rk(0)

is a transition relation. A run of A on a tree C ∈ TΣ is a tree

d ∈ T& with dom(d) = dom(C) such that d (Y) = @0 and

(d (D), C (D), d (D1), . . . , d (DA )) ∈ Δ for all nodes D ∈ dom(d) with

rk(C (D)) = A . As before, !(A) is the set of trees recognized by A,

i.e., the set of all trees C such that there exists a run ofA on C . A set

of trees is called tree-regular if there is an NTA that recognizes it.

We will also use the notions of deterministic finite automata (DFA),

deterministic bottom-up (D↑TA), and deterministic top-down tree au-

tomata (D↓TA). Moreover, alternating automata will be formally

introduced in later sections.
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Figure 1: An example word comb ba, ababb, abaaaab, . . . and
its encoding as an infinite word.

Regular and tree-regular relations. Let Σ be a finite alphabet and

let Σ⊥ = Σ ∪ {⊥} where ⊥ ∉ Σ is a fresh symbol. For words

F1, . . . ,F: ∈ Σ
∗ with F8 = 08,1 . . . 08,=8 and = := max{=8 | 1 ≤

8 ≤ :} we define their convolution

F1 ⊗ · · · ⊗F: :=


F1
...

F:


:=

©­­­
«

0′1,1
...

0′
:,1

ª®®®
¬
. . .

©­­­
«

0′1,=
...

0′
:,=

ª®®®
¬
∈ (Σ:⊥)

∗

where 0′8, 9 = 08, 9 if 9 ≤ =8 and 0′8, 9 = ⊥ otherwise. A relation

' ⊆ (Σ∗): is recognized by an NFA A if !(�) = {F1 ⊗ · · · ⊗ F: |

(F1, . . . ,F: ) ∈ '}. In that case we call ' regular.

We extend the definitions to tree-regular relations. For an alpha-

bet Σ we set again Σ⊥ = Σ ∪ {⊥} where ⊥ ∉ Σ is a fresh symbol.

Let Y be the empty tree with dom(Y) := ∅. Given : trees C1, . . . , C: ∈

UΣ ∪ {Y}we define their convolution C = C1 ⊗ · · · ⊗ C: ∈ U
Σ
:
⊥
∪ {Y}

with dom(C) =
⋃:

8=1 dom(C8) and C (E) = (C ′1 (E), . . . , C
′
:
(E)) where

C ′8 (E) = C8 (E) if E ∈ dom(C8 ) and C ′8 (E) = ⊥ otherwise. Observe

that the degree of a node E in C1 ⊗ · · · ⊗ C: is the maximum

degree of E in a tree C8 such that E ∈ dom(C8). Similar to the

word case, we also write the convolution of trees as a column

vector. If all C8 are ranked trees, then also C is a ranked tree with

rk(01, . . . , 0: ) := max{rk(08) | 1 ≤ 8 ≤ :} for all (01, . . . , 0: ) ∈ Σ
:
⊥

where rk(⊥) := 0. A relation ' ⊆ T:
Σ

is recognized by an NTA A

if the tree language {C1 ⊗ · · · ⊗ C: | (C1, . . . , C: ) ∈ '} is recognized

by A. In that case we call ' tree-regular.

Regular and tree-regular relations are effectively closed under

first-order operations (Boolean operations and projections). A re-

lational structureA is automatic (tree-automatic) if its universe and

all its relations are regular (tree-regular).

4 WORD-AUTOMATIC STRUCTURES

We first consider Ramsey quantifiers over word-regular relations.

We show that if ' ⊆ (Σ∗):+2 is a regular relation, then an automa-

ton for {c | ∃ramG,~ : '(G,~, c)} can be constructed in logarithmic

space (Theorem 2.2).

Word combs. The first step is to observe that, when looking for

infinite cliques in ', one can restrict to combs: An infinite sequence

v of words is called a comb if there exist infinite sequences " and

# of words with E8 = V1 . . . V8−1U8 and 1 ≤ |U8 | ≤ |V8 | for all 8 ≥ 1.

The pair (" , #) is called a generator of v.We remark that the choice

of the generator is not unique. Any infinite subsequence of a comb

is again a comb. In fact, the following lemma is well-known, see

[17, Lemma 5.1].

Lemma 4.1. Any sequence w of pairwise distinct words F8 over a

finite alphabet Σ contains a comb as a subsequence.

In contrast to arbitrary infinite sequences of words, combs can

be encoded naturally by infinite words. If (" , #) is a generator we

call the infinite word

enc(" , #) =

[
U1
V1

]
#

[
U2
V2

]
# · · · ∈ ((Σ⊥ × Σ) ∪ {#})l

the encoding of (" , #), or also an encoding of v.

Comb of combs. The next goal would be to construct a Büchi

automaton which reads an encoding of a comb v and verifies that

E8 ⊗ E 9 has an accepting run d (E8 , E 9 ) for all 1 ≤ 8 < 9 . In general,

this is challenging since it is not clear how a finite automaton can

keep track of infinitely many runs (let alone, an automaton of poly-

nomial size). Instead we will show that every infinite clique con-

tains an infinite subclique whose accepting runs can be arranged

in a dag of constant width, and can therefore be recognized by a

polynomial-sized Büchi automaton.

Consider a comb v with generator (" , #). First observe that the

convolutions E8 ⊗ E 9 can be written as[
E8
E 9

]
=

[
V1
V1

]
. . .

[
V8−1
V8−1

] [
U8
V8

] [
Y

V8+1

]
. . .

[
Y

V 9−1

] [
Y

U 9

]
(1)

and can hence be arranged in a trie displayed in Figure 2, that we

call comb of combs. The next insight is that we can ensure that

the accepting runs d (E8 , E 9 ) on the convolutions E8 ⊗ E 9 match this

comb of combs structure, after replacing v by an infinite subse-

quence. Roughly speaking, the runs look like as if the automaton

for ' would be deterministic. For example, all runs d (E1, E 9 ) for

9 > 1 share a common prefix which is a run on U1 ⊗ V1, and all

runs d (E8 , E 9 ) for 1 < 8 < 9 share a common prefix which is a run

on V1 ⊗ V1.

A run of an NFA A = (&, Σ, Δ, @in, � ) on a nonempty word

01 . . . 0= ∈ Σ
∗ (runs on the empty word are not needed here) is a se-

quence (@0, 01, @1)(@1, 02, @2) . . . (@=−1, 0=, @=) of triples in&×Σ×&

such that there exists a path from @8−1 to @8 in A labeled with 08
for all 1 ≤ 8 ≤ =. A run is accepting if @0 = @in and @= ∈ � .

We define a decomposition of a word F ∈ Σ
∗ as F = D1 . . . D=

where D8 ∈ Σ
∗. The decomposition in Equation (1) is called the

(" , #)-decomposition of E8 ⊗ E 9 . We say that a decomposition of

a run d = d1 . . . d= of an NFA is compatible with a decomposition

F = D1 . . . D= of a word if d8 is a run on D8 for all 8 ∈ [1, =].

We say that a generator (" , #) of a comb v is coarser than a

generator ($ , %) of a comb w if there exist indices :1 < :2 < . . .

such that E8 = F:8 and V1 . . . V8 = X1 . . . X:8 for all 8 ≥ 1. In this

case we also say that (" , #) is the coarsening of ($ , %) defined by

the subsequence v ofw.

Lemma 4.2. Let w be a comb generated by ($ , %) that forms an

infinite clique in a regular relation ' ⊆ Σ
∗ × Σ

∗ given as an NFA

A. There exist a coarsening (" , #) of ($ ,%) that generates a comb

v, accepting runs d (E8 , E 9 ) of A on E8 ⊗ E 9 , and runs ^8 , _8 , `8, 9 , a8, 9
such that

d (E8 , E 9 ) = ^1 . . . ^8−1_8`8,8+1 . . . `8, 9−1a8, 9

is a decomposition compatible with the (" , #)-decomposition of E8 ⊗

E 9 for all 8 < 9 .

5
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. . .

U1 ⊗ V1

V1 ⊗ V1
U2 ⊗ V2

V2 ⊗ V2
U3 ⊗ V3

· · ·
Y ⊗ V2 Y ⊗ V3 Y ⊗ V4

Y ⊗ U2 Y ⊗ U3 Y ⊗ U4

· · ·
Y ⊗ V3 Y ⊗ V4

Y ⊗ U3 Y ⊗ U4

· · ·
Y ⊗ V4

Y ⊗ U4

Figure 2: If v is a comb of the form E8 = V1 . . . V8−1U8 then the
convolutions E8 ⊗ E 9 for all 8 < 9 form a comb of combs.

Proof. Let w be a comb generated by (" , #) that forms an infi-

nite clique in ' and d (F8 ,F 9 ) be an accepting run ofA onF8 ⊗F 9

for all 1 ≤ 8 < 9 . We establish the run structure as illustrated in

Figure 3 column-wise.

Assume we already defined (^8)8<= , (_8 )8<= , (`8, 9 )8< 9<= , and

(a8, 9 )8< 9<= for some = ≥ 1 such that

d (F8 ,F 9 ) = ^1 . . . ^8−1_8`8,8+1 . . . `8,=−1g (F8 ,F 9 )

d (F8′,F 9′ ) = ^1 . . . ^=−1f (F8′ ,F 9′ )

for runs g (F8 ,F 9 ), f (F8′ ,F 9′ ) for all 1 ≤ 8 ≤ = − 1 < 9 and = − 1 <

8 ′ < 9 ′. For all 1 ≤ 8 < = define a8,= := g (F8 ,F=).

We now define `8,= successively for each 1 ≤ 8 < =. In step 8

we apply the pigeonhole principle to get an infinite subsequence v

of w starting with F1, . . . ,F= such that all runs g (E8 , E 9 ) for 9 > =

have a common prefix `8,= which is a run on Y ⊗ V= . At the end of

step 8 we replace w by v and we replace (" , #) by the coarsening

defined by v.

Next we define _= . By the pigeonhole principle there exists an

infinite subsequence v of w starting with F1, . . . ,F= such that all

runs f (E= , E 9 ) for 9 > = have a common prefix _= which is a run

on U= ⊗ V= . Again we replacew by v and (" , #) by the coarsening

defined by v.

Finally, by Ramsey’s theorem there is an infinite subsequence v

ofw starting withF1, . . . ,F= such that all runs f (E8 , E 9 ) for= < 8 <

9 have a common prefix ^= which is a run on V= ⊗ V= . We replace

w by v and (" , #) by the coarsening defined by v.

In the limit we obtain the desired decomposition of the runs

d (E8 , E 9 ) and the generator (" , #) of a comb v that is coarser than

the initial generator ofw. �

It is not hard to see that such a comb of combs structure can be

simulated by an alternating Büchi automaton, which would only

yield a PSPACE-solution for the infinite clique problem. The fol-

lowing key lemma states that the runs `8, 9 , a8, 9 from Lemma 4.2

can be chosen independently from 8 , which reduces the width of

the run dag of the alternating automaton to a constant.

Lemma 4.3. If w is an infinite clique in a regular relation ' ⊆

Σ
∗ × Σ

∗ given as an NFA A, then there exist a generator (" , #) for

a subsequence v of w, accepting runs d (E8 , E 9 ) of A on E8 ⊗ E 9 , and

runs ^8, _8 , ` 9 , a 9 such that

d (E8 , E 9 ) = ^1 . . . ^8−1_8`8+1 . . . ` 9−1a 9

is a decomposition compatible with the (" , #)-decomposition of E8 ⊗

E 9 for all 8 < 9 .

Proof. Suppose that ' has an infinite clique. Then there exist

an infinite cliquew in ' generated by (" , #) and runs^8 , _8 , `8, 9 , a8, 9
for 8 < 9 as in Lemma 4.2.

It remains to ensure that `8, 9 = `8′, 9 and a8, 9 = a8′, 9 for all 8 <

8 ′ < 9 . To do so, consider the initial state of the run `8, 9+1. By

Ramsey’s theorem there exist indices :1 < :2 < . . . such that all

runs `:8 ,: 9+1 have the same initial state. We define E8 = F:8 for all

8 ≥ 1, and

˜̂8 = ^:8−1+1 . . . ^:8 _̃8 = ^:8−1+1 . . . ^:8−1_:8

˜̀8+1 = `:1,:8+1 . . . `:1,:8+1 ã8+1 = `:1,:8+1 . . . `:1,:8+1−1a:1,:8+1

for all 8 ≥ 1 where :0 := 0. Observe that the composition _̃8 ˜̀8+1
forms a valid run since `:8 ,:8+1 and `:1,:8+1 have the same initial

state. Then ˜̂1 . . . ˜̂8−1_̃8 ˜̀8+1 . . . ˜̀ 9−1ã 9 is an accepting run on E8⊗E 9 .

Furthermore, this run decomposition is compatible with the (%,$ )-

decomposition of E8 ⊗ E 9 where the generator (%,$ ) is defined as

X8 = V:8−1+1 . . . V:8

W8 = V:8−1+1 . . . V:8−1U:8

for all 8 ≥ 1 where :0 := 0. This concludes the proof. �

A nondeterministic Büchi automaton (NBA) has the same format

as an NFAB = (&,Σ, Δ, @0, � ). An infinite wordF ∈ Σ
l is accepted

by B if there exists an accepting run (@0, 01, @1)(@1, 02, @2) · · · ∈

Δ
l withF = 0102 . . . and @8 ∈ � for infinitely many 8 ≥ 0.

Proposition 4.4. Given an NFAA for a relation ' ⊆ (Σ∗)2, one

can construct in logarithmic space a Büchi automaton B over the

alphabet (Σ⊥ × Σ) ∪ {#} such that:

• Ifw is an infinite clique in ' then B accepts an encoding of a

comb v which is a subsequence ofw.

• If B accepts an encoding of a comb w then w is an infinite

clique in '.

Proof. Given an NFA A = (&, Σ2⊥, @in, Δ, � ), we add to A a

fresh state ⊥ and transitions ⊥
(0,1)
−−−−→ @ for all (0,1) ∈ Σ

2
⊥ and

@ ∈ &⊥ where &⊥ := & ∪ {⊥}.

The Büchi automaton B = (&4
⊥, Σ

2
⊥, @

B
in
,ΔB, &4

⊥) simulates the

runs ^ 9 , _ 9 , ` 9 , a 9 from Lemma 4.3 in the four components. Its ini-

tial state is @B
in

= (@in, @in,⊥,⊥) and it contains the following

transtions:

• (?, B, @, C)
(0,1)
−−−−→B (? ′, B ′, @′, C ′) for all transitions ?

(1,1)
−−−−→A

? ′, B
(0,1)
−−−−→A B ′, @

(⊥,1)
−−−−→A @′, C

(⊥,0)
−−−−→A C ′,

• (?,@, @, C)
#
−→B (?, ?, @, @) for all ?, @ ∈ & , C ∈ � ,

• (?1, ?2, ?3, ?4)
Y
−→B (@1, @2, @3, @4) if ?8 = @8 or ?8

Y
−→A @8 for

all 8 ∈ [1, 4].

The desired Büchi automaton is a product automaton of B and a

Büchi automatonwhich verifies that the input word is a valid comb

encoding enc(" , #). �

Proof of Theorem 2.2. First observe that we can construct in

log-space an NFA C over Σ such that (i) for every infinite cliquew

of ' some elementF8 is accepted by C, and (ii) ifF is accepted by

6
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_1

^1
_2

^2
_3

· · ·
`1,2 `1,3 `1,4

a1,2 a1,3 a1,4

· · ·
`2,3 `2,4

a2,3 a2,4

· · ·
`3,4

a3,4

Figure 3: One can always find an infinite comb clique v

with accepting runs which can be decomposed in the form
d (E8 , E 9 ) = ^1 . . . ^8−1_8`8,8+1 . . . `8, 9−1a8, 9 .

1

1 2

1 2 2 3

1

2

1 2

2 3

1 2 3

Figure 4: Left: Illustration of the tree automatonT , tracking
the number of right directions modulo =. Right: A path on
which the runs of T are disjoint.

C then F belongs to an infinite clique of '. To be more precise, C

accepts U1 ∈ Σ
∗ if and only if some encoding enc(" , #) is accepted

by the Büchi automaton B from Proposition 4.4. This can be done

in log-space as follows: First we construct a Büchi automaton Ĉ

over Σ∪{#} which accepts all words of the form U1#
l such that an

encoding enc(" , #) is accepted byB. Then Ĉ is turned into an NFA

C (which does not read the suffix #l ) by replacing #-transitions

by Y-transitions. Furthermore C tracks the number of final states

visited so far and accepts if and only if this number exceeds the

number of states in Ĉ.

Given an NFA A for ' ⊆ (Σ∗):+2. We first construct an NFA

A′ over Σ2:+2⊥ which accepts the regular binary relation

'′ = {(D ⊗ 21 ⊗ · · · ⊗ 2: , E ⊗ 21 ⊗ · · · ⊗ 2: ) | (D, E, c) ∈ '}.

Note that A′ can be constructed in logspace since it is obtained

by taking each transition of A and duplicating the c-coordinates

and moving the E-coordinate. Let C′ be the NFA described above

which accepts at least one word from each infinite '′-clique

and only accepts elements of infinite '′-cliques. Projecting away

the first component yields the desired NFA for {c ∈ (Σ∗): |

∃ramG, ~ : '(G,~, c)}. �

5 TREE-AUTOMATIC STRUCTURES

5.1 EXP-hardness

In this section we prove the exponential lower bound from

Theorem 2.3 for the infinite clique problem over trees. This lower

bound is surprising since over words, the infinite clique problem

can be reduced to the emptiness of (word) Büchi automata, which

isNL-complete. This is not the case in the tree case since emptiness

of Büchi tree automata is P-complete.

We start with an intutive explanation of the lower bound. To

prove the upper bound in the word case, we used the fact that

we can assume cliques v whose runs d (E8 , E 9 ) can be merged

into a single global run (Lemma 4.3). Over tree regular relations

this is not the case anymore. Consider a deterministic top-down

tree automaton T , which behaves as follows on the convolution

C ⊗ C ′ of two binary trees C, C ′ with dom(C) ( dom(C ′): Start-

ing from every node on the fringe of C , the automaton tracks the

number of times it moves to a right child, modulo some number

=; see Figure 4 for a depiction. Now consider an increasing se-

quence of binary trees C1, C2, . . . , and the unique runs d8, 9 of T on

C8 ⊗ C 9 . Figure 4 illustrates that we can always find a path on which

the runs d1,=, d2,=, . . . , d=−1,= are disjoint. This behavior indicates

that it is difficult to witness the existence of infinite cliques by a

polynomially-sized Büchi tree automaton.

We extend this idea to a reduction from the intersection non-

emptiness problem for tree automata, which is known to be

EXP-complete [8]: Given an NTA A = (&, Σ, Δ, @0) and states

@1, . . . , @= ∈ & , decide whether
⋂=

8=1 !(A@8 ) is non-empty. Here,

A@8 denotes the NTA A with initial state @8 .

We construct a relation ' on decorated trees, which are obtained

from a binary tree by attaching to every inner node D a ranked

tree X (D) over Σ. Let Γ := Σ ∪ {0, 2} be a ranked alphabet with

rk(0) = 3, rk(2) = 0. A decorated tree is a tree C ∈ TΓ such that

C (Y) ∈ {0, 2} and for all D ∈ dom(C) we have

• C (D1) = C (D2) ∈ {0, 2} and C (D3) ∈ Σ if C (D) = 0 and

• C (D8) ∈ Σ for all 8 ∈ [1, rk(C (D))] if C (D) ∈ Σ.

We denote by 0(C) := {D ∈ dom(C) | C (D) = 0} the nodes of C la-

beledwith0 and by02 (C) := {D ∈ dom(C) | C (D) ∈ {0, 2}} the nodes

labeled with 0 or 2 . The decoration of C is a function XC : 0(C) → TΣ
such that XC (D) = C↓D3 where C↓E denotes the subtree of C rooted in

E ∈ dom(C).

LetA′ = (& ′, Γ, Δ′, ?1) be theNTAwhere& ′ := &∪{?1, . . . , ?=}

and Δ
′ contains all transitions from Δ and the transitions

?8
0
−→ (?8 , ?8+1, @8) for all 8 ∈ [1, =] where ?=+1 := ?1,

?8
2
−→ () for all 8 ∈ [1, =] .

We define the tree-regular relation ' ⊆ TΓ ×TΓ such that (B, C) ∈ '

if and only if B and C are decorated trees with 02 (B) ⊆ 0(C) and

A′ accepts C↓D for all D ∈ min(0(C) \ 0(B)). Here, the minimum is

defined with respect to prefix ordering. It is easy to construct an

NTA that recognizes ' in logspace.

It remains to show that
⋂=

8=1 !(A@8 ) ≠ ∅ if and only if ' con-

tains an infinite clique. For the “only if” direction let C ∈ TΣ be a

tree that is accepted by A@8 for all 8 ∈ [1, =]. For all 8 ≥ 0 we de-

fine the decorated tree C8 ∈ TΓ such that 02 (C8) =
⋃8

9=0{1, 2}
9 and

7
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XC8 (D) = C for all D ∈ 0(C8). It is easy to verify that (C8 , C 9 ) ∈ ' for

all 8 < 9 .

Conversely, consider a sequence of decorated trees C8 ∈ TΓ for

8 ≥ 0 with (C8 , C 9 ) ∈ ' for all 8 < 9 . We define nodes E1, . . . , E= with

• E8 ∈ min(0(C8) \ 0(C8−1)) for all 8 ∈ [1, =] and

• E8+1 = E821
:8 for all 8 ∈ [1, = − 1] and some :8 ≥ 0.

We can choose E1 ∈ min(0(C1) \ 0(C0)) arbitrary which defines

E2, . . . , E= uniquely. Since (C8−1, C=) ∈ ' and E8 ∈ min(0(C=) \

0(C8−1)), the subtree C=↓E8 is accepted by A′ for all 8 ∈ [1, =]. By

definition of A′ there exist accepting runs on C=↓E= starting from

?1, . . . , ?= . Therefore, the tree XC= (E=) ∈ TΣ is accepted byA start-

ing from all states @1, . . . , @= .

We note that EXP-hardness already holds if ' is given by aD↓TA

since intersection nonemptiness is EXP-hard already for D↓TAs

[29], and if the automatonA is a D↓TA, then the constructed rela-

tion ' from the proof can also be recognized by a D↓TA. Moreover,

the reduction can be adapted to recurrent reachability by setting

the target set to TΣ , which proves the exponential lower bound in

Corollary 2.7.

5.2 Tree combs

To prove the upper bounds for tree-regular relations, we extend

the notion of combs to the tree case. Here a tree C8 is decomposed

vertically in the form C8 = V1 . . . V8−1U8 where V1 is a context,

V2, . . . , V8−1 are forests of contexts, and U8 is a forest of trees, see

Figure 5 for an abstract illustration.

A context forest of width = is a finite sequence g = (28)1≤8≤=
of contexts 28 ∈ CΣ . Context forests of width 1 are regarded as

contexts. We say that g is nontrivial if = ≥ 1 and |28 | ≥ 1 for all

1 ≤ 8 ≤ =. If the 28 are trees inUΣ , we call g just a forest. We define

the concatenation of a context g1 ∈ CΣ , where |holes(g1) | = =,

with a context forest g2 = (21, . . . , 2=) ∈ FΣ of width = by

g1g2 := g1 [21, . . . , 2=]. We write g1g2 . . . g= for a context g1 and con-

text forests g2, . . . , g= assuming left-associativity. Here we implic-

itly assume that the width of g8 matches |holes(g1 . . . g8−1) |. If C is

a tree and B is a context, we write C ⊳B if dom(C) ∩holes(B) = ∅. For

a forest U = (C8)8≤= and a context forest V = (B8 )8≤= we also write

U ⊳ V if C8 ⊳ B8 for all 1 ≤ 8 ≤ =.

An infinite sequence t = (C8)8≥1 of ranked trees is called a comb

if there is a sequence of forests " = (U8 )8≥1 and a sequence of

nontrivial context forests # = (V8)8≥1 such that for all 8 ≥ 1 we

have C8 = V1 . . . V8−1U8 andU8 ⊳V8 . The pair (" , #) is called generator

of the comb. Since the trees C8 are ranked, also the trees in U8 and

the contexts in V8 are ranked.

The property U8 ⊳ V8 should be compared to the property |U8 | ≤

|V8 | in word combs. It ensures that every forest U8 does not touch

any context forest U 9 , V 9 for 9 ≠ 8 .

Lemma 5.1 (Combs lemma over trees). Any sequence t of pair-

wise distinct ranked trees C8 ∈ TΣ over a finite ranked alphabet Σ

contains a comb as a subsequence.

Proof. It suffices to show that for any infinite set ) ⊆ TΣ there

exists a comb over ) . Consider the following finitely branching

infinite tree whose nodes are contexts from CΣ . The root is the

context G . The children of a context B are the contexts of the form

B [C1, . . . , C=] where each C8 is a context of size one. Observe that

C1

U1

C2

V1

U2

C3

. . .V1

V2

U3

encoding

Figure 5: An example tree comb and its encoding as an infi-
nite tree. In this example the generator satisfies dom(U8) ⊆

dom(V8) whereas general generators only satisfy U8 ⊳ V8 .

all trees in TΣ occur as nodes in the infinite tree. The set of all

ancestors of trees in ) form an infinite subtree, which contains an

infinite path B0 <p B1 <p B2 <p . . . by Kőnig’s Lemma. For all 8 ≥ 1

there exists a tree C8 ∈ ) which contains B8−1 as a prefix.

Since the minimal level of a hole in B8 is strictly increasing, for

every 8 ≥ 1 there exists a 9 ≥ 8 with C8 ⊳ B 9 . Hence one can induc-

tively construct indices 1 = :1 < :2 < . . . such that C:8+1 ⊳ B:8+1
for all 8 ≥ 1. Then (C:8+1)8≥1 is a comb where the generator (" , #)

is defined such that B:8+1 = V1 . . . V8 and C:8+1 = V1 . . . V8−1U8 for

8 ≥ 1. The comb property U8 ⊳ V8 follows from C:8+1 ⊳ B:8+1 . �

To define the encoding enc(" , #) of a comb generator we need

a few more definitions. For a tree C and context B with C ⊳ B we

define the convolution C ⊗ B as before but every (⊥, G) is replaced

by G . That is, C ⊗ B is again a context. We extend the convolution

in a natural way to forests and context forests of the same width.

If g = (21, . . . , 2=) is a context forest let ḡ be obtained from g by

attaching a new #-labeled root to each of the = contexts 28 . We can

now define the encoding of a comb with generator (" , #) as the

infinite tree

enc(" , #) := (U1 ⊗ V1)(U2 ⊗ V2)(U3 ⊗ V3) . . .

over the ranked alphabet Ω := Σ
2
⊥ ∪ {#}. See Figure 5 for an illus-

tration of the encoding. Here, the forests U8 are colored red and the

context forests V8 are colored blue. It is not hard to see that the set

EncΣ of all comb encodings is a regular language of infinite trees.

5.3 Arbitrary relations

An alternating tree automaton (ATA) over the ranked alphabet Σ is

a tuple A = (&, Σ, X, @0) where & is a set of states, @0 ∈ & is an

initial state, and X : & × Σ → B+ (& × N) is a transition function

with X (@, 0) ∈ B+ (& × {1, . . . , rk(0)}) for all @ ∈ &, 0 ∈ Σ. Here,

B+ (& ×N) denotes the set of positive propositional formulas over

the set of variables & × N. For a set ( of variables and formula i

we denote by ( |= i that if the variables in ( are set to true and the

variables not in ( are set to false, then i is satisfied.

We will use a nonstandard definition of runs of ATAs. Firstly,

we consider runs on both trees and contexts. Secondly, each node

in the run also carries the labels of its children, with the purpose

of predetermining the states in the context holes. A run of A on a

nontrivial ranked context C ∈ CΣ is a context d over the alphabet

N∗ × & × 2&×N such that d (Y) = (Y,@0, () for some ( ⊆ & × N

and for each node D ∈ nodes(d) with d (D) = (F,@, () and ( =

{(@1, 21), . . . , (@A , 2A )} we have that ( |= X (@, C (F)) and D has A ≥ 0

8
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children such that d (D8) = (F28 , @8, (8) for some (8 ⊆ & × N if

F28 ∈ nodes(C), and d (D8) = G , otherwise. Note that an NTA can be

seen as a special ATA where for all @ ∈ & and 0 ∈ Σ, the transition

formula X (@, 0) is a disjunction of conjunctions
∧rk(0)

8=1 (@8, 8).

We define a decomposition of a context C as C = g1 . . . g= where

the g8 are context forests. For a generator (" , #) of a comb s we de-

fine the (" , #)-decomposition of B8 ⊗B 9 as in the word case. We say

that a decomposition of a run d = d1 . . . d= of an ATA is compatible

with a decomposition C = g1 . . . g= of a context if d1 . . . d8 is a run

on g1 . . . g8 for all 8 ∈ [1, =]. Note that the above definition of a run

ensures that d1 . . . d8 already determines the first two components

of the root labels of d8+1 for all 8 < =.

We say that a generator (" , #) of a comb s is coarser than a

generator ($ , %) of a comb t if there exist indices :1 < :2 < . . .

such that B8 = C:8 and V1 . . . V8 = X1 . . . X:8 for all 8 ≥ 1. In this case

we also say that (" , #) is the coarsening of ($ , %) defined by the

subsequence s of t .

Lemma 5.2. Let t be a comb generated by ($ ,%) that forms an

infinite clique in a tree-regular relation ' ⊆ TΣ×TΣ given as an ATA

A. There exist a coarsening (" , #) of ($ , %) that generates a comb s,

runs d (B8 , B 9 ) ofA on B8 ⊗ B 9 , and context forests ^8 , _8 , `8, 9 , a8, 9 such

that

d (B8 , B 9 ) = ^1 . . . ^8−1_8`8,8+1 . . . `8, 9−1a8, 9

is a decomposition compatible with the (" , #)-decomposition of B8 ⊗

B 9 for all 8 < 9 .

Proof. The proof is similar to the proof of Lemma 4.2 in the

word case. We emphasize that the pigeonhole principle and Ram-

sey’s theorem can be applied as in the word case since the unique

prefixes of the runs of the ATA that are runs on a given context

have bounded size. Further note that since a run on a forest is

not defined, instead of considering only the suffixes g (C8 , C 9 ) and

f (C8 , C 9 ) in the inductive step, we have to consider the whole run

d (C8 , C 9 ) and extend the common prefix that is already fixed. �

An alternating Büchi tree automaton (ABTA) over the ranked

alphabet Σ is a tuple A = (&, Σ, X, @0, � ) where & , Σ, X , and @0
are as in the definition of an ATA and � ⊆ & is a set of final

states. A run of A on a finite or infinite tree C ∈ T∞
Σ

is a tree

d ∈ U∞
N∗×&

such that d (Y) = (Y,@0) and for all D ∈ dom(d)

with A children and d (D) = (F, @) there is a satisfying assignment

( = {(@1, 21), . . . , (@A , 2A )} |= X (@, C (F)) of pairwise distinct (@8, 28 )

such that d (D8) = (F28 , @8) for all 8 ∈ [1, A ]. A run d is accepting if

every infinite path of d contains infinitely many nodes with labels

in N∗ × � .

Proposition 5.3. Given an ATAA for a tree-regular relation' ⊆

(TΣ)
2, one can construct in polynomial time an ABTA B over the

ranked alphabet Ω = Σ
2
⊥ ∪ {#} such that we have:

• If t is an infinite clique in ', then B accepts an encoding of a

comb s which is a subsequence of t .

• If B accepts C ∈ T∞
Ω

, then C is an encoding of a comb t that is

an infinite clique in '.

Proof. LetA = (&, Σ2⊥, X, @0) be the ATA that recognizes '. We

construct an ABTA B over Ω which accepts precisely all comb en-

codings enc(" , #) with the properties from Lemma 5.2. The state

set of B is& × {1, 2, 3, 4}, representing four different modes. In the

first mode it simulates ^ 9 on V 9 ⊗ V 9 , in the second mode it simu-

lates _ 9 on U 9 ⊗ V 9 , in the third mode it simulates `8, 9 on Y ⊗ V 9 , and

in the fourth mode it simulates a8, 9 on Y ⊗ U 9 . Figure 3 illustrates

the simulation.

For all @ ∈ & and
( 0
1

)
∈ Σ

2
⊥ we set

XB ((@, 1),
( 0
1

)
) := X1 (@,

(
1
1

)
) XB ((@, 2),

( 0
1

)
) := X2 (@,

( 0
1

)
)

XB ((@, 3),
( 0
1

)
) := X3 (@,

( ⊥
1

)
) XB ((@, 4),

( 0
1

)
) := X4 (@,

(
⊥
0

)
)

where X8 (@,f) is the formula X (@, f) where each variable (?, 2) is

replaced by ((?, 8), 2). At the holes of U 9 ⊗ V 9 labeled with #, i.e.,

the points where U 9+1 ⊗ V 9+1 starts, the simulations in modes 1, 2,

and 3 split up. For all @ ∈ & we define

XB ((@, 1), #) := ((@, 1), 1) ∧ ((@, 2), 1)

XB ((@, 2), #) := XB ((@, 3), #) := ((@, 3), 1) ∧ ((@, 4), 1)

Finally, we add a new initial state @B0 which spawns simulations of

A in mode 1 and 2, i.e., for all @ ∈ & and
( 0
1

)
∈ Σ

2
⊥ we define

XB (@
B
0 ,

( 0
1

)
) := X1 (@0,

(
1
1

)
) ∧ X2 (@0,

( 0
1

)
).

Finally, we intersect !(B) with the tree-regular language EncΣ,

which concludes the proof. �

If ' is given by a D↑TA we can even compute in polynomial

time a nondeterministic Büchi tree automaton (NBTA) for the rep-

resentation of infinite cliques. The proof idea is that the runs `8, 9
and a8, 9 in Lemma 5.2 only depend on 9 .

Proposition 5.4. Given aD↑TAA for a tree-regular relation' ⊆

(TΣ)
2, one can construct in polynomial time an NBTA B over the

ranked alphabet Ω = Σ
2
⊥ ∪ {#} such that we have:

• If t is an infinite clique in ', then B accepts an encoding of a

comb s which is a subsequence of t .

• If B accepts C ∈ T∞
Ω

, then C is an encoding of a comb t that is

an infinite clique in '.

We are ready to prove Theorem 2.4. If A is an ATA, we use the

ABTA B from Proposition 5.3 and transform it into an NBTA in

exponential time [26, Theorem 1.2]. If A is a D↑TA A we use the

NBTA B from Proposition 5.4. We then construct an NTA C over

Σ which accepts C1 ∈ TΣ if and only if the encoding of some comb

(C8)8≥1 is accepted by B. The rest of the proof is analogous to the

proof of Theorem 2.2, see Appendix B for details.

5.4 Transitive relations

In this section we show that if we assume that ' is transitive,

then the Ramsey quantifier can be evaluated in polynomial time

(Theorem 2.5).

Proposition 5.5. Given an NTA A for a transitive tree-regular

relation ' ⊆ (TΣ)
2, one can construct in polynomial time an NBTA

B over the ranked alphabet Ω such that:

• If t is an infinite clique in ', then B accepts an encoding of a

comb s which is a subsequence of t .

• If B accepts C ∈ T∞
Ω

, then C is an encoding of a comb t that is

an infinite clique in '.

9
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For the proof we view A as an ATA and construct the ABTA B

as in the proof of Proposition 5.3 which accepts precisely all comb

encodings enc(" , #) with the properties from Lemma 5.2. Since '

is transitive, ensuring that v is a clique merely requires to check

that (E8 , E8+1) ∈ ' for each 8 . Therefore, the set of runs we need

to detect on an encoding enc(" , #) are as in Figure 3, but without

all the runs `8, 9 . In the resulting comb of combs, all rows have fi-

nite length. In terms of the constructed ABTA, this means we can

omit all states in mode 3. Then any run contains for each node E of

the input tree at most three run nodes referring to E . Thus, we can

apply a standard powerset construction to convert C into an equiv-

alent NBTA of polynomial size by restricting to subsets of states of

size at most three. We refer to Appendix B for more details. Using

the polynomially-sized NBTA B we can prove Theorem 2.5 analo-

gously to Theorem 2.4.

5.5 Co-transitive relations

Recall that a binary relation ' ⊆ � × � is co-transitive if its com-

plement '̄ = (� × �) \ ' is transitive. Next we show Theorem 2.6.

A context V is called monadic if it has exactly one hole. We will

show that, if a co-transitive relation has an infinite clique, then

there exists one which is a comb generated by a monadic genera-

tor (" , #) in which all forests V8 are monadic contexts. This also

implies that all U8 are trees.

Lemma 5.6. If a co-transitive tree-regular relation ' ⊆ TΣ × TΣ
has an infinite clique over a tree-regular language ! ⊆ TΣ , then there

exists an infinite clique t of ' over ! and a nontrivial monadic context

V with C1 ⊳ V and V ≤p C8 for all 8 ≥ 2.

Proof. Let A = (&, Σ2⊥,Δ, � ) and B = (%, Σ,Λ,�) be D↑TAs

for ' and !, respectively. Suppose that t is an infinite clique in '

over !. For 9 ≥ 2 let 2 9 be the unique context with nodes(2 9 ) =

nodes(C1) ∩ nodes(C 9 ) and 2 9 ≤p C 9 . Notice that 2 9 is nontrivial

since C1 and C 9 contain the root. Furthermore we have C1 ⊳ 2 9 since

any holeD ∈ holes(2 9 ) is contained in nodes(C 9 ) \nodes(2 9 ). Since

there are only finitely many such choices for 2 9 , by reducing t to

a subsequence which starts with C1 we can assume that 2 9 = 2

for all 9 ≥ 2 for some context 2 . Suppose that E1, . . . , E= are the

holes of 2 in lexicographical order, and C 9 = 2 [C19 , . . . , C
=
9 ] for some

trees C:9 . Again, by reducing t to a subsequence starting with C1, we

can further assume that (C:9 ) 9≥2 is an infinite sequence of pairwise

distinct trees for each : ∈ [1, =]. Indeed, if (C:9 ) 9≥2 contains only

finitely many distinct trees for some : , then some tree C must occur

infinitely often in the sequence (C:9 ) 9≥2, say C = C:ℓ2
= C:ℓ3

= · · · for

some 1 = ℓ1 < ℓ2 < · · · . We then extend 2 by plugging C into

the hole E: and we replace t by (Cℓ9 ) 9≥1. Clearly, duplicates in a

sequence (C:9 ) 9≥2 that contains infinitely many distinct elements

can also be removed by restricting to a subsequence.

For all 8 < 9 we have

C8 ⊗ C 9 =

{
(C1 ⊗ 2)[Y ⊗ C19 , . . . , Y ⊗ C=9 ], 1 = 8 < 9,

(2 ⊗ 2)[C18 ⊗ C19 , . . . , C
=
8 ⊗ C=9 ], 1 < 8 < 9,

where C1⊗2 and 2 ⊗2 are naturally viewed as contexts with = holes.

For 9 ≥ 2 consider the accepting run d 9 of A on C1 ⊗ C 9 and the

accepting run c 9 of B on C 9 , and color each index 9 by the tuple

(d 9 (E
1), . . . , d 9 (E

=), c 9 (E
1), . . . , c 9 (E

=)). By the pigeonhole princi-

ple we can pick numbers 1 = ℓ1 < ℓ2 < . . . such that {ℓ2, ℓ3, . . . } is

monochromatic. We then replace t by (Cℓ8 )8≥1. Hence, the accept-

ing runs of A on C1 ⊗ C 9 (9 ≥ 2) visit the same states A1, . . . , A= in

the nodes E1, . . . , E= . Similarly, the accepting runs ofB on the trees

C 9 visit the same states ?1, . . . , ?= in the nodes E1, . . . , E= . Therefore

(C1, 2 [C
1
91
, . . . , C=9= ]) ∈ ' for any 91, . . . , 9= ≥ 2 and

2 [C191 , . . . , C
=
9=
] ∈ ! for any 91, . . . , 9= ≥ 2.

For 1 < 8 < 9 consider an accepting run of A on C8 ⊗ C 9 and let

@:8,9 be the state reached in node E: . By Ramsey’s theorem we can

assume that there exist states @1, . . . , @= ∈ & such that @:8,9 = @:

for all 1 < 8 < 9 (again, after replacing t by a subsequence starting

with C1). Observe that A accepts the context 2 ⊗ 2 if it starts in

nodes E1, . . . , E: with the states @1, . . . , @: , respectively.

For every 0 ≤ : ≤ = define the tree

B: = 2 [C13 , . . . , C
:
3 , C

:+1
2 , . . . , C=2 ] .

We have (B0, B=) = (C2, C3) ∈ '. There must be an index 1 ≤ : ≤ =

with (B:−1, B: ) ∈ ' since otherwise by transitivity of '̄ we would

have (B0, B=) ∉ '. Define the context

V = 2 [C13 , . . . , C
:−1
3 , G, C:+12 , . . . , C=2 ] .

Then we have that (V [C:2 ], V [C
:
3 ]) ∈ '. This is witnessed by an

accepting run on their convolution, which reaches state @: at node

E: . This implies that (V [C:8 ], V [C
:
9 ]) ∈ ' for all 8 < 9 , since the run

ofA on C:8 ⊗ C
:
9 also reaches @

: . Hence, the context V together with

the trees C1 and V [C:8 ] for 8 ≥ 2 satisfy the claim. Moreover, C1 ⊳ 2

and 2 ≤p V implies C1 ⊳ V . �

Repeated applications of Lemma 5.6 yields the desired infinite

clique:

Lemma 5.7. If a co-transitive tree-regular relation ' has an infi-

nite clique then there exists an infinite clique t of ' generated by a

monadic generator (" , #).

Proof. Let = ∈ N and suppose we have inductively constructed

trees U1, . . . , U= , and nontrivial monadic contexts V1, . . . , V= , with

U8 ⊳ V8 for all 1 ≤ 8 ≤ =, such that there exist trees (C ′8 )8>= such that

(C8)8≥1 is an infinite clique in ' where C8 = V1V2 . . . V8−1U8 if 8 ≤ =,

and C8 = V1V2 . . . V=C
′
8 if 8 > =. Let V := V1V2 . . . V= . Then (C ′8 )8>= is

an infinite clique in the relation '′ = {(B ′, C ′) | (V [B ′], V [C ′]) ∈ '}.

It is easy to see that '′ is again tree-regular and also co-transitive

since transitivity is preserved from '̄ to '̄′ via V [C] ↦→ C . Further-

more all trees C ′8 for 8 > = belong to the tree-regular language

! =
⋂=

8=1{C | (C8 , V [C]) ∈ '}. We can apply Lemma 5.6 and obtain a

tree U=+1, a nontrivial monadic context V=+1 with U=+1 ⊳ V=+1, and

trees (C ′′8 )8>=+1 such that U=+1 together with V=+1 [C
′′
8 ] for 8 > =+1

form an infinite clique in '′. Furthermore all trees V=+1 [C
′′
8 ] for

8 > = + 1 belong to !. Hence C1, . . . , C= together with V [U=+1] and

V [V=+1[C
′′
8 ]] for 8 > = +1 form an infinite clique in '. By induction

we then obtain the desired sequences " , # . �

We can now prove Theorem 2.6. Given an NTA A for a co-

transitive relation '. Using Lemmas 5.2 and 5.7, we can prove a

statement similar to Lemma 4.3 for tree combswhich are generated

10
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by a monadic generator. In particular, all context forests ^8 , _8 , ` 9
have exactly one hole, and hence ^8 , _8 , ` 9 , a 9 are in fact contexts.

Now we can construct in polynomial time a Büchi tree automa-

ton B which accepts all comb encodings enc(" , #) of a monadic

generator (" , #) for which runs of the form ^ 9 , _ 9 , ` 9 , a 9 as above

exist. To this end, B consists of four components in which the runs

^ 9 , _ 9 , ` 9 , a 9 are simulated. The detailed construction can be found

in Appendix B.

The lower bound of Theorem 2.6 follows by a logspace re-

duction from monadic decomposability for D↑TAs which is P-

complete (see Section 6.2).

6 APPLICATIONS

6.1 Recurrent reachability with generalized
Büchi condition

The proof of the following Proposition can be found in Appendix C.

Proposition 6.1. The infinite clique problem and recurrent

reachability are logspace equivalent over (tree-)regular relations.

Moreover, the logspace reduction from recurrent reachability to the

infinite clique problem preserves transitivity of relations and deter-

minism of automata.

Using Proposition 6.1 we obtain tight complexity bounds for re-

current reachability over (transitive) (tree-)regular relations. We

can even compute an automaton for the set Rec(!)['] of initial

elements given automata for ' and !.

Corollary 6.2. If ' is a binary (tree-)regular relation and ! is

a (tree-)regular language given by NFAs (NTAs), then one can con-

struct an NFA (NTA) for Rec(!)['] in logspace (exponential time).

The construction works in polynomial time if ' and ! are given by

D↑TAs or if ' is transitive.

Proof. We can define Rec(!)['] by the formula

i (G) = ∃ram~, I : '(G,~) ∧ !(~) ∧ '(~, I)

∨ ∃~ : '(G,~) ∧ !(~) ∧ '(~,~).

Here, the first disjunct (beginning with ∃ram) captures infinite

paths visiting infinitely many configurations, whereas the second

(beginning with ∃) captures infinite paths with only finitely many

(distinct) configurations.

If ' and ! are given by NFAs, we can construct in logspace an

NFA for Rec(!)['] using the closure properties of regular relations

and Theorem 2.2. Over trees, we use Theorems 2.4 and 2.5 to con-

struct an NTA for Rec(!)['] in exponential or polynomial time

depending on whether ' is transitive and how ', ! are given. �

For recurrent reachability with generalized Büchi condition

we show that over words the complexity increases from NL to

PSPACE, while over trees it stays in EXP (Theorem 2.8).

For both the word and the tree case we reduce the general-

ized version to the classical version. We first observe that 00 ∈

Rec(!1, . . . , !: )['] if and only if there is a sequence a such that

(08 , 0 9 ) ∈ ' for all 0 ≤ 8 < 9 and 08 ∈ !( (8−1) mod :)+1 for all

8 ≥ 1. We define a (tree-)regular relation '′ ⊆ �: ×�: that checks

if a tuple (01, . . . , 02: ) forms a clique of size 2: + 1 in ' starting

with 00 such that 08 ∈ !8 for all 8 ∈ [1, :]. In the word case the

NFAA′ for '′ can be constructed in PSPACE using a product con-

struction. In the tree case we can avoid the exponential blow-up

for the product automaton by using ATAs. To make this work, we

have to reduce the size of the alphabet for the ATA A′. This can

be achieved by encoding a tuple (f1, . . . , f: ) ∈ Σ
:
⊥ of symbols by

a path f1 (f2 (. . . f: (#<) . . . )) where #< is used as delimiter sym-

bol of rank < := max{rk(f8 ) | 1 ≤ 8 ≤ :}. Then the ATA A′

can be constructed in polynomial time. Now it holds that 00 ∈

Rec(!1, . . . , !: )['] if and only if ∃ramG, ~ : '′(G,~) ∨ ∃G : '′(G, G)

is valid. By Theorem 2.2 (resp. Theorem 2.4) validity of the first

disjunct of i can be checked in nondeterministic logspace (resp.

exponential time) givenA′. It is easy to see that validity of the sec-

ond disjunct ofi can also be checked in nondeterministic logspace

(resp. exponential time) givenA′. This yields a PSPACE-algorithm

in the word case and an EXP-algorithm in the tree case. Details are

in Appendix D.

For the lower bounds we reduce from the intersection non-

emptiness problem of (tree-)regular languages !1, . . . , !: ⊆ �,

which is known to be PSPACE-complete over words [14] and EXP-

complete over trees [7, Theorem 11]. We define the (tree-)regular

relation ' ⊆ �×� such that (0,1) ∈ ' if and only if 0 = 2 or 0 = 1

where 2 ∈ � is some fixed element. Then !1 ∩ · · · ∩ !: ≠ ∅ if and

only if 2 ∈ Rec(!1, . . . , !: )['].

For : = 1, the previous construction yields a reduction from

nonemptiness for D↑TAs, which is P-complete, to recurrent reach-

ability over transitive tree-regular relations given by D↑TAs, prov-

ing the P-hardness in Theorem 2.3 and Corollary 2.7.

The lower bound in the word case of Corollary 2.7 follows by a

logspace reduction frommonadic decomposability for DFAswhich

is NL-complete (see Section 6.2).

In [23] Löding shows that the reachability relation →∗ for reg-

ular ground tree rewrite systems (RGTRS) is tree-regular and an

NTA for →∗ can be constructed in polynomial time. Hence, by

Theorem 2.8 recurrent reachability with generalized Büchi condi-

tion is EXP-complete for RGTRSswhere hardness for GTRSs can be

shown by a similar reduction as above from intersection nonempti-

ness.

Corollary 6.3. Given an RGTRS and NTAs for tree-regular lan-

guages !1, . . . , !: , one can construct in exponential time an NTA rec-

ognizing Rec(!1, . . . , !: )[→
∗].

6.2 Monadic Decomposability

In the followingwe reducemonadic decomposability to the infinite

clique problem over co-transitive relations, proving Corollary 2.9

and Corollary 2.10. A:-ary relation' over words or trees ismonad-

ically decomposable if and only if for all 1 ≤ 9 ≤ : the equivalence

relations ∼ 9 on (Σ∗) 9 (or T
9

Σ
) have finite index, where two tuples

u = (D1, . . . , D 9 ), v = (E1, . . . , E 9 ) are ∼ 9 -equivalent if and only if

∀w = (F 9+1, . . . ,F: ) : [(u,w) ∈ ' ⇐⇒ (v,w) ∈ '],

see for example [6, Proof of Proposition 3.9]. If the given automa-

ton A for ' is a DFA, D↑TA, or D↓TA, then one can compute au-

tomata A≁9 for the complements ≁ 9 of ∼ 9 in logspace, using the

11
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fact that u ≁ 9 v is equivalent to

∃w :
(
(u,w) ∈ ' ∧ (v,w) ∉ '

)
∨
(
(u,w) ∉ ' ∧ (v,w) ∈ '

)
.

If A is an NFA or NTA, then this is possible in polynomial space,

by determinizing A and using closure properties of regular rela-

tions. Then, apply Theorem 2.2 (Theorem 2.6) to A≁9 to check in

NL (resp. P) for an infinite clique in ≁ 9 .

We now prove the lower bounds by a reduction from the univer-

sality problem for DFAs, NFAs, D↑TAs, and NTAs, and the empti-

ness problem for D↓TAs.

Lemma 6.4. Given a binary regular relation ' ⊆ Σ
∗ × Σ

∗ by an

NFA (resp. DFA), it is PSPACE-hard (resp.NL-hard) to decidewhether

' is monadically decomposable. Given a binary tree-regular relation

' ⊆ TΣ × TΣ by an NTA (resp. D↑TA), it is EXP-hard (resp. P-hard)

to decide whether ' is monadically decomposable.

Proof. We give a logspace reduction from the universality

problem which is known to be PSPACE-complete for NFAs, NL-

complete for DFAs, P-complete for D↑TAs, and EXP-complete for

NTAs. To ease notation, we only consider the word case and re-

mark that the tree case is analogous. Recall that the universality

problem asks whether for a given regular language ! ⊆ Σ
∗ it holds

that ! = Σ
∗ . Let ! ⊆ Σ

∗ be a regular language given by an NFA

(resp. DFA) A. We define the regular relation

'! := {(D ⊗ E,F) | D ∈ ! or E = F ∈ Σ
∗}.

It is easy to construct an NFA (resp. DFA) that recognizes '! in

logarithmic space from A. Note that for DFAs the disjunction can

be realized with a product construction. It remains to show that '!
is monadically decomposable if and only if ! = Σ

∗ .

If ! = Σ
∗ , it holds that '! = {(D ⊗ E,F) | D, E,F ∈ Σ

∗} which is

clearly monadically decomposable.

For the converse assume that there exists D0 ∈ Σ
∗ \ !. Then

the intersection of '! with the monadically decomposable relation

{(D0 ⊗ E,F) | E,F ∈ Σ
∗} is the relation {(D0 ⊗ E,F) | E = F ∈ Σ

∗},

which is not monadically decomposable. Since monadically decom-

posable relations are closed under intersection, it follows that '!
is not monadically decomposable. �

Lemma 6.5. Given a binary tree-regular relation ' ⊆ TΣ×TΣ by a

D↓TA, it is P-hard to decide whether ' is monadically decomposable.

Proof. We give a logspace reduction from the emptiness prob-

lem for D↓TAs which is known to be P-complete [34]. Let A =

(&, Σ, Δ, @0) be a D↓TA. We construct a D↓TA A′ = (&, Γ2⊥,Δ
′, @0)

recognizing a binary tree-regular relation '′ over Γ := Σ ∪ {#}

where # ∉ Σ is a symbol of rank 1 as follows. We define the transi-

tion relation Δ
′ such that

• @
(0,0)
−−−−→A′ (@1, . . . , @A ) for all @

0
−→A (@1, . . . , @A ),

• @0
(#,#)
−−−−→A′ @0

Clearly, A′ can be constructed in logspace from A.

It is easy to see that '′ ⊆ {(C, C) | C ∈ TΓ}. Moreover, it holds

that '′ is finite if and only if !(A) = ∅. Indeed, if there exists

C ∈ !(A), then (C=, C=) ∈ '′ for all = ≥ 0 where C= is the resulting

tree when padding a chain of #-symbols of length = to the root of C .

Since every finite relation is monadically decomposable and every

infinite subrelation of {(C, C) | C ∈ TΓ} is clearly not monadically

decomposable, it holds that '′ is monadically decomposable if and

only if !(A) = ∅. �

7 UNRANKED TREE-AUTOMATIC
STRUCTURES

In this section we consider the unranked tree analogue of

Theorems 2.4 and 2.5. Furthermore, we consider an application

of the results to recurrent reachability in subtree and flat prefix

rewriting systems. Unranked tree-regular languages and relations

are recognized by nondeterministic unranked tree automata (NU-

TAs), see Appendix E.

Theorem 7.1. Given an unranked tree-regular ' ⊆ (UΣ)
:+2 by

an NUTAA, an NUTA for the relation [[∃ramG,~ : '(G, ~, z)]] can be

constructed in polynomial time if ' is transitive and in exponential

time otherwise. Hence, the infinite clique problem over (transitive)

unranked tree-regular relations is in EXP (P).

The proof can be found in Appendix E.1. It uses the first-child

next-sibling encoding, a standard regularity-preserving transforma-

tion from unranked trees to binary trees (see e.g., [10, 20, 27]). As

over ranked trees, Theorem 7.1 implies:

Corollary 7.2. For a binary unranked tree-regular relation '

and an unranked tree-regular language ! given by NUTAs, one can

construct an NUTA recognizing Rec(!)['] in polynomial time if ' is

transitive and in exponential time otherwise.

In [24] Löding and Spelten introduce tree rewriting systems

over unranked trees called subtree and flat prefix rewriting sys-

tems (SFPRS). We refer to Appendix E.2 for the definition. In [24]

it is shown that the reachability relation →∗ for (regular) SFPRSs

is an unranked tree-regular relation. Moreover, it can be observed

that the NUTA for →∗ can be constructed in polynomial time.

Since →∗ is transitive, we can apply Corollary 7.2 to obtain that

recurrent reachability for (regular) SFPRSs is decidable in polyno-

mial time:

Corollary 7.3. For a (regular) SFPRS and an unranked tree-

regular language ! given as NUTA, one can construct an NUTA rec-

ognizing Rec(!)[→∗] in polynomial time.

Let FO(SFPRS) be the first-order theory over unranked trees

with the reachability relation→∗ and the one-step reachability re-

lation → for (regular) SFPRSs. In [24] it is shown that the struc-

ture of FO(SFPRS) is unranked tree-automatic which means that

FO(SFPRS) is decidable.

Let FO(SFPRS + Rec) be the theory FO(SFPRS) enriched by the

recurrent reachability operator: For a formulai in FO(SFPRS+Rec)

with one free variablewe define the recurrent reachability operator

Rec(i) as formula with one free variable such that Rec(i)(C) is

true if and only if C ∈ Rec(!)[→∗] for any C ∈ UΣ where ! is the

unranked tree-regular language defined by i .

Corollary 7.4. The theory FO(SFPRS + Rec) is decidable.

For futurework, we propose to investigate if Corollary 7.2 could

be applied to other classes of tree rewriting systems over unranked

trees, e.g., the class Trs0 of tree rewrite systems with positive

guards [12], which was applied for the analysis of HTML5 applica-

tions.
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8 CONCLUSION AND FUTURE WORKS

We have identified directed Ramsey quantifiers as a fundamental

notion that underlies the standard notion of Ramsey quantifiers, re-

current reachability, and monadic decomposability. We have also

shown that the notion of comb of combs can be used to obtain

substantially simpler proofs in case of word-automatic relations,

and can be generalized to tree-automatic relations, allowing us

to derive new results for Ramsey quantifiers, recurrent reachabil-

ity and monadic decomposability (with applications to generalized

Büchi conditions and unranked tree-automatic relations). There

are many natural research directions. In particular, we pinpoint

that Ramsey quantifiers over l-automatic relations, as well as re-

current reachability over transitive l-automatic relations, is still

a major open problem [16], although monadic decomposability is

known to be decidable [25]. One possible approach is to consider

the subclass of l-automatic relations that are definable over the

theory of mixed integer-real linear arithmetic 〈R;Z, 1, 0, <,+〉, for

which the problem of Ramsey quantifiers and recurrent reachabil-

ity, to be the best our knowledge, is still an open problem.
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A DIRECTED VS UNDIRECTED CLIQUES

Theorem 2.2 and Theorem 2.4 also hold if we alternatively define

the Ramsey quantifier ∃ramG,~ : i (G,~, z) using infinite undirected

cliques, i.e., there exists an infinite set - such that i (0,1, z) holds

for all 0,1 ∈ - with 0 ≠ 1, since we can replace i (G,~, z) by

i (G,~, z) ∧ i (~, G, z).

Furthermore, the NL-lower bound in the word case

(Corollary 2.9) and the EXP-lower bound in the tree case

(Theorem 2.3) also hold for undirected cliques:

Proposition A.1. The infinite clique problems for directed and

undirected cliques are logspace equivalent over (tree-)regular rela-

tions.

Proof. We first reduce the undirected version to the directed

version. Let ' ⊆ � × � be given by an NFA (resp. NTA) A. Then

we define the relation '′ := {(0,1) ∈ � × � | (0,1) ∈ ' ∧ (1, 0) ∈

'}. Clearly, '′ is a (tree-)regular relation and an NFA (resp. NTA)

recognizing '′ can be constructed in logspace from A. Moreover,

we have that ' has an infinite undirected clique if and only if '′

has an infinite directed clique.

For the reverse reduction, let ' ⊆ � × � be given by an NFA

(resp. NTA) A. We define the relation

'′ := {((0, 8), (1, 9)) ∈ (� × N)2 | 0 ≠ 1

∧ ((0,1) ∈ ' ∧ 8 < 9 ∨ (1, 0) ∈ ' ∧ 9 < 8)}.

It is easy to see that '′ can be encoded as a (tree-)regular rela-

tion and an NFA (resp. NTA) recognizing this relation can be con-

structed in logspace fromA. It holds that ' has an infinite directed

clique if and only if '′ has an infinite undirected clique. Indeed,

if ' has an infinite directed clique (08)8≥1, then we can number

the elements and get an infinite undirected clique ((08, 8))8≥1 in

'′. Conversely, if '′ has an infinite undirected clique ((08, =8))8≥1,

then (08 9 ) 9≥1 with=8 9 < =8 9′ for 9 < 9 ′ is an infinite directed clique

in '. �

B CONSTRUCTIONS OF BÜCHI AUTOMATA

Proposition 5.4. Given aD↑TAA for a tree-regular relation' ⊆

(TΣ)
2, one can construct in polynomial time an NBTA B over the

ranked alphabet Ω = Σ
2
⊥ ∪ {#} such that we have:

• If t is an infinite clique in ', then B accepts an encoding of a

comb s which is a subsequence of t .

• If B accepts C ∈ T∞
Ω

, then C is an encoding of a comb t that is

an infinite clique in '.

Proof. Let A′ = (&, Σ2⊥, Δ, @in) be the NTA that is obtained by

reverting the transitions of the D↑TAA. Clearly,A′ has the same

runs asA on trees. Let t be a comb that forms an infinite clique in

'. Since any NTA is a special ATA, we can apply Lemma 5.2 onA′

and t to get a subcomb s of t generated by (" , #), runs d (B8 , B 9 ) of

A′ on B8 ⊗ B 9 , and context forests ^8 , _8 , `8, 9 , a8, 9 such that

d (B8 , B 9 ) = ^1 . . . ^8−1_8`8,8+1 . . . `8, 9−1a8, 9

is a decomposition compatible with the (" , #)-decomposition of

B8 ⊗B 9 for all 8 < 9 . Moreover, we have that `8, 9 and a8, 9 only depend

on 9 since there are unique runs of A on (Y ⊗ V 9 )(Y ⊗ U 9+1) and

Y ⊗ U 9 . Thus, we can just write ` 9 and a 9 for all 9 > 1.

We now construct an NBTA B over the alphabet Ω which ac-

cepts precisely all comb encodings enc(" , #) of a generator (" , #)

with the above properties. Since the set of all comb encodings

is regular, we can assume that the input tree is already a valid

comb encoding. A state in B consists of four components in which

^ 9 , _ 9 , ` 9 , a 9 are simulated. To handle the special case where only

^0, _0 are simulated, we add a state ⊥ to A′ with transitions

⊥
(0,1)
−−−−→ q for all symbols (0,1) ∈ Σ

2
⊥ of rank A , and q ∈ &A

⊥.

The NBTA B has the state set &4
⊥, initial state (@in, @in,⊥,⊥), and

the transitions

• (?, B, @, C)
(0,1)
−−−−→ p ⊗ s ⊗ q ⊗ t if A′ contains the transitions

?
(1,1)
−−−−→ p, B

(0,1)
−−−−→ s, @

(⊥,1)
−−−−→ q, C

(⊥,0)
−−−−→ t ,

• (?,@, @,⊥)
#
−→ (?, ?,@, @) for all ?, @ ∈ & .

Correctness follows from the previous observations. �

Theorem 2.4. Given an ATA (D↑TA)A for a tree-regular relation

' ⊆ (TΣ)
:+2, one can construct in exponential (polynomial) time an

NTA for the relation [[∃ramG, ~ : '(G,~, z)]] .

Proof. First observe that from the ABTA B in Proposition 5.3

we can construct in exponential time an NTA C over Σ which ac-

cepts C1 ∈ TΣ if and only if the encoding of some comb (C8)8≥1
is accepted by B. Indeed, we first transform B into an NBTA

D = (&D,Ω, Δ� , @
D
0 , �D ) which can be done in exponential time

[26, Theorem 1.2]. From D we construct C = (&D, Σ, ΔC, @
D
0 )

such that for all @ ∈ &D , 0 ∈ Σ, and ?8 ∈ &D for 1 ≤ 8 ≤ rk(0)

we let (@, 0, (?8)8≤rk(0) ) ∈ ΔC if and only if there exist 1 ∈ Σ⊥ and

?8 ∈ &D for rk(0) < 8 ≤ rk
( 0
1

)
such that

(@,
( 0
1

)
, (?8)

8≤rk
(
0
1

) ) ∈ ΔD

and D accepts some tree from state ?8 for all 8 > rk(0). Note that

C can be constructed in polynomial time given D since we need

to perform a polynomial number of non-emptiness checks on D,

each of which takes quadratic time. The NTA C satisfies that (i) for

every infinite clique t of ' some element C8 is accepted by C and

(ii) if C is accepted by C, then C belongs to an infinite clique of '.

Given an NTA A for ' ⊆ (TΣ)
:+2. We first construct an NTA

A′ over Σ2:+2⊥ accepting the binary relation

'′ = {(B ⊗ 21 ⊗ · · · ⊗ 2: , C ⊗ 21 ⊗ · · · ⊗ 2: ) | (B, C, c) ∈ '}.
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Let C′ be the NTA described above that accepts at least one tree

from each infinite '′-clique and only accepts elements of infinite

'′-cliques. Projecting away the first component yields the desired

NTA for {c ∈ (TΣ)
: | ∃ramG,~ : '(G, ~, c)}.

If ' is given as D↑TA, then one can construct an NBTA in poly-

nomial time instead of an ABTA using Proposition 5.4. Then C′

can be constructed in polynomial time. �

Proposition 5.5. Given an NTA A for a transitive tree-regular

relation ' ⊆ (TΣ)
2, one can construct in polynomial time an NBTA

B over the ranked alphabet Ω such that:

• If t is an infinite clique in ', then B accepts an encoding of a

comb s which is a subsequence of t .

• If B accepts C ∈ T∞
Ω

, then C is an encoding of a comb t that is

an infinite clique in '.

Proof. We view the NTA A for ' as an ATA and construct

the ABTA B as in the proof of Proposition 5.3 which accepts

precisely all comb encodings enc(" , #) with the properties from

Lemma 5.2. Then, we omit all states in mode 3. More formally,

let C = (&C,Ω, XC, @
C
0 , &C) be the ABTA with state set &C =

{@C0 } ∪ (& × {1, 2, 4}), and the same transitions as B except for

XC ((@, 2), #) := ((@, 4), 1) for all @ ∈ & . Clearly, all comb encod-

ings with the properties from Lemma 5.2 are still accepted by C.

Conversely, if the encoding enc(" , #) of a comb t is accepted by C

then for all 8 ≥ 1, C simulates a run of A on C8 ⊗ C8+1 as argued in

Proposition 5.3. By transitivity we obtain (C8 , C 9 ) ∈ ' for all 8 < 9 .

It remains to convert C into an NBTA of polynomial size. Ob-

serve that C only universally branches in the root and at #-nodes

into a state of mode 1 and 2. Furthermore, states of mode 2 transi-

tion to mode 4 when reading #. Hence, any run contains for each

node E of the input tree at most three run nodes referring to E .

Thus, we apply a standard powerset construction to convert C into

an equivalent NBTA D, where we restrict to subsets of&C of size

at most three. We make all states in D final, since C accepts any

tree with a run. Finally, we take the product construction of D

with an NBTA for EncΣ , to obtain the desired NBTA in polynomial

time. �

Theorem 2.6. The infinite clique problem over co-transitive tree-

regular relations ' ⊆ TΣ × TΣ given as NTA is P-complete.

Proof. Given an NTAA = (&, Σ2⊥, Δ, @in) for a co-transitive re-

lation ' ⊆ TΣ×TΣ . We can prove a statement similar to Lemma 4.3

for tree combs which are generated by a monadic generator.

Suppose that ' has an infinite clique. By Lemma 5.7 and

Lemma 5.2 there exist an infinite clique t in ' with a monadic

generator (" , #), and context forests ^8 , _8 , `8, 9 , a8, 9 for 8 < 9

such that d8, 9 = ^1 . . . ^8−1_8`8,8+1 . . . `8, 9−1a8, 9 is a decomposition

compatible with the (" , #)-decomposition of C8 ⊗ C 9 . In particu-

lar, all context forests ^8 , _8 , `8, 9 have exactly one hole, and hence

^8 , _8 , `8, 9 , a8, 9 are in fact contexts.

Moreover, we can ensure that `8, 9 = `8′, 9 and a8, 9 = a8′, 9 for

all 8 < 8 ′ < 9 and can therefore just write ` 9 and a 9 for all 9 > 1,

respectively. For the proof we can reason similarly as in Lemma 4.3

by applying Ramsey’s theorem to ensure that all contexts `8, 9 carry

the same state in the root. This allows us to verify the runs using

a polynomially sized NBTA on the comb encoding.

Finally, we can construct in polynomial time a Büchi tree au-

tomatonB over the alphabet Ω = Σ
2
⊥∪{#}which accepts all comb

encodings enc(" , #) of a monadic generator (" , #) for which runs

of the form ^ 9 , _ 9 , ` 9 , a 9 as above exist. Since the set of all monadic

comb encodings is regular, we can assume that the input tree is

already a valid monadic comb encoding. A state in B consists of

four components in which the runs ^ 9 , _ 9 , ` 9 , a 9 are simulated. To

handle the special case where only ^0, _0 are simulated, we add a

state⊥ toA with transitions⊥
(0,1)
−−−−→ q for all symbols (0,1) ∈ Σ

2
⊥

of rank A , and q ∈ &A
⊥. The Büchi tree automaton B has the state

set &4
⊥, initial state (@in, @in,⊥,⊥), and the transitions

• (?, B, @, C)
(0,1)
−−−−→ p ⊗ s ⊗ q ⊗ t if A contains the transitions

?
(1,1)
−−−−→ p, B

(0,1)
−−−−→ s, @

(⊥,1)
−−−−→ q, C

(⊥,0)
−−−−→ t ,

• (?,@, @,⊥)
#
−→ (?, ?,@, @) for all ?, @ ∈ & .

Correctness follows from the previous observations. �

C PROOF OF PROPOSITION 6.1

Lemma C.1. The infinite clique problem is logspace reducible to

recurrent reachability over (tree-)regular relations.

Proof. The word case is easy. Let ' ⊆ Σ
∗ × Σ

∗ be given by an

NFA A. We have that ' has an infinite clique if and only if there

exists a sequence (F8 )8≥1 of words such that (F8 ,F 9 ) ∈ ' and

|F8 | < |F 9 | for all 1 ≤ 8 < 9 . We define the relation '′ ⊆ Σ
∗ × Σ

∗

such that

• (Y,F) ∈ '′ for allF ∈ Σ
+ and

• (E,F) ∈ '′ iff (E,F) ∈ ' and |E | < |F | for all E,F ∈ Σ
+.

Clearly, the relation '′ is regular and an NFA that accepts '′ is

implicitly logspace computable. Since a path in '′ cannot visit a

word more than once, it holds that ' has an infinite clique if and

only if Y ∈ Rec(Σ∗)['′].

In the tree case we use a similar idea as in the word case for

one path of the trees. Let ' ⊆ )Σ × )Σ be given by an NTA A.

We have that ' has an infinite clique if and only if there exists a

sequence (C8)8≥1 of trees such that (C8 , C 9 ) ∈ ' for all 1 ≤ 8 < 9 and

the domain of one path strictly grows indefinitely in the sequence.

Such a sequence exists since the union of the domains of all C8 is

an infinite ranked tree domain which by König’s lemma has an

infinite path. Let C0 : {Y} → Σ with C0 (Y) := 0 for some 0 ∈ Σ. We

define the relation '′ ⊆ )Σ′ ×)Σ′ with Σ
′ = Σ ∪ {0′ | 0 ∈ Σ} such

that for all B, C ∈ )Σ′ \ {C0} we have

• (C0, C) ∈ '′ and

• (B, C) ∈ '′ iff the non-primed versions of B and C are in rela-

tion in ' and there exists exactly one path ? from the root

to a leaf in B labeled with primed symbols, exactly one path

@ from the root to a leaf in C labeled with primed symbols,

and the domain of ? is a strict subpath of the domain of @.

The relation '′ is tree-regular and an NTA for '′ is implicitly

logspace computable. Indeed, the NTA for '′ nondeterministically

guesses the path of primed labels in the convolution and verifies

that all other paths have non-primed labels. Moreover, it can check

if the path in B is padded and therefore a strict subpath of the path

in C . Finally, it can simulate the automaton A for ' on the non-

primed versions of B and C by just treating a symbol 0′ as 0.
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We claim that ' has an infinite clique if and only if C0 ∈

Rec()Σ′)['
′]. We already argued the “only if” direction. For the

“if” direction note that the path property prevents the witnessing

sequence from visiting the non-primed version of a tree more than

once. �

Lemma C.2. Recurrent reachability is logspace reducible to the in-

finite clique problem over (tree-)regular relations.

Proof. We use the same idea for both the word and tree case.

Let ' ⊆ � × � be a (tree-)regular relation given by an NFA (resp.

NTA) A and ! ⊆ � be a (tree-)regular language given by an NFA

(resp. NTA) B. Furthermore, let 00 ∈ � be the initial word (resp.

tree). We define the relation '′ ⊆ (� × N) × (� × N) such that

((0,<), (1,=)) ∈ '′ if and only if

• (00, 0) ∈ ',

• (0,1) ∈ ', and

• 0 ∈ !.

Intuitively, we create infinitely many copies of every word (resp.

tree) by taking the direct product with the integers. This allows

the witnessing sequence of the infinite clique to visit a word (resp.

tree) several times. Furthermore, in '′ we only consider the words

(resp. trees) that are in relation with 00 to ensure that 00 fulfills the

conditions of the initial word (resp. tree). With the third condition

we ensure that every word (resp. tree) of the infinite clique is con-

tained in !. Thus, 00 ∈ Rec(!)['] if and only if '′ has an infinite

clique.

Note that '′ is (tree-)regular and an NFA (resp. NTA) for it is

implicitly logspace computable. To this end, we represent the in-

tegers in unary as words (resp. paths) and take the convolution

with the corresponding word (resp. tree). The first condition can

be checked by hardwiring 00 into the automaton. The second and

third conditions can be ensured by simulating A and B, respec-

tively.

Note that if ' is transitive, then so is '′. Moreover, if A and B

are deterministic, then so is the automaton for '′. �

D RECURRENT REACHABILITY WITH
GENERALIZED BÜCHI CONDITION

Proposition D.1. Recurrent reachability with generalized Büchi

condition is decidable in polynomial space over words.

Proof. We give a PSPACE-reduction from the generalized ver-

sion to the classical version. Let the relation ' ⊆ Σ
∗ × Σ

∗ be

given by an NFA A, the languages !1, . . . , !: ⊆ Σ
∗ be given by

NFAs A1, . . . ,A: , and B0 ∈ Σ
∗ be the initial word. First observe

that B0 ∈ Rec(!1, . . . , !: )['] if and only if there is a sequence

of words (B8)8≥1 such that (B8 , B 9 ) ∈ ' for all 0 ≤ 8 < 9 and

B8 ∈ !( (8−1) mod :)+1 for all 8 ≥ 1. We define the relation

'8 := {(F1, . . . ,F2: ) ∈ (Σ∗)2: | F8 ∈ !8 }

for all 8 ∈ [1, :]. Moreover, for all 1 ≤ 8 < 9 ≤ 2: let

'8, 9 := {(F1, . . . ,F2: ) ∈ (Σ∗)2: | (F8 ,F 9 ) ∈ '}.

Finally, we define the relation

'B0,8 := {(F1, . . . ,F2: ) ∈ (Σ∗)2: | (B0,F8 ) ∈ '}

for all 8 ∈ [1, :]. Then B0 ∈ Rec(!1, . . . , !: )['] if and only if

i := ∃ramG,~ : '′(G,~) ∨ ∃G : '′(G, G)

is valid where

'′ :=

:⋂
8=1

'8 ∩
⋂

1≤8< 9≤2:

'8, 9 ∩

:⋂
8=1

'B0,8 ⊆ (Σ∗): × (Σ∗): .

Note that the product automatonA′ that recognizes '′ can be con-

structed in polynomial space. By Theorem 2.2 validity of the first

disjunct of i can be checked in nondeterministic logspace given

A′. It is easy to see that validity of the second disjunct of i can

also be checked in nondeterministic logspace givenA′. This yields

a PSPACE-algorithm in total. �

Proposition D.2. Recurrent reachability with generalized Büchi

condition is decidable in exponential time over trees.

Proof. We proceed similarly to the word case but we use ATAs

to avoid the exponential blow-up for the product automaton. Let

the relation ' ⊆ TΣ×TΣ be given by an ATAA = (&, Σ2⊥, X, @0), the

languages !1, . . . , !: ⊆ TΣ be given by ATAs A8 = (&8 , Σ, X8 , @
8
0)

for all 8 ∈ [1, :], and B0 ∈ TΣ be the initial tree. Note that we may

assume that the relation and the languages are given by alternating

automata since an NTA can be easily converted into an ATA in

polynomial time. Let A := max{rk(0) | 0 ∈ Σ} and Ω := Σ⊥ ∪ {#8 |

0 ≤ 8 ≤ A } be a new ranked alphabet with rk(0) := 1 for all 0 ∈ Σ⊥

and rk(#8) := 8 for all 8 ∈ [1, A ]. For trees C1, . . . , C= ∈ TΣ we define

? (C1, . . . , C=) ∈ TΩ to be the tree C1⊗· · ·⊗C= where each node labeled

with (01, . . . , 0=) ∈ Σ
=
⊥ is replaced by a path 01 (02(. . . 0= (#<) . . . ))

where< := max{rk(08) | 1 ≤ 8 ≤ =}.

Let

'? := {(B, C) ∈ T 2
Ω

| B = ? (C1, . . . , C: ) ∧ C = ? (C:+1, . . . , C2: )}

be the binary relation that checks if the trees are images under ? .

Note that an ATA for '? can easily be constructed.We define ATAs

recognizing relations '8 for all 8 ∈ [1, :] and '8, 9 for all 1 ≤ 8 <

9 ≤ 2: with a similar meaning as in the word case. We start with

the construction of the ATA

B8 = (&B
8 ,Ω2, XB8 , (@0, 0))

for '8 . Intuitively, B8 checks if in ? (C1, . . . , C: ) ⊗? (C:+1, . . . , C2: ) we

have that C8 ∈ !8 for all 8 ∈ [1, :]. The set of states of B8 is defined

as

&B
8 := &8 × {0, . . . , 8 − 1} ∪&8 × Σ × {8, . . . , :}.

For all @ ∈ &8 , 9 ∈ [0, :], 0,1 ∈ Σ⊥, and 2 ∈ Σ we let

XB8 ((@, 9),
( 0
1

)
) := ((@, 9 + 1), 1), if 9 ≤ 8 − 2

XB8 ((@, 8 − 1),
( 2
1

)
) := ((@, 2, 8), 1)

XB8 ((@, 2, 9),
( 0
1

)
) := ((@, 2, 9 + 1), 1), if 8 ≤ 9 < :

and for all A1, A2 ∈ [0, A ] with rk(2) ≤ max{A1, A2} let

XB8 ((@, 2, :),
(
#A1
#A2

)
) := X ′8 (@, 2)

where X ′8 (@, 2) is the formula X8 (@, 2) in which each variable (?, ℓ)

is replaced by ((?, 0), ℓ).

We now construct the ATA

A:1,:2 = (&:1,:2 ,Ω
2, X:1,:2 , (@0, 0))
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for ':1,:2 . Intuitively, A:1,:2 checks if (C:1 , C:2 ) ∈ ' holds in

? (C1, . . . , C: ) ⊗ ? (C:+1, . . . , C2: ). We only show the construction for

the case 1 ≤ :1 ≤ : < :2 ≤ 2: and :1 < :2 − : and note that the

other cases work analogously. The set of states ofA:1,:2 is defined

as

&:1,:2 :=& × {0, . . . , :1 − 1} ∪

& × Σ⊥ × {:1, . . . , :2 − : − 1} ∪

& × Σ
2
⊥ × {:2 − :, . . . , :}.

We now define the transition function. For all @ ∈ & , 9 ∈ [0, :],

and 0,1, 2,3 ∈ Σ⊥ we let

X:1,:2 ((@, 9),
( 0
1

)
) := ((@, 9 + 1), 1)

if 9 ≤ :1 − 2,

X:1,:2 ((@,:1 − 1),
( 0
1

)
) := ((@, 0, :1), 1)

X:1,:2 ((@, 2, 9),
( 0
1

)
) := ((@, 2, 9 + 1), 1)

if :1 ≤ 9 ≤ :2 − : − 2,

X:1,:2 ((@, 2, :2 − : − 1),
( 0
1

)
) := ((@,

( 2
1

)
, :2 − :), 1)

X:1,:2 ((@,
( 2
3

)
, 9),

( 0
1

)
) := ((@,

( 2
3

)
, 9 + 1), 1)

if :2 − : ≤ 9 ≤ : − 1, and for all A1, A2 ∈ [0, A ] with rk(2), rk(3) ≤

max{A1, A2} let

X:1,:2 ((@,
( 2
3

)
, :),

(
#A1
#A2

)
) := X ′(@,

( 2
3

)
)

where X ′(@,
( 2
3

)
) is the formula X (@,

( 2
3

)
) in which each variable

(?, ℓ) is replaced by ((?, 0), ℓ).

The ATA for the relation 'B0,8 with 8 ∈ [1, :] that checks if in

? (C1, . . . , C: ) ⊗ ? (C:+1, . . . , C2: ) we have that (B0, C8 ) ∈ ' can be con-

structed similarly toA8, 9 . Note that all the constructions above can

be done in polynomial time.

It now holds that B0 ∈ Rec(!1, . . . , !: )['] if and only if i :=

∃ramG, ~ : '′(G,~) ∨ ∃G : '′(G, G) is valid where

'′ := '? ∩

:⋂
8=1

'8 ∩
⋂

1≤8< 9≤2:

'8, 9 ∩

:⋂
8=1

'B0,8 .

Since an ATA for the intersection of two ATAs can be constructed

in linear time, we can construct an ATA A′ for '′ in time polyno-

mial in the size of the ATAsA,A1, . . . ,A: and B0. By Theorem 2.4

validity of the first disjunct of i can be checked in time exponen-

tial in the size of A′. It is easy to see that validity of the second

disjunct of i can also be checked in time exponential in A′. This

yields an exponential time algorithm in total. �

E PROOFS OF SECTION 7

A nondeterministic unranked tree automaton (NUTA) over the un-

ranked alphabet Σ is a tuple A = (&, Σ, Δ, @0) where & and @0
are as in the definition of an NTA and Δ ⊆ & × Σ × REG(&) is a

finite set of transitions. Here, REG (&) denotes the set of regular

word languages over & and we assume that the regular language

for each transition is given by an NFA. A run ofA on an unranked

tree C ∈ UΣ is an unranked tree d ∈ U& with dom(d) = dom(C)

such that d (Y) = @0 and for each inner node D ∈ dom(d) with chil-

dren D1, . . . , DA ∈ dom(d) there is a transition (d (D), C (D), !) ∈ Δ

such that d (D1) · · · d (DA ) ∈ !. A run d is accepting if for each leaf

D ∈ dom(d) there is a transition (d (D), C (D), !) ∈ Δ such that Y ∈ !.

We define unranked tree-regular relations in the same way as in the

ranked case by using NUTAs instead of NTAs.

E.1 Proof of Theorem 7.1

Definition E.1. For an unranked tree C ∈ UΣ we define the

first-child next-sibling encoding fcns : N∗ → {1, 2}∗ such that

fcns(Y) = Y and for all D ∈ N∗ we have fcns(D1) = fcns(D)1 and

fcns(D (8 + 1)) = fcns(D8)2 for all 8 ≥ 1. We let fcns(dom(C)) :=⋃
D∈dom(C) {fcns(D), fcns(D)1, fcns(D)2}. We define C ′ = fcns(C) to

be the binary tree with domain fcns(dom(C)) over the ranked al-

phabet Σ# such that

• C ′(fcns(D)) := C (D) if D ∈ dom(C),

• C ′(fcns(D)) := # if fcns(D) ∈ fcns(dom(C)) and D ∉ dom(C).

Here, we consider Σ# = Σ∪{#} as a ranked alphabet with rk(0) = 2

for all 0 ∈ Σ and rk(#) = 0.

Definition E.2. For unranked trees C1, C2 ∈ UΣ we define the

adapted convolution C ′ = C1⊗
′C2 ∈ UΣ#,⊥×Σ#,⊥ such that dom(C ′) :=

dom(C1) ∪ dom(C2) and

• C ′(D) := (C1 (D), C2 (D)) if D ∈ dom(C1) ∩ dom(C2),

• C ′(D) := (C1 (D), #) if D ∈ dom(C1) \ dom(C2) and there exists

E ∈ dom(C2) such that D is the first child or right sibling of

E ,

• C ′(D) := (C1 (D),⊥) if D ∈ dom(C1) \ dom(C2) and the above

conditions do not hold,

• the other cases are symmetric.

Definition E.3. For the convolution C = C1 ⊗
′ C2 ∈ UΣ#,⊥×Σ#,⊥ we

define the adapted fist-child next-sibling encoding C ′ = fcns′(C1 ⊗

C2) ∈ TΣ#,⊥×Σ#,⊥ such that dom(C ′) := fcns(dom(C)) and for D ′ =

fcns(D) ∈ fcns(dom(C)) we have

• C ′(D ′) := C (D) if D ∈ dom(C),

• C ′(D ′) := (#, #) if D ∉ dom(C) and for parent fcns(E) ofD ′ we

have C (E) ∈ Σ × Σ,

• C ′(D ′) := (⊥, #) if D ∉ dom(C) and for parent fcns(E) of D ′

we have C (E) ∈ {#,⊥} × Σ,

• C ′(D ′) := (#,⊥) if D ∉ dom(C) and for parent fcns(E) of D ′

we have C (E) ∈ Σ × {#,⊥}.

Here, we consider Σ#,⊥ = Σ# ∪ {⊥} as ranked alphabet with

rk(⊥) = 0.

See Figure 6 for an example of the adapted convolution and en-

coding.

Lemma E.4. Let ' ⊆ UΣ ×UΣ be an unranked tree-regular rela-

tion given by the NUTAA, i.e., ' = {(C1, C2) ∈ UΣ×UΣ | (C1⊗C2) ∈

!(A)}. Then we can construct an NUTAA′ in polynomial time such

that ' = {(C1, C2) ∈ UΣ×UΣ | (C1⊗
′ C2) ∈ !(A′)}. That is,A′ uses

the convolution ⊗′ instead of ⊗. Conversely, we can also constructA

from A′ in polynomial time such that the above is satisfied.

Proof. To construct A′, we adapt A such that the conditions

of Definition E.2 are satisfied. To this end, a state stores for each of

the two components if it is the first child or right sibling of a node

where the component is labeled by a symbol of Σ. Conversely, A

can be constructed by simply replacing # in the transition of A′

by ⊥ �
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Figure 6: Example for adapted convolution and encoding

The next lemma shows that the connection between the adapted

and classical notions of convolution and encoding suggested by

Figure 6 holds true in general.

Lemma E.5. For unranked trees C1, C2 ∈ UΣ it holds that

fcns′(C1 ⊗
′ C2) = fcns(C1) ⊗ fcns(C2).

Proof. The definitions of ⊗′ and fcns′ ensure that the padding

symbol # is used if the node would also be padded by fcns and

otherwise the padding symbol ⊥ is used. The result follows since

nodes at the same position in C1 and C2 are mapped to the same

position in the encodings fcns(C1) and fcns(C2). �

The following lemma shows that fcns preserves all properties

of an unranked tree-regular relation and an NTA for the encoded

relation over binary trees can be computed in polynomial time.

Lemma E.6. The encoding fcns is an isomorphism from a graph

(UΣ, ') of unranked trees to a graph (fcns(UΣ), '
′) of binary trees

where ' is an unranked tree-regular relation and '′ is a tree-regular

relation over binary trees. Moreover, an NTA that recognizes '′ can

be constructed in polynomial time given an NUTA recognizing' and

vice versa.

Proof. Let ' ⊆ UΣ ×UΣ be an unranked tree-regular relation

given by the NUTAA. By Lemma E.4 one can construct an NUTA

A′ that recognizes ' but uses ⊗′ as convolution. From A′ we can

construct an NTA B ′ that accepts the language

{fcns′(C1 ⊗
′ C2) | (C1 ⊗

′ C2) ∈ !(A′)}

= {fcns(C1) ⊗ fcns(C2) | (C1, C2) ∈ '}

where the equality holds by Lemma E.5. The automaton B ′ can be

constructed in polynomial time in the usual way for the first-child

next-sibling encoding (cf. [10]) but we additionally store in states if

the label of the parent of the current node is in Σ×Σ, {⊥, #} ×Σ, or

Σ × {⊥, #}. Let '′ := {(fcns(C1), fcns(C2)) ∈ TΣ# × TΣ# | (fcns(C1) ⊗

fcns(C2)) ∈ !(B ′)} be the tree-regular relation over binary trees

recognized by B ′. Then it hods that (fcns(C1), fcns(C2)) ∈ '′ iff

(C1, C2) ∈ ' for any unranked trees C1, C2 ∈ UΣ . Since the first-

child next-sibling encoding is injective, it follows that fcns is an

isomorphism from (UΣ, ') to (fcns(UΣ), '
′).

The construction of an NTA for ' given an NTA for '′

works analogously using (fcns′)−1 and the reverse direction of

Lemma E.4. �

Note that we can generalize the above constructions from the

binary to the =-ary case such that the same statements hold.

Proof of Theorem 7.1. By Lemma E.6 we can compute an

NTA A′ that recognizes the relation

'′ := {(fcns(C1), . . . , fcns(C:+2)) | (C1, . . . , C:+2) ∈ '}

over binary trees in polynomial time. Moreover, it holds that

(UΣ, ') is isomorphic to (fcns(UΣ), '
′). By Theorem 2.4 we can

construct an NTA B ′ that recognizes the relation

{c ∈ fcns(UΣ)
: | ∃ramG,~ : '′(G,~, c)}

in exponential time given A′. If ' and therefore also '′ are transi-

tive, Theorem 2.5 implies that B ′ can be computed in polynomial

time. From B ′ one can compute an NUTA B that recognizes the

relation

{(fcns−1 (21), . . . , fcns
−1 (2: )) ∈ (UΣ)

: | ∃ramG,~ : '′(G,~, c)}

= {c ∈ (UΣ)
: | ∃ramG, ~ : '(G,~, c)}

in polynomial time by applying the reverse direction of Lemma E.6.

�
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E.2 Definition of subtree and flat prefix
rewriting systems

For a tree C ∈ UΣ and node G ∈ dom(C) wewrite C↓G for the subtree

of C rooted in G . We denote by C [G |B] the tree that is obtained from

C if we replace C↓G by the tree B ∈ UΣ . If ht(C) = 1, we denote the

sequence of leaves of C read from left to right by flatfront(C). Here,

ht(C) := max{|G | | G ∈ dom(C)} is defined as the height of C .

Definition E.7. A subtree and flat prefix rewriting system (SFPRS)

over unranked trees in UΣ is of the form R = (Σ, Γ, ', Cin), with a

finite unranked alphabet Σ, a finite transition alphabet Γ, an initial

tree Cin, and a finite set ' of rules of two types:

(1) subtree substitution with rules of the form A 9 : B 9
f
↩→ B ′9 for

9 ∈ � , B 9 , B
′
9 ∈ UΣ , f ∈ Γ, and

(2) flat prefix substitution at the flat front of the tree with rules

of the form A8 : D8
f
↩→ D ′8 for 8 ∈ � , D8 , D

′
8 ∈ Σ

+ , f ∈ Γ,

with � ∪ � = {1, . . . , |' |} and � ∩ � = ∅.

A tree C ′ is derived from C (denoted C →f
R

C ′) by applying a

subtree rewrite rule A 9 , if there is a node G ∈ dom(C) with C↓G = B 9
such that C [G |B ′9 ] = C ′.

A tree C ′ is derived from C by applying a prefix rewrite rule A8 ,

if there is a node G ∈ dom(C) with ht(C↓G ) = 1 and flatfront(C↓G ) =

D8E and a tree B ∈ UΣ with ht(B) = 1, B (Y) = C (G), and flatfront(B) =

D ′8E such that C [G |B] = C ′ for some E ∈ Σ
∗ .

The definition of an SFPRS can be extended to a regular SFPRS

by allowing subtree rewrite rules of the form ( 9
f
↩→ ( ′9 with un-

ranked tree-regular languages ( 9 , (
′
9 ⊆ UΣ and prefix rewrite rules

of the form !8
f
↩→ !′8 with regular languages !8 , !

′
8 ⊆ Σ

∗ . Clearly,

SFPRSs are special regular SFPRSs where the rules only have sin-

gleton sets.
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