
ar
X

iv
:2

20
6.

11
75

6v
2

 [
m

at
h.

G
R

]
 2

8
Ju

n
20

22

MEMBERSHIP PROBLEMS IN FINITE GROUPS

MARKUS LOHREY, ANDREAS ROSOWSKI, AND GEORG ZETZSCHE

Abstract. We show that the subset sum problem, the knapsack problem
and the rational subset membership problem for permutation groups are NP-
complete. Concerning the knapsack problem we obtain NP-completeness for
every fixed n ≥ 3, where n is the number of permutations in the knapsack
equation. In other words: membership in products of three cyclic permutation
groups is NP-complete. This sharpens a result of Luks [30], which states
NP-completeness of the membership problem for products of three abelian
permutation groups. We also consider the context-free membership problem in
permutation groups and prove that it is PSPACE-complete but NP-complete
for a restricted class of context-free grammars where acyclic derivation trees
must have constant Horton-Strahler number. Our upper bounds hold for black
box groups. The results for context-free membership problems in permutation
groups yield new complexity bounds for various intersection non-emptiness
problems for DFAs and a single context-free grammar.

1. Introduction

Membership problems in groups. The general problem that we study in this
paper is the following: Fix a class C of formal languages. We assume that members
of C have a finite description; typical choices are the class of regular or context-free
languages, or a singleton class C = {L}. We are given a language L ∈ C with
L ⊆ Σ∗, a group G together with a morphism h : Σ∗ → G from the free monoid
Σ∗ to the group G, and a word w ∈ Σ∗. The question that we want to answer
is whether w ∈ h−1(h(L)), i.e., whether the group element h(w) belongs to h(L).
One can study this problem under several settings, and each of these settings has
a different motivation. First of all, one can consider the case, where G is a fixed
finitely generated group that is finitely generated by Σ, and the input consists
of L. One could call this problem the C-membership problem for the group G.
The best studied case is the rational subset membership problem, where C is the
class of regular languages. It generalizes the subgroup membership problem for G,
a classical decision problem in group theory. Other special cases of the rational
subset membership problem that have been studied in the past are the submonoid
membership problem, the knapsack problem and the subset problem, see e.g. [26,
31]. It is a simple observation that for the rational subset membership problem one
can assume that the word w (that is tested for membership in h−1(h(L)) can be
assumed to be the empty word, see [22, Theorem 3.1].

In this paper, we study another setting of the above generic problem, where G
is a finite group that is part of the input (and L still comes from a languages class
C). For the rest of the introduction we restrict to the case, where G is a finite
symmetric group Sm (the set of all permutations on {1, . . . ,m}) that is represented
in the input by the integer m in unary representation, i.e., by the word $m.1 Our
applications only make use of this case, but we remark that our upper complexity
bounds can be proven in the more general black box setting [5] (in particular, one

This work has been supported by the DFG research project LO 748/12-2.
1We could also consider the case where G is a subgroup of Sm that is given by a list of

generators (i.e., G is a permutation group), but this makes no difference for our problems.
1

http://arxiv.org/abs/2206.11756v2

2 M. LOHREY, A. ROSOWSKI, AND G. ZETZSCHE

could replace symmetric groups by matrix groups over a finite field and still obtain
the same complexity bounds). Note that |Sm| = m!, hence the order of the group
is exponential in the input length.

Membership problems for permutation groups. One of the best studied
membership problems for permutation groups is the subgroup membership problem:
the input is a unary encoded number m and a list of permutations a, a1, . . . , an ∈
Sm, and it is asked whether a belongs to the subgroup of Sm generated by a1, . . . , an.
The well-known Schreier-Sims algorithm solves this problem in polynomial time
[33], and the problem is known to be in NC [4].

Several generalizations of the subgroup membership problem have been studied.
Luks defined the k-membership problem (k ≥ 1) as follows: The input is a unary
encoded number m, a permutation a ∈ Sm and a list of k permutation groups
G1, G2, . . . , Gk ≤ Sm (every Gi is given by a list of generators). The question
is whether a belongs to the product G1 · G2 · · ·Gk. It is a famous open problem
whether 2-membership can be solved in polynomial time. This problem is equivalent
to several other important algorithmic problems in permutation groups: computing
the intersection of permutation groups, computing set stabilizers or centralizers,
checking equality of double cosets, see [30] for details. On the other hand, Luks
has shown in [30] that m-membership is NP-complete for every k ≥ 3. In fact,
NP-hardness of 3-membership holds for the special case where G1 = G3 and G1

and G2 are both abelian.
Note that the k-membership problem is a special case of the rational subset

membership for symmetric groups. Let us define this problem again for the setting
of symmetric groups (here, 1 denotes the identity permutation and we identify a
word over the alphabet Sm with the permutation to which it evaluates):

Problem 1.1 (rational subset membership problem for symmetric groups).
Input: a unary encoded number m ∈ N and a nondeterministic finite automaton
(NFA) A over the alphabet Sm.
Question: Does 1 ∈ L(A) hold?

An obvious generalization of the rational subset membership problem for sym-
metric groups is the context-free subset membership problem for symmetric groups;
it is obtained by replacing the NFA A in Problem 1.1 by a context-free grammar
G.

Two restrictions of the rational subset membership problem that have been in-
tensively studied for infinite groups in recent years are the knapsack problem and
subset sum problem, see e.g. [3, 6, 7, 15, 16, 24, 27, 28, 31]. For symmetric groups,
these problems are defined as follows (note that the number n+ 1 of permutations
is part of the input):

Problem 1.2 (subset sum problem for symmetric groups).
Input: a unary encoded number m ∈ N and permutations a, a1, . . . , an ∈ Sm.
Question: Are there i1, . . . , in ∈ {0, 1} such that a = ai11 · · · ainn ?

The subset sum problem is the membership problem for the cubes from [5].

Problem 1.3 (knapsack problem for symmetric groups).
Input: a unary encoded number m ∈ N and permutations a, a1, . . . , an ∈ Sm.
Question: Are there i1, . . . , in ∈ N such that a = ai11 · · · ainn ?

We will also consider the following restrictions of these problems.

Problem 1.4 (abelian subset sum problem for symmetric groups).
Input: a unary encoded number m ∈ N and pairwise commuting permutations

MEMBERSHIP PROBLEMS IN FINITE GROUPS 3

a, a1, . . . , an ∈ Sm.
Question: Are there i1, . . . , in ∈ {0, 1} such that a = ai11 · · · ainn ?

The following problem is the special case of Luks’ k-membership problem for
cyclic groups. Note that k is a fixed constant here.

Problem 1.5 (k-knapsack problem for symmetric groups).
Input: a unary encoded number m ∈ N and k + 1 permutations a, a1, . . . , ak ∈ Sm.
Question: Are there i1, . . . , ik ∈ N such that a = ai11 · · · aikk ?

Main results. Our main result for the rational subset membership problem in
symmetric groups is:

Theorem 1.6. Problems 1.1–1.4 and Problem 1.5 for k ≥ 3 are NP-complete.

In contrast, we will show that the 2-knapsack problem can be solved in polyno-
mial time (Theorem 5.8). The NP upper bound for the rational subset membership
problem will be shown for black-box groups.

Remark 1.7. The abelian variant of the knapsack problem, i.e., Problem 1.3 with
the additional restriction that the permutations s1, . . . , sn pairwise commute is of
course the abelian subgroup membership problem and hence belongs to NC.

Remark 1.8. Analogously to the k-knapsack problem one might consider the k-
subset sum problem, where the number n in Problem 1.2 is fixed to k and not part
of the input. This problem can be solved in time 2k ·mO(1) (check all 2k assignments
for exponents i1, . . . , ik) and hence in polynomial time for every fixed k.

Finally, for the context-free subset membership problem for symmetric groups
we show:

Theorem 1.9. The context-free membership problem for symmetric groups is PSPACE-
complete.

If we restrict the class of context-free grammars in Theorem 1.9 we can improve
the complexity to NP: A derivation tree of a context-free grammar is called acyclic
if no nonterminal appears twice on a path from the root to a leaf. Hence, the
height of an acyclic derivation tree is bounded by the number of nonterminals of
the grammar. The Horton-Strahler number hs(t) of a binary tree t (introduced
by Horton and Strahler in the context of hydrology [19, 34]; see [13] for a good
survey emphasizing the importance of Horton-Strahler numbers in computer sci-
ence) is recursively defined as follows: If t consists of a single node then hs(t) = 0.
Otherwise, assume that t1 and t2 are the subtrees rooted in the two children of
the node. If hs(t1) = hs(t2) then hs(t) = 1 + hs(t1), and if hs(t1) 6= hs(t2) then
hs(t) = max{hs(t1), hs(t2)}. For k ≥ 1 let CFG(k) be the set of all context-free
grammars in Chomsky normal form (hence, derivation trees are binary trees if we
ignore the leafs labelled with terminal symbols) such that every acyclic derivation
tree has Horton-Strahler number at most k.

Theorem 1.10. For every k ≥ 1, the context-free membership problem for sym-
metric groups restricted to context-free grammars from CFG(k) is NP-complete.

Note that this result generalizes the statement for the rational subset mem-
bership problem in Theorem 1.6 since every regular grammar (when brought into
Chomsky normal form) belongs to CFG(1). Also linear context-free grammars
belong to CFG(1). We remark that Theorem 1.10 is a promise problem in the
sense that coNP is the best upper complexity bound for testing whether a given
context-free grammar belongs to CFG(k) that we are aware of; see the appendix.

4 M. LOHREY, A. ROSOWSKI, AND G. ZETZSCHE

no CFG one CFG(k) one CFG
DFAs PSPACE-c. [25] EXPTIME-c. for k large enough EXPTIME-c. [35]

group DFAs NP-c. [9] NP-c. for all k ≥ 1 PSPACE-c.

Table 1. Complexity of various intersection non-emptiness problems

The upper bounds in Theorems 1.6, 1.9, and 1.10 will be actually shown for
black box groups.

Application to intersection non-emptiness problems. We can apply Theo-
rems 1.9 and 1.10 to intersection non-emptiness problems. The intersection non-
emptiness problem for deterministic finite automata (DFAs) is the following prob-
lem:
Problem 1.11 (intersection non-emptiness problem for DFAs).
Input: DFAs A1,A2, . . . ,An

Question: Is
⋂

1≤i≤n L(Ai) non-empty?

Kozen [25] has shown that this problem is PSPACE-complete. When restricted
to group DFAs (see Section 2) the intersection non-emptiness problem was shown
to be NP-complete by Blondin et al. [9]. Based on Cook’s characterization of
EXPTIME by polynomially space bounded AuxPDAs [10], Swernofsky andWehar
[35] showed that the intersection non-emptiness problem is EXPTIME-complete2

for a list of general DFAs and a single context-free grammar; see also [18, p. 275]
and see [12] for a related EXPTIME-complete problem. Using Theorems 1.9 and
1.10 we can easily show the following new results:

Theorem 1.12. The following problem is NP-complete for every k ≥ 1:

Input: A list of group DFAs A1,A2, . . . ,An and a context-free grammar G ∈
CFG(k).
Question: Is L(G) ∩

⋂

1≤i≤n L(Ai) non-empty?

Theorem 1.13. The following problem is PSPACE-complete:

Input: A list of group DFAs A1,A2, . . . ,An and a context-free grammar G.
Question: Is L(G) ∩

⋂

1≤i≤n L(Ai) non-empty?

Table 1 gives an overview on the complexity of intersection non-emptiness prob-
lems. For the intersection non-emptiness problem for arbitrary DFAs and one
grammar from CFG(k) one has to notice that in the EXPTIME-hardness proof
from [35] one can choose a fixed context-free grammar. Moreover, every fixed
context-free grammar belongs to CFG(k) for some k ≥ 1.

Related work. Computationally problems for permutation groups have a long his-
tory (see e.g. the text book [32]), and have applications, e.g. for graph isomorphism
testing [2, 29]. A problem that is similar to subset sum is the minimum generator
sequence problem (MGS) [14]: The input consists of unary encoded numbers m, ℓ
and a list of permutations a, a1, . . . , an ∈ Sm. The question is, whether a can be
written as a product b1b2 · · · bk with k ≤ ℓ and b1, . . . , bk ∈ {a1, . . . , an}. The prob-
lem MGS was shown to be NP-complete in [14]. For the case, where the number
ℓ is given in binary representation, the problem is PSPACE-complete [21]. This
yields in fact the PSPACE-hardness in Theorem 1.9.

Intersection nonemptiness problems for finite automata have been studied inten-
sively in recent years, see e.g. [1, 11]. The papers [8, 20] prove PSPACE-hardness

2The intersection non-emptiness problem becomes undecidable if one allows more than one
context-free grammar.

MEMBERSHIP PROBLEMS IN FINITE GROUPS 5

of the intersection nonemptiness problem for inverse automata (DFAs, where the
transition monoid is an inverse monoid).

Horton-Strahler numbers have been used in the study of context-free languages
before, see [13] for further information and references.

2. Preliminaries

Groups. Let G be a finite group and let G∗ be the free monoid of all finite words
over the alphabet G. There is a canonical morphism φG : G∗ → G that is the
identity mapping on G ⊆ G∗. Throughout this paper we suppress applications of
φG and identify words over the alphabet G with the corresponding group elements.
For a subset S ⊆ G we denote with 〈S〉 the subgroup generated by S. The following
folklore lemma is a straightforward consequence of Lagrange’s theorem (if A and
B are subgroups of G with A < B, then |B| ≥ 2 · |A|).

Lemma 2.1. Let G be a finite group and S ⊆ G a generating set for G. Then,
there exists a subset S′ ⊆ S such that 〈S′〉 = G and |S′| ≤ log2 |G|.

Assume that G = 〈S〉. A straight-line program over the generating set S is a
sequence of definitions S = (xi := ri)1≤i≤n where the xi are variables and every
right-hand side ri is either from S or of the form xjxk with 1 ≤ j, k < i. Every
variable xi evaluates to a group element gi ∈ G in the obvious way: if ri ∈ S then
gi = ri and if ri = xjxk then gi = gjgk. We say that S produces gn. The size of S is
n. The following result is known as the reachability theorem from [5, Theorem 3.1].

Theorem 2.2 (reachability theorem). Let G be a finite group, S ⊆ G a generating
set for G, and g ∈ G. Then there exists a straight-line program over S of size at
most (1 + log2 |G|)2 that produces the element g.

For a set Q let SQ be the symmetric group on Q, i.e., the set of all permutations
on Q with composition of permutations as the group operation. If Q = {1, . . . ,m}
we also write Sm for SQ. Let a ∈ SQ be a permutation and let q ∈ Q. We also
write qa for a(q). We multiply permutations from left to right, i.e., for a, b ∈ SQ,
ab is the permutation with qab = (qa)b for all q ∈ Q. A permutation group is a
subgroup of some SQ.

Quite often, the permutation groups we consider are actually direct products
∏

1≤i≤d Smi
for small numbers mi. Clearly, we have

∏

1≤i≤d Smi
≤ Sm for m =

∑

1≤i≤dmi and an embedding of
∏

1≤i≤d Smi
into Sm can be computed in polyno-

mial time.

Horton-Strahler number. Recall the definition of the Horton-Strahler number
hs(t) of a binary tree t from the introduction. We need the following simple fact,
where we define the height of a binary tree as the maximal number of edges on a
path from the root to a leaf.

Lemma 2.3. Let t be a binary tree of height d and let s = hs(t). Then, t has at
most ds many leaves and therefore at most 2 · ds many nodes.

Proof. We prove the statement by induction on s = hs(t). If s = 0 then t must
consist of a single leaf and the statement holds (we define 00 = 1). Otherwise take
a path v1, v2, . . . , vk in t, where v1 is the root, vk is a leaf, and for every 2 ≤ i ≤ k,
if ti is the subtree rooted in vi and t′i is the subtree rooted in the sibling node of
vi, then hs(ti) ≥ hs(t′i). Let t1 = t. Then we must have hs(t′i+1) < hs(ti) ≤ s for
every 1 ≤ i ≤ k − 1. Moreover, every t′i has height at most d− 1. Using induction,
we can bound the number of leaves in t by

1 +

k
∑

i=2

(d− 1)s−1 ≤ 1 + d · (d− 1)s−1 ≤ ds.

6 M. LOHREY, A. ROSOWSKI, AND G. ZETZSCHE

This shows the lemma. �

Formal languages. We assume that the reader is familiar with basic definitions
from automata theory. Our definitions of deterministic finite automata (DFA), non-
deterministic finite automata (NFA), and context-free grammars are the standard
ones.

Consider a DFA A = (Q,Σ, q0, δ, F), where q0 ∈ Q is the initial state, δ : Q×Σ →
Q is the transition mapping and F ⊆ Q is the set of final states. The transformation
monoid of A is the submonoid of QQ (the set of all mappings on Q and composition
of functions as the monoid operation) generated by all mappings q 7→ δ(q, a) for
a ∈ Σ. A group DFA is a DFA whose transformation monoid is a group.

Context-free grammars will be always in Chomsky normal form. When we speak
of a derivation tree of a context-free grammar, we always assume that the root of
the tree is labelled with the start nonterminal and every leaf is labelled with a
terminal symbol. When we talk about the Horton-Strahler number of such a tree,
we remove all terminal-labelled leafs so that the resulting tree is a binary tree (due
to the Chomsky normal form). In a partial derivation tree, we also allow leafs
labelled with nonterminals (but we still assume that the root is labelled with the
start nonterminal).

3. Black box groups

More details on black box groups can be found in [5, 32]. Roughly speaking,
in the black box setting group elements are encoded by bit strings of a certain
length b and there exist oracles for multiplying two group elements, computing the
inverse of a group element, checking whether a given group element is the identity,
and checking whether a given bit string of length b is a valid encoding of a group
element.3 As usual, each execution of an oracle operation counts one time unit, but
the parameter b enters the input length additively.

Formally, a black box is a tuple

B = (b, c, valid, inv, prod, id, G, f),

such that G is a finite group (the group in the box), b, c ∈ N, and the following
properties hold:

• f : {0, 1}b → G ⊎ {∗} is a mapping with

G ⊆ f({0, 1}b)

(f−1(g) 6= ∅ is the set names of the group element g).
• valid : {0, 1}b → {yes, no} is a mapping such that

∀x ∈ {0, 1}b : f(x) ∈ G ⇐⇒ valid(x) = yes.

• inv : {0, 1}b → {0, 1}b is a mapping such that for all x ∈ f−1(G):

f(inv(x)) = f(x)−1.

• prod : {0, 1}b × {0, 1}b → {0, 1}b is a mapping such that for all x, y ∈
f−1(G):

f(prod(x, y)) = f(x)f(y).

• id : {0, 1}b ×{0, 1}c → {yes, no} is a mapping such that for all x ∈ f−1(G):

f(x) = 1 ⇐⇒ ∃y ∈ {0, 1}c : id(x, y) = yes

(such a y is called a witness for f(x) = 1).

3The latter operation is not allowed in [5].

MEMBERSHIP PROBLEMS IN FINITE GROUPS 7

We call b the code length of the black box.
A black box Turing machine is a deterministic or nondeterministic oracle Turing

machine T that has four special oracle query states qvalid, qinv, qprod, qid, together
with a special oracle tape, on which a binary string is written. The input for T
consists of two unary encoded numbers b and c and some additional problem specific
input. In order to determine the behavior of T on the four special states qvalid, qinv,
qprod, qid, T must be coupled with a black box B = (b, c, valid, inv, prod, id, G, f)
(where b and c must match the first part of the input of T). Then T behaves as
follows:

• After entering qvalid the oracle tape is overwritten by valid(x) where x ∈
{0, 1}b is the bit string consisting of the first b bits on the oracle tape.

• After entering qinv the oracle tape is overwritten by inv(x) where x ∈ {0, 1}b

is the bit string consisting of the first b bits on the oracle tape.
• After entering qprod the oracle tape is overwritten by prod(x, y) where x, y ∈
{0, 1}b and xy is the bit string consisting of the first 2b bits on the oracle
tape.

• After entering qid the oracle tape is overwritten by id(x, y) where x ∈ {0, 1}b,
y ∈ {0, 1}c and xy is the bit string consisting of the first b + c bits on the
oracle tape.

As usual with oracle Turing machines, each of these four operations happens in-
stantaneously and counts time O(1) for the total running time. We denote the
machine with the above behaviour by TB. Note that the black box

B = (b, c, valid, inv, prod, id, G, f)

is not part of the input of T , only the unary encoded numbers b and c are part of
the input.

Assume that P is an algorithmic problem for finite groups. The input for P is
a finite group G and some additional data X (e.g. a context-free grammar with
terminal alphabet G in the next section). We do not specify exactly, how G is
represented. The additional input X may contain elements of G. We will say that
P belongs to NP for black box groups if there is a nondeterministic black box
Turing machine T , whose input is of the form b, c,X with unary encoded numbers
b and c, such that for every black box B = (b, c, valid, inv, prod, id, G, f) the following
holds: TB accepts the input b, c,X (where X denotes the additional input for P
and group elements in X are represented by bit strings from f−1(G)) if and only if
(G,X) belongs to P . The running time of TB is polynomial in b+c+ |X |. Note that
since G may have order 2b, the order of G may be exponential in the input length.
We will use the analogous definition for other complexity classes, in particular for
PSPACE.

For the rest of the paper we prefer a slightly more casual handling of black box
groups. We always identify bits strings from x ∈ f−1(G) with the corresponding
group elements. So, we will never talk about bit strings x ∈ f−1(G), but instead
directly deal with elements of G. The reader should notice that we cannot directly
verify whether a given element g ∈ G is the identity. This is only possible in a
nondeterministic way by guessing a witness y ∈ {0, 1}c. The same applies to the
verification of an identity g = h, which is equivalent to gh−1 = 1. This allows to
cover also quotient groups by the black box setting; see [5].

We need the following well-known fact from [5]:

Lemma 3.1. The subgroup membership problem for black box groups (given group
elements g, g1, . . . , gn, does g ∈ 〈g1, . . . , gn〉 hold?) belongs to NP.

This is a consequence of the reachability theorem: Let b be the code length of
the black box. Hence there are at most 2b group elements. By the reachability

8 M. LOHREY, A. ROSOWSKI, AND G. ZETZSCHE

theorem (Theorem 2.2) it suffices to guess a straight-line program over {g1, . . . , gn}
of size at most (1 + log2 2

b)2 = (b + 1)2, evaluate it using the oracle for prod (let
g′ be the result of the evaluation) and check whether g′g−1 = 1. The later can be
done nondeterministically using the oracle for id.

4. Context-free membership in black box groups

The goal of this section is to prove the following two results. Recall the definition
of the class CFG(k) from the introduction.

Theorem 4.1. The context-free subset membership problem for black box groups is
in PSPACE.

Theorem 4.2. For every k ≥ 1, the context-free membership problem for black box
groups restricted to context-free grammars from CFG(k) is in NP.

Before we prove these results, let us derive some corollaries. Theorem 1.10 is
a direct corollary of Theorem 4.2. Restricted to regular grammars (which are in
CFG(1) after bringing them to Chomsky normal form) we get:

Corollary 4.3. The rational subset membership problem for black box groups is in
NP. In particular, the rational subset membership problem for symmetric groups is
in NP.

Also Theorem 1.9 can be easily obtained now: The upper bound follows directly
from Theorem 4.1. The lower bound can be obtained from a result of Jerrum [21].
In the introduction we mentioned that Jerrum proved the PSPACE-completeness
of the MGS problem for the case where the number ℓ is give in binary notation.
Given permutations a1, . . . , an ∈ Sm and a binary encoded number ℓ one can easily
construct a context-free grammar for {1, a1, . . . , an}ℓ ⊆ Sm. Hence, the MGS
problem with ℓ given in binary notation reduces to the context-free membership
problem for symmetric groups, showing that the latter is PSPACE-hard.

In the rest of the section we prove Theorems 4.1 and 4.2. We fix a finite group
G that is only accessed via a black box.
The spanning tree technique. We start with subgroups ofG that are defined by finite
nondeterministic automata (later, we will apply the following construction to a dif-
ferent group that is also given via a black box). Assume thatA = (Q,G, {q0}, δ, {q0})
is a finite nondeterministic automaton with terminal alphabet G. Note that q0 is
the unique initial and the unique final state. This ensures that the language L(A)
defined by A (which, by our convention, is identified with a subset of the group
G) is a subgroup of G: the set L(A) is clearly a submonoid and every submonoid
of a finite group is a subgroup. We now show a classical technique for finding a
generating set for L(A).

In a first step we remove from A all states p ∈ Q such that there is no path from
q0 to p as well as all states p such that there is no path from p to q0. Let A1 be
the resulting NFA. We have L(A) = L(A1).

In the second step we add for every transition (p, g, q) the inverse transition
(q, g−1, p) (unless it already exists). Let A2 be the resulting NFA. We claim that
L(A1) = L(A2). Note that by the first step, there must be a path from q to p in
A1. Let h ∈ G be the group element produced by this path. Take a k > 0 such
that (gh)k = 1 in G. Hence, g−1 = h(gh)k−1. Moreover, there is a path in A1

from q to p which produces the group element h(gh)−1 = g−1. This shows that
L(A1) = L(A2).

In the third step we compute the generating set for L(A2) = L(A) using the
spanning tree technique (see [23] for an application in the context of free groups).
Consider the automaton A2 as an undirected multi-graph G. The nodes of G are the

MEMBERSHIP PROBLEMS IN FINITE GROUPS 9

states of A2. Moreover, every undirected pair {(p, g, q), (q, g−1, p)} of transitions in
the NFA A2 is an undirected edge in G connecting the nodes p and q. Note that
there can be several edges between two nodes (as well as loops); hence G is indeed
a multi-graph. We then compute a spanning tree T of G. For every state of p of
A2 we fix a directed simple path πp in T from q0 to p. We can view this path πp

as a path in A2. Let gp be the group element produced by the path πp. For every
undirected edge e = {(p, g, q), (q, g−1, p)} in G \ T let ge := gpgg

−1
q (we could also

take gqg
−1g−1

p). A standard argument shows that the set {ge | e is an edge in G\T }
indeed generates L(A).

The above construction can be carried out in polynomial time for black box
groups. This is straightforward. The only detail that we want to emphasize is that
we have to allow multiple copies of undirected edges {(p, g, q), (q, g−1, p)} in the
black box setting. The reason is that we may have several names (bit strings) de-
noting the same group element and we can only verify nondeterministically whether
two bit strings represent the same group element. But this is not a problem; it just
implies that we may output copies of the same generator.
The operations ∆ and Γ. Let G = (N,G, P, S) be a context-free grammar in Chom-
sky normal form that is part of the input, whose terminal alphabet is the finite
group G. When we speak of the input size in the following, we refer to |G|+ b+ c,
where b and c are the two unary encoded numbers from the black box for G and
the size |G| is defined as the number of productions of the grammar.

With L(A) we denote the set of all words w ∈ G∗ that are derived from the

nonterminal A ∈ N and, as usual, we identify L(A) with φG(L(A)) ⊆ G. Let Ĝ
be the dual group of G: it has the same underlying set as G and if g · h denotes
the product in G then the multiplication ◦ in Ĝ is defined by g ◦ h = h · g. The
direct product G × Ĝ will be important for the following construction. Note that
it is straightforward to define a black box for G× Ĝ from a black box for G.

Recall from the introduction that a derivation tree is acyclic if in every path
from the root to a leaf every nonterminal appears at most once. The height of an
acyclic derivation tree is bounded by |N |. We now define two important operations

∆ and Γ. The operation ∆ maps a tuple s = (HA)A∈N of subgroupsHA ≤ G×Ĝ to
a tuple ∆(s) = (LA)A∈N of subsets LA ⊆ G (not necessarily subgroups), whereas
Γ maps a tuple t = (LA)A∈N of subsets LA ⊆ G to a tuple Γ(t) = (HA)A∈N of

subgroups HA ≤ G× Ĝ.
We start with ∆. Let s = (HA)A∈N be a tuple of subgroups HA ≤ G × Ĝ.

The tuple ∆(s) = (LA)A∈N of subsets LA ⊆ G is obtained as follows: Let T be
an acyclic derivation tree with root r labelled by A ∈ N . We assign inductively a
set Lv ⊆ G to every inner node v: Let B the label of v. If v has only one child it
must be a leaf since our grammar is in Chomsky normal form. Let g ∈ G be the
label of this leaf. Then we set Lv = {h1gh2 | (h1, h2) ∈ HB}. If v has two children
v1, v2 (where v1 is the left child and v2 the right child), then the sets Lv1 ⊆ G and
Lv2 ⊆ G are already determined and we set

Lv = {h1g1g2h2 | (h1, h2) ∈ HB, g1 ∈ Lv1 , g2 ∈ Lv2}.

We set L(T) = Lr and finally define LA as the union of all sets L(T) where T is an
acyclic derivation whose root is labelled with A.

The second operation Γ is defined as follows: Let t = (LA)A∈N be a tuple of

subsets LA ⊆ G. Then we define the tuple Γ(t) = (HA)A∈N with HA ≤ G × Ĝ as
follows: Fix a nonterminal A ∈ N . Consider a sequence p = (Ai → Ai,0Ai,1)1≤i≤m

of productions (Ai → Ai,0Ai,1) ∈ P and a sequence d = (di)1≤i≤m of directions
di ∈ {0, 1} such that Ai+1 = Ai,di

for all 1 ≤ i ≤ m, A1 = A = Am,dm
. Basically, p

10 M. LOHREY, A. ROSOWSKI, AND G. ZETZSCHE

and d define a path from A back to A. For every 1 ≤ i ≤ m we define the sets

Mi =

{

LAi,0
× {1} if di = 1

{1} × LAi,1
if di = 0

We view Mi as a subset of G× Ĝ and define

M(p, d) =
∏

1≤i≤m

Mi,

where
∏

refers to the product in G × Ĝ. If p and d are the empty sequences
(m = 0) then M(p, d) = {(1, 1)}. Finally we define HA as the set of all M(p, d),
where p = (Ai → Ai,0Ai,1)1≤i≤m and d = (di)1≤i≤m are as above (including the

empty sequences). This set HA is a subgroup of G × Ĝ. To see this, it suffices
to argue that HA is a monoid. The latter follows from the fact that two pairs of
sequences (p, d) and (p′, d′) of the above form can be composed to a single pair
(pp′, dd′).

In the following, we will speak of NP algorithms with oracles. Here, we mean
non-deterministic polynomial-time Turing machines with oracles. However, the
oracle can only be queried positively: There is an instruction that succeeds if the
oracle answers “yes”, but cannot be executed if the oracle would answer “no”. This
implies that if there is an NP (resp. PSPACE algorithm) for the oracle queries,
there exists an NP (resp. PSPACE) algorithm for the entire problem. Likewise,
we will use the notion of oracle PSPACE algorithms.

Lemma 4.4. For tuples t = (LA)A∈N , there is an NP algorithm for membership
to the entries of Γ(t), with access to an oracle for the entries of t.

Proof. Let Γ(t) = (HA)A∈N . For every nonterminal A ∈ N we define the NFA

AA = (N, (G × Ĝ), {A}, δ, {A}),

whose input alphabet is the finite group G × Ĝ. The NFAs AA only differ in the
initial and final state. The transition relation δ contains all triples (B, (g, h), C) ∈

N × (G × Ĝ) × N such that for some D ∈ N either (B → CD) ∈ P , g = 1, and
h ∈ LD or (B → DC) ∈ P , h = 1, and g ∈ LD. Then we have L(AA) = HA. As
in the spanning tree approach we add for every transition (B, (g, h), C) in the NFA
AA also the inverse transition (C, (g−1, h−1), B). In the following, AA refers to this
NFA. The number of transitions of the NFA AA can be exponential in the input
size, so we cannot afford to construct AA explicitly. But this is not necessary, since
we only aim to come up with a nondeterministic polynomial time algorithm.

Recall the spanning tree technique, which yields a generating set for the subgroup
L(AA) = HA. This generating set will be in general of exponential size. On the
other hand, Lemma 2.1 guarantees that the generating set produced by the spanning
tree approach contains a subset of size at most log2 |G× Ĝ| = 2 · log2 |G| that still
generates L(AA). Note that 2 · log2 |G| is linearly bounded in the input size. We
can therefore nondeterministically produce a set of at most 2 · log2 |G| loops in
the NFA AA. We do not even have to produce a spanning tree before: every
generator produced by the spanning tree approach is a loop in AA and every such
loop certainly yields an element of HA. For every transition that appears on one
of the guessed loops we guess a transition label (either a pair (1, h) or a pair (g, 1))
and verify, using the oracle for membership to LB, that we guessed a transition in
the NFA AA.

Let us denote with SA ⊆ G× Ĝ the set produced by the above nondeterministic
algorithm. For all nondeterministic choices we have SA ⊆ HA and there exist

MEMBERSHIP PROBLEMS IN FINITE GROUPS 11

nondeterministic choices for which 〈SA〉 = HA. By Lemma 3.1 we can finally check
in NP whether a given pair (g, h) belongs to 〈SA〉. �

Lemma 4.5. Assume that the input grammar G is restricted to the class CFG(k)

for some fixed k. For tuples s = (HA)A∈N of subgroups HA ≤ G × Ĝ, there exists
an NP algorithm for membership to entries in ∆(s), with access to an oracle for
membership to each entry of s.

Proof. By assumption, the Horton-Strahler number of every acyclic derivation tree
of G is bounded by the constant k. Since the height of an acyclic derivation tree
is bounded by |N | the total number of nodes in the tree is bounded by 2|N |k by
Lemma 2.3. Let ∆(s) = (LA)A∈N . Fix an A ∈ N and a group element g ∈ G.
We want to verify whether g ∈ LA. For this we guess an acyclic derivation tree
T with root A. This can be done by a nondeterministic polynomial time machine.
Moreover we guess for every inner node v of T that is labelled with the nonterminal
B a pair (hv,1, hv,2) ∈ G×Ĝ and verify using the oracle for membership to HA that
(hv,1, hv,2) ∈ HA. If the verification is successful, we evaluate every inner node v
to a group element gv ∈ G. If v has a single child, it must be labelled with a group
element h ∈ G (due to a production B → h) and we set gv = hv,1hhv,2. If v has two
children v1 (the left child) and v2 (the right child) then we set gv = hv,1gv1gv2hv,2.
At the end, we check whether g = gr, where r is the root of the tree T . �

Lemma 4.6. For tuples s = (HA)A∈N of subgroups HA ≤ G × Ĝ, there is a
PSPACE algorithm for membership to ∆(s), using an oracle for membership to
the entries of s.

Proof. The proof is similar to Lemma 4.5. However, without the restriction that
the input grammar belongs to CFG(k) for a fixed constant k, an acyclic derivation
tree of the grammar G may be of size exponential in the input length. But we will
see that we never have to store the whole tree but only a polynomial sized part of
the tree. To check g ∈ LA we do the following: We guess a production for A and a
pair (h1, h2) ∈ G× Ĝ and verify using our oracle that (h1, h2) ∈ HA. If the guessed
production for A is of the form A → h for a group element h ∈ G then we only have
to check h1hh2 = g and we are done. If the production is of the form A → BC
for nonterminals B,C ∈ N then we guess additional group elements g1, g2 ∈ G and
check that g = h1g1g2h2. If this holds, we continue with two recursive calls for
g1 ∈ LB and g2 ∈ LC . We have to make sure that this eventually terminates. In
order to ensure termination for every computation path we store the nonterminals
that we already have seen. By this the recursion depth is bounded by |N |. This also
ensures that we traverse an acyclic derivation tree. We obtain a nondeterministic
polynomial space algorithm since the recursion depth is bounded by |N | and the
space used for the first recursive call can be reused for the second one. �

Lemma 4.7. For tuples s = (HA)A∈N subgroups HA ≤ G × Ĝ, there exists an
NP algorithm, with access to an oracle for membership to each entry of s, with the
following properties:

• On every computation path the machine outputs a tuple (SA)A∈N of subsets
SA ⊆ HA.

• There is at least one computation path on which the machine outputs a
tuple (SA)A∈N such that every SA generates HA.

Proof. By Lemma 2.1 we know that every subgroup HA ≤ G × Ĝ is generated by
a set of at most log2 |G× Ĝ| = 2 · log2 |G| generators. The machine simply guesses

for every A ∈ N a subset RA ⊆ G× Ĝ of size at most 2 · log2 |G|. Then it verifies,

12 M. LOHREY, A. ROSOWSKI, AND G. ZETZSCHE

using the oracle, for every A ∈ N and every (g, h) ∈ RA (g, h) ∈ HA. If all these
verification steps succeed, the machine outputs the set RA for every A ∈ N . �

If membership for HA is in PSPACE for every A ∈ N , then we could actually
compute deterministically in polynomial space a generating set for every HA by
iterating over all elements of G× Ĝ. But we will not need this stronger fact.

Proofs of Theorem 4.1 and 4.2. Recall that φG : G∗ → G is the canonical mor-
phism from Section 2. For every nonterminal A ∈ N we define the subgroup
GA ≤ G× Ĝ by

GA = {(φG(u), φG(v)) | u, v ∈ G∗, A ⇒∗
G uAv}.

Recall that L(A) is the set of group elements that can be produced from the non-
terminal A.

Claim 1. ∆((GA)A∈N) = (L(A))A∈N .

To see this, let ∆((GA)A∈N) = (LA)A∈N . The inclusion LA ⊆ L(A) is clear: the
definition of ∆ and GA directly yields a derivation tree with root labelled by A for
every element in LA. For the inclusion L(A) ⊆ LA take an arbitrary derivation
tree T for an element w ∈ L(A) with root labelled by A. We can get an acyclic
derivation tree from T by contracting paths from a B-labelled node down to another
B-labelled node in T for an arbitrary B ∈ N . If we choose these paths maximal,
then they will not overlap, which means that we can contract all chosen paths in
parallel and thereby obtain an acyclic derivation tree. Each path produces a pair
from GB for some B ∈ N . This shows that w ∈ LA and proves Claim 1.

Let s0 = (HA)A∈N with HA = {(1, 1)} for all A ∈ N be the tuple of trivial

subgroups of G × Ĝ. For two tuples s1 = (HA,1)A∈N and s2 = (HA,2)A∈N of

subgroups of G× Ĝ we write s1 ≤ s2 if HA,1 ≤ HA,2 for every A ∈ N . By induction
over i ≥ 0 we show that (Γ∆)i(s0) ≤ (Γ∆)i+1(s0) for all i: For i = 0 this is clear
and the induction step holds since Γ as well as ∆ are monotone with respect to
componentwise inclusion. Hence, we can define limi→∞(Γ∆)i(s0).

Claim 2. (GA)A∈N = lim
i→∞

(Γ∆)i(s0) = (Γ∆)j(s0) where j = 2 · |N | · ⌊log2 |G|⌋.

From the definition of Γ and ∆ we directly get (Γ∆)i(s0) ≤ (GA)A∈N for every i ≥
0. Let us next show that (GA)A∈N ≤ limi→∞(Γ∆)i(s0). Let limi→∞(Γ∆)i(s0) =
(HA)A∈N and (g, h) ∈ GA. Hence, there exists a derivation A ⇒∗

G uAv such that
g = φG(u) and h = φG(v). We prove (g, h) ∈ HA by induction on the length of this
derivation. Let T be the derivation tree corresponding to the derivation A ⇒∗

G uAv.
From the derivation A ⇒∗

G uAv we obtain a sequence p = (Ai → Ai,0Ai,1)1≤i≤m

of productions (Ai → Ai,0Ai,1) ∈ P and a sequence d = (di)1≤i≤m of directions
di ∈ {0, 1} such that Ai+1 = Ai,di

for all 1 ≤ i ≤ m, A1 = A = Am,dm
. Assume

that Ai,1−di
derives to wi ∈ G∗ in the derivation A ⇒∗

G uAv for all 1 ≤ i ≤ m and
define

(ui, vi) =

{

(wi, 1) if di = 1

(1, wi) if di = 0.

Then we obtain
(g, h) =

∏

1≤i≤m

(φG(ui), φG(vi))

where the product is computed in the group G × Ĝ. Let Ti be the subtree of
T that corresponds to the derivation Ai,1−di

⇒∗
G wi. We now apply the same

argument that we used for the proof of Claim 1 to each of the trees Ti, i.e., we
contract maximal subpaths from a B-labelled node down to a B-labelled node (for
B ∈ N arbitrary). Each of these subpaths corresponds to a derivation B ⇒∗

G u′Bv′

MEMBERSHIP PROBLEMS IN FINITE GROUPS 13

A

A2 A′
1,1

A3A′
2,0

A4A′
3,0

A5 A′
4,1

A6 A′
5,1

AA′
6,0

w1

w2

w3

w4

w5

w6

B

B

C

C

D

D

E

E

F

F

G

G

Figure 1. The situation in the proof of (GA)A∈N ≤ limi→∞(Γ∆)i(s0).

that is of course shorter than the derivation A ⇒∗
G uAv. By induction, we get

(φG(u
′), φG(v

′)) ∈ GB. Moreover, from the construction, it follows that (i) φG(wi)
belongs to the Ai,1−di

-component of ∆((HB)B∈N) and (ii) (g, h) belongs to the A-
component of Γ(∆((HB)B∈N)), which isHA. The construction is shown in Figure 1.
All the paths between identical nonterminals in the subtrees below A′

1,1, . . . , A
′
6,0

are contracted and replaced by their“effects”, which by induction are already in the
corresponding groups GX (X = B, . . . , G). This makes the subtrees acyclic. This
concludes the proof of the first equality in Claim 2.

Since all GA are finite groups there is a smallest number j ≥ 0 such that

(Γ∆)j(s0) = (Γ∆)j+1(s0).

We then have (Γ∆)j(s0) = limi→∞(Γ∆)i(s0). It remains to show that j ≤ 2 · |N | ·
log2 |G|. In each component of the |N |-tuples (Γ∆)i(s0) (0 ≤ i ≤ j) we have a

chain of subgroups of G × Ĝ. By Lagrange’s theorem, any chain {(1, 1)} = H0 <

H1 < · · · < Hk−1 < Hk ≤ G × Ĝ satisfies k ≤ 2 · log2 |G|. This shows that
j ≤ 2 · |N | · log2 |G| and proves Claim 2.

We can now prove Theorem 4.2. By Claim 1 and Lemma 4.5 it suffices to show that
membership for the subgroups GA is in NP. For this, we construct a nondetermin-
istic polynomial time machine that computes on every computation path a subset

14 M. LOHREY, A. ROSOWSKI, AND G. ZETZSCHE

SA ⊆ GA for every A ∈ N such that on at least one computation path it computes
a generating set for groups GA for all A ∈ N . Then we can decide membership for
the 〈SA〉 in NP by Lemma 3.1.

The set SA is computed by initializing SA = {(1, 1)} for every A ∈ N and then
doing 2 · |N | · log2 |G| iterations of the following procedure: Assume that we have
already produced the subsets (SA)A∈N . Membership in 〈SA〉 can be decided in NP

by Lemma 3.1. Hence, by Lemmas 4.4 and 4.5 one can decide membership in every
entry of the tuple Γ(∆((〈SA〉)A∈N)) in NP. Finally, by Lemma 4.7 we can produce

nondeterministically in polynomial time a subset S′
A ⊆ G× Ĝ for every A ∈ N such

that for every computation path we have (〈S′
A〉)A∈N ≤ Γ(∆((〈SA〉)A∈N)) and for

at least one computation path the machine produces subsets S′
A with (〈S′

A〉)A∈N =
Γ(∆((〈SA〉)A∈N)). With the sets S′

A we go into the next iteration. By Claim 2 there
will be at least one computation path on which after 2 · |N | · log2 |G| iterations we
get generating set for all the groups GA. This concludes the proof of Theorem 4.2.

The proof of Theorem 4.1 is identical except that we have to use Lemma 4.6
instead of Lemma 4.5. �

5. Restrictions of rational subset membership in symmetric groups

In this section, we want to contrast the general upper bounds from the previous
sections with lower bounds for symmetric groups and restricted versions of the
rational subset membership problem. We start with the subset sum problem.

5.1. Subset sum in permutation groups. The following result refers to the
abelian group Z

m
3 , for which we use the additive notation.

Theorem 5.1. The following problem is NP-hard:
Input: unary encoded number m and a list of group elements g, g1, . . . , gn ∈ Z

m
3 .

Question: Are there i1, . . . , in ∈ {0, 1} such that g =
∑

1≤k≤n ik · gk?

Proof. We prove the theorem by a reduction from the problem exact 3-hitting set
problem (X3HS):

Problem 5.2 (X3HS).
Input: a finite set A and a set B ⊆ 2A of subsets of A, all of size 3.
Question: Is there a subset A′ ⊆ A such that |A′ ∩C| = 1 for all C ∈ B?

X3HS is the same problem as positive 1-in-3-SAT, which is NP-complete [17,
Problem LO4].

Let A be a finite set and B ⊆ 2A be a set of subsets of A, all of size 3. W.l.o.g.
assume that A = {1, . . . , n} and let B = {C1, C2, . . . , Cm}. We work in the group
Z
m
3 . For every 1 ≤ i ≤ n let

Xi = (ai,1, ai,2, . . . , ai,m) ∈ Z
m
3 ,

where

ai,j =

{

0 if i /∈ Cj

1 if i ∈ Cj .

Then there exists A′ ⊆ A such that |A′ ∩ Cj | = 1 for every 1 ≤ j ≤ m if and only
if the following equation has a solution y1, . . . , yn ∈ {0, 1}:

n
∑

i=1

yi ·Xi = (1, 1, . . . , 1).

This proves the theorem. �

Clearly Z
m
3 ≤ S3m. We obtain the following corollary:

Corollary 5.3. The abelian subset sum problem for symmetric groups is NP-hard.

MEMBERSHIP PROBLEMS IN FINITE GROUPS 15

Let us remark that the subset sum problem for Zm
2 (with m part of the input)

is equivalent to the subgroup membership problem for Zm
2 (since every element of

Z
m
2 has order two) and therefore can be solved in polynomial time.

5.2. Knapsack in permutation groups. We now come to the knapsack problem
in permutation groups. NP-hardness of the general version of knapsack can be
easily deduced from a result of Luks:

Theorem 5.4 ([30]). The knapsack problem for symmetric groups is NP-hard.

Proof. Recall from the introduction that Luks [30] proved NP-completeness of 3-
membership for the special case of membership in a product GHG where G and H
are abelian subgroups of Sm.

Let us now assume that G,H ≤ Sm are abelian. Let g1, g2, . . . , gk be the given
generators of G and let h1, h2, . . . , hl be the given generators of H . Then s ∈ GHG
is equivalent to the solvability of the equation

s = gx1

1 gx2

2 · · · gxk

k hy1

1 hy2

2 · · ·hyl

l gz11 gz22 · · · gzkk

This is an instance of the knapsack problem, which is therefore NP-hard. �

We next want to prove that already 3-knapsack is NP-hard. In other words: the
k-membership problem is NP-hard for every k ≥ 3 even if the groups are cyclic.
We prove this by a reduction from X3HS; see Problem 5.2. For this, we need two
lemmas.

Let p > 0 be an integer. For the rest of the section we write [p] for the cycle
(1, 2, . . . , p) mapping p to 1 and i to i+ 1 for 1 ≤ i ≤ p− 1.

Lemma 5.5. Let p, q ∈ N such that q is odd and p > q > 0 holds. Then the
products [p][q] and [q][p] are cycles of length p.

Proof. Let p and q be as in the lemma. It is easy to verify that

[q][p] = (1, 3, 5, . . . , q − 2, q, 2, 4, 6, . . . , q − 1, q + 1, q + 2, q + 3, . . . , p),

which is a cycle of length p. Because of [p][q] = [q]−1([q][p])[q], also [p][q] is a cycle
of length p. �

Lemma 5.6. Let p, q ∈ N be primes such that 2 < q < p holds. Then

[p]−x2 [q]x1([p][q])x2 = [q] = [q]x1 [p]−x2([p][q])x2 (1)

if and only if (x1 ≡ 1 mod q and x2 ≡ 0 mod p) or (x1 ≡ 0 mod q and x2 ≡
1 mod p).

Proof. Let p and q be as in the lemma. By Lemma 5.5, [p][q] is a cycle of length p.
Therefore, (x1 ≡ 1 mod q and x2 ≡ 0 mod p) or (x1 ≡ 0 mod q and x2 ≡ 1 mod p)
ensures that (1) holds.

For the other direction, assume that x1 and x2 are such that (1) holds. We
obtain

[p]−x2 [q]x1 = [q]x1 [p]−x2 . (2)

First of all we show that x1 6≡ 0 mod q implies x2 ≡ 0 mod p. Assume that x1 6≡
0 mod q and x2 6≡ 0 mod p. We will deduce a contradiction. We first multiply both
sides of (2) by [p]x2 and obtain

[q]x1 = [p]x2 [q]x1 [p]−x2 .

Since q is prime and x1 6≡ 0 mod q we can raise both sides to the power of x−1
1 mod q

and get

[q] = [p]x2 [q][p]−x2 ,

16 M. LOHREY, A. ROSOWSKI, AND G. ZETZSCHE

from which we obtain

[q][p]x2 [q]−1 = [p]x2

by multiplying with [p]x2 [q]−1. Since x2 6≡ 0 mod p and p is prime, we can raise
both sides to the power of x−1

2 mod p which finally gives us

[q][p][q]−1 = [p].

By evaluating of both sides at position p (recall that p > q) we get the contradiction

p[q][p][q]
−1

= p[p][q]
−1

= 1[q]
−1

= q 6= 1 = p[p],

which shows that x1 6≡ 0 mod q implies x2 ≡ 0 mod p. Obviously x1 ≡ 0 mod
q, x2 ≡ 0 mod p is not a solution of (1). This shows that x1 6≡ 0 mod q if and only
if x2 ≡ 0 mod p. It remains to exclude the cases x1 ≡ γ1 mod q for 2 ≤ γ1 ≤ q − 1
and x2 ≡ γ2 mod p for 2 ≤ γ2 ≤ p− 1. The equation

[p]−0[q]x1([p][q])0 = [q] = [q]x1 [p]−0([p][q])0

can only be true if x1 ≡ 1 mod q. Hence it remains to show that the equation

[p]−x2 [q]0([p][q])x2 = [q] = [q]0[p]−x2([p][q])x2

can only be true if x2 ≡ 1 mod p. First we multiply with ([p][q])−x2 and get

[p]−x2 = [q]([p][q])−x2 .

We obtain

[p]−x2 = [q][q]−1[p]−1([p][q])−x2+1 = [p]−1([p][q])−(x2−1).

We multiply with [p] and invert both sides:

[p]x2−1 = ([p][q])x2−1

Assume that this equation holds for some x2 6≡ 1 mod p. By Lemma 5.5 [p][q] is a
cycle of length p. Hence we can raise both sides to the power of (x2 − 1)−1 mod p
and obtain [p] = [p][q], which is a contradiction since [q] 6= 1. This concludes the
proof of the lemma. �

Theorem 5.7. The problem 3-knapsack for symmetric groups is NP-hard.

Proof. We provide a log-space reduction from the NP-complete problem X3HS
(Problem 5.2) to 3-knapsack. Let A be a finite set and B ⊆ 2A such that every
C ∈ B has size 3. W.l.o.g. let A = {1, . . . ,m} and let B = {C1, C2, . . . , Cd} where
Ci = {α(i, 1), α(i, 2), α(i, 3)} for a mapping α : {1, . . . , d} × {1, 2, 3} → {1, . . . ,m}.

Let p1, . . . , pm, r1, . . . , rm, q1, . . . , qd be the first 2m + d odd primes such that
pj > rj > 2 and pj > qi > 2 for 1 ≤ i ≤ d and 1 ≤ j ≤ m hold. Moreover let
P = max1≤j≤m pj . Intuitively, the primes pj and rj (1 ≤ j ≤ m) belong to j ∈ A
and the prime qi (1 ≤ i ≤ d) belongs to the set Ci.

We will work in the group

G =
m
∏

j=1

Vj ×
d
∏

i=1

Ci,

where Vj ≤ S4pj+rj and Ci ≤ Sqi+3P . More precisely we have

Vj = Spj
× Spj

× Zpj
× Zpj

× Zrj and Ci = Zqi × SP × SP × SP .

In the following, we denote the identity element of a symmetric group Sm with id

in order to not confuse it with the generator of a cyclic group Zm.

MEMBERSHIP PROBLEMS IN FINITE GROUPS 17

We now define four group elements g, g1, g2, g3 ∈ G. We write g = (v1, . . . , vm, c1, . . . cd)
and gk = (vk,1, . . . , vk,m, ck,1, . . . , ck,d) with vj , vk,j ∈ Vj and ci, ck,i ∈ Ci. These
elements are defined as follows:

vj = ([rj], [rj], 0, 0, 0) ci = (1, id, id, id)

v1,j = ([rj], [pj]
−1, 1, 1, 1) c1,i = (1, [qi]

−1, [pα(i,2)]
−1, [qi][pα(i,3)])

v2,j = ([pj]
−1, [rj], −1, 0, −1) c2,i = (1, [qi][pα(i,1)], [qi]

−1, [pα(i,3)]
−1)

v3,j = ([pj][rj], [pj][rj], 0, −1, 0) c3,i = (1, [pα(i,1)]
−1, [qi][pα(i,2)], [qi]

−1)

We claim that there is a subset A′ ⊆ A such that |A′ ∩ Ci| = 1 for every 1 ≤ i ≤ d
if and only if there are z1, z2, z3 ∈ Z with

g = gz11 gz22 gz33

in the group G. Due to the direct product decomposition of G and the above
definition of g, g1, g2, g3, the statement g = gz11 gz22 gz33 is equivalent to the conjunc-
tions of the following statements (read the above definitions of the vj , vk,j , ci, ck,i
columnwise) for all 1 ≤ j ≤ m and 1 ≤ i ≤ d:

(a) [rj] = [rj]
z1 [pj]

−z2([pj][rj])
z3

(b) [rj] = [pj]
−z1 [rj]

z2([pj][rj])
z3

(c) z1 ≡ z2 mod pj
(d) z1 ≡ z3 mod pj
(e) z1 ≡ z2 mod rj
(f) 1 ≡ z1 + z2 + z3 mod qi
(g) id = [qi]

−z1([qi][pα(i,1)])
z2 [pα(i,1)]

−z3

(h) id = [pα(i,2)]
−z1 [qi]

−z2([qi][pα(i,2)])
z3

(i) id = ([qi][pα(i,3)])
z1 [pα(i,3)]

−z2 [qi]
−z3

Recall that by Lemma 5.5, [pj][rj] and [qi][pj] are cycles of length pj . Due to the
congruences in (c), (d), and (e), the conjunction of (a)–(i) is equivalent to the
conjunction of the following equations:

(j) z1 ≡ z2 ≡ z3 mod pj
(k) z1 ≡ z2 mod rj
(l) [pj]

−z1 [rj]
z2([pj][rj])

z1 = [rj] = [rj]
z2 [pj]

−z1([pj][rj])
z1

(m) 1 ≡ z1 + z2 + z3 mod qi
(n) id = [qi]

−z1([qi][pα(i,1)])
z1 [pα(i,1)]

−z1

(o) id = [pα(i,2)]
−z1 [qi]

−z2([qi][pα(i,2)])
z1

(p) id = ([qi][pα(i,3)])
z1 [pα(i,3)]

−z1 [qi]
−z3

By Lemma 5.6, the conjunction of (j)–(p) is equivalent to the conjunction of the
following statements:

(q) (z1 ≡ z2 ≡ z3 ≡ 0 mod pj and z1 ≡ z2 ≡ 1 mod rj) or
(z1 ≡ z2 ≡ z3 ≡ 1 mod pj and z1 ≡ z2 ≡ 0 mod rj)

(r) 1 ≡ z1 + z2 + z3 mod qi
(s) id = [qi]

−z1([qi][pα(i,1)])
z1 [pα(i,1)]

−z1

(t) id = [pα(i,2)]
−z1 [qi]

−z2([qi][pα(i,2)])
z1

(u) id = ([qi][pα(i,3)])
z1 [pα(i,3)]

−z1 [qi]
−z3

Let us now assume that A′ ⊆ A is such that |A′∩Ci| = 1 for every 1 ≤ i ≤ d. Let σ :
{1, . . . ,m} → {0, 1} such that σ(j) = 1 iff j ∈ A′. Thus, α(i, 1)+α(i, 2)+α(i, 3) = 1
for all 1 ≤ i ≤ d. By the Chinese remainder theorem, we can set z1, z2, z3 ∈ Z such
that

• z1 ≡ z2 ≡ z3 ≡ σ(j) mod pj and z1 ≡ z2 ≡ 1− σ(j) mod rj for 1 ≤ j ≤ m,
• zk ≡ σ(α(i, k)) mod qi for 1 ≤ i ≤ d and 1 ≤ k ≤ 3.

18 M. LOHREY, A. ROSOWSKI, AND G. ZETZSCHE

Then (q) and (r) hold. For (s), one has to consider two cases: if σ(α(i, 1)) = 0, then
z1 ≡ 0 mod qi and z1 ≡ 0 mod pα(i,1). Hence, the right-hand side of (s) evaluates
to

[qi]
−0([qi][pα(i,1)])

0[pα(i,1)]
−0 = id.

On the other hand, if σ(α(i, 1)) = 1, then z1 ≡ 1 mod qi and z1 ≡ 1 mod pα(i,1)
and the right-hand side of (s) evaluates again to

[qi]
−1[qi][pα(i,1)][pα(i,1)]

−1 = id.

In the same way, one can show that also (t) and (u) hold.
For the other direction, assume that z1, z2, z3 ∈ Z are such that (q)–(u) hold.

We define A′ ⊆ {1, . . . ,m} such that for every 1 ≤ j ≤ m:

• j /∈ A′ if z1 ≡ z2 ≡ z3 ≡ 0 mod pj and z1 ≡ z2 ≡ 1 mod rj , and
• j ∈ A′ if z1 ≡ z2 ≡ z3 ≡ 1 mod pj and z1 ≡ z2 ≡ 0 mod rj .

Consider a set Ci = {α(i, 1), α(i, 2), α(i, 3)}. From the equations (s), (t), and (u)
we get for every 1 ≤ i ≤ d and 1 ≤ k ≤ 3:

• if z1 ≡ 0 mod pα(i,k) then zk ≡ 0 mod qi
• if z1 ≡ 1 mod pα(i,k) then zk ≡ 1 mod qi

Together with 1 ≡ z1+z2+z3 mod qi and qi ≥ 3, this implies that there must be ex-
actly one k ∈ {1, 2, 3} such that z1 ≡ 1 mod pα(i,k). Hence, for every 1 ≤ i ≤ d there
is exactly one k ∈ {1, 2, 3} such that α(i, k) ∈ A′, i.e., |{α(i, 1), α(i, 2), α(i, 3)} ∩
A′| = 1. �

Theorem 1.6 is an immediate consequence of Corollaries 4.3 and 5.3 and Theo-
rem 5.7.

Theorem 5.7 leads to the question what the exact complexity of the 2-knapsack
problem for symmetric groups is. Recall that the complexity of Luks’ 2-membership
problem is a famous open problem in the algorithmic theory of permutation groups.
The restriction of the 2-membership problem to cyclic groups is easier:

Theorem 5.8. The 2-knapsack problem for symmetric groups can be solved in
polynomial time.

Proof. Let a, a1, a2 ∈ Sm be permutations and let A,A1, A2 be the corresponding
permutation matrices. Recall the definition of the Kronecker product of two m-
dimensional square matrices A and B: A ⊗ B = (ai,j · B)1≤i,j≤m, so it is an
m2-dimensional square matrix with the m2 blocks ai,j · B for 1 ≤ i, j ≤ m. By [6,
Theorem 4], the equation ax1

1 ax2

2 = a is equivalent to

(AT
2 ⊗ Im)x2(Im ⊗A1)

x1vec(Im) = vec(A), (3)

where vec(A) = (A1,1, . . . , An,1, A1,2, . . . , An,2, . . . , A1,n, . . . , An,n)
T is the m2-di-

mensional column vector obtained from the matrix A by stacking all columns of A
on top of each other and Im is the m-dimensional identity matrix. The matrices
AT

2 ⊗ Im and Im ⊗A1 commute; see [6]. By [3, Theorem 1.4] one can finally check
in polynomial time whether (3) has a solution. �

6. Application to intersection problems

In this section we prove Theorems 1.12 and 1.13. The proofs of the two results
are almost identical. Let us show how to deduce Theorem 1.12 from Theorem 1.10.
Let G be a grammar from CFG(k) and let A1, . . . ,An be a list of group DFAs. Let
Ai = (Qi,Σ, qi,0, δi, Fi). W.l.o.g. we assume that the Qi are pairwise disjoint and let
Q =

⋃

1≤i≤n Qi. To every a ∈ Σ we can associate a permutation πa ∈ SQ by setting

πa(q) = δi(q, a) if q ∈ Qi. Let G′ ∈ CFG(k) be the context-free grammar over the
terminal alphabet SQ obtained by replacing in G every occurence of a ∈ Σ by πa.

MEMBERSHIP PROBLEMS IN FINITE GROUPS 19

Then, we have L(G) ∩
⋂

1≤i≤n L(Ai) 6= ∅ if and only if there exists a permutation

π ∈ L(G′) such that π(qi,0) ∈ Fi for every 1 ≤ i ≤ n. We can nondeterministically
guess such a permutation and check π ∈ L(G′) in NP using Theorem 1.10. This
proves the upper bound from Theorems 1.12. The lower bound already holds for
the case that L(G) = Σ∗ [9].

The proof of the upper bound in Theorem 1.13 is identical to the above proof,
except that we use Theorem 1.9. For the lower bound, notice that the PSPACE-
complete context-free membership problem for symmetric groups can be directly
reduced to the intersection non-emptiness problem from Theorem 1.13 (several
group DFAs and a single context-free grammar): Take a context-free gammar G
over the terminal alphabet Sm. Let {π1, . . . , πn} be the permutations that appear
as terminal symbols in G. Let G′ be the context-free gammar obtained from G
by replacing every occurrence of πi by a new terminal symbol ai. We construct
m group DFAs A1, . . . ,Am over the terminal alphabet {a1, . . . , an} and state set
{1, . . . ,m}. The initial and (unique) final state of Ai is i and the transition function
of every Ai is the same function δ with δ(q, ai) = qπi for 1 ≤ q ≤ m. Then we
have L(G) contains the identity permutation if and only if L(G′) ∩

⋂

1≤i≤m L(Ai)
is non-empty.

References

[1] Emmanuel Arrighi, Henning Fernau, Stefan Hoffmann, Markus Holzer, Ismaël Jecker, Mateus
de Oliveira Oliveira, and Petra Wolf. On the complexity of intersection non-emptiness for star-
free language classes. In Proceedings of the 41st IARCS Annual Conference on Foundations

of Software Technology and Theoretical Computer Science, FSTTCS 2021, volume 213 of
LIPIcs, pages 34:1–34:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL:
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.34, doi:10.4230/LIPIcs.FSTTCS.2021.34.

[2] László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Pro-

ceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,

STOC 2016, pages 684–697. ACM, 2016. URL: https://doi.org/10.1145/2897518.2897542,
doi:10.1145/2897518.2897542 .

[3] László Babai, Robert Beals, Jin-Yi Cai, Gábor Ivanyos, and Eugene M. Luks. Multiplicative
equations over commuting matrices. In Proceedings of the 7th Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, SODA 1996, pages 498–507. ACM/SIAM, 1996.

[4] László Babai, Eugene M. Luks, and Ákos Seress. Permutation groups in NC. In Proceedings

of the 19th Annual ACM Symposium on Theory of Computing, STOC 1987, pages 409–420.
ACM, 1987. doi:10.1145/28395.28439.

[5] László Babai and Endre Szemerédi. On the complexity of matrix group problems I. In Pro-

ceedings of the 25th Annual Symposium on Foundations of Computer Science, FOCS 1984,
pages 229–240. IEEE Computer Society, 1984. doi:10.1109/SFCS.1984.715919.

[6] Paul Bell, Vesa Halava, Tero Harju, Juhani Karhumäki, and Igor Potapov. Matrix equations
and Hilbert’s tenth problem. International Journal of Algebra and Computation, 18(8):1231–
1241, 2008. doi:10.1142/S0218196708004925 .

[7] Pascal Bergsträßer, Moses Ganardi, and Georg Zetzsche. A characterization of wreath
products where knapsack is decidable. In Proceeding of the 38th International Sym-

posium on Theoretical Aspects of Computer Science, STACS 2021, volume 187 of
LIPIcs, pages 11:1–11:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL:
https://doi.org/10.4230/LIPIcs.STACS.2021.11 , doi:10.4230/LIPIcs.STACS.2021.11 .

[8] Jean-Camille Birget, Stuart Margolis, John Meakin, and Pascal Weil. PSPACE-complete
problems for subgroups of free groups and inverse finite automata. Theoretical Computer

Science, 242(1-2):247–281, 2000. doi:10.1016/S0304-3975(98)00225-4.

[9] Michael Blondin, Andreas Krebs, and Pierre McKenzie. The complexity of intersecting fi-
nite automata having few final states. Computational Complexity, 25(4):775–814, 2016.
doi:10.1007/s00037-014-0089-9 .

[10] Stephen A. Cook. Characterizations of pushdown machines in terms of time-bounded
computers. Journal of the Association for Computing Machinery, 18(1):4–18, 1971.
doi:10.1145/321623.321625.

[11] Mateus de Oliveira Oliveira and Michael Wehar. On the fine grained complex-
ity of finite automata non-emptiness of intersection. In Proceedings of the 24th

International Conference Developments in Language Theory, DLT 2020, volume

https://doi.org/10.4230/LIPIcs.FSTTCS.2021.34
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2021.34
https://doi.org/10.1145/2897518.2897542
http://dx.doi.org/10.1145/2897518.2897542
http://dx.doi.org/10.1145/28395.28439
http://dx.doi.org/10.1109/SFCS.1984.715919
http://dx.doi.org/10.1142/S0218196708004925
https://doi.org/10.4230/LIPIcs.STACS.2021.11
http://dx.doi.org/10.4230/LIPIcs.STACS.2021.11
http://dx.doi.org/10.1016/S0304-3975(98)00225-4
http://dx.doi.org/10.1007/s00037-014-0089-9
http://dx.doi.org/10.1145/321623.321625

20 M. LOHREY, A. ROSOWSKI, AND G. ZETZSCHE

12086 of Lecture Notes in Computer Science, pages 69–82. Springer, 2020. URL:
https://doi.org/10.1007/978-3-030-48516-0_6, doi:10.1007/978-3-030-48516-0_6 .

[12] Javier Esparza, Antońın Kucera, and Stefan Schwoon. Model checking LTL with regu-
lar valuations for pushdown systems. Information and Computation, 186(2):355–376, 2003.
doi:10.1016/S0890-5401(03)00139-1 .

[13] Javier Esparza, Michael Luttenberger, and Maximilian Schlund. A brief history of Strahler
numbers. In Proceedings of the 8th International Conference on Language and Automata

Theory and Applications, LATA 2014, volume 8370 of Lecture Notes in Computer Sci-

ence, pages 1–13. Springer, 2014. URL: https://doi.org/10.1007/978-3-319-04921-2_1,
doi:10.1007/978-3-319-04921-2_1 .

[14] Shimon Even and Oded Goldreich. The minimum-length generator se-
quence problem is NP-hard. Journal of Algorithms, 2(3):311–313, 1981. URL:
https://doi.org/10.1016/0196-6774(81)90029-8, doi:10.1016/0196-6774(81)90029-8.

[15] Michael Figelius, Moses Ganardi, Markus Lohrey, and Georg Zetzsche. The complex-
ity of knapsack problems in wreath products. In Proceedings of the 47th International

Colloquium on Automata, Languages, and Programming, ICALP 2020, volume 168 of
LIPIcs, pages 126:1–126:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.ICALP.2020.126.

[16] Elizaveta Frenkel, Andrey Nikolaev, and Alexander Ushakov. Knapsack problems in products
of groups. Journal of Symbolic Computation, 2015. doi:10.1016/j.jsc.2015.05.006.

[17] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the

Theory of NP–completeness. Freeman, 1979.
[18] Alexander Heußner, Jérôme Leroux, Anca Muscholl, and Grégoire Sutre. Reachability anal-

ysis of communicating pushdown systems. In Proceedings of the 13th International Con-

ference on Foundations of Software Science and Computational Structures, FOSSACS

2010, volume 6014 of Lecture Notes in Computer Science, pages 267–281. Springer, 2010.
doi:10.1007/978-3-642-12032-9_19.

[19] Robert E. Horton. Erosional development of streams and their
drainage basins: hydro-physical approach to quantitative morphol-
ogy. Geological Society of America Bulletin, 56(3):275–370, 1945.
doi:https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2 .

[20] Trevor Jack. On the complexity of properties of partial bijection semigroups, 2021.
doi:10.48550/ARXIV.2101.00324.

[21] Mark Jerrum. The complexity of finding minimum-length genera-
tor sequences. Theoretical Computer Science, 36:265–289, 1985. URL:
https://doi.org/10.1016/0304-3975(85)90047-7, doi:10.1016/0304-3975(85)90047-7.

[22] Mark Kambites, Pedro V. Silva, and Benjamin Steinberg. On the rational subset problem for
groups. Journal of Algebra, 309(2):622–639, 2007. doi:10.1016/j.jalgebra.2006.05.020.

[23] Ilya Kapovich and Alexei Myasnikov. Stallings foldings and subgroups of free groups. Journal
of Algebra, 248(2):608–668, 2002. doi:10.1006/jabr.2001.9033.

[24] Daniel König, Markus Lohrey, and Georg Zetzsche. Knapsack and subset sum problems in
nilpotent, polycyclic, and co-context-free groups. In Algebra and Computer Science, volume
677 of Contemporary Mathematics, pages 138–153. American Mathematical Society, 2016.
doi:10.1090/conm/677.

[25] Dexter Kozen. Lower bounds for natural proof systems. In Proceedings of the 18th

Annual Symposium on Foundations of Computer Science, FOCS 1977, pages 254–
266. IEEE Computer Society, 1977. URL: https://doi.org/10.1109/SFCS.1977.16,
doi:10.1109/SFCS.1977.16.

[26] Markus Lohrey. The rational subset membership problem for groups: a survey, page 368–389.
London Mathematical Society Lecture Note Series. Cambridge University Press, 2015.
doi:10.1017/CBO9781316227343.024.

[27] Markus Lohrey. Knapsack in hyperbolic groups. Journal of Algebra, 545(1):390–415, 2020.
doi:https://doi.org/10.1016/j.jalgebra.2019.04.008.

[28] Markus Lohrey and Georg Zetzsche. Knapsack in graph groups. Theory of Computing Sys-

tems, 62(1):192–246, 2018. doi:10.1007/s00224-017-9808-3.
[29] Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in poly-

nomial time. Journal of Computer and System Sciences, 25(1):42–65, 1982. URL:
https://doi.org/10.1016/0022-0000(82)90009-5, doi:10.1016/0022-0000(82)90009-5.

[30] Eugene M. Luks. Permutation groups and polynomial-time computation. In Groups

And Computation, Proceedings of a DIMACS Workshop, New Brunswick, New Jer-

sey, USA, October 7-10, 1991, volume 11 of DIMACS Series in Discrete Mathe-

matics and Theoretical Computer Science, pages 139–175. DIMACS/AMS, 1991. URL:
https://doi.org/10.1090/dimacs/011/11 , doi:10.1090/dimacs/011/11 .

https://doi.org/10.1007/978-3-030-48516-0_6
http://dx.doi.org/10.1007/978-3-030-48516-0_6
http://dx.doi.org/10.1016/S0890-5401(03)00139-1
https://doi.org/10.1007/978-3-319-04921-2_1
http://dx.doi.org/10.1007/978-3-319-04921-2_1
https://doi.org/10.1016/0196-6774(81)90029-8
http://dx.doi.org/10.1016/0196-6774(81)90029-8
http://dx.doi.org/10.4230/LIPIcs.ICALP.2020.126
http://dx.doi.org/10.1016/j.jsc.2015.05.006
http://dx.doi.org/10.1007/978-3-642-12032-9_19
http://dx.doi.org/https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
http://dx.doi.org/10.48550/ARXIV.2101.00324
https://doi.org/10.1016/0304-3975(85)90047-7
http://dx.doi.org/10.1016/0304-3975(85)90047-7
http://dx.doi.org/10.1016/j.jalgebra.2006.05.020
http://dx.doi.org/10.1006/jabr.2001.9033
http://dx.doi.org/10.1090/conm/677
https://doi.org/10.1109/SFCS.1977.16
http://dx.doi.org/10.1109/SFCS.1977.16
http://dx.doi.org/10.1017/CBO9781316227343.024
http://dx.doi.org/https://doi.org/10.1016/j.jalgebra.2019.04.008
http://dx.doi.org/10.1007/s00224-017-9808-3
https://doi.org/10.1016/0022-0000(82)90009-5
http://dx.doi.org/10.1016/0022-0000(82)90009-5
https://doi.org/10.1090/dimacs/011/11
http://dx.doi.org/10.1090/dimacs/011/11

MEMBERSHIP PROBLEMS IN FINITE GROUPS 21

[31] Alexei Myasnikov, Andrey Nikolaev, and Alexander Ushakov. Knapsack problems in groups.
Mathematics of Computation, 84:987–1016, 2015. doi:10.1090/S0025-5718-2014-02880-9.

[32] Ákos Seress. Permutation Group Algorithms. Cambridge Tracts in Mathematics. Cambridge
University Press, 2003. doi:10.1017/CBO9780511546549.

[33] Charles C. Sims. Computational methods in the study of permutation groups.
In Computational Problems in Abstract Algebra, pages 169–183. Pergamon, 1970.
doi:10.1016/B978-0-08-012975-4.50020-5 .

[34] Arthur N. Strahler. Hypsometric (area-altitude) analysis of erosional topol-
ogy. Geological Society of America Bulletin, 63(11):1117–1142, 1952.
doi:https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2.

[35] Joseph Swernofsky and Michael Wehar. On the complexity of intersecting regu-
lar, context-free, and tree languages. In Proceedings of the 42nd International Col-

loquium Automata, Languages, and Programming, Part II, ICALP 2015, volume
9135 of Lecture Notes in Computer Science, pages 414–426. Springer, 2015. URL:
https://doi.org/10.1007/978-3-662-47666-6_33, doi:10.1007/978-3-662-47666-6_33.

Appendix

Appendix A. Testing membership in CFG(k)

Lemma A.1. Let G = (N, T, P, S) be a context-free grammar. We have L(G) 6= ∅
if and only if G has an acyclic derivation tree.

Proof. Clearly, if there is an acyclic derivation tree, then there is a derivation tree
and hence L(G) = ∅. For the reverse implication note that an arbitrary derivation
tree can be made acyclic (as in the proof of the pumping lemma for context-free
languages). �

The notion of a partial acyclic derivation tree is defined as the notion of an acyclic
derivation tree except that leafs may be labelled with terminals or nonterminals.

Theorem A.2. For every fixed k ≥ 1, the problem of checking whether a given
context-free grammar belongs to CFG(k) is in coNP.

Proof. Let G = (N,Σ, P, S) be a context-free grammar in Chomsky normal form.
We have G ∈ CFG(k) if and only if for every acyclic derivation tree the Horton-
Strahler number is at most k. By this we obtain G 6∈ CFG(k) if and only if
there is an acyclic derivation tree with Horton-Strahler number greater than k. By
Lemma 2.3 this holds if and only if one of the following conditions holds:

• There is an acyclic derivation tree with at most 2|N |k nodes and Horton-
Strahler number greater than k.

• There is an acyclic derivation tree with more than 2|N |k nodes.

The second statement holds if and only if there is a partial acyclic derivation tree
T with 2|N |k < |T | ≤ 2|N |k + 2 (|T | denotes the number of nodes of T) and
for every leave v in T that is labelled with a nonterminal A there is an acyclic
derivation tree Tv of arbitrary size whose root is labelled with A and which contains
no nonterminal that has already appeared on the path from the root of T to node v.
This holds, since in an acyclic derivation tree with more than 2|N |k nodes we can
remove subtrees such that the resulting partial acyclic derivation tree T ′ satisfies
2|N |k < |T ′| ≤ 2|N |k + 2.

These conditions can be checked in NP as follows: First, we guess an acyclic
derivation tree with at most 2|N |k nodes and compute in polynomial time its
Horton-Strahler number s. If s > k then we accept. If s ≤ k, then we guess a partial
acyclic derivation tree T with 2|N |k < |T | ≤ 2|N |k+2. For every leaf v of T that is
labelled with a nonterminal A we define the subgrammar Gv = (Nv, T, Pv, A): let
A1, . . . , Ad (A1 = S, Ad = A) be the nonterminals that appear on the path from
the root of T to the leaf v. Then we set Nv = N \ {A1, . . . , Ad−1}. Moreover, Pv

http://dx.doi.org/10.1090/S0025-5718-2014-02880-9
http://dx.doi.org/10.1017/CBO9780511546549
http://dx.doi.org/10.1016/B978-0-08-012975-4.50020-5
http://dx.doi.org/https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
https://doi.org/10.1007/978-3-662-47666-6_33
http://dx.doi.org/10.1007/978-3-662-47666-6_33

22 M. LOHREY, A. ROSOWSKI, AND G. ZETZSCHE

is obtained from P by removing every production that contains one of the nonter-
minals A1, . . . , Ad−1. Finally the algorithm verifies deterministically in polynomial
time whether Gv has an acyclic derivation tree Tv of arbitrary size that is rooted
in A. By Lemma A.1 this holds if and only if L(Gv) 6= ∅. �

Email address: lohrey@eti.uni-siegen.de

Email address: rosowski@eti.uni-siegen.de

Email address: zetzsche@mpi-sws.org

(Markus Lohrey, Andreas Rosowski) Universität Siegen, Germany

(Georg Zetzsche) Max Planck Institute for Software Systems, Kaiserslautern, Ger-
many

	1. Introduction
	2. Preliminaries
	3. Black box groups
	4. Context-free membership in black box groups
	5. Restrictions of rational subset membership in symmetric groups
	5.1. Subset sum in permutation groups
	5.2. Knapsack in permutation groups

	6. Application to intersection problems
	References
	Appendix
	Appendix A. Testing membership in CFG(k)

