日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Selectivity Trends and Role of Adsorbate-Adsorbate Interactions in CO Hydrogenation on Rhodium Catalysts

MPS-Authors
/persons/resource/persons22000

Reuter,  Karsten
Theory, Fritz Haber Institute, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Deimel, M., Prats, H., Seibt, M., Reuter, K., & Andersen, M. (2022). Selectivity Trends and Role of Adsorbate-Adsorbate Interactions in CO Hydrogenation on Rhodium Catalysts. ACS Catalysis, 12(13), 7907-7917. doi:10.1021/acscatal.2c02353.


引用: https://hdl.handle.net/21.11116/0000-000A-BE0C-4
要旨
Predictive-quality computational modeling of heterogeneously catalyzed reactions has emerged as an important tool for the analysis and assessment of activity and activity trends. In contrast, more subtle selectivities and selectivity trends still pose a significant challenge to prevalent microkinetic modeling approaches that typically employ a mean-field approximation (MFA). Here, we focus on CO hydrogenation on Rh catalysts with the possible products methane, acetaldehyde, ethanol, and water. This reaction has already been subjected to a number of experimental and theoretical studies with conflicting views on the factors controlling activity and selectivity toward the more valuable higher oxygenates. Using accelerated first-principles kinetic Monte Carlo simulations and explicitly and systematically accounting for adsorbate–adsorbate interactions through a cluster expansion approach, we model the reaction on the low-index Rh(111) and stepped Rh(211) surfaces. We find that the Rh(111) facet is selective toward methane, while the Rh(211) facet exhibits a similar selectivity toward methane and acetaldehyde. This is consistent with the experimental selectivity observed for larger, predominantly (111)-exposing Rh nanoparticles and resolves the discrepancy with earlier first-principles MFA microkinetic work that found the Rh(111) facet to be selective toward acetaldehyde. While the latter work tried to approximately account for lateral interactions through coverage-dependent rate expressions, our analysis demonstrates that this fails to sufficiently capture concomitant correlations among the adsorbed reaction intermediates that crucially determine the overall selectivity.