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Abstract

Predictive-quality computational modeling
of heterogeneously catalyzed reactions has
emerged as an important tool for the anal-
ysis and assessment of activity and activity
trends. In contrast, more subtle selectivities
and selectivity trends still pose a significant
challenge to prevalent microkinetic modeling
approaches that typically employ a mean-field
approximation (MFA). Here, we focus on CO
hydrogenation on Rh catalysts with the possible
products methane, acetaldehyde, ethanol and
water. This reaction has already been subject
to a number of experimental and theoretical
studies with conflicting views on the factors
controlling activity and selectivity towards the
more valuable higher oxygenates. Using ac-
celerated first-principles kinetic Monte Carlo
(KMC) simulations and explicitly and sys-
tematically accounting for adsorbate-adsorbate
interactions through a cluster expansion ap-
proach, we model the reaction on the low-index
Rh(111) and stepped Rh(211) surfaces. We

find that the Rh(111) facet is selective towards
methane, while the Rh(211) facet exhibits a
similar selectivity towards methane and ac-
etaldehyde. This is consistent with the ex-
perimental selectivity observed for larger, pre-
dominantly (111)-exposing Rh nanoparticles
and resolves the discrepancy to earlier first-
principles MFA microkinetic work that found
the Rh(111) facet to be selective towards ac-
etaldehyde. While the latter work tried to
approximately account for lateral interactions
through coverage-dependent rate expressions,
our analysis demonstrates that this fails to suffi-
ciently capture concomitant correlations among
the adsorbed reaction intermediates that cru-
cially determine the overall selectivity.
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crokinetic modeling, kinetic Monte Carlo, den-
sity functional theory
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Introduction

The conversion of syngas (CO and H2) into
hydrocarbons and oxygenates is attractive as
an alternative source of fuels and chemicals.
However, selectivity towards the more useful
higher oxygenates such as ethanol and acetalde-
hyde remains challenging, with methane being
a common undesired product.1,2 Many theoret-
ical and experimental works have focused on
understanding and tuning especially the selec-
tivity of Rh catalysts, as Rh is generally recog-
nized as one of the most promising elemental
catalysts for the direct synthesis of higher oxy-
genates. It has now become clear that pure Rh
catalysts are intrinsically selective towards pri-
marily methane and acetaldehyde,3,4 whereas
ethanol synthesis requires promotors such as Fe
or Mn.3,5–9

Recent experimental works have suggested
that there is an inverse relationship between
activity and selectivity for pure Rh catalysts,
where an overall higher activity (CO conver-
sion) correlates with a lower selectivity towards
acetaldehyde. Explanations offered for this
trend are, however, conflicting. Yang et al. have
suggested, based on density-functional theory
(DFT) and mean-field microkinetics, that it is
the nature of the active sites exposed by the
catalyst nanoparticles that is the deciding fac-
tor, with step sites being highly active and se-
lective towards methane and terrace sites being
less active and selective towards acetaldehyde.3

This view was recently challenged by Schu-
mann et al.4 They synthesized Rh nanoparticles
of different sizes and found that it is primarily
small particles below 2 nm that exhibit high
acetaldehyde selectivity and low activity, while
the larger particles above 5 nm are the most
active and selective towards methane. The sur-
face fraction of edge/corner sites increases for
smaller particles and was found to closely follow
the selectivity trends. While this could indicate
that step or corner sites are the active sites for
acetaldehyde synthesis, Schumann et al. pro-
posed instead that the smaller particles support
a much higher local CO coverage at both ter-
race and step sites, which limits the activity due
to poisoning, but increases the acetaldehyde se-

lectivity by driving C + CO coupling reactions.
The conflicting views offered in the literature

clearly call for more thorough theoretical in-
vestigations and improved microkinetic models
that can account for the effects of high surface
coverages and concomitantly increased lateral
adsorbate-adsorbate interactions. In the mean-
field study carried out by Yang et al. coverage-
dependent rate equations were parametrized
and employed to mimic such interactions. How-
ever, it is well recognized in the literature that
mean-field kinetics cannot properly account for
effects of correlations and fluctuations, includ-
ing fluctuations in the local coverage.10–13 A
more accurate approach is KMC simulations us-
ing a cluster expansion (CE) to treat lateral in-
teractions.14–18 Unfortunately, this can become
very expensive for complex lateral interaction
models and large disparities in the time scales
of the different processes. In a recent work by
Chen et al. on syngas conversion at the Rh(111)
surface, some of these challenges were avoided
by making the assumption that there is a clear
time scale separation between fast diffusion pro-
cesses and slow reactions such that the system
can be solved by alternating between separate
KMC and mean-field models.19 This assump-
tion may, however, not always be applicable as
we will show in this work and as it has also been
demonstrated in previous literature works.10,20

In this work we revisit the question of the role
played by step and terrace sites for activity and
selectivity trends in syngas conversion over Rh
catalysts. We consider the pristine Rh(211) and
Rh(111) facets, which are representative of step
and terrace sites found at larger nanoparticles
where finite-size effects do no longer play a large
role. Owing to recent methodological develop-
ments in our in-house KMC code kmos21 con-
cerning the efficient modeling of lateral interac-
tions and the implementation of an acceleration
algorithm22,23 to tackle the time-scale disparity
problem, we are able to carry out full-blown
KMC simulations employing a CE model for
lateral interactions. The results with and with-
out account of lateral interactions are compared
to corresponding mean-field kinetics.

The main finding of our work is that – in
contrast to previously parametrized coverage-
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dependent mean-field models – KMC simula-
tions that explicitly and systematically account
for lateral interactions are able to correctly
capture the experimental selectivity trends for
large nanoparticles. We show and rationalize
why in some cases the lateral interactions have
a huge effect on the results (Rh(111) facet),
whereas in other cases the effects are negligi-
ble (Rh(211) facet). The finding of a break-
down of mean-field kinetics is not restricted
to models with lateral interactions. In fact,
we show that also in the absence of lateral
interactions, reaction-induced inhomogeneities
and diffusion limitations can cause the mean-
field-predicted activities to deviate substan-
tially from the KMC results (Rh(211) facet).
Finally, we show that in order to reach a quan-
titative agreement with both the selectivity and
the activity trends observed in experiments, we
need to correct for well-known errors in DFT-
predicted adsorption energies such as the per-
sistent overbinding of CO with standard semi-
local DFT functionals.24–26

Methods

Reaction model and parametriza-
tion

The reaction networks employed for the
Rh(211) and Rh(111) facets are shown in
Figure 1 and were inspired by the work of
Yang et al.3 As in our previous works on CO
hydrogenation over stepped metal surfaces,23,27

and extending over the work of Yang et al., we
use a highly resolved active site representation
for the Rh(211) facet consisting of a terrace
site t, an upper step site s and a lower four-fold
coordinated step site f . Only the two latter
sites were considered by Yang et al. The full
reaction networks we employed can be found
in Section S1 of the Supplementary Informa-
tion (SI). DFT data calculated at both low and
high CO coverage were taken from Yang et al.
and used to parametrize a CE model, which is
used in connection with the KMC simulations.
Some additional DFT calculations were carried
out by us using the Quantum Espresso code28

with the BEEF-vdW functional29 and the exact
same numerical settings as used by Yang et al.,
see Section S2 in the SI.

Adsorption energies are referenced to CO,
H2O and CH3OH using the formation energy
approach

Ex
form = Ex

slab+ads − Eslab −
∑
i∈x

nx
i µi ,

with the formation energy Ex
form of adsorbate x,

the total energy of the adsorbed species on the
slab Ex

slab+ads, that of the clean slab Eslab, and
the gas phase reference energy µi of atom i as
well as the occurrence nx

i of atom i in the adsor-
bate x. Adsorbate-adsorbate interactions are
incorporated using a CE which is terminated
after the first term corresponding to pairwise
nearest neighbor interactions

EM
form =

∑
x∈M

nM
x E

x
form +

∑
j

kMj εj ,

with the occurrence nM
x and formation energies

Ex
form of the individual adsorbates x in struc-

ture M and the occurrence kMj and interaction
energy εj of the pairwise interaction j. The
interaction energies (cf. Table S2 in the SI)
are obtained by solving a set of linear equa-
tions for a number of different structures M .
As the surface at the investigated conditions
is mostly covered with CO, we consider only
self-interactions between the CO molecules, in-
teractions between CO and the remaining ad-
sorbates (except H), as well as selected other
interactions (e.g. between C and CH at the f
site) following Yang et al. All other interactions
are neglected due to their low probability of oc-
currence. Following common practice,3,30 H is
adsorbed at special ”hydrogen reservoir” sites,
which reflects the assumption that it can inter-
calate into sublattice sites because of its smaller
size compared to the other adsorbates. In the
KMC models, we implement this by treating
H in a mean-field ansatz, following our previ-
ous work.23 This means that it is not an ac-
tual species but only represented via an effec-
tive H coverage. We use different energetics
(and thereby coverage) depending on whether
the H atom is involved in reactions taking place
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Figure 1: Reaction networks of (a) the Rh(211) and (b) the Rh(111) KMC models, excluding
diffusion steps (these connect e.g. OH∗t and OH∗s). For hydrogenation reactions an additional
H∗S/T species is implied. On the right side of the dashed line in (a) are shown the elementary steps
occurring on the s sites (orange) and on the left side the corresponding reactions on the t sites
(blue). Adsorbates on f sites are shown in white and gaseous molecules are shown in gray. Images
of the corresponding Rh(211) and Rh(111) facets with the respective sites are shown in (c) and (d).
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at an s or a t site (for H we denote these reser-
voir sites as S and T sites both in the KMC and
mean-field models). Our treatment thereby im-
plicitly assumes that there are no spatial corre-
lations in the distribution of H at the surface,
which should be a good approximation when
taking into account that H diffusion and ad-
sorption/desorption are fast processes. Note,
however, that the assumption that H does not
block any surface sites, nor interacts with the
other adsorbates, would most likely break down
under high-pressure reaction conditions.

For the rate constants of elementary steps
corresponding to adsorption, desorption, reac-
tion, and diffusion, we used standard expres-
sions including zero-point energies and other
enthalpy/entropy corrections within the har-
monic approximation (adsorbates and transi-
tion states) or the ideal gas approximation (gas
species) from the thermochemistry module of
the Atomic Simulation Environment software
package,31,32 cf. our previous work.23 Vibra-
tional frequencies are taken from Yang et al.3

In our previous work,23 diffusion steps of CO,
O, OH, CH, CH2, and CH3 were found not to
be rate-limiting and therefore we stick to ap-
proximate barriers calculated for Re(0001) from
Hahn et al.33 For same-site diffusion of C at f
sites and CH at t sites we use values calculated
for Rh(211) from our previous work.23 Diffu-
sion of all other species is neglected. To allow
for comparison of our simulations to those of
Yang et al.,3 we use the same reaction condi-
tions of pCO = 13.33 bar, pH2 = 6.66 bar, and
pH2O = pCH4 = pCH3CHO = pCH3CH2OH = 0 bar at
the three different temperatures 523 K, 585 K,
and 650 K.

In order to model the effect of lateral in-
teractions on the reaction kinetics during the
simulations, the energy barriers Ea of the ele-
mentary steps for the possible lattice configura-
tions are linearly approximated using Brønsted-
Evans-Polanyi (BEP) relations34,35

Ea = α (∆EFS −∆EIS) + Ea
0 ,

with the energy shift ∆EFS (∆EIS) of the fi-
nal (initial) state due to lateral interactions, the
zero-coverage barrier Ea

0 , and the parameter α

with values in the interval [0, 1] representing a
reactant like (0) or product like (1) transition
state. DFT-calculated energetics for determin-
ing the α parameters shown in Table S3 are
taken from Yang et al. and Andersen et al.3,23

Although BEP relations entail some energetic
uncertainty, the magnitude is on the order of
the error introduced by semi-local DFT.14 The
approach of combining CE with BEP relations
is used across different KMC frameworks and
effectively reduces the computational burden
for the inclusion of lateral interactions. Previ-
ous studies employing this approach were able
to quantitatively capture experimental obser-
vations without the need to explicitly calculate
all possible lattice configurations, which is espe-
cially critical with an increasing number of sites
and adsorbates in the reaction network under
consideration.14,36–38

Kinetic Monte Carlo

The KMC simulation technique allows for a nu-
merical solution to the time evolution of the
spatial distribution of the adsorbates on the
coarse-grained sites of the catalytic surface,
along with related properties such as the occur-
rence of individual reaction pathways and the
catalytic activity and selectivity in terms of the
turn-over-frequencies (TOFs) for the formation
of the reaction products. Since individual el-
ementary steps are executed step-by-step with
probabilities reflected by their rate constants,
KMC can suffer from a performance bottleneck
in case of processes that occur on disparate
timescales, e.g. fast diffusion and slow reactions.
This timescale disparity challenge is here tack-
led through an acceleration algorithm devel-
oped by Dybeck et al.22 In a recent work23 we
implemented this algorithm in the kmos code21

and used it to study trends in CO methanation
activity over stepped transition metals. While
some challenging cases where observed, the al-
gorithm was found to work well for the mainly
CO-covered Rh(211) facet. Our previous work
disregarded lateral interactions, however, and
these can play an important role on the out-
come of a reaction as shown in this work. Both
repulsive and attractive interactions with neigh-
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boring adsorbates can alter the energetics of el-
ementary steps and lead to changes in their in-
dividual rates. In this work we used the acceler-
ation algorithm in connection with the recently
developed on-the-fly backend in kmos.39,40 This
backend features increased performance and re-
duced memory requirements for models with
many lateral interactions compared to the orig-
inal backend, since the rates of processes af-
fected by lateral interactions are calculated at
runtime according to the above-mentioned CE
model and BEP relations.

The error bars for the TOFs are obtained
from a Bayesian error analysis. Reactions in
KMC follow the Poisson distribution

P (n|v) =
e−vvn

n!
,

where P (n|v) is the probability for observing n
turnovers during a fixed simulation time t, given
the expected value v. Here, we are rather inter-
ested in calculating the probability distribution
for v, given a (possibly small or even zero) num-
ber of observed turnover events n. This pos-
terior distribution can be obtained via Bayes
theorem

P (v|n) =
P (n|v)P0 (v)∫∞

0
P (n|v)P0 (v) dv

=
e−vvnP0 (v)∫∞

0
e−vvnP0 (v) dv

with the prior probability distribution P0 (v),
which we assume to be a constant C as there
is no a priori information on the TOF. To nor-
malize P0 (v) we set a vmax, i.e. C = 1/vmax, to
a value high enough that the following approx-
imation holds

e−vvn∫ vmax

0
e−vvndv

≈ e−vvn∫∞
0
e−vvndv

=
e−vvn

n!
.

This gives the posterior probability distribution

P (v|n) =
e−vvn

n!
,

which is also a Poisson distribution. Note that
this also gives us the probability distribution
for the TOF, since the TOF is simply v divided

by the simulation time t. The most likely value
of the TOF is determined from the maximum
of the posterior distribution, and the upper and
lower bounds of the error bars are obtained as
the smallest credible interval that contains 99%
of the total probability mass.

Sensitivity analysis was carried out by calcu-
lating the degree of rate control (DRC) pro-
posed by Campbell and coworkers41 for each
TS i (XRC,i)

XRC,i =

(
∂ ln r

∂
(−Gi

RT

))
Gj 6=i

with the rate r, the free energy Gi of TS i, the
universal gas constant R and the absolute tem-
perature T . In KMC the derivative was ap-
proximated by the finite-difference expression

XRC,i =
(

ln r+−ln r−
−0.2 eV

RT

)
Gj 6=i

with r+ (r−) being the

rate for an increase (decrease) of the TS energy
by 0.1 eV. For the determination of the asso-
ciated error bars, the respective upper v+ and
lower bounds v− of the 99% credible interval
for the two energy modifications are combined
to contain v+ of one and v− of the other simula-
tion and vice versa. The upper (lower) limit of
the selectivities of methane, acetaldehyde, and
ethanol are obtained by considering v+ (v−) of
the 99% credible interval of one product and the
respective v− (v+) of the other two products.

The pair probabilities of second order pro-
cesses are obtained by storing the time-
integrated counts of lattice configurations in
which the process can be executed over the en-
tire simulation, and the counts are then normal-
ized by the total simulation time and the size of
the system. All simulations were run for 5×107

steps to reach a steady-state and subsequently
until 11 (Rh(111)) or 26 turnovers (Rh(211)) of
acetaldehyde were observed or the total KMC
simulation time reached one week. The simula-
tions were carried out using a (10×10) lattice
for Rh(211) and a (25×25) lattice for Rh(111)
with periodic boundary conditions. Further
details about the KMC simulation settings and
the convergence tests carried out for both the
lattice size as well as the parameters employed
in the acceleration algorithm can be found in

6



Section S3 of the SI.

Mean-field microkinetic modeling

For comparison to the KMC simulations, we
also carried out microkinetic simulations using
the CatMAP software package.42 CatMAP em-
ploys the MFA, meaning that the spatial dis-
tribution of the adsorbates is further coarse-
grained into a mean coverage of each site type,
thereby also neglecting coverage fluctuations
around the mean. This results in a set of
coupled rate equations, which are solved at
steady state. All of our MFA simulations
were performed without lateral interactions, as
the parametrization of coverage-dependent rate
equations is not a topic of this work. We em-
phasize that the MFA simulations used exactly
the same reaction network and adsorption en-
ergetics as our KMC simulations, so that differ-
ences between both simulation approaches are
entirely due to the MFA employed in the prior.

Results and discussion

We begin by presenting MFA and KMC results
for the Rh(211) facet in Figure 2a. The KMC
results are reported at three different tempera-
tures without (left offset) and with (right off-
set) lateral interactions. Without lateral in-
teractions, a comparison of our MFA results
(solid lines) and KMC results (left offset) re-
veals that the activities are slightly overesti-
mated in the MFA model by about a factor of
2.7-6.0 and that both models show similar selec-
tivity trends towards methane rather than ac-
etaldehyde. Ethanol turnovers are not observed
in the KMC simulations - hence the large er-
ror bars - which is consistent with the very low
TOFs obtained in the MFA model. We will
come back to the reason for the differences in
actual TOF prediction between MFA and KMC
below.

Turning to the effect of lateral interactions,
we can observe from the KMC results that they
do not influence the TOFs much. Our MFA re-
sults are only presented without lateral inter-
actions as the parametrization of these are not

available for our modified active site represen-
tation. However, in the original Rh(211) MFA
model from Yang et al. (see Figure S1 in the
SI), lateral interactions do influence the TOFs,
especially at lower temperatures. At 523 K the
difference ranges from a factor of about 300 for
ethanol to about 4000 for acetaldehyde.

Before diving into a deeper analysis of the dif-
ferences between the different models for the
Rh(211) facet, we present also the TOFs for
the Rh(111) facet, see Figure 2b. This facet
contains only a terrace site, and thus the active
site representation and reaction network we em-
ploy (cf. Section S1.3 in the SI) is in this case
completely identical to that of Yang et al. Com-
paring the MFA results with and without inter-
actions (dotted and solid lines) we can see that
for this facet the influence of the lateral inter-
actions is huge – at all temperatures the cata-
lyst is essentially inactive if lateral interactions
are not taken into account. Furthermore, it is
surprising to note that the lateral interactions
in the MFA model, which were parametrized
using a second-order expansion in the cover-
age, give rise to a change in the selectivity
trends. That is, without interactions the cat-
alyst is always selective towards methane, but
with interactions the catalyst is selective to-
wards acetaldehyde at the experimentally rele-
vant temperature below about 600 K. We recall
that the MFA results for Rh(211) and Rh(111)
with interactions were used by Yang et al.
to propose that the activity-selectivity trends
obtained with experimentally synthesized Rh
nanoparticles are caused by varying amounts of
step and terrace sites at these particles, where
step (terrace) sites would then be the active
sites for methane (acetaldehyde) formation, re-
spectively.3

However, as discussed in the introduction,
this explanation was recently challenged by
Schumann et al.4 based on new and more de-
tailed experiments that showed that large par-
ticles above 5 nm, which are expected to pre-
dominantly expose the Rh(111) facet, are ac-
tually selective towards methane and not ac-
etaldehyde. Interestingly, we can fully confirm
this from our KMC simulations with lateral in-
teractions, where at all simulated temperatures

7



a) b)

Figure 2: TOFs as a function of the temperature for (a) the Rh(211) and (b) the Rh(111) facet
for CH4 (blue), CH3CHO (orange), and CH3CH2OH (black). The MFA results without (with)
lateral interactions are shown with solid lines (dotted lines) and the KMC results are shown at
523 K, 585 K, and 650 K (dashed vertical lines) without (left offset) and with (right offset) lateral
interactions. The blue diamond at 523 K is the experimentally measured total TOF (primarily
methane) of the largest nanoparticles with diameters above 5 nm from Schumann et al.4

we find that the Rh(111) facet is indeed selec-
tive towards methane, see Figure 2b. Without
interactions we do not observe any meaning-
ful TOFs for any of the products (not shown),
which is consistent with the very low TOFs ob-
tained in the MFA model without interactions.
Thus, our KMC results confirm that lateral in-
teractions are of paramount importance for the
Rh(111) facet, but the CE used to parametrize
these interactions in KMC gives qualitatively
different results to the MFA-parametrized lat-
eral interaction model. Importantly, only the
explicit site-resolving KMC results are able to
reproduce the experimentally observed selectiv-
ity trends for large particles. The case of small
particles is outside the scope of the present work
as the low-index Rh(211) and Rh(111) surfaces
mainly represent step and terrace sites at larger
particles free from finite-size effects.

We believe that the shortcomings of the MFA
model for both Rh(211) and Rh(111) are caused
by the well-known problems of these models
with accounting for effects of correlations and
fluctuations, including fluctuations in the local

coverage.10–13 In the following we exemplarily
analyse this for the Rh(211) surface without in-
teractions. This analysis starts by performing a
sensitivity analysis to identify the rate-limiting
steps (RLSs) of the two models. As shown in
Figure 3, the RLS for both the methane and the
acetaldehyde pathways is mainly water forma-
tion at the t site in the KMC model, whereas for
the MFA model it is mainly methane formation
and CH-CO coupling at the s site. The sensi-
tivity analysis for the KMC model with interac-
tions (see Figure S3 in the SI) is very similar to
that of the KMC model without interactions.

Since a breakdown of the MFA is typically as-
sociated with second-order reaction steps where
correlations in the spatial distribution of the
two reacting species at the surface occur,23 we
next evaluate the pair probabilities for selected
elementary steps from our KMC simulations. In
Figure 4 we plot the ratio between the KMC-
simulated pair probability to find the react-
ing species A and B at neighboring sites and
the MFA-assumed probability equal to c[A][B],
where c is a geometric factor (the site connec-
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Figure 3: Sensitivity analysis of the KMC (blue
points) and MFA (orange points) models for
Rh(211) without lateral interactions, showing
the DRC for CH4,(g) (bottom) and CH3CHO(g)

(top) of selected transition states. The analysis
is performed at 650 K.

tivity) and [A] ([B]) is the surface coverage of
species A (B). It is seen that the MFA indeed
breaks down for several of these steps, i.e. the
ratio is significantly different from one. In par-
ticular, we note that the MFA breaks down for
the reaction between C at the f site and OH
at the t site to form CO at the t site and H.
This is the reverse of the CO dissociation step,
which is executed just before the RLS in the
KMC model where OH at the t site is further
hydrogenated to form water. The probability of
finding the two reactant species, C∗f and OH∗t ,
next to each other is about 57 times larger in
KMC than in MFA. This is caused by the high
barrier for C to diffuse along the step and the
high CO coverage at the t site, which effectively
hinders OH diffusion at the t sites, cf. our previ-
ous work on the comparison of MFA and KMC

models for CO hydrogenation at stepped met-
als.23

Figure 4: Ratio between KMC and MFA prob-
abilities to find the pair of reacting species in
selected second-order reaction steps at neigh-
boring sites in the Rh(211) model without lat-
eral interactions. The analysis is performed at
650 K.

As a consequence of this persistent correla-
tion, it becomes more probable for C∗f and
OH∗t to react back to form CO∗t and H in
the KMC model compared to the MFA model.
In a free energy diagram, cf. orange and black
lines in Figure 5a, this change in pair proba-
bility can be represented as an increase in the
free energy barrier for the reverse reaction step
of C∗f + OH∗t in the MFA model (orange line)
caused by a decrease in the free energy of the
C∗f + OH∗t state (i.e. a higher configurational
entropy in the MFA-assumed well-mixed state).
Since the free energy barrier for further reac-
tion out of the C∗f + OH∗t state (i.e. water for-
mation at the t site) is unchanged, the effec-
tive barrier in the MFA free energy landscape
(difference between H-OH∗t transition state and
CO∗t state) is smaller than the effective bar-
rier in the KMC free energy landscape. This
explains the larger TOF obtained in the MFA
model and the change of the RLS from water
formation at the t site to methane formation
and CH-CO coupling at the s site (the latter
steps are not shown in Figure 5a).

From the free energy diagram in Figure 5a
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a) b)

Figure 5: Free energy diagrams for the CO dissociation and water formation pathways in the (a)
Rh(211) and (b) Rh(111) KMC model without (black) and with (blue) lateral interactions. In
(a) the orange curve represents the modified probability for the reverse CO activation step in the
MFA model without interactions (see text). The energy levels with lateral interactions for Rh(211)
and CO desorption for Rh(111) are determined by the average barriers of the up to 10,000 last
executed events of each process. For the remaining levels at Rh(111) we do not have enough
statistics, e.g. the back reaction of CH and OH to form CHOH never occurs. Since these steps are
mostly executed from the surface configuration illustrated in Figure S5 where each CO has three
neighboring CO molecules, we instead determined the energy levels and barriers specifically for this
surface configuration. The analyses are performed at 650 K.

we can also explain why the KMC TOF and
RLS for both methane and acetaldehyde forma-
tion at the Rh(211) facet does not change much
upon inclusion of lateral interactions. As seen
by comparing the black curve (without interac-
tions) and the blue curve (with interactions),
the free energies of the states that determine
the effective barrier (H-OH∗t transition state
and CO∗t state) move up in energy by a similar
amount as a consequence of interactions, caus-
ing the effective barrier and TOF to remain at
a similar value. The detailed lateral interaction
parameters at play in the two states are illus-
trated in Figure S4 in the SI.

While unimportant for the Rh(211) model,
we already mentioned above that lateral inter-
actions do have a huge effect on the Rh(111)
model, and we will next analyze why this is the
case. The free energy diagram with and with-
out lateral interactions for the Rh(111) facet
is shown in Figure 5b. The biggest difference
compared to the Rh(211) facet is that here lat-
eral interactions actually push the free energy
of the CO∗t state up close to the free energy of
gas-phase CO. Thereby, the average CO cover-
age decreases from around 100% without inter-
actions to about 62% with interactions at the
analyzed temperature of 650 K, cf. Section S3.3

in the SI. In Figure 5b the CO∗t state is split
into two levels since CO desorption primarily
happens from a local high-coverage state where
on average 5.1 out of 6 neighboring sites are
occupied by CO, whereas hydrogenation of CO
primarily happens from a lower-coverage state
where only 3 neighboring sites are occupied by
CO. The average coverage pattern with about
2/3 CO coverage resembles a honeycomb lattice
of CO molecules as illustrated in Figure S5 in
the SI. The RLS for both methane and acetalde-
hyde formation in the model with interactions
is primarily dissociation of CHOH to form CH
and OH (and for acetaldehyde also the CH2CO
hydrogenation step), cf. Figure S6 in the SI.

For Rh(111), the profound impact of lateral
interactions on the simulation results cannot
be explained by a change to the effective free
energy barrier (i.e. the difference between the
rate-limiting CH-OH∗t TS and the CO∗t state
in Figure 5b), since this barrier decreases with
only around 132 meV upon inclusion of lateral
interactions. Rather, the important point is
that for CHOH to dissociate, a neighboring t
vacancy is required. Without lateral interac-
tions, the surface is completely poisoned with
an average CO coverage close to 100%. Thus,
the probability for CHOH dissociation to oc-
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cur is negligible, which explains why no product
formation could be observed in the KMC sim-
ulations. With interactions, however, a formed
CHOH will on average have 3 CO and 3 va-
cancy neighbors (see Figure S5 in the SI), which
makes the dissociation reaction possible. For
the Rh(211) facet a similar CO poisoning is not
observed, since here CO dissociation relies on a
vacant f site, and the vacancy coverage of the
f sites remains high even without lateral inter-
actions, cf. Table S4.

Up until now, we have shown that the MFA
can break down both in the absence of lat-
eral interactions (analyzed for the Rh(211) facet
where the TOFs are overestimated in the MFA
model compared to KMC) and in the presence
of lateral interactions (analyzed for the Rh(111)
facet where wrong selectivity trends are ob-
tained in the MFA model compared to experi-
ments). However, even if the KMC model does
recover the experimental selectivity trends, the
absolute TOF predicted by both the KMC
model and the MFA model is not in good agree-
ment with the experiments.

In Figure 2a and Figure 2b we mark with
a blue diamond the total TOF (primarily
methane) measured for the largest Rh nanopar-
ticles investigated by Schumann et al.4 It is
larger by about five orders of magnitude com-
pared to the Rh(211) KMC simulation with lat-
eral interactions (cf. Figure 2a) and by about
5-6 orders of magnitude for the Rh(111) KMC
and MFA simulations with lateral interactions
(cf. Figure 2b). The consistent, gross underesti-
mation of the TOF by both KMC and MFA and
for both investigated facets leads us to suspect
that this discrepancy has its origin in the DFT
calculations used to parametrize the kinetic
models. In particular, it is well-known that gen-
eralized gradient approximation (GGA) func-
tionals tend to overbind CO on transition met-
als,26 e.g. the CO adsorption energy obtained
with the here employed BEEF-vdW functional
for Rh(111) (−1.7 eV) is by 0.25 eV stronger
than the experimental value (−1.45 eV25,43).
Since the state with CO adsorbed at a terrace
site directly influences the effective barrier of
the reaction, cf. Figure 5, this error directly in-
fluences the obtained TOF.

In order to assess the possible implications
of this error, we show in Figure 6 the TOFs
and selectivities obtained for the Rh(211) and
Rh(111) facets for both the hitherto discussed
base model and a model where the CO adsorp-
tion energies are increased by 0.25 eV (Eads

CO ↑).
This already improves the agreement with ex-
periments significantly, i.e. the TOF predicted
for the Rh(211) facet (Rh(111) facet) is now
only about two (three) orders of magnitude
lower than the experiment. Of course, this anal-
ysis neglects the fact that there could also be
errors associated with other rate-controlling pa-
rameters in our kinetic model, e.g. the tran-
sition state for water formation at the terrace
site or lateral interaction parameters affecting
either the latter transition state or the CO ad-
sorption energy. Since we do not know in which
direction such other errors might point, we show
as an example in Figure 6a and Figure 6b also
results where the interaction parameter for self-
interactions between the CO molecules at t
and s sites are increased (εCO ↑) or decreased
(εCO ↓) by 50 meV from their base values. An
error of this magnitude seems quite reasonable
since we use an approximate CE that is ter-
minated after pairwise nearest neighbor inter-
actions. Taking these results as plausible ”er-
ror bars” on the theoretical results, we can now
reconcile theory with experiment to the extent
that the experimental TOF lies within (admit-
tedly rough) error bars on the theoretical val-
ues for the Rh(211) facet. In reality, the ex-
perimentally used nanoparticles of course con-
tain both step and terrace sites, and the ac-
tual TOF measured might be the result of an
interplay between reaction steps taking place
at both site types. Such bifunctional effects
have been previously discussed in the litera-
ture,44,45 and have indeed recently been demon-
strated theoretically for e.g. CO oxidation at
Pt nanoparticles46 and hydrogen evolution re-
action at jagged Pt nanowires.47 The finding
here that the TOF is largest, and in best agree-
ment with experiment, on the Rh(211) facet is
related to the facile hydrogen-assisted CO dis-
sociation at the step sites exposed by this facet.
However, the subsequent rate-controlling water
formation step takes place at the terrace site,
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thus, both types of sites are required for a high
activity. An analysis of how this would play
out at realistic nanoparticle geometries will be
an intriguing topic for future work.

Comparing the experimental selectivities
shown as dashed horizontal lines in Figures 6c
and 6d with the theoretical selectivities reveals
that for both facets variations in the adsorp-
tion energies and interaction energies (as well
as combinations) bring the selectivities closer
to the experimental measurements. The ob-
served trend of an increase in the acetaldehyde
selectivity with a destabilization of adsorbed
CO for both Rh(211) and Rh(111) is caused
by a decrease of the effective barriers in the
acetaldehyde pathways involving the RLSs of
CH-CO coupling (for Rh(211) as shown in Fig-
ure 3) and CH2CO hydrogenation (for Rh(111)
as shown in Figure S6). Nevertheless, for all
parameter modifications, our results robustly
indicate that the Rh(111) facet is selective to
methane, whereas the Rh(211) facet exhibits
a similar selectivity to methane and acetalde-
hyde. Given that realistic 5 nm nanoparticles
will dominantly expose the Rh(111) facet, as
well as step and corner sites to a smaller extent,
the sum of the theoretical selectivity trends
should overall result in a methane selectivity
in quite good agreement with the experimental
measurements.

Conclusions

We investigated the CO hydrogenation reaction
on Rh(111) and Rh(211) using accelerated first-
principles KMC simulations with and without
lateral interactions parametrized from a clus-
ter expansion model. The results are com-
pared to MFA simulations from Yang et al.3

with and without coverage dependence in the
rate expressions. The coverage-dependent MFA
model predicts acetaldehyde selectivity for the
Rh(111) facet below ∼580 K, which is however
in contrast to the KMC simulations with lateral
interactions that predict methane selectivity at
all temperatures. Importantly, only the KMC
results are in agreement with recent detailed ex-
perimental investigations on selectivity trends

of Rh nanoparticles from Schumann et al.4

The inclusion of lateral interactions are found
to have a huge effect on the Rh(111) simu-
lations. We explain this from the fact that
the RLS in this model (CHOH dissociation) re-
quires a neighboring vacant terrace site, which
is a probable lattice configuration only when
taking into account the reduction of the sur-
face CO coverage caused by repulsive CO-CO
interactions. In contrast, for the Rh(211) model
we find that the TOF and RLS (water forma-
tion at the terrace site) are only weakly affected
by lateral interactions. This is explained from
similar surface coverages with and without lat-
eral interactions and from the fact that interac-
tions shift the two states controlling the effec-
tive barrier in the dominant reaction pathway
by similar amounts, leading to net similar effec-
tive barriers with and without interactions. For
Rh(211) we furthermore show that the MFA
breaks down also in the absence of interac-
tions due to diffusion limitations and reaction-
induced lattice inhomogeneities. This leads to
higher TOFs and changes in the RLSs in the
MFA model compared to the KMC model.

Finally, we compare the overall activities
(methane and acetaldehyde TOFs) to the ex-
perimental measurements from Schumann et al.
We find that we need to correct for the well-
known CO overbinding of GGA functionals
(about 0.25 eV for the here applied BEEF-vdW
functional) in order to approach agreement with
the experiments. This correction also improves
the quantitative agreement with the carbon
selectivites obtained by Schumann et al. In
particular, it leads to a larger increase in the
acetaldehyde TOFs compared to the methane
TOFs for both Rh(211) and Rh(111) since the
effective barrier of the acetaldehyde pathway in-
volves CO both in the CO activation step lead-
ing to CHx species at the surface (i.e. the step
shared with the methane pathway) and in the
subsequent step where the formed CH species
reacts with another CO.

Overall, the insights obtained in this work
could be relevant for further tailoring heteroge-
neous catalysts to improve their selectivity to-
wards the desired higher oxygenates acetalde-
hyde and ethanol. The methodological ad-
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a) b)

c) d)

Figure 6: Variations in predicted KMC TOFs for (a) the Rh(211) and (b) the Rh(111) facet and
corresponding carbon selectivities for (c) the Rh(211) and (d) the Rh(111) facet with modifications
to the DFT parameters in the models with lateral interactions (see text). Results are shown for
CH4 (blue), CH3CHO (orange), and CH3CH2OH (black). ”base” represents the unmodified results
also shown in Figures 2a and 2b. The dashed horizontal lines are the experimentally measured total
TOF (primarily methane, (a) and (b)) and selectivities ((c) and (d)) of the largest nanoparticles
with diameters above 5 nm from Schumann et al.4 Both the theoretical and the experimental results
are obtained at 523 K.
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vances demonstrated here, i.e. the combination
of acceleration algorithms in KMC with efficient
modeling of lateral interactions, open up possi-
bilities for treating also complex reaction net-
works at a level of detail beyond the hitherto
applied approximate MFA models. This is im-
portant in order to achieve reliable mechanistic
insights as a solid basis for the rational design
of selective catalysts.

Supporting Information Avail-

able

Supporting Information. Additional de-
tails on the compared microkinetic mod-
els, DFT, and KMC. This material is avail-
able free of charge via the internet at
http://pubs.acs.org. Input files for the kmos
simulations for the different models together
with additionally calculated DFT geome-
tries are available at https://github.com/m-
deimel/CO hydrogenation.git.
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