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Strychnineis a natural product that, throughisolation, structural elucidation and
synthetic efforts, shaped the field of organic chemistry. Currently, strychnine is used
as a pesticide to control rodents' because of its potent neurotoxicity>. The polycyclic

architecture of strychnine has inspired chemists to develop new synthetic
transformations and strategies to access this molecular scaffold*, yet it is still
unknown how plants create this complex structure. Here we report the biosynthetic
pathway of strychnine, along with the related molecules brucine and diaboline.
Moreover, we successfully recapitulate strychnine, brucine and diaboline
biosynthesis in Nicotiana benthamiana from an upstream intermediate, thus
demonstrating that this complex, pharmacologically active class of compounds can
now be harnessed through metabolic engineering approaches.

Strychnine—a complex monoterpene indole alkaloid—was isolated
in 1818 from the seeds of Strychnos nux-vomica (poison nuts)’, which
were used in traditional medicine in China and South Asia. Currently,
strychnineis used as a pesticide' because of its neurotoxicity, which is
mediated by high-affinity binding to the glycine receptor®>. Approxi-
mately 130 years after its isolation, the structure of strychnine was
independently elucidated by Robinson in1946 (refs. ’) and Woodward
in1947 (ref. ®). Robinson noted that ‘for its molecular size, it is the most
complex substance known”. For centuries, strychnine had alarge role
inthefield of chemistry throughitsisolation, structural elucidation and
synthesis (Supplementary Fig. 1). Its polycyclic architecture inspired
chemists to develop new synthetic transformations and strategies,
and ultimately led to a number of total syntheses* since the first semi-
nal total synthesis in 1954 (ref. °). Surprisingly, it is still unknown how
plants create this complex structure. Here we report the biosynthetic
pathways of strychnine, brucine and diaboline.

A partial biosynthetic hypothesis of strychnine was proposed
in 1948 (ref."), which was substantiated by feeding studies of
radioisotope-labelled substrates in S. nux-vomica™ . These labelling
studies demonstrated that, like all monoterpene indole alkaloids,
strychnine 10 originates from tryptophan and geranyl pyrophosphate®.
These starting materials are converted to two central intermediates,
first geissoschizine 1and then, through a series of unknown steps, to
Wieland-Gumlich aldehyde 6 (refs. ** and Fig. 1; see Supplementary
Fig. 2 for full biosynthetic hypothesis). Wieland-Gumlich aldehyde
6 has been proposed to be converted to strychnine 10 through the
incorporation of acetate to formthe piperidone moiety, although the
mechanism of acetate incorporation and ring cyclization has remained
unclear?®(ring G in Fig. 1; see Supplementary Fig. 3 for carbon and
ring annotations). Subsequent hydroxylations and methylations of
strychnine 10 would yield brucine 15 (ref. ' and Fig. 1).

Toidentify strychnine biosynthetic genes, we selected two members
of the Strychnos genus (family: Loganiaceae), one known producer
of strychnine 10, S. nux-vomica” and one non-producer, Strychnos
sp.’®, to investigate this biosynthetic pathway. Metabolic analysis of

S. nux-vomicarevealed the presence of several strychnos alkaloids,
including strychnine 10, isostrychnine 11, B-colubrine 13 and brucine
15, all of which accumulate in the roots (Supplementary Fig. 4). These
alkaloids were absent in the non-producer, although a biosynthetically
related compound, strychnos alkaloid diaboline 8, was detected inits
roots and stems (Supplementary Fig. 5). We generated tissue-specific
RNA-sequencing data from these two plants to enable gene discovery.

The biosynthetic pathway of geissoschizine 1 from tryptophan
and geranyl pyrophosphate has been completely elucidated in the
phylogenetically related plant Catharanthus roseus (family: Apocyn-
aceae) (see Supplementary Fig. 7 for the phylogenetic relationship of
C. roseus and S. nux-vomica). C. roseus produces monoterpene indole
alkaloids unrelated to strychnine®. Ahomologue for each biosynthetic
gene in the geissoschizine 1 pathway was readily identified in the S.
nux-vomicatranscriptome, suggesting that the biosynthetic pathway
of geissoschizine 1is conserved in C. roseus and S. nux-vomica. These
genes are all expressed preferentially in S. nux-vomica roots (Supple-
mentary Fig. 7), consistent with previous feeding studies that suggest
strychnine 10 biosynthesis occurs primarily in the roots>®. Candidate
genes for subsequent steps were selected according to three criteria: (1)
high expressionin the roots of S. nux-vomica (fragments per kilobase
oftranscript per million mapped reads (FPKM) > 20); (2) co-expression
with putative upstream genes; and (3) genes that could encode proteins
with catalytic functions that are consistent with the chemical logic of
our hypothesized biosynthetic pathway (Fig. 2).

The chemical steps for transformation of geissoschizine 1 to
Wieland-Gumlich aldehyde 6 are not known. However, given the
structural similarity between the Wieland-Gumlich aldehyde 6 and
theknown early alkaloid intermediate dehydropreakuammicine 2 (ref.
andFig. 3a), chemical logic suggests that Wieland-Gumlich aldehyde 6
could form from dehydropreakuammicine 2 through ester hydrolysis,
decarboxylation, oxidation and reduction (Supplementary Fig. 2). If
this hypothesisis correct, S. nux-vomica should contain ahomologue
of geissoschizine oxidase, which has also beenisolated from C. roseus
(CrGO). Invitro, CrGO converts geissoschizine 1to akuammicine 3,
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Fig.1| The proposed biosynthesis pathway for strychnine and brucine. The partial biosynthetic pathway was predicted on the basis of previous radioisotopic

feeding experiments. OPP, pyrophosphate; GPP, geranyl pyrophosphate.

presumably through the spontaneous deformylation of dehydro-
preakuammicine 2 (ref. , Fig. 3a and Supplementary Fig. 2). ABLAST
searchusing CrGO asthe query against the S. nux-vomicatranscriptome
identified one hit (transcript cluster 4032.29856; CYP71AY6) with 46%
amino-acid sequence identity (Supplementary Fig. 8) that showed
similar expression profiles with upstream biosynthetic gene candidates
(Fig. 2a). We expressed this gene in N. benthamiana leaves through
Agrobacterium tumefaciens-mediated transient expression followed
by infiltration of geissoschizine 1. Liquid chromatography-mass spec-
trometry analysis of leaf extracts revealed the deformylation product
of dehydropreakuammicine, akuammicine 3 (Fig. 3b and Extended Data
Fig.1). Therefore, cluster 4032.29856 was named SnvGO.
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Fig.2|Expression analysis of candidate genesinS. nux-vomica (strychnine
producer) and Strychnos sp. (diaboline producer). Bothstrychnineand
diabolineare derived from the samebiosyntheticintermediate, the Wieland-
Gumlichaldehyde. a, Expression profiles ofidentified genesin S. nux-vomica. The
expressionof eachidentified geneis represented as the FPKM of S. nux-vomica
transcriptomes. Samplesetsland2representtwo biological replicates.

b, Co-expression analysis using SnvGO as bait in S. nux-vomica. The circle of dots
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Because it is known that decarboxylation of a methyl ester can be
triggered by ester hydrolysis®®, we speculated that an o/p hydrolase?*
would hydrolyse the ester moiety of dehydropreakuammicine 2 and
thereforelead to decarboxylation before spontaneous deformylation
to akuammicine 3 occurs. This would result in the formation of the
strychnos alkaloid norfluorocurarine 4 (Fig. 3a and Supplementary
Fig. 2). On the basis of a co-expression analysis using SnvGO as bait,
we initially selected five a/p hydrolases (r > 0.95, Pearson correla-
tion coefficient) for functional characterization (Fig. 2b). Each was
tested in N. benthamiana along with SnvGO and geissoschizine1as
substrate. Two of these candidates (clusters 4032.2064 and 4032.2781)
led tothe production of norfluorocurarine 4, along with substantially
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Fig.3|Discovery ofadiaboline, strychnine and brucine biosynthesis
pathway. a, The complete biosynthetic pathway leading to the production of
diaboline 8, strychnine10 and brucine15. Diamonds represent intermediates
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decreased levels of the deformylation product akuammicine 3 (Fig. 3b
and Extended Data Fig. 1). Therefore, we named these two a/f3 hydro-
lases norfluorocurarine synthase1and 2 (SnvNS1and SnuNS2). SnuNS1
and SnvNS2 share 74% identity at the protein level and showed the same
reactivity inthe N. benthamiana transient-expression system. We used
SnuNSlin all subsequent experiments.

To convert norfluorocurarine 4 to Wieland-Gumlich aldehyde 6, a
hydroxylase and a reductase are required to install the C18 hydroxyl
group and reduce the 2,16 double bond, respectively (Fig. 3a). A total
of five cytochrome P450 proteins? and four medium-chain dehy-
drogenase/reductases (MDRs)?® that were co-expressed (r > 0.95)

Retention time (min)

expression of theindicated enzymes and strychnine10infiltration. Date are
mean ts.e.m.;n= 3biological replicates. Work-up: manipulation after
expressionof theindicated enzymes and substrateinfiltration.d, Extractedion
chromatograms (EIC) for strychnine 10, isostrychnine 11, B-colubrine 13 and
brucine15inN. benthamianaleaves expressingall nine enzymeswiththe
infiltration of geissoschizineland disodium malonate. Allintermediates were
validated by comparisonto syntheticauthentic standards (see Supplementary
Information for synthetic procedures).

(Fig. 2b) with SnvGO were initially considered, because these two
protein families are often involved in alkaloid biosynthesis. Because
the order of hydroxylation and reduction is unknown, combinatorial
transient-expression experimentsin N. benthamiana®2*were adopted.
Simultaneous expression of all candidate cytochrome P450 proteins
and MDRsin N. benthamianaleaves combined with SnvGO and SnuNS1
indeed resulted in the consumption of norfluorocurarine 4 and produc-
tion of Wieland-Gumlich aldehyde 6 (Fig. 3a). Co-infiltration of one
cytochrome P450 (cluster 4032.6332; CYP71A144) along with SnvGO,
SnuvNS1 and geissoschizine 1in N. benthamiana leaves produced a
hydroxylated product 18-OH norfluorocurarine 5 that co-eluted with
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the synthetic standard (Fig. 3b and Extended Data Fig. 2). Interme-
diate 5 is consumed after one candidate MDR (cluster 4032.5004)
is added to the co-infiltration experiments and the accumulation of
Wieland-Gumlich aldehyde 6 is observed (Fig. 3b and Extended Data
Fig.3). Therefore, we named this cytochrome P450 norfluorocurarine
oxidase (SnvNO) and the MDR Wieland-Gumlich aldehyde synthase
(SnvWS). Notably, in planta and in vitro assays showed that SnvWS
could reduce the 2,16 double bond in both norfluorocurarine 4 and
18-OH norfluorocurarine 5 (Fig. 3a, Extended Data Fig. 3 and Supple-
mentary Fig. 9). Stereoselective reduction by SnvWS is probably initi-
ated by the tautomerization of the enamine moiety in4 and 5 through
protonation at the « face, followed by NADPH reduction at the 3 face.
The subsequent spontaneous cyclization between the C18-OH and
C16 aldehyde, possibly facilitated by the conformational flexibility
of the reduced substrate, forms the hemiacetal in 6 (Supplementary
Fig.10). Invitro steady-state kinetics indicated that SnuWS had a higher
catalytic efficiency with 5 than with 4 (k.,/K,, = 0.297 min uM ™ for
5 compared with 0.068 min™ pM™ for 4) (Supplementary Fig.11). A
model of SnvWS docked with 18-OH norfluorocurarine 5 suggests that
Thr95and Ser309 in SnuWS may hydrogen bond with the C18 hydroxyl
group in18-OH norfluorocurarine 5, providing an explanation for the
differences in catalytic efficiency between norfluorocurarine 4 and
18-OH norfluorocurarine 5 (Supplementary Fig. 10). No cytochrome
P450, including SnvNO, could hydroxylate desoxy Wieland-Gumlich
aldehyde 7, suggesting that the order of the reactions s first oxidation
to form 18-OH norfluorocurarine 5, followed by reduction.

To complete the biosynthesis of strychnine 10 from Wieland-Gum-
lich aldehyde 6, a new piperidone ring containing two additional carbon
atoms must be installed (ring G in Fig. 1). However, the intermediates
or the reaction steps for this ring construction are not known; the
only clue is that the additional two-carbon unit (C22 and C23) origi-
nates from [*Clacetate’", To facilitate the discovery of these cryptic
late biosynthetic steps, we compared the strychnine producing and
non-producing Strychnos plants. Metabolic analysis showed that the
major alkaloid in the non-strychnine producer Strychnos sp. is diabo-
line 8 (Supplementary Fig. 5), acompound that is most likely derived
from N-acetylation of Wieland-Gumlich aldehyde 6 (Fig. 3a). There-
fore, we hypothesized that S. nux-vomica and Strychnos sp. should
share the same biosynthetic pathway from geissoschizine 1to Wie-
land-Gumlich aldehyde 6 (Fig. 2c).Indeed, aBLAST search against the
non-producer transcriptome identified orthologues SpGO (CYP71AY7,
92% amino-acididentity to SnvGO), SpNS1(92% amino-acid identity to
SnuNS1), SpNS2 (88% amino-acid identity to SnuyNS2), SpNO (CYP71A145,
91% amino-acid identity to SnuNO) and SpWS (93% amino-acid iden-
tity to SnuWS). To validate the function of these genes, we expressed
them in two combinations (SpGo, SpNS1, SpNO and SpWS; and SpGo,
SpNS2,SpNO and SpWS) in N. benthamiana leaves with co-infiltration
of geissoschizine 1. Both combinations led to the formation of Wie-
land-Gumlich aldehyde 6 (Fig.3b and Extended Data Fig.4). The only
remaining step for the biosynthesis of diaboline 8 is the acetylation of
theindole amine (Fig. 3a), whichin alkaloid biosynthesis is often cata-
lysed by a BAHD acyltransferase using acetyl-CoA as an acyl donor?.
Four BAHD acyltransferase candidates were co-expressed with all five
genes (r>0.6) (Fig. 2d). Transient expression of one candidate (SpAT)
withupstream genes generated diaboline 8 in N. benthamiana (Fig. 3b
and Extended Data Fig. 4).

S. nux-vomica contains anorthologue (cluster 4032.2753; SnvAT) of
SpAT (85% amino-acid identity to SpAT) thatis highly expressedin the
roots and showed high expression correlation with previously identi-
fiedgenes (r > 0.99 witheach gene) (Fig. 2a,b). However, S. nux-vomica
does not produce diaboline 8, and previous feeding studies demon-
strated that diaboline 8 isnot abiosynthetic precursor of strychnine 10
(ref.™). We surmised that SnvAT and SpAT may have distinct enzymatic
activities, and indeed, simultaneous expression of SnvAT and SnvGO,
SnuNSl1, SnuvNO, SnvWS and geissoschizine 1in N. benthamiana led
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to only trace levels of diaboline 8. However, a new compound with
amass corresponding to a malonylated product was detected in the
leaf extracts, which suggested that SnvAT is a BAHD acyltransferase
with predominantly malonyltransferase activity (Fig. 3b and Extended
Data Fig. 5). Although the expression of this enzyme in N. benthami-
ana resulted in only the partial consumption of Wieland-Gumlich
aldehyde 6, we hypothesized that the conversion might be limited
by the low concentration of malonyl-CoA in N. benthamiana leaves.
Therefore, we expressed these enzymes along with AAE13 (Arabidop-
sis thaliana), a cytosolic enzyme that produces malonyl-CoA acces-
sible to cytosolic SnvAT* (Supplementary Fig. 12). The addition of
AAE13 and co-infiltration of the co-substrate disodium malonate
to the transient-expression system resulted in a tenfold increase in
the production of malonylated product (Fig. 3b and Extended Data
Fig. 5). During purification, this product rapidly decomposed, so we
treated the crude methanolic extracts of N. benthamiana leaves with
trimethylsilyldiazomethane to methylate the carboxylic acid, followed
by aldehyde reduction with sodium borohydride. The derivatized prod-
ucts were confirmed by comparison to synthetic standards (Supple-
mentary Fig. 13), indicating that the SnvAT product was N-malonyl
Wieland-Gumlich aldehyde 9 (Fig. 3a). Therefore, although SnvAT
and SpAT share 85% amino acid identity, they have distinct catalytic
activities. Phylogenetic analysis showed that SnvAT clusters with SpAT
inanacetyltransferase clade, whichis evolutionarily distinct from the
canonical malonyltransferase clade (Supplementary Fig. 14). Homol-
ogy models of SnvAT and SpAT? (Supplementary Fig.15) were used to
identify one amino acid (SnvAT(R424F) and SpAT(F421R)) that controls
theselectivity between acetyl and malonyl transferase activity (Supple-
mentary Figs.16 and 17). These models suggest that the arginineresidue
is responsible for the malonyl-CoA selectivity by forming abidentate
salt bridge with the carboxylate of malonyl-CoA®**! (Supplementary
Fig.18), providing a straightforward mechanistic explanation for the
difference in alkaloid accumulation in these two plants. Notably, the
17-O-acylation product was predominantininvitro assays at physiologi-
cal pH (Supplementary Fig. 19), which may be because of changes in
the protein activity inanon-cellular environment or differencesin the
equilibration of the open and closed forms of the Wieland-Gumlich
aldehyde substrate.

Notably, atraceamount of strychnine10 and isostrychnine 11 could
be detected in the methanolic extracts of N. benthamiana leaves
that produce malonylated Wieland-Gumlich aldehyde 9 (Fig. 3b
and Extended Data Fig. 6). These two alkaloids accumulated and 9
decreased over time when stored at room temperature (Supplemen-
tary Fig. 22). Indeed, most of 9 was converted to strychnine 10 and
isostrychnine11in N. benthamianaleaves that were harvested 4 weeks
afterinfiltrating the substrates (Fig. 3b and Extended DataFig. 6).Incu-
bating 9 with recombinant SnvAT or N. benthamiana crude protein
extracts did not accelerate the conversion of 9 to 10 (Supplementary
Fig.23). These experiments suggest that conversion of 9 to strychnine
10 and isostrychnine 11 could occur spontaneously both in vitro and
under physiological conditions. Alternatively, heating N. benthami-
ana leaves at 60 °C for 2 h substantially accelerated the conversion
(Fig. 3b and Extended Data Fig. 6). We think that 10 and 11 are formed
through the decarboxylation of the B-keto acid moiety in 9 to form
an a,-unsaturated amide. Subsequent oxa-Michael addition by C18
hydroxyl group would generate strychnine 10. The «,3-unsaturated
amide can also tautomerize to the 3,y-unsaturated amide to form
isostrychnine 11 (Supplementary Fig. 24).

Previous radioisotopic labelling studies indicated thatastructurally
uncharacterized biosynthetic intermediate could be converted to
strychnine by warming the acid extracts from S. nux-vomica roots'",
The reported chemical properties of this intermediate'", which was
called prestrychnine (see Supplementary Fig. 2 for the previously pro-
posed structure), are similar to 9. Therefore, we suggest that the pro-
posedstructure of prestrychnineberevised to 9. Notably, in this feeding



study the levels of radioisotope-labelled prestrychnine was 9 times
higher than strychnine 10 after 3 days of feeding of S. nux-vomica
with*C-tryptophan™, suggesting that the conversion of prestrych-
nine to strychnine 10 is a slow process in S. nux-vomica. Indeed, we
screened numerous o/ hydrolases?* and polyketide synthases®,
as well as members of these two families that are known to catalyse
decarboxylation of B-keto acid functionalities, and we also screened
numerous transporters that could transfer prestrychnine to the vacuole
where the acidic environment might accelerate the decarboxylation.
However, none of these gene candidates accelerated the formation of
strychnine 10 and isostrychnine 11. To establish whether conversion
of prestrychnine to strychnine is a slow, non-enzymatic process in S.
nux-vomica,we performed hydroponic feeding of deuterium-labelled
Wieland-Gumlich aldehyde 6 to the roots of S. nux-vomica. Labelled
prestrychnine 9 could be detected after 3 days, but trace amounts
of strychnine 10 and isostrychnine 11 appeared only after 7 days
(Extended Data Fig. 7). Collectively, these data are consistent with
the previously published experiments™** and with the rate of strych-
nine formation in our heterologous expression system. The fact that
prestrychnine 9 is converted to strychnine 10 slowly in S. nux-vomica
is consistent with anon-enzymatic process, although the involvement
ofanenzyme with only modest rate acceleration cannot be definitively
ruled out.

Brucine 15, which is a dimethoxylated derivative of strych-
nine 10, is also highly accumulated in the roots of S. nux-vomica
(Fig. 3a and Supplementary Fig. 4). To identify the hydroxylase, 12
full-length cytochrome P450 proteins that shared a relatively high
co-expression correlation with SnvGO (Pearson’s r > 0.7) were selected
for subsequent tests (Supplementary Table1). When one cytochrome
P450 (cluster 4032.17050; CYP82D367) was expressed in the presence
of strychnine 10 in N. benthamiana, 10-OH strychnine 12 was formed
(strychnine-10-hydroxylase (Snv10H)) (Fig. 3¢ and Extended Data
Fig. 8). The presence of -colubrine 13 in S. nux-vomica suggests that
the two methoxy groups are installed sequentially (Fig. 3a), so we next
identified five methyltransferases® that were highly expressed in the
roots of S. nux-vomica (Supplementary Table 2). Expression of one of
the methyltransferases (cluster 4032.16453; SnvOMT) with Snv1OHin N.
benthamianaresulted inthe formation of acompound corresponding
tosynthetic 3-colubrine 13 (Fig. 3c and Extended Data Fig. 8). None of
the aforementioned 12 co-expressed cytochrome P450 proteins cata-
lysed the hydroxylation of 3-colubrine 13, but the high accumulation
of the final product brucine 15 in roots led us to identify all 13 other
cytochrome P450 proteins that were strongly expressed (FPKM > 20) in
roots (Supplementary Table 1). Of these 13 proteins, we initially targeted
the 3 within the CYP71 clade (Supplementary Fig. 25). One of these
cytochrome P450 proteins (cluster 4032.16581; CYP71AH44, Snvl1H)—
assayed in combination with strychnine, Snv10H and SnvOMT—pro-
duced brucine 15 as a major product along with trace amounts of the
hydroxylated product 11-deMe brucine 14 (Fig. 3c and Extended Data
Fig.9). Whenwe infiltrated synthetic -colubrine13 into tobacco leaves
that express Snv11H alone only 11-deMe brucine 14 is formed; brucine
15is formed only in the presence of SnvOMT (Extended Data Fig. 9).
Invitroandin plantaassays showed that SnvOMT could also methylate
11-OH strychnine 16 to a-colubrine 17 (Supplementary Fig. 26), and
10-deMe brucine 18 to brucine 15 (Supplementary Fig. 27), although
with lower efficiency. Overall, these results highlight the promise
for production of strychnos-type alkaloids using synthetic biology
approaches, although substantial optimization of the heterologous
host production system is required.

Having completed the pathway of brucine 15, we then reconstituted
the pathway in N. benthamiana from geissoschizine 1. We transiently
expressed all of the enzymes (SnvGO, SnuvNS1, SnuNO, SnvWS and SnvAT,
AAE13, Snvl0H, SnvOMT and SnvllH) in tobacco leaves followed by
infiltrating geissoschizine 1and disodium malonate. If the tobacco
leaves were harvested 1 week after infiltrating the substrates, the

accumulation of strychnine 10, isostrychnine 11, 3-colubrine 13 and
brucine15wasobserved (Fig.3d and Supplementary Fig. 28). Addition-
ally, all of the intermediates in the pathway except for 11-deMe brucine
14 couldbe detected in the roots of S. nux-vomica (Fig.3a and Extended
Data Fig. 10), suggesting that the heterologously reconstituted path-
way in N. benthamiana matches the physiologically relevant pathway
in Strychnos plants.

Here we report the discovery of nine enzymes that convert geis-
soschizine 1to diaboline 8, strychnine 10 and brucine 11, using a
combination of chemical logic, -omics datasets and enzymatic char-
acterization. Pioneering studies of the structure and synthesis of
strychnine provided the foundation for discovery of the enzymes of
strychnine biosynthesis as it occurs in nature. These discoveries not
only shed light on how plants produce these diverse alkaloids, but
also provide a genetic basis for heterologous production of strych-
nos alkaloid derivatives to discover potent lead compounds through
metabolic engineering approaches, providing a new challenge for
synthetic biology.
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The roots of three S. ica (4 were in 20 mL 1 mM
deuterium labeled Wieland-Gumlich aldehyde solution in a 50 mL falcon tube. The
roots were submerged in deionized water as negative controls. The plants were put
in the growth chamber (12 h light, 30 °C day temperature, 24 °C night temperature,
70% humidity). Metabolite analysis of the roots was performed at the 3¢ day, 7™ day

and 14" day using metabolites analysis method.
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Extended DataFig.7 |Hydroponicfeedings totheroots of 4-month-old

S. nux-vomicaseedlings with deuteriumlabelled Wieland-Gumlich
aldehyde. a. Hydroponic feedings of S. nux-vomicain 50 mL falcon tube with
20 mL1mM deuterium labelled Wieland-Gumlich aldehyde. b. HRMS (ESI)
[M+H]* chromatogram of synthetic deuterium labelled Wieland-Gumlich
aldehyde mixture. The major component (49%) is d2-Wieland-Gumlich
aldehyde. c. Extracted ion chromatograms for prestrychnine 9 (m/z
[M+H]*=397.1758 + 0.005), d2-prestrychnine (m/z[M+H]" = 399.1884 + 0.005),
d2-isostrychnine (m/z[M+H]"=337.1880 + 0.005), d2-strychnine (m/z

[M+H]*=337.1880 + 0.005).d. MS/MS (20 to 50 eV) spectrum and putative ion
fragments of generated d2-prestrychnine (m/z[M+H]* =399.1884, blue)
compared to prestrychnine (m/z[M+H]" =397.1758, red). e. MS/MS

(20to 50 eV) spectraand putative ion fragments of generated d2-strychnine
(m/z[M+H]" =337.1880, blue) compared to strychnine standard (m/z
[M+H]"=335.1754, red).f. MS/MS (20 to 50 eV) spectraand putative ion
fragments of generated d2-isostrychnine (m/z [M+H]*=337.1880, blue)
compared toisostrychnine standard (m/z[M+H]" =335.1754, red). This
experiment was repeated three times with similar results.
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Extended DataFig. 8| Functional characterization of Snv10H and SnvOMT.
a.Transient expression of SnvlOH in N. benthamiana with co-infiltration of
strychnine10. Extracted ion chromatograms for 10-OH strychnine (m/z
[M+H]*=351.1703 + 0.05). This experiment was repeated three times with similar
results.b.MS/MS (20to 50 eV) spectraof 10-OH strychnine12 producedin
N.benthamiana (blue) compared to standard (red). c. Transient expression of
Snv10H and SnvOMT in N. benthamiana with co-infiltration of strychnine 10.
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experiment was repeated three times with similar results. d. /nvitro assays using
purified SnvOMT from SoluBL21E. coliwith10-OH strychnine 12. Extracted ion
chromatograms for10-OH strychnine (m/z[M+H]"=351.1703 + 0.05, left) and
B-colubrine13 (m/z[M+H]" =365.1859 + 0.05, right). This experiment was
repeated more thanthree times with similar results. e. MS/MS (20 to 50 eV)
spectraof 3-colubrine13 producedin N. benthamiana (blue) compared to
standard (red).f.Reaction catalyzed by Snv10H and SnvOMT.

Extractedionchromatograms for10-OH strychnine (m/z[M+H]* =351.1703 +
0.05, left) and B-colubrine 13 (m/z[M+H]" =365.1859 + 0.05, right). This
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Extended DataFig. 9 |Functional characterization of Snvl1H. a. Reaction
catalyzed by Snv11H and SnvOMT. b. Transient expression of Snv10H, SnvOMT,
and SnvllHin N. benthamiana with co-infiltration of strychnine 10. Extracted
ionchromatograms for B-colubrine 13 (m/z[M+H]" =365.1859 + 0.05, left),
11-deMebrucine 14 (m/z[M+H]* =381.1808 + 0.05, middle), and brucine

15 (m/z[M+H]"=395.1965 + 0.05, right). This experiment was repeated three
times with similar results. c. Transient expression of Snv11H in N. benthamiana
with co-infiltration of B-colubrine13. Extracted ion chromatograms for
11-deMebrucine 14 (m/z[M+H]" = 381.1808 + 0.05). This experiment was
repeated three times with similar results. d. Transient expression of Snv11H and
SnvOMT in N. benthamiana with co-infiltration of B-colubrine 13. Extracted ion

chromatograms for 11-deMe brucine 14 (m/z [M+H]" = 381.1808 + 0.05, left) and
brucine 15 (m/z[M+H]" =395.1965 + 0.05, right). This experiment was repeated
three times withsimilar results. e. Transient expression of SntOMT in
N.benthamiana with co-infiltration of 11-deMe brucine 14. Extracted ion
chromatograms for brucine 15 (m/z[M+H]* =395.1965 + 0.05). This experiment
wasrepeated three times with similar results. f. Invitro assays using purified
SnvOMT from SoluBL21E. coli. Extracted ion chromatograms for 11-deMe
brucine 14 (m/z[M+H]" =381.1808 + 0.05, left) and brucine 15 (m/z[M+H]* =
395.1965 + 0.05, right). This experiment was repeated three times with similar
results. g.MS/MS (20to 50 eV) spectra of generated 11-deMe brucine 14 and
brucine 15 (blue) compared to standards (red).
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Data collection  All presented data have been acquired using existing and routinely used software. LC-MS data was collected by Bruker otofControl 5.2.109/
Hystar 5.1.5.1. NMR data was collected by Bruker TopSpin 3.6.1. Confocal microscopy images were collected by ZEN black 2.1 v.14.0.18.201
(Zeiss, Oberkochen, Germany).

Data analysis The phylogenetic tree was constructed in MEGAX v10.2.0. and visualized with iTOL. Protein homology models were built using the Swiss-
Model server and visualized with PyMOL. Molecular docking was performed using AutoDock Vina. The software used for confocal microscopy
analysis was ZEN black 2.1 v.14.0.18.201 (Zeiss, Oberkochen, Germany). NMR data were processed with Bruker TopSpin ver. 3.6.1. LC-MS data
was processed with Bruker DataAnalysis 5.0 and MetaboScape 4.0. Chemical structures were generated in ChemDraw Professional 17.1.
Kinetics data was analysed by GraphPad Prism 8.0.2. Heatmaps were generated by Morpheus: (https://software.broadinstitute.org/
morpheus). Trinity v.2.6.6 was used to perform the transcriptome assembly. CORSET v.4.6 software was used to remove the redundance
from Trinity results. Gene expression levels were estimated by RSEM v.1.2.28 and differential expression analysis using DESeq2 v.1.26.0.
Coexpression analysis was done using CoExpNetViz software (http://bioinformatics.psb.ugent.be/webtools/coexpr/) and visualized with the
Cytoscape v.3.9.0.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

There are no restrictions on the availability of data. All reported data within this study are available via database or by request. The sequence of genes characterized
in this article are deposited in National Center for Biotechnology (NCBI) GenBank under the accession numbers: SnvGO (OM304290), SnvNS1(OM304291), SnvNS2
(OM304292), SnvNO (OM304293), SnvWS (OM304294), SnvAT (OM304295), Snv10H (OM304296), SnvOMT (OM304297), Snv11H (OM304298), SpGO (OM304299),
SpNS1 (OM304300), SpNS2 (OM304301), SpNO (OM304302), SpWS (OM304303), SpAT (OM304304). TThe raw reads from the RNA-seq profiling analysis of
Strychnos nux-vomica and Strychnos Sp. are deposited in the NCBI Sequence Read Archive (SRA) database under the BioProject accession PRINA825510 and
PRINA826736, respectively.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Prior determination of sample size was not a consideration for our data. Replicates of 3 were chosen for heterologous expression experiments
in Nicotiana benthamiana.

Data exclusions  No data were excluded from the analyses.

Replication The majority of the data presented in this study is representative of three experiments done in different days. All attempts at replication were
successful.

Randomization  For heterologous expression in Nicotiana benthamiana leaves, each experiment was tested 3 times. Three biological replicates are from
different Nicotiana benthamiana plants. Each of these plants would contain one replicate from each different condition. The second pair of

fully expanded leaves (counting from the apical meristem side) in each plant were used for experiment.

Blinding Blinding was not relevant for our study. Functional characterization of enzymes or genes required the insight of researchers about the tested
samples.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChIP-seq
Eukaryotic cell lines g |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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