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Abstract

We prove that any real, vacuum gravitational perturbation of a 4-dimensional vacuum
pp-wave space-time can be locally expressed, modulo gauge transformations, as the real part
of a Hertz/Debye potential, where the scalar potential satisfies the wave equation. We discuss
relations with complex perturbations, complex space-times, non-linear structures, and real
spaces with split (ultra-hyperbolic/Kleinian) signature. Motivated by generalized notions of
parallel spinors, we also discuss generalizations of the result to other space-times.

1 Introduction

Pp-wave space-times are exact solutions to the Einstein equations modelling gravitational radi-
ation. These space-times are interesting both physically and mathematically for many reasons:
they are relevant for gravitational wave physics; they satisfy, in appropriate cases, a linear su-
perposition principle; they represent a universal limit for general relativity in that, as shown by
Penrose [1], every Lorentzian space-time looks like a pp- (plane1) wave near a null geodesic; all
their curvature invariants vanish (which is relevant e.g. for string theory); etc. In addition, closer
to our motivation, they represent the simplest case of a 4-dimensional Lorentzian geometry that
admits a parallel spinor field [2]. In this work we study vacuum gravitational perturbations of
pp-waves in four dimensions, and the problem of representations of solutions to linearized gravity
in terms of the so-called Hertz/Debye potentials.

The general question we want to address is: can any real vacuum gravitational perturbation
be represented, modulo gauge, in terms of a Hertz/Debye potential? This is conjectured to be
true, locally, for perturbations of all algebraically special vacuum spaces, cf. the introduction in
[3]; but, as far as we know, the problem has only been completely solved for the case of Minkowski
space-time [4], [5], [6, Section 5.7]. Our main result is given in sections 3.1 and 4.

Although in this work we study the special case of pp-waves, the techniques we use also apply
to perturbations of the above more general class of solutions. This is because our procedure is
based on exploiting the existence of special geometric structures called α- and β-surfaces, or
simply twistor surfaces, that are present, in particular, for any algebraically special Einstein
space-time. Pp-waves have the advantage that, while having a very simple curvature structure
that facilitates computations, the conceptual difficulties one has to deal with in the other more

∗Email: bernardo.araneda@aei.mpg.de
1Plane waves are a special case of pp-waves: the former have an isometry group that is at least 5-dimensional,

while the latter possess in general only one Killing vector.
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complicated cases are already present in this class. We illustrate this point by studying the more
general case of a “half-Kähler” vacuum space-time (see sections 2.2 and 4).

Furthermore, the fact that our method is based on twistor surfaces allows us to give, in the
pp-wave case, a precise description of the close connection that exists between the Hertz/Debye
representation of real linear gravitational perturbations and the fully non-linear geometry of a
complex analogue of a pp-wave: a complex 4-manifold admitting a parallel spinor field. Notably,
the situation can also be understood in terms of real geometry, but for a metric with split (also
called ultra-hyperbolic, Kleinian, or neutral) signature.

Finally, parallel spinors constitute the major motivation in this work, since as detailed in
section 2.2 below, a pp-wave is the simplest case of a general scheme in which special geometries
(including e.g. black hole space-times) are characterized in terms of “generalized parallel spinors”.
Our approach exploits a simple link between generalized parallel spinors and complex geometry,
and it has direct connections to the twistor programme and the heavenly formalisms of Penrose,
Newman and Plebański; see section 2.

Summary. In section 2 we give an elementary review of spinors in 4d; present our motivation
relating parallel spinors and complex geometry; and deduce the structure of a 4-geometry that
admits a parallel spinor in Lorentz signature and also for complex metrics. Our main result
is presented in section 3 where we study gravitational perturbations. In section 4 we study a
generalization of this result, to the case of a “half-Kähler” vacuum space-time. Some final remarks
are given in section 5. We include appendix A with additional details of calculations. We follow
the notation and conventions of Penrose and Rindler [6, 7]; in particular, we use abstract indices.

2 Parallel spinors, real and complex space-times

2.1 Preliminaries

Given a 4d complex vector space with a metric gab and an orientation, the orthogonal group is

SO(4,C) = (SL(2,C) × SL(2,C))/Z2. (2.1)

The relation between the two sides of (2.1) is understood by fixing an isomorphism σ between
C
4 and C

2 ⊗ C
2, i.e. one writes a column vector v in C

4 as a matrix σ(v) in C
2 ⊗ C

2. Then
(2.1) means that, for any orthogonal transformation Λ ∈ SO(4,C), there are elements L and R
in SL(2,C) such that σ(Λv) = Lσ(v)Rt.

Elements in each copy of C
2 are called spinors. Since each C

2 has an independent action
of SL(2,C), there are two different kinds of spinors. We say that the two kinds have opposite
‘chirality’. In abstract indices, these are distinguished by primed and unprimed indices, e.g. ψA′

and ϕA, and the isomorphism σ is va → σ(v)AA′

≡ vAA′

. We usually omit σ, so that we identify
va ≡ vAA′

. This way we have the usual identification of indices a = AA′, b = BB′, etc., which
we follow in this work. From the relation g(v, v) = 2det σ(v) one deduces that the metric is
gab = ǫABǫA′B′ , where ǫAB is the natural volume element of C2.

Without any reality conditions, spinors of opposite chirality are independent. Real forms
of (2.1) corresponding to different metric signatures are recovered by using different reality
structures. These structures can in turn be understood as operations on spinors, that we call
‘spinor conjugations’, and they may or may not lead to relations between chiralities.

For Lorentzian reality conditions, spinor conjugation interchanges chirality, so the action of
the two factors in the RHS of (2.1) is not independent, and one recovers the Lorentz group
SO(1, 3) = SL(2,C)/Z2. We denote Lorentzian spinor conjugation with an overbar, e.g. ϕA →
ϕ̄A′

. A spinor ϕA and its complex conjugate ϕ̄A′

produce a real null vector Na = ϕAϕ̄A′

. Given
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a basis of C2, {oA, ιA}, one can consider the complex conjugate basis {ōA
′

, ῑA
′

} and construct
four linearly independent null vectors as

ℓa = oAōA
′

, na = ιAῑA
′

, ma = oAῑA
′

, m̄a = ιAōA
′

. (2.2)

If the basis {oA, ιA} is normalized by ǫABo
AιB = 1, then the vectors (2.2) satisfy the usual

conditions for a null tetrad: gabℓ
anb = 1 = −gabm

am̄b, and the rest vanishes.

For Euclidean (/Riemannian) reality conditions, spinor conjugation † preserves chirality, but
a spinor ϕA and its complex conjugate ϕ†A are linearly independent: if ϕA has components
(a, b) relative to some basis, then ϕ†A has components (−b̄, ā). Since † is anti-linear and it holds
†2 = −1, this is really a quaternionic structure. The Euclidean form of (2.1) is SO(4,R) =
(SU(2) × SU(2))/Z2, and chiralities are independent. Given a spinor oA, one has a spin basis
{oA, o†A}, but unlike Lorentz signature, this does not give a basis for the opposite chirality.

Finally, the restriction to real elements in SL(2,C) corresponds to a metric with split signa-
ture. The isomorphism (2.1) becomes SO(2, 2) = (SL(2,R)× SL(2,R))/Z2, spinors are real and
chiralities are independent.

Over an open neighbourhood on a smooth manifold M equipped with a metric gab, one
constructs the primed and unprimed spinor bundles S

′, S, and the considerations above apply
pointwise on each fiber. A spinor field is a (local) section of S or S′ (or tensor products of them).
If xa are local coordinates on M , we use the identification of indices a = AA′, etc. to write e.g.
dxa ≡ dxAA′

, so the metric is g = ǫABǫA′B′dxAA′

⊗ dxBB′

. Similarly, the Levi-Civita connection
is ∇a = ∇AA′ . If (M,gab) is real, the operator ∇AA′ is also real.

2.2 Motivation: parallel spinors

A parallel (or covariantly constant) spinor is a spinor field oA that satisfies

∇AA′oB = 0. (2.3)

The existence of a non-trivial solution to (2.3) imposes strong restrictions on the geometry.
Specific restrictions depend on the metric signature, see [2].

In Lorentz signature, complex conjugation of (2.3) gives a parallel spinor with opposite
chirality, ∇AA′ ōB

′

= 0. The real null vector ℓb = oB ōB
′

is therefore covariantly constant, so the
geometry is a pp-wave. In this work we are interested in this case, see section 2.3. In Riemann
signature, the complex conjugate of (2.3) is ∇AA′o†B = 0. One then has a parallel spin frame, so
the manifold must be hyper-Kähler. We will not focus on this case. In split signature, a (real)
solution to (2.3) is equivalent to a null Kähler structure, see [8, 9].

Our interest in parallel spinors actually arises from “generalized” versions of them, where one
considers connections more general than the Levi-Civita connection. Such generalizations are
important both in physics and in mathematics. For example, these objects appear in supergravity
in relation to the existence of supersymmetries; and they are also relevant in certain areas of
pure geometry, for instance concerning different definitions of ‘mass’. See e.g. [10] 2.

But our major motivation is the connection that generalized parallel spinors turn out to have
with complex geometry. For example, a Kähler manifold can be characterized by the existence
of a parallel (pure) projective spinor, cf. [11]. In four dimensions (where all spinors are pure),
this can be expressed in terms of the Riemannian version of a connection that is well-known
in general relativity, the so-called ‘GHP’ connection ΘAA′ . Interestingly enough, a Hermitian
manifold can be similarly defined via parallel spinors, using a generalization of ΘAA′ , that we may

2We are interested in parallel Weyl spinors, while in supergravity and related areas one considers Dirac spinors.
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Condition Riemann signature Lorentz signature Split signature

∇AA′oB = 0 hyper-Kähler pp-wave null-Kähler
ΘAA′oB = 0 Kähler “half-Kähler” no name
CAA′oB = 0 Hermitian “half-Hermitian” no name

Table 1: Different notions of parallel spinors give different special 4-geometries. ΘAA′ is the ‘GHP
connection’, and CAA′ is a conformally invariant version of it. Apart from ∇AA′oB = 0, the other
equations are non-linear, since the connections depend on oA. The terminology in the Lorentzian case
is perhaps not standard, although similar names have been used by Flaherty [14]. In the split case, the
conditions can be related to para-complex geometry.

call ‘complex-conformal connection’ or ‘conformally invariant GHP connection’, and we denote
by CAA′ , cf. [12, 13]. We summarize the situation in table 1.

The operators ΘAA′ and CAA′ are well-defined in any signature3. Our interest in the (gener-
alized) parallel spinor equations presented in table 1 is that they imply the existence of twistor
surfaces, which are the basic object that give integration procedures. The kind of algebraic and
differential manipulations that one has to follow in these procedures is essentially the same in
all cases, which is why we find the parallel spinors viewpoint attractive: it is both conceptually
(geometrically) meaningful and computationally practical. In this paper we are interested in the
simplest case, eq. (2.3), and its applications to the linearized gravity problem in general relativ-
ity. We will also discuss the “half-Kähler” case, see section 4. For the treatment of CAA′oB = 0
in conformal geometry, see [13] (perturbations are not treated in this reference).

2.3 Lorentz signature: pp-wave space-times

We define a pp-wave space-time as a 4-dimensional Lorentzian manifold (M,gab) that admits a
non-trivial parallel real null vector Na, NaN

a = 0, ∇aN
b = 0, and such that the Ricci tensor is

Rab ∝ NaNb. As shown in [15], any such geometry admits a parallel spinor, that in the rest of
this work we denote by oA. The associated parallel null vector is denoted by ℓa = oAōA

′

.

The following result is just the standard characterization of pp-waves in terms of Brinkmann
coordinates, and it is well-known:

Proposition 2.1. Let (M,gab) be a Lorentzian space-time admitting a non-trivial parallel spinor
field oA, eq. (2.3). Then there exist (locally) a coordinate system (u, v, ζ, ζ̄) and a real scalar field
H = H(v, ζ, ζ̄) such that the metric is

g = 2(dudv − dζdζ̄) +Hdv2. (2.4)

The Ricci scalar vanishes, and the rest of the curvature is given by

ΦABA′B′ = 1
2Hζζ̄oAoB ōA′ ōB′ , (2.5)

ΨABCD = 1
2Hζ̄ζ̄oAoBoCoD. (2.6)

It is instructive to look at the derivation of this result from the perspective of twistor surfaces;
we will do this in the rest of this subsection.

Consider the 2-dimensional complex distribution in TM⊗C given by D = {oAβA
′

| βA
′

∈ S
′}.

The condition for this to be involutive (i.e. [D,D] ⊂ D) is the shear-free equation oAoB∇AA′oB =
0 (cf. [7, Section 7.3]), which is certainly satisfied if (2.3) holds. This implies that there exist

3One needs a pair of spinors in the construction of ΘAA′ , CAA′ . In the Riemannian case a single spinor is
enough since its complex conjugate gives the other. In the other cases the extra spinor can be chosen at will.
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real light ray γ ⊂M

β-surface ⊂ CM
(v, ζ) =constant

α-surface ⊂ CM
(v, ζ̄) =constant

∂u∂ζ ∂ζ̄

Figure 1: An α-surface, a β-surface, and a real (Lorentzian) space-time intersect in a real light ray γ, that
has tangent vector ℓa = oAōA

′

= ∂au. The coordinate system defined by these twistor surfaces coincides,
in the pp-wave case, with Brinkmann coordinates.

complex 2-surfaces in the complexified space-time CM , called β-surfaces, such that their tangent
bundle is D. Analogously, the distribution D̄ = {ōA

′

αA | αA ∈ S} is involutive, and is the tangent
bundle to a different kind of complex 2-surfaces in CM , called α-surfaces. Let us focus on the
former. The β-surfaces are labelled by two complex coordinates (v, ζ) that are constant on them,
namely oA∇AA′v = 0, oA∇AA′ζ = 0 (see [7, Lemma (7.3.15)]). From these two equations we
deduce that there are two spinor fields, say vA′ , ῑA′ , such that ∇AA′v = oAvA′ , ∇AA′ζ = oAῑA′ .
Since ℓa = oAōA′ is covariantly constant, it is in particular closed, so we can take vA′ = ōA′ . So
(v, ζ) are defined by

dv = oAōA′dxAA′

, dζ = oAῑA′dxAA′

. (2.7)

We see that v is real, whereas ζ is complex. They are functionally independent, which means
that ōA′ ῑA

′

= N for some scalar field N 6= 0.

From the condition d2ζ = 0 we deduce that oA∇AA′ ῑB′ = 0. Therefore, oA∇AA′N = 0, which
implies that N is a holomorphic function of v, ζ (i.e. dN is a linear combination of dv and dζ),
so it can be set to 1 by a coordinate transformation ζ → ζ ′(v, ζ). We drop the prime and denote
again by ζ the new coordinate, with ōA′ ῑA

′

= 1.

Notice that v, ζ̄ satisfy ōA
′

∇AA′v = 0, ōA
′

∇AA′ ζ̄ = 0, so these scalars are constant on α-
surfaces. This is a generic feature of Lorentz signature: spinor complex conjugation interchanges
α- and β-surfaces.

Using some of the previous identities, one can show that the vector fields oAōA
′

and oA ῑA
′

commute, so the two scalar fields u,w defined by ∂u = oAōA
′

∂AA′ , ∂w = oAῑA
′

∂AA′ are func-
tionally independent. We see that u is real and w is complex. These are coordinates along the
β-surfaces. The coordinate w is however not functionally independent of (v, ζ̄), since a short
calculation gives ∂ζ̄ = −oAῑA

′

∂AA′ . Summarizing, we have

∂u = oAōA
′

∂AA′ , ∂ζ̄ = −oAῑA
′

∂AA′ . (2.8)

So α- and β-surfaces give a coordinate system (u, v, ζ, ζ̄) for M , that we illustrate in Fig. 1. For
pp-waves these are simply Brinkmann coordinates, so the interpretation is known: the integral
curves of ℓa = oAōA

′

are the rays of the wave and u is an affine parameter along them, the hyper-
surfaces v = constant are ‘wave surfaces’, and the real and imaginary parts of ζ are coordinates
transverse to the direction of propagation of the wave.
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With the above information, the structure of the metric can be deduced from the expression
g = ǫAB ǭA′B′dxAA′

⊗ dxBB′

, by replacing ǫAB = oAιB − ιAoB , its complex conjugate, and the
definition of the coordinates (2.7). When doing this computation, one finds that the only piece
of information missing at this point is an expression for the 1-form ιAῑA′dxAA′

. This can be
obtained as follows. For any function f , we have df = (∇AA′f)dxAA′

. Using the identities
∇AA′ = δBA δ̄

B′

A′∇BB′ and δBA = oAι
B − ιAo

B , together with definitions (2.7), (2.8), and putting
f = u, we get

ιAῑA′dxAA′

= du− (ιA ῑA
′

∇AA′u)dv.

The expression (2.4) for the metric then follows straightforwardly, by defining the real scalar
field

H := −2ιAῑA
′

∇AA′u. (2.9)

This functionH represents the wave profile, and the caseH = 0 reduces to Minkowski space-time.
We also notice that in the coordinate system (u, v, ζ, ζ̄), the wave operator acting on an

arbitrary scalar field ϕ is
�ϕ = 2(ϕuv − ϕζζ̄)−Hϕuu. (2.10)

There is a natural spin frame: the parallel spinor oA, and the spinor ιA used in (2.7). The
associated connection 1-form has only one non-trivial component:

∇AA′ιB = −κ′oAoB ōA′ , (2.11)

where κ′ := −ιAιB ῑB
′

∇BB′ιA. In order to show this, notice first that, from (2.7) and d2ζ̄ = 0,
it follows that ōA

′

∇AA′ιB = 0. In addition, from (2.7) one deduces that oA = −ōA
′

∇AA′ζ and
ιA = ῑA

′

∇AA′ ζ̄. These identities can then be used to show that oA∇AA′ιB = 0, so (2.11) follows.
In terms of H, the expression for κ′ is

κ′ = 1
2Hζ . (2.12)

This can be shown by using (2.9), which gives oA∇AA′H = 2ιB ῑB
′

∇BB′ ῑA′ .
For the curvature, eq. (2.3) implies [∇a,∇b]o

D = 0, so it follows that Λ = 0, ΦABA′B′ =
Φ22oAoB ōA′ ōB′ , and ΨABCD = Ψ4oAoBoCoD, where Φ22 and Ψ4 are defined by contractions
with ιA, ῑA

′

on the left-hand sides. Expressions for Φ22 and Ψ4 in terms of H can be deduced, for
example, by using the Newman-Penrose equations and the fact that all spin coefficients except
κ′ vanish: equations (4.11.12)(a′) and (4.11.12)(b′) in [6] give Φ22 = −δκ′ and Ψ4 = −δ′κ′ (in
Newman-Penrose notation). Using then δ = −∂ζ̄ , δ

′ = −∂ζ (which follow from (2.8)), and (2.12),
one obtains the expressions (2.5), (2.6).

2.4 Complex space-times

We now consider a complex space-time with a parallel spinor. Here, we are referring to a
genuinely complex 4-manifold, not to a complexified pp-wave space-time. See [7, Section 6.9]
for the distinction between ‘complex’ and ‘complexified’ space-time. In the complexified case we
still have two parallel spinors of opposite chirality (oA and ōA

′

become independent but they are
both parallel), whereas in the genuinely complex case we only retain one parallel spinor.

The situation is very similar to the case of split signature. This is because in that case,
spinors are real and the two chiralities are independent. The following result is for complex
space-times, but if one replaces “complex” by “real” everywhere then exactly the same holds true
for split signature metrics, as was already shown in [8, 9]:
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Proposition 2.2 (See [8, 9]). Let (CM,gCab) be a complex space-time with a non-trivial parallel
spinor field oA. Then there exist, locally, a complex coordinate system (u, v, ζ, w) and a complex
scalar field Θ such that the metric is

gC = 2(dudv + dζdw)− 2Θwwdv
2 + 4Θwudvdζ − 2Θuudζ

2. (2.13)

The Ricci scalar vanishes, and the rest of the curvature is given by

ΦABA′B′ = oAoB∇̃A′∇̃B′f, (2.14)

ΨABCD = − 1
2oAoBoCoD�f, (2.15)

Ψ̃A′B′C′D′ = − ∇̃A′∇̃B′∇̃C′∇̃D′Θ, (2.16)

where ∇̃A′ := oA∇AA′, � is the wave operator associated to (2.13), and

f = Θuv +Θζw +ΘuuΘww −Θ2
uw. (2.17)

In coordinates, the wave operator � acting on an arbitrary scalar field ϕ is

�ϕ = 2(ϕuv + ϕwζ +Θuuϕww +Θwwϕuu − 2Θuwϕuw). (2.18)

From Prop. 2.2 we see that the vacuum Einstein equations are now more complicated than in
the pp-wave case: the Ricci-flat condition is equivalent to ∇̃A′∇̃B′f = 0, which in the coordinate
system of the proposition reads fuu = fuw = fww = 0. The solution to this is f = p(v, ζ)u +
q(v, ζ)w+ r(v, ζ), where p, q, r are arbitrary functions of (v, ζ), so in terms of the “potential” Θ,
the Einstein equations are

Θuv +Θζw +ΘuuΘww −Θ2
uw = p(v, ζ)u+ q(v, ζ)w + r(v, ζ), (2.19)

see [8]. This is a very special case of the hyper-heavenly equation of Plebański and Robinson [16].
The non-trivial right hand side in (2.19) (i.e. f 6= 0) complicates the analysis of the integrability
properties of this equation. The special case f ≡ 0 is Plebański’s second heavenly equation, and
notice from (2.15) that this case gives a self-dual (half-flat) space, which is an integrable system
by virtue of the non-linear graviton twistor construction of Penrose.

It is useful to briefly discuss the structures involved in the derivation of the result of Prop. 2.2.
As in section 2.3, the condition ∇AA′oB = 0 implies that the distribution D = {oAβA

′

| βA
′

∈ S
′}

is involutive, and this gives origin to β-surfaces in CM , which are labelled by two complex
coordinates v, ζ defined by oA∇AA′v = 0 = oA∇AA′ζ. Unlike the Lorentzian case, there are no
α-surfaces now. In addition, both coordinates v, ζ are now complex. There are two independent
spinor fields vA′ , ζA′ , with vA′ζA

′

= N 6= 0, such that

dv = oAvA′dxAA′

, dζ = oAζA′dxAA′

. (2.20)

From the conditions d2v = 0 = d2ζ, it follows that ∇̃A′vB′ = ∇̃A′ζB′ = 0, which give ∇̃A′N = 0,
so we can set N ≡ 1 by a coordinate transformation.

Using the above information, a short calculation shows that the vector fields oAvA
′

and oAζA
′

commute, so the two complex scalar fields u, w defined by

oAvA
′

∂AA′ = ∂u, oAζA
′

∂AA′ = ∂w (2.21)

are functionally independent, and correspond to complex coordinates along the β-surfaces. Thus,
we see again that twistor surfaces produce a natural coordinate system (v, ζ, u, w) for CM : these

7



are the coordinates used in Prop. 2.2, and they generalize the Brinkmann coordinates of the
pp-wave case of Prop. 2.1.

The structure (2.13) of the metric can be deduced in a similar way to what we did in section
2.3: there is a flat (complex) metric ηab and a symmetric spinor field HA′B′ such that

gab = ηab + oAoBHA′B′ . (2.22)

The components of HA′B′ generalize the pp-wave profile function H (2.9). In addition, a short
calculation shows that HA′B′ satisfies ∇̃A′

HA′B′ = 0, so there exists a scalar field Θ (see Remark
3.2 below) such that

HA′B′ = −2∇̃A′∇̃B′Θ. (2.23)

The equations (2.22)-(2.23) give a coordinate-free expression for (2.13). The Einstein equation
(2.19) is, in coordinate-free terms:

�Θ− 2(∇̃A′∇̃B′Θ)(∇̃A′

∇̃B′

Θ) = f, ∇̃A′∇̃B′f = 0. (2.24)

3 Perturbations

We will now study real gravitational perturbations of a real, Lorentzian, vacuum pp-wave space-
time, and connections with complex space-times. We recall that the structure of the background
pp-wave space-time is described in Prop. 2.1: one has Brinkmann coordinates (u, v, ζ, ζ̄) defined
by α- and β-surfaces, the spinor field oA is parallel, the spinor ιA is defined in eq. (2.7), and all
the information of the geometry is encoded in the real scalar field H. In addition, the vacuum
condition for the background implies that Hζζ̄ = 0.

3.1 Main result

Theorem 3.1. Let (M,gab) be a vacuum pp-wave space-time, eq. (2.4) with Hζζ̄ = 0. For
any real metric perturbation hab satisfying the linearized Einstein vacuum equations, there exist,
locally, a real vector field Va and a complex scalar field Φ, such that hab can be written as

hab = 2Re(hHab) +∇aVb +∇bVa (3.1)

where hHab is given by

hHab = oAoB∇̃A′∇̃B′Φ = Φζ̄ζ̄ℓaℓb + 2Φζ̄uℓ(amb) +Φuumamb (3.2)

with ∇̃A′ = oA∇AA′, and Φ satisfies the wave equation

�Φ = 0, (3.3)

where � is the wave operator associated to gab, eq. (2.10).

We prove this result in section 3.2 below. Note that in tensor terms, the tensor field (3.2)
can also be written as

hHab = ∇c∇d[H(a
cd

b)Φ], Habcd = 4ℓ[amb]ℓ[cmd]. (3.4)

This is the usual expression for a Hertz/Debye potential in perturbation theory, particularized
to the special background of a pp-wave. (The superscript “H” is from “Hertz”.)

Combining the result of theorem 3.1 with the discussion of section 2.4, we see some sort of
correspondence between a real linear problem and a complex non-linear one: modulo gauge, the
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linearized gravity problem for real pp-wave space-times would seem to be a “linear version” (see
below) of the structure of a complex space with a parallel spinor. Furthermore, as observed in
section 2.4, the non-linear structures can actually be understood in a real context, by going to a
real space with a split signature metric.

Note that this correspondence can be established only after one proves theorem 3.1: we want
to show that there exists a scalar potential for the gravitational perturbation, while in a linear
version of (2.22)–(2.24) one is already assuming that a potential exists. Actually, a closer look
at the linear version of (2.22)–(2.24) reveals that the situation is subtle:

• By “linear version” we mean that, in the complex metric (2.22)-(2.23) and in the complex
Einstein equations (2.19), one formally replaces Θ by Θ+εΦ (where ε is a parameter), and
one keeps only linear terms in ε. Then the perturbation to the background complex metric
is exactly (3.2), and the scalar field Φ would seem to satisfy the wave equation �Φ = 0.
In addition, using the general expression [6, Eq. (5.7.15)] for the perturbed Weyl spinor,
it is not difficult to show that for the complex perturbation (3.2) one has

Ψ̇ABCD[h
H] = 1

8oAoBoCoD��Φ, ˙̃ΨA′B′C′D′ [hH] = 1
2∇̃A′∇̃B′∇̃C′∇̃D′Φ, (3.5)

which resemble (2.15), (2.16).

• However, the linear version of the complex Einstein equations is the fourth order equation
∇̃A′∇̃B′�Φ = 0, see (2.14). Analogously to the discussion around eq. (2.19), this implies
that �Φ = F , where F is a function such that Fuu = Fuw = Fww = 0, so one does not
really get the homogeneous wave equation for Φ. We will encounter a similar issue in our
proof of theorem 3.1 below, where we will show that one can get rid of inhomogeneous
terms by considering gauge transformations.

• Even if one manages to get the homogeneous wave equation, the background real and
complex geometries, eqs. (2.4) and (2.13) respectively, are different, which means that
the wave equations, while formally equal, are different in practice. Explicitly, the wave
operators of the real and complex geometries are given by equations (2.10) and (2.18).

3.2 Proof of theorem 3.1

3.2.1 Preliminaries

We consider a smooth mono-parametric family of real space-times (M,gab(ε)), where gab ≡ gab(0)
is the background space-time and is assumed to satisfy the vacuum Einstein equations Rab = 0.
The background Levi-Civita connection is denoted by ∇a, and the linearization of the metric is
hab =

d
dε |ε=0[gab(ε)]. The linearizations of the Ricci tensor and of the curvature scalar are linear

operators acting on hab. They will be denoted by Ṙab[h] and Ṙ[h] respectively, and explicit
expressions for them are (see e.g. [17])

Ṙab[h] = − 1
2�hab −

1
2∇a∇b(g

cdhcd) +
1
2∇

c∇ahbc +
1
2∇

c∇bhac, (3.6)

Ṙ[h] = ∇a∇bhab −�(gabhab). (3.7)

Calculations are greatly simplified by using spinors. We emphasize that we do not perturb
spinors themselves, we just use the spinor structure of the background space-time. Since all
perturbations are tensor fields, they can be written in spinor language, using the usual dictionary
between tensor indices and pairs of spinor indices (see section 2.1). For example, using the
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background Levi-Civita connection ∇a = ∇AA′ , for the perturbed Ricci tensor we can write
Ṙab[h] ≡ ṘABA′B′ [h], with

ṘABA′B′ [h] = −
1

2

[

�hABA′B′ +∇AA′∇BB′(gcdhcd)−∇CC′

∇AA′hBB′CC′ −∇CC′

∇BB′hAA′CC′

]

.

(3.8)
Notice that this does not mean that we are linearizing a spinor field. In this work, the meaning
of “perturbed field” is the ordinary one in perturbation theory in general relativity (see e.g. [17]).

Let {oA, ιA} be a spin frame for the background space-time, ǫABo
AιB = 1. For the calcula-

tions in this section, it is useful to define the operators

∇̃A′ := oA∇AA′ , ∇A′ := ιA∇AA′ , ∇̄A := ōA
′

∇AA′ , ∇A := ῑA
′

∇AA′ . (3.9)

For the particular case of a pp-wave background, from the discussion of section 2.3 we have
∇̃A′oB = ∇A′oB = 0, ∇̃A′ιB = 0 and ∇A′ιB = −κ′ōA′oB .

3.2.2 The radiation gauge

As is well-known, diffeomorphism invariance in general relativity implies that in linearized gravity,
any metric perturbation hab is physically equivalent to hab+K[ξ]ab, where K[ξ]ab = ∇aξb+∇bξa
and ξa is arbitrary. For a vacuum background, it identically holds Ṙab[K[ξ]] ≡ 0 for any ξa. For
a pp-wave, in appendix A.1 we give explicit expressions for the components of K[ξ]ab.

For a background space-time possessing a null vector ℓa associated to a geodesic shear-free
congruence (which is certainly the case for the pp-waves studied in this work), one can impose
(see [18]) the so-called radiation gauge:

ℓahab = 0, gabhab = 0. (3.10)

A short calculation then shows that in terms of a null tetrad {ℓa, na,ma, m̄a}, it holds

hab = hnnℓaℓb − 2hnm̄ℓ(amb) − 2hnmℓ(am̄b) + hm̄m̄mamb + hmmm̄am̄b (3.11)

where hnn = nanbhab, etc. Replacing the expression (2.2) for the null vectors, in spinor language
we get

hab = oAoBX̊A′B′ + ōA′ ōB′

¯̊
XAB ,

where
X̊A′B′ = 1

2hnnōA′ ōB′ − 2hnm̄ō(A′ ῑB′) + hm̄m̄ῑA′ ῑB′ .

Now, let ψ be an arbitrary real scalar field. Then we have, trivially,

hab = oAoBX̊A′B′ + ōA′ ōB′

¯̊
XAB + iψoAoB ōA′ ōB′ − iψoAoB ōA′ ōB′

= oAoB (X̊A′B′ + iψōA′ ōB′)
︸ ︷︷ ︸

=:X
A′B′

+ōA′ ōB′ (
¯̊
XAB − iψoAoB)
︸ ︷︷ ︸

=X̄AB

, (3.12)

so the tensor field (3.11) is

hab = γab + γ̄ab, γab = oAoBXA′B′ . (3.13)

The reason for including the arbitrary scalar field ψ will become clear in the next section. The
relation between the components of XA′B′ and the components in (3.11) is

X0′0′ = hm̄m̄, X0′1′ = hnm̄, X1′1′ =
1
2hnn + iψ. (3.14)

It is important to note that the conditions (3.10) do not exhaust the gauge freedom. In
Appendix A.1.1 we analyse the residual gauge transformations under which (3.10) is preserved.
This plays an important role below.
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3.2.3 Potentials

We now assume that we are given a real metric perturbation hab in radiation gauge, eq. (3.13),
that satisfies the linearized Einstein vacuum equations:

ṘABA′B′ [h] = ṘABA′B′ [γ] + ṘABA′B′ [γ̄] = 0. (3.15)

Notice that this equation does not imply that ṘABA′B′ [γ] vanishes. Using (3.8), (3.9), and (3.13),
after some calculations we find the following expressions for the linearized Ricci tensor and Ricci
scalar of the tensor field γab = oAoBXA′B′ :

Ṙ[γ] = ∇̃A′

∇̃B′

XA′B′ , (3.16a)

ṘABA′B′ [γ] = −
1

2

[

oAoB�XA′B′ + oB∇̃
A′

∇AA′XB′C′ + oA∇̃
A′

∇BB′XA′C′

]

. (3.16b)

For the complex conjugate γ̄ab = ōA′ ōB′X̄AB , the corresponding formulas are obtained by simply
taking the complex conjugate of the above. Note that, regardless of (3.15), it follows immediately
that

oAoBṘABA′B′ [γ] ≡ 0, ōA
′

ōB
′

ṘABA′B′ [γ̄] ≡ 0. (3.17)

From (3.16a) and its complex conjugate, we find

Ṙ[h] = ∇̃A′

∇̃B′

XA′B′ + ∇̄A∇̄BX̄AB

= (∇̃A′

∇̃B′

X̊A′B′ + i∂2uψ) + (∇̄A∇̄BX̊AB − i∂2uψ) = 0, (3.18)

where in the second line we used the definition of XA′B′ given in eq. (3.12). We now see the
reason for including the arbitrary scalar field ψ: since it is free, we can choose it so as to satisfy

∂2uψ = i∇̃A′

∇̃B′

X̊A′B′ , (3.19)

or more explicitly:

∂2uψ = i
[

∂2
ζ̄
hm̄m̄ + 2∂u∂ζ̄hnm̄ + 1

2∂
2
uhnn

]

. (3.20)

(One still has the freedom ψ → ψ + χ with ∂2uχ = 0, but we will not need this.) The choice
(3.20) of ψ has the consequence that

∇̃A′

∇̃B′

XA′B′ = 0, (3.21)

which implies that there exists, locally, a spinor field YA′ such that

XA′B′ = ∇̃(A′YB′). (3.22)

Remark 3.2. The argument for deducing (3.22) from (3.21) is essentially a variant of the
argument given by Penrose in [5, Section 4]. It is always true locally, and it can be extended
globally to a region that has vanishing first and second homotopy groups. As explained by Penrose,
this topological restriction accounts for the impossibility of finding global potentials in certain
cases, such as for Coulomb fields.

In coordinate terms, the above means that, by virtue of the vanishing of the perturbed Ricci
scalar of hab, and by choosing ψ in the form (3.20), one can locally find two fields Y0′ , Y1′ (which
are the components of a spinor field YA′ in the spin frame {ōA′ , ῑA′}) such that

∂uY0′ = hm̄m̄, (3.23a)

∂uY1′ − ∂ζ̄Y0′ = 2hnm̄, (3.23b)

∂ζ̄Y1′ = − (12hnn + iψ). (3.23c)
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From these equations we see that there is some freedom in Y0′ , Y1′ : one can check that the
equations are invariant under Y0′ → Y0′ + τ0′ , Y1′ → Y1′ + τ1′ , where τ0′ = p(v, ζ)ζ̄ + q0′(v, ζ)
and τ1′ = p(v, ζ)u+ q1′(v, ζ), with p, q0′ , q1′ arbitrary functions of v, ζ. Alternatively, this is seen
from integrating equations (3.23), which gives

Y0′ =

∫

duhm̄m̄ + p(v, ζ)ζ̄ + q0′(v, ζ), (3.24a)

Y1′ = −

∫

dζ̄(12hnn + iψ) + p(v, ζ)u+ q1′(v, ζ). (3.24b)

From a coordinate-free perspective, the freedom in p, q0′ , q1′ corresponds to the fact that eq.
(3.22) is invariant under YA′ → YA′ + τA′ , where τA′ is any solution to ∇̃(A′τB′) = 0. We will not
need to use this freedom.

In view of (3.22), the original real metric perturbation is

hab = γab + γ̄ab, γab = oAoB∇̃(A′YB′). (3.25)

The linearized Ricci operator for tensor fields of the form γab = oAoB∇̃(A′YB′) is, of course, a
special case of (3.16b). After some calculations, we find

− 2ṘABA′B′ [γ] = oAoB

[

2∇̃A′∇̃B′∇C′

YC′ −∇(A′∇̃B′)∇̃
C′

YC′

]

− o(AιB)∇̃A′∇̃B′∇̃C′

YC′ . (3.26)

Summarizing, so far we have only imposed the vanishing of the perturbed Ricci scalar, and we
used this to deduce the structure (3.25) of the metric perturbation. Using (3.26) and its complex
conjugate, the rest of the Einstein equations (3.15) is

oAoB

[

2∇̃A′∇̃B′∇C′

YC′ −∇(A′∇̃B′)∇̃
C′

YC′

]

− o(AιB)∇̃A′∇̃B′∇̃C′

YC′ + c.c = 0. (3.27)

This equation is automatically satisfied if ∇C′

YC′ and ∇̃C′

YC′ vanish. In this case the result of
theorem 3.1 would follow immediately: the equation ∇̃C′

YC′ = 0 would imply that YC′ = ∇̃C′Φ
for some (locally defined) complex scalar field Φ, and ∇C′

YC′ = 0 would give the wave equation
�Φ = 0. However, the converse of the above statement is not necessarily true: the equation
ṘABA′B′ [h] = 0 does not imply that ∇C′

YC′ and ∇̃C′

YC′ vanish.

The non-vanishing of ∇C′

YC′ and ∇̃C′

YC′ makes the completion of the proof of theorem 3.1
more difficult. What we will show is that these fields can be set to zero by a gauge transformation.
To this end, recall that we mentioned in section 3.2.2 that we still have the freedom to perform
residual gauge transformations, i.e. transformations of the form

hab → h′ab = hab −K[ξ]ab (3.28)

where K[ξ]ab = ∇aξb+∇bξa satisfies ℓaK[ξ]ab = 0 = gabK[ξ]ab. We analyse this residual freedom
in appendix A.1.1, where we show that there exists a spinor field gA′ such that K[ξ]ab can be
written as in eq. (A.11). The gauge-transformed metric is then

h′ab = γ′ab + γ̄′ab, (3.29)

where
γ′ab = oAoB∇̃(A′ZB′), ZB′ = YB′ − gB′ . (3.30)

Since (3.28)-(3.29) is a gauge transformation, we have ṘABA′B′ [h] = ṘABA′B′ [h′], thus, the
Einstein equations (3.27) are equivalently

oAoB

[

2∇̃A′∇̃B′∇C′

ZC′ −∇(A′∇̃B′)∇̃
C′

ZC′

]

− o(AιB)∇̃A′∇̃B′∇̃C′

ZC′ + c.c = 0. (3.31)
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Proposition 3.3. The gauge transformation (3.28)-(3.29) can be chosen such that the spinor
field ZA′ satisfies the neutrino equation

∇AA′

ZA′ = 0. (3.32)

We defer the proof of this proposition to appendix A.2. Now, any solution to (3.32) can be
written (locally) as ZA′ = ∇̃A′Φ for some complex scalar field that satisfies the wave equation.
To see this, first contract (3.32) with oA, which gives ∇̃A′

ZA′ = 0. This implies that there is,
locally, a complex scalar field Φ such that ZA′ = ∇̃A′Φ (see Remark 3.2). Contracting now (3.32)
with ιA, we get ∇A′

∇̃A′Φ = 0, which is the same as �Φ = 0.
Summarizing, the original real metric perturbation is hab = h′ab+K[ξ]ab, where h′ab = γ′ab+γ̄

′
ab,

γ′ab is given by
γ′ab = oAoB∇̃A′∇̃B′Φ, (3.33)

and Φ satisfies the wave equation �Φ = 0 on the background pp-wave space-time. This concludes
the proof of theorem 3.1.

Remark 3.4. 1. The perturbation h′ab = γ′ab + γ̄′ab is both in radiation gauge and in Lorenz
gauge: one can check that ℓah′ab = 0 = gabh′ab as well as ∇ah′ab = 0.

2. The residual radiation gauge freedom is essential for the proof of theorem 3.1. Note that
this must also be used if one wants to apply the same method to even the simplest case of
Minkowski space-time, which can be obtained by simply setting H = 0 in our formulas4.

3. As a by-product of the above construction, we obtained a method to generate solutions to
the linearized Einstein vacuum equations from solutions to the neutrino equation.

4. If the potential Φ is independent of u, i.e. Φu = 0, then the perturbation actually gives a
solution to the full (non-linear) Einstein equations. This can be seen from eqs. (3.2), (3.3),
(2.5), (2.10): Φ is just a perturbation to the background wave profile H.

4 Generalization to a “half-Kähler” vacuum space-time

In this section we briefly show how the ideas of the previous sections can be carried over to a
more general (real, Lorentzian) space-time: the “half-Kähler” case of table 1. This is defined by
the condition that there is a parallel projective spinor, that is, a ‘spinor field up to scale’ that
is parallel. We are not aware of a description of this space-time (or its complex generalization)
analogous to the one given in propositions 2.1, 2.2. In the Euclidean case, the manifold must
be Kähler, so the Lorentzian version might be of interest on its own right5. In addition, a real
version of the complex result of Prop. 2.2 for this case would correspond again to a split signature
metric. Here we restrict ourselves merely to the description of gravitational perturbations.

A convenient way of expressing the existence of a spinor up to scale that is parallel is to
use GHP language (cf. [6, Section 4.12]). As is known, the use of spinors/vectors up to scale
in relativity brings about the notion of “GHP weight”. Let {oA, ιA} be two spinor fields in a
Lorentzian space-time (M,gab), with oAι

A = 1. A (scalar/tensor/spinor) field η is said to have
GHP weight {p, q} if, under the rescaling oA → λoA, ιA → λ−1ιA (with λ a complex scalar

4Note that the formulations of the Minkowski problem in [4], [5], [6, Section 5.7] are very different to our
method and only apply when the background is flat.

5Perhaps a closer Lorentzian analogue to a Kähler manifold would be a space-time where we have both
ΘAA′o

B
= 0 and ΘAA′ι

B
= 0. This may be seen as a complexified version of Kähler geometry. Black holes (in

particular) are conformal to this space-time.
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different from zero), it transforms as η → λpλ̄qη. A derivative operator that is covariant under
this transformation is the GHP connection Θa = ∇a + pωa + qω̄a, where ωa := ιB∇ao

B. The
existence of a parallel projective spinor can then be expressed as the condition ΘAA′oB = 0.

If oA satisfies ΘAA′oB = 0, then a few calculations using [Θa,Θb]o
C = 0 show that the space-

time must be of Petrov type II. If in addition, we impose the vacuum condition ΦABA′B′ = 0 = Λ,
then Ψ2 = 0, ∇A(A′ωA

B′) = 0 and ∇A′(Aω
A′

B) = −Ψ3oAoB . The GHP connection is then self-dual
and algebraically special. Notice that Ψ2 = 0 excludes the type D case, so in particular, black
holes are not included in this vacuum class.

The vector field ℓb = oB ōB
′

satisfies Θaℓ
b = 0, so it is tangent to a null congruence that is

both geodesic and shear-free. The radiation gauge for gravitational perturbations can then be
imposed [18]. The discussion from now on is analogous to what we did in sections 3.2.2 and
3.2.3, the only extra point to keep in mind is that all fields now carry GHP weights. If hab is
a perturbation in radiation gauge, we can write it as in (3.12), that is hab = γab + γ̄ab, with
γab = oAoBXA′B′ . The spinor field XA′B′ has weights {−2, 0}. The linearized Einstein equations
are then Ṙab[h] = Ṙab[γ] + Ṙab[γ̄] = 0, and a calculation shows that

− 2Ṙab[γ] = oAoB [�
ΘXA′B′ + 2Θ̃C′

Θ(A′XB′)C′ ]− 2o(AιB)Θ̃
C′

Θ̃(A′XB′)C′ − 1
2gabṘ[γ], (4.1)

where
Ṙ[γ] = Θ̃A′

Θ̃B′

XA′B′ , (4.2)

and we defined

�
Θ := gabΘaΘb, Θ̃A′ := oAΘAA′ , ΘA′ := ιAΘAA′ . (4.3)

Choosing the free scalar field ψ in (3.12) so that Θ̃A′

Θ̃B′

XA′B′ = 0, we deduce that there is a
spinor field YA′ , with weights {−3, 0}, such thatXA′B′ = Θ̃(A′YB′). Thus, after some calculations,
the linearized Einstein equations become (compare to (3.27))

oAoB

[

2Θ̃A′Θ̃B′ΘC′

YC′ −Θ(A′Θ̃B′)Θ̃
C′

YC′

]

− o(AιB)Θ̃A′Θ̃B′Θ̃C′

YC′ + c.c = 0. (4.4)

For a residual radiation gauge transformation hab → h′ab = hab − K[ξ]ab, (where K[ξ]ab =
∇aξb + ∇bξa satisfies (A.5)) there is a spinor gA′ such that K[ξ]ab = oAoBΘ̃(A′gB′) + c.c. So
the Einstein equations for h′ab are the same as (4.4) with YA′ replaced by ZA′ = YA′ − gA′ . The
analysis of the residual gauge is analogous to the pp-wave case discussed in appendix A.1.1,
where instead of coordinate derivatives we use GHP operators. For example, instead of (A.7),
we find þ ξℓ = 0, þ2 ξm = þ2 ξm̄ = þ2 ξn = 0, ð ð′ ξℓ = 0. Choosing then the gauge such that
Θ̃A′

gA′ = Θ̃A′

YA′ , ΘA′

gA′ = ΘA′

YA′ , we obtain Θ̃A′

ZA′ = 0 and ΘA′

ZA′ = 0, or equivalently a
weighted neutrino equation

ΘAA′

ZA′ = 0. (4.5)

From Θ̃A′

ZA′ = 0 we deduce that there is, locally, a complex scalar field Φ, with weights {−4, 0},
such that ZA′ = Θ̃A′Φ, and from ΘA′

ZA′ = 0 we deduce that �
ΘΦ = 0.

In summary, we see that any real gravitational perturbation to a “half-Kähler” vacuum space-
time, once written in radiation gauge and assuming that it satisfies the linearized Einstein vacuum
equations, can be locally expressed as

hab = oAoBΘ̃A′Θ̃B′Φ+ c.c + 2∇(aξb), (4.6)

where Φ satisfies the GHP weighted wave equation

�
ΘΦ = 0. (4.7)

This generalizes the pp-wave result, theorem 3.1. Notice that, analogously to the pp-wave case,
the Hertz potential h′ab = oAoBΘ̃A′Θ̃B′Φ + c.c is both in radiation gauge and in Lorenz gauge
(i.e. ∇ah′ab = 0).
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5 Conclusions

In this work we have shown that any real, linear gravitational perturbation of a (real, Lorentzian)
vacuum pp-wave space-time can be locally expressed, modulo gauge transformations, as the real
part of a Hertz/Debye potential, where the scalar Debye potential satisfies the wave equation
of the background pp-wave solution. This is believed to hold for more general backgrounds as
well (replacing the wave equation by, e.g., the Teukolsky equation), but to our knowledge, the
result has been completely proven only for perturbations of Minkowski [4], [5], [6, Section 5.7].
We stress that our result is local, cf. Remark 3.2 and also [19].

We also showed the connections between the Hertz/Debye representation for perturbations
of pp-waves and the non-linear structure of a complex space-time with a parallel spinor. This
illustrates the formal relation between this representation and a particular case of the hyper-
heavenly construction of Plebański and Robinson [16]. In addition, we argued that a linear
problem in a real space with a Lorentzian metric is related to a non-linear problem also in a
real space but with a split signature metric. This is interesting in view of modern developments
where physics in split signature is relevant, especially in the context of scattering amplitudes and
connections to gravitation, see [20], [21].

Our approach relied on using special complex 2-surfaces in the complexified space-time, called
α- and β-surfaces, which are the basic object of twistor theory, cf. [7]. These surfaces are present,
in particular, for (complexifications of) any algebraically special, vacuum, real, Lorentzian space-
time. Thus, the method employed in this work can also be applied to the analysis of linearized
gravity on more general backgrounds. We illustrated this by generalizing our result to perturba-
tions of a “half-Kähler” vacuum space-time. Explicit computations in more general backgrounds
are more involved due to the complicated structure of the curvature. The interpretation of the
coordinates defined by twistor surfaces is also more difficult than in the pp-wave case (where
these coordinates are simply Brinkmann coordinates).

From a physical point of view, our motivation came from perturbation theory in general rel-
ativity and its applications to gravitational wave physics, concerning the Hertz/Debye potential
representation of perturbations, and gauge issues. While the currently most interesting space-
times for gravitational wave physics are more general than pp-waves, representing e.g. single or
binary black holes, the case of pp-waves already presents conceptual difficulties similar to those
that appear in the other more general cases. This can be seen from our study of perturbations
to “half-Kähler” space-times. The application of these ideas to the general class of Petrov type
II vacuum solutions (including type D and the Kerr solution) is left for future work [22].

From a geometric perspective, our motivation originated in the relations that (generalized)
parallel spinors have with complex geometry, as discussed in section 2.2. We focused on per-
turbations to the simplest case of a parallel spinor in Lorentz signature, a pp-wave metric. In
Euclidean signature this corresponds to hyper-Kähler manifolds, and linear perturbations in this
context have been studied e.g. in [23], [24]. Natural generalizations are the other cases described
in Table 1. We also studied the Lorentzian “half-Kähler” case, which in a Riemannian setting
would correspond to perturbations of Kähler manifolds. A natural next step would be the study
of perturbations to the “half-Hermitian” case CAA′oB = 0.
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A Gauge issues

Throughout this appendix we assume a (real, Lorentzian) vacuum pp-wave background, with
the special spin frame {oA, ιA}, and its complex conjugate {ōA

′

, ῑA
′

}, introduced in section 2.3.
The associated null tetrad {ℓa, na,ma, m̄a} is defined as in eq. (2.2). In terms of Brinkmann
coordinates (see eq. (2.4)), we have

ℓa∂a = ∂u, ma∂a = −∂ζ̄ , m̄a∂a = −∂ζ , na∂a = ∂v −
1
2H∂u. (A.1)

The connection coefficients are given by

∇aℓ
b = 0, ∇am

b = −κ̄′ℓaℓ
b, ∇am̄

b = −κ′ℓaℓ
b, ∇an

b = −ℓa(κ
′mb + κ̄′m̄b). (A.2)

A.1 The gauge operator

For an arbitrary covector field ξa, we define the “gauge operator” (or Killing operator) K by

K[ξ]ab = ∇aξb +∇bξa. (A.3)

In terms of a null tetrad, this can be written as follows:

K[ξ]ab = Knnℓaℓb − 2Knm̄ℓ(amb) − 2Knmℓ(am̄b) +Km̄m̄mamb +Kmmm̄am̄b

+Kℓℓnanb − 2Kℓm̄n(amb) − 2Kℓmn(am̄b) + 2Kℓnn(aℓb) − 2Kmm̄m(am̄b).

For a pp-wave, using (A.1)-(A.2) we find:

Kℓℓ = 2∂uξℓ, Kmm̄ = −(∂ζ̄ξm̄ + ∂ζξm) (A.4a)

Kℓm̄ = ∂uξm̄ − ∂ζξℓ, Knm = (∂v −
1
2H∂u)ξm + κ̄′ξℓ − ∂ζ̄ξn, (A.4b)

Kℓm = ∂uξm − ∂ζ̄ξℓ, Knm̄ = (∂v −
1
2H∂u)ξm̄ + κ′ξℓ − ∂ζξn, (A.4c)

Km̄m̄ = −2∂ζξm̄, Kℓn = ∂uξn + (∂v −
1
2H∂u)ξℓ, (A.4d)

Kmm = −2∂ζ̄ξm, Knn = 2(∂v −
1
2H∂u)ξn + 2κ′ξm + 2κ̄′ξm̄. (A.4e)

A.1.1 Residual radiation gauge freedom

The radiation gauge (3.10) is preserved by transformations in which the new gauge vector ξa
satisfies

ℓaK[ξ]ab = 0, gabK[ξ]ab = 0. (A.5)

Equivalently: Kℓℓ = Kℓm = Kℓm̄ = Kℓn = Kmm̄ = 0. Using identities (A.4), this is

∂uξℓ = 0, (A.6a)

∂uξm̄ − ∂ζξℓ = 0, (A.6b)

∂uξm − ∂ζ̄ξℓ = 0, (A.6c)

∂uξn + ∂vξℓ = 0, (A.6d)

∂ζ̄ξm̄ + ∂ζξm = 0. (A.6e)

From here we deduce
∂2uξm̄ = ∂2uξm = ∂2uξn = 0, ∂ζ∂ζ̄ξℓ = 0. (A.7)

Notice that in view of (A.4), and given that ∂u is a Killing vector of the background space-time,
from (A.7) it follows that ∂2uKab = 0 for all a,b = u, v, ζ, ζ̄ .
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So we get the following general form for the components of the (real) gauge vector ξa:

ξℓ = f1(v, ζ) + f2(v, ζ̄), (A.8a)

ξm̄ = [∂ζf1(v, ζ)]u+ f3(v, ζ, ζ̄), (A.8b)

ξn = − [∂vf1(v, ζ) + ∂vf2(v, ζ̄)]u+ f4(v, ζ, ζ̄), (A.8c)

for some functions f1(v, ζ), f2(v, ζ̄), f3(v, ζ, ζ̄) and f4(v, ζ, ζ̄). Apart from reality conditions for
ξa, any restrictions on these functions will be differential.

Given that we here impose the gauge operator (A.3) to satisfy (A.5), the same reasoning that
we used in section 3.2.2 to deduce (3.12) now gives

K[ξ]ab = oAoBGA′B′ + ōA′ ōB′ḠAB , (A.9)

where
GA′B′ = (12Knn + iη)ōA′ ōB′ − 2Knm̄ō(A′ ῑB′) +Km̄m̄ῑA′ ῑB′ (A.10)

and we have included an arbitrary scalar field η. Explicit expressions for Knn, Knm̄, Km̄m̄ in
terms of ξa are given in (A.4). We can now express GA′B′ in terms of a 1-index spinor by doing
the same trick that we did in section 3.2.3. The linearized Ricci scalar of (A.9) is Ṙ[K[ξ]] =
∇̃A′

∇̃B′

GA′B′ + ∇̄A∇̄BḠAB (which vanishes identically since the background is vacuum), where

∇̃A′

∇̃B′

GA′B′ = ∂2
ζ̄
Km̄m̄ + 2∂u∂ζ̄Knm̄ + 1

2∂
2
uKnn + i∂2uη.

A short calculation shows that ∂2uKnn = 0 = ∂u∂ζ̄Knm̄, while ∂2
ζ̄
Km̄m̄ is independent of u.

Therefore, if we choose the arbitrary scalar η in (A.10) in the form η = i
2 [∂

2
ζ̄
Km̄m̄]u2, then

∇̃A′

∇̃B′

GA′B′ = 0, so there is a spinor field gA′ such that GA′B′ = ∇̃(A′gB′), and

K[ξ]ab = oAoB∇̃(A′gB′) + ōA′ ōB′∇̄(AḡB). (A.11)

The relation between gA′ and ξa is given by

∂ug0′ = Km̄m̄, (A.12a)

∂ug1′ − ∂ζ̄g0′ = 2Knm̄, (A.12b)

∂ζ̄g1′ = − (12Knn + iη), (A.12c)

where in the right-hand sides one replaces the expressions (A.4). We deduce from here that

∂3ug0′ = 0, ∂ζ̄∂
2
ug0′ = 0, ∂3ug1′ = 0. (A.13)

Thus, the general structure of g0′ , g1′ is

g0′ = A0′(v, ζ)u
2 +B0′(v, ζ, ζ̄)u+ C0′(v, ζ, ζ̄), (A.14a)

g1′ = A1′(v, ζ, ζ̄)u
2 +B1′(v, ζ, ζ̄)u+ C1′(v, ζ, ζ̄), (A.14b)

for some functions A0′ , ..., C1′ where the arguments are as specified in the previous equations.
Using (A.12) and (A.4), one can relate these functions to the ones appearing in (A.8); this way we
see, for example, that they do not identically vanish. For instance, we get A0′(v, ζ) = −∂2ζf1(v, ζ).
However, in general the explicit expressions do not seem to be particularly enlightening.
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A.2 Proof of proposition 3.3

We have the identity ∇AA′

ZA′ = oA∇A′

ZA′ − ιA∇̃A′

ZA′ , so ∇AA′

ZA′ = 0 iff ∇A′

ZA′ = 0 and
∇̃A′

ZA′ = 0. Since ZA′ = YA′ − gA′ , we have

∇̃A′

ZA′ = ∇̃A′

YA′ − ∇̃A′

gA′ , (A.15a)

∇A′

ZA′ = ∇A′

YA′ −∇A′

gA′ , (A.15b)

so we want to show that, as long as the Einstein equations are satisfied, we can choose the
gauge transformation such that the associated spinor field gA′ satisfies ∇̃A′

gA′ = ∇̃A′

YA′ and
∇A′

gA′ = ∇A′

YA′ .
The first observation is that any requirement for the function ∇̃A′

gA′ restricts gA′ only up to
the addition of terms of the form ∇̃A′S. In other words, we can write gA′ = VA′ + 2∇̃A′S where
VA′ and S are independent, then (A.15) become

∇̃A′

ZA′ = ∇̃A′

YA′ − ∇̃A′

VA′ , (A.16a)

∇A′

ZA′ = ∇A′

YA′ −∇A′

VA′ −�S (A.16b)

(where we used the identity �S = 2∇A′

∇̃A′S), and we want to show that VA′ and S can be
chosen such that ∇̃A′

ZA′ = 0 = ∇A′

ZA′ . Restrictions on VA′ and S arise from the fact that they
come from a gauge transformation: the general form of the components of gA′ was obtained in
(A.14). See (A.20) below.

In order to obtain expressions for the fields ∇̃A′

YA′ , ∇A′

YA′ , we use the linearized Einstein
equations (3.27). The non-trivial, independent components are:

∂2u(∇̃
A′

YA′) = 0, (A.17a)

2∂2u(∇
A′

YA′) + ∂u∂ζ(∇̃
A′

YA′) = 0, (A.17b)

∂u∂ζ̄(∇̃
A′

YA′) + ∂u∂ζ(∇̄
AȲA) = 0, (A.17c)

2∂u∂ζ̄(∇
A′

YA′) + 1
2(∂u∂v + ∂ζ∂ζ̄)(∇̃

A′

YA′)− 1
2∂

2
ζ (∇̄

AȲA) = 0, (A.17d)

∂2
ζ̄
(∇̃A′

YA′)− 4∂u∂ζ(∇
AȲA)− 2(∂u∂v + ∂ζ∂ζ̄)(∇̄

AȲA) = 0, (A.17e)

2∂2
ζ̄
(∇A′

YA′) + ∂ζ̄(∂v −
1
2H∂u)(∇̃

A′

YA′) + 2∂2ζ (∇
AȲA) + ∂ζ(∂v −

1
2H∂u)(∇̄

AȲA) = 0. (A.17f)

Equations (A.17a)-(A.17b) correspond to ōA
′

ōB
′

ṘABA′B′ [h] = 0, (A.17c)-(A.17d) correspond to
ōA

′

ῑB
′

ṘABA′B′ [h] = 0, and (A.17e)-(A.17f) correspond to ῑA
′

ῑB
′

ṘABA′B′ [h] = 0. Notice that
(A.17a)-(A.17b) are the only equations that involve only ∇̃A′

YA′ and ∇A′

YA′ (not their complex
conjugates); this is because of the identities (3.17). We will then use (A.17a)-(A.17b) to deduce
the structure of ∇̃A′

YA′ , ∇A′

YA′ .
From (A.17a) we deduce that

∇̃A′

YA′ = a(v, ζ, ζ̄)u+ b(v, ζ, ζ̄) (A.18)

for some functions a, b. These functions can be written in terms of the metric perturbation
hab (up to an arbitrary function of v, ζ, that we can set to zero), by noticing that ∇̃A′

YA′ =
−(∂uY1′ + ∂ζ̄Y0′) and using eqs. (3.24a)-(3.24b). Taking a u-derivative in (A.17b) and using

(A.17a), we see that ∂3u(∇
A′

YA′) = 0, so ∇A′

YA′ is quadratic in u. Using also (A.18), it follows
that

∇A′

YA′ = [−1
4aζ(v, ζ, ζ̄)]u

2 + c(v, ζ, ζ̄)u+ d(v, ζ, ζ̄) (A.19)
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for some functions c, d. The rest of the equations in (A.17) involve also the complex conjugate
fields, and they give additional restrictions on the functions that appear in the right hand sides
of (A.18)-(A.19).

Notice that, since the fields ∇̃A′

gA′ , ∇A′

gA′ come from a gauge transformation, the same
equations (A.17) hold for them. In other words, any restrictions on ∇̃A′

YA′ , ∇A′

YA′ coming
from (A.17) are also satisfied by ∇̃A′

gA′ , ∇A′

gA′ . But ∇̃A′

gA′ , ∇A′

gA′ must also fulfil restrictions
that come from the gauge condition. These additional restrictions were analysed in appendix
A.1.1, where the general expressions (A.14) were found. In our current context, we have gA′ =
VA′ + 2∇̃A′S, or in components g0′ = V0′ + 2∂uS, g1′ = V1′ − 2∂ζ̄S. The restrictions (A.13)

together with the fact that VA′ and S are independent imply that ∂3uV0′ = ∂ζ̄∂
2
uV0′ = ∂3uV1′ = 0

and ∂4uS = ∂3u∂ζ̄S = 0. So we have the following form:

V0′ = α0′(v, ζ)u
2 + β0′(v, ζ, ζ̄)u+ γ0′(v, ζ, ζ̄), (A.20a)

V1′ = α1′(v, ζ, ζ̄)u
2 + β1′(v, ζ, ζ̄)u+ γ1′(v, ζ, ζ̄), (A.20b)

S = S3(v, ζ)u
3 + S2(v, ζ, ζ̄)u

2 + S1(v, ζ, ζ̄)u+ S0(v, ζ, ζ̄). (A.20c)

After some tedious calculations, this gives (using in particular the expression (2.10) for �):

∇̃A′

gA′ = − (2α1′ + ∂ζ̄β0′)u− (β1′ + ∂ζ̄γ0′), (A.21)

∇A′

gA′ = [∂vα0′ + ∂ζα1′ + 6∂vS3 − 2∂ζ∂ζ̄S2]u
2

+ [∂vβ0′ −Hα0′ + ∂ζβ1′ + 4∂vS2 − 2∂ζ∂ζ̄S1 − 6HS3]u

+ [∂vγ0′ −
1
2Hβ0′ + ∂ζγ1′ + 2∂vS1 − 2∂ζ∂ζ̄S0 − 2HS2] (A.22)

Comparing these expressions to (A.18)-(A.19), we see that we can choose the free functions in
(A.20) so that ∇̃A′

gA′ = ∇̃A′

YA′ and ∇A′

gA′ = ∇A′

YA′ , which is what we wanted to prove.
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