
FrequencyLowCut Pooling - Plug & Play against
Catastrophic Overfitting

Julia Grabinski1,2, Steffen Jung4, Janis Keuper2,3, and Margret Keuper1,4

1 University of Siegen, Germany
2 CC-HPC, Fraunhofer ITWM, Kaiserslautern, Germany

3 Institute for Machine Learning and Analytics, Offenburg University, Germany
4 Max Planck Institute for Informatics, Saarland Informatics Campus, Germany

Abstract. Over the last years, Convolutional Neural Networks (CNNs)
have been the dominating neural architecture in a wide range of com-
puter vision tasks. From an image and signal processing point of view,
this success might be a bit surprising as the inherent spatial pyramid de-
sign of most CNNs is apparently violating basic signal processing laws,
i.e. Sampling Theorem in their down-sampling operations. However, since
poor sampling appeared not to affect model accuracy, this issue has been
broadly neglected until model robustness started to receive more atten-
tion. Recent work [17] in the context of adversarial attacks and distri-
bution shifts, showed after all, that there is a strong correlation between
the vulnerability of CNNs and aliasing artifacts induced by poor down-
sampling operations. This paper builds on these findings and introduces
an aliasing free down-sampling operation which can easily be plugged
into any CNN architecture: FrequencyLowCut pooling. Our experiments
show, that in combination with simple and fast FGSM adversarial train-
ing, our hyper-parameter free operator significantly improves model ro-
bustness and avoids catastrophic overfitting.

Keywords: CNNs, Adversarial Robustness, Aliasing

1 Introduction

The robustness of convolutional neural networks has evolved to being one of
the most crucial computer vision research topics in recent years. While state-
of-the-art models provide high accuracies in many tasks, their susceptibility to
adversarial attacks [7] and even common corruptions [19] is hampering their
deployment in many practical applications. Therefore, a wide range of publica-
tions aims at providing models with increased robustness by adversarial training
schemes [14,41,46], sophisticated data augmentation techniques [34] and enrich-
ing the training with additional data [4,15]. As a result, robuster models can be
learned with common CNN architectures, yet arguably at a high training cost
- even without investigating the reasons for CNN’s vulnerability. These reasons
are of course multi-fold, starting with the high dimensionality of the feature

2 Grabinski et al.

space and sparse training data such that models easily tend to overfit [35,43].
Recently, the pooling operation in CNNs has been discussed in a similar context
for example in [17] who measured the correlation between aliasing and a net-
work’s susceptibility to adversarial attacks. [48] have shown that commonly used
pooling operations even prevent the smoothness of image representations under
small input translations. In this paper, we propose a simple and straight-forward
way to prevent aliasing during the down-sampling operation in convolutional
neural networks. Therefore, we propose to directly implement down-sampling
as a cropping operation in the frequency domain, which we refer to as Fre-
quencyLowCut pooling. In contrast to previously proposed blurring operations
[48,49], this procedure guarantees that frequencies beyond the Nyquist rate are
ignored in the classification process and the resulting model can not overfit to
high-frequency details. Natively, resulting models exhibit only slightly improved
robustness against adversarial attacks and common corruptions - as issues re-
garding the high dimensionality of the feature space persist. Yet, when paired
with simple and efficient single step adversarial training [14], this approach al-
lows to learn models on par with recent, highly optimized adversarial training
schemes [4,34,44]. Previous approaches based on single step attacks suffer from
catastrophic overfitting and therefore require early stopping criteria [35,43]. Our
proposed model outperforms such approaches as well as previous approaches
addressing the down-sampling smoothness through spatial blurring[48,49] by a
significant margin.

Our contributions are summarized as follows:

■ We introduce FrequencyLowCut pooling (FLC), ensuring aliasing-free down-
sampling within CNNs.

■ Through extensive experiments with various datasets and architectures, we
show empirically that FLC pooling prevents single step adversarial training
from catastrophic overfitting, while this is not the case for other recently
published improved pooling operations (e.g. [48]).

■ FLC pooling is significantly faster, around five times, and easier to inte-
grate than previous adversarial training or defence methods. It provides a
hyperparameter free plug and play module for increased model robustness.

1.1 Related Work

Adversarial Attacks. While CNNs are known for their excellent performance
on image classification tasks, they are susceptible to adversarial attacks [14,32,40],
i.e. to intentional image perturbations. Recently, many different adversarial at-
tacks as well as defences have been developed. One of the earliest attacks is
the Fast Gradient Sign Method (FGSM) by [14], followed by more sophisticated
methods like Projected Gradient Descent (PGD) [26], DeepFool (DF) [32], Car-
lini and Wagner (CW) [3] or Decoupling Direction and Norm (DDN) [36]. While
single step adversarial examples, like FGSM, take the full possible perturbation
step in the range of ϵ in one step, PGD iteratively searches for the minimal
perturbation size needed to flip the inferred labels of the attacked samples over

FLC pooling 3

a given number of iterations. Typically, ϵ is either measured in L2 or Linf norms
and given values are often expressed as fractions of eight-bit encodings of input
color channels, like ϵ = 1

255 . The popular choice of ϵ = 8
255 is motivated by

the limited color resolution of the human eye [13]. Recently, AutoAttack [7], an
ensemble of different attacks including an adaptive version of PGD, has been
established as the current baseline for adversarial robustness and is used to eval-
uate the robustness benchmarks in RobustBench [6].
In relation to image down-sampling, [45] and [29] demonstrated steganography
based attacks on the pre-processing pipeline of CNNs.

Adversarial Training. Most proposed attacks in literature already come with
a dedicated defence to counter their adversarial examples [14,36]. Beyond these
attack-specific defences, there are many methods for more general adversarial
training (AT) schemes. These typically either add loss terms to be more robust
against a special type of adversarial noise [11,46] or introduce additional training
data [4,38]. Some approaches also combine both [41] or use data augmentation
[15], which is typically combined with weight averaging techniques [34]. A widely
used source for additional training data is ddpm [16,33,34], which contains one
million extra samples for CIFAR-10. This dataset is generated with the model
proposed by [20]. RobustBench [6] gives an overview and evaluation of a variety
of models w.r.t. their adversarial robustness and the additional data used. [16]
receive an additional boost in robustness by adding specifically generated images
while [33] add wrongly labeled data to the training-set.

A common drawback of all adversarial training methods is the vast increase in
computation needed to train networks: large amounts of additional adversarial
samples and slower convergence due to the harder learning problem typically
increase the training time by a factor between seven and fifteen [26,41,44,46].

Catastrophic Overfitting. Adversarial training with single step FGSM is a
simple approach to achieve basic adversarial robustness [5,35]. Unfortunately,
the robustness of this approach against stronger attacks like PGD is starting to
drop again after a certain amount of training epochs. [43] called this phenomenon
catastrophic overfitting. They concluded, that one step adversarial attacks tend
to overfit the chosen adversarial perturbation magnitude (given by ϵ) but fail to
be robust against multi-step attacks like PGD. [35] introduced early stopping as
counter measure. After each training epoch, the model is evaluated on a small
portion of the dataset with a multi-step attack, which again increases the com-
putation time. As soon as the accuracy drops compared with a hand selected
threshold the model training is stopped. [24] and [39] showed that the observed
overfitting is related to the flatness of the loss landscape. They introduced a
method to compute the optimal perturbation length ϵ′ for each image and do
single step FGSM training with this optimal perturbation length to prevent
catastrophic overfitting. [2] showed that catastrophic overfitting not only occurs
in deep neural networks but can also be present in single-layer convolutional
neural networks. They propose a new kind of regularization, called GradAlign

4 Grabinski et al.

to improve FGSM perturbations and flatten the loss landscape to prevent catas-
trophic overfitting.

Anti-Aliasing. The problem of aliasing effects in the context of CNN based
neural networks has already been addressed from various angles in literature:
[48] established Anti-Aliasing methods in convolutional filters in order to im-
prove the shift-invariance of CNN classifiers. This approach has been further
improved by [49] by using learned instead of predefined blurring filters. [28] use
the low frequency components of wavelets to suppress the effects of aliasing in
order to increase the robustness of pooling operations against common image
corruptions. Here, we show that aliasing is not only relevant for robustness to
common corruptions but also affects adversarial robustness. [21] propose not only
a depth adaptive blurring filter before pooling but also an anti-aliasing activa-
tion function. This activation function is inspired by C-ReLu but uses a smooth
roll-off phase instead of the sharp cutoff at threshold t. Also, [23] achieve aliasing
free generators for GANs by blurring before sampling and non-linearities, like
ReLu, whereas [10] and [22] address aliasing in GAN generators by employing
additional loss terms in the frequency space. Lately, [17] showed that adversari-
ally robust models exhibit much less aliasing in their down-sampling layers than
non-robust models.

2 Preliminaries

2.1 Adversarial Training

In general, adversarial training can be formalized as an optimization problem
given by a min-max formulation:

min
θ

max
δ∈∆

L(x+ δ, y; θ) , (1)

where we seek to optimize network weights θ such that they minimize the loss
L between inputs x and labels y under attacks δ. The maximization over δ can
thereby be efficiently performed using the Fast Gradient Sign Method (FGSM),
which takes one big step defined by ϵ into the direction of the gradient [14]:

x′ = x+ ϵ · sign(∇xL(θ, x, y)) . (2)

The Projected Gradient Descent method, (PGD), works similar to FGSM
but instead of taking one big step in the direction of the gradient with step size ϵ,
it iteratively optimizes the adversarial example with a smaller, defined step size
α. Random restarts further increase its effectiveness. The final attack is clipped
to the maximal step size of ϵ.

x′
N+1 = ClipX,ϵ{x′

N + α · sign(∇xL(θ, x, y))} (3)

PGD is one of the strongest attacks, due to its variability in step size and its
several random restarts. Yet, its applicability for adversarial training is limited

FLC pooling 5

as it requires a relatively long optimization time for every example. Additionally,
PGD is dependent on even several hyperparameters in practice which makes it
even less attractive for training. In contrast, FGSM is fast and straight-forward
to implement. Yet, models that use FGSM for adversarial training tend to overfit
on FGSM attacks and are not robust to other attacks such as PGD, i.e. they
suffer from catastrophic overfitting [43].

2.2 Down-sampling in CNNs

Independent of their actual network topology, CNNs essentially perform a series
of stacked convolutions and non-linearities. Using a vast amount of learnable
convolution filters, CNNs are capable to extract local texture information from
all intermediate representations (input data and feature-maps). In order to be
able to abstract from this localized spatial information and to learn higher order
relations of parts, objects and entire scenes, CNNs apply down-sampling oper-
ations to implement a spatial pyramid representation over the network layers.

0

n n/2

n/2n

standard
downsampling with

stride 2

n

n
27/16

41/8

17/16

17/16 27/16

41/8

n+1

feature
map X size n/2xn/2

in the spatial
domain

n

n

5

3

2

4
2
1
8
4
7

9

2

3

8
1
3
9
5
4

4

2

8

2
3
1
4
3
1

36

6

7

1
1/4

1/16

1/8

1/8

1/16

1/8

1/16

1/8

1/16
4 5

71

0
0
0
0
0
0

0
0
0
0
0
0
0
00

0 0 0 0 0

0 00 00
0

0

feature
map X size nxn

in the spatial
domain

kernel weights
n+1

standard
convolution 3x3

with paddingfeature
map X size nxn

in the spatial
domain

0

n n/2

n/2n

standard
downsampling with

stride 2

n

n
8

9

5

5 8

9

feature
map X size n/2xn/2

in the spatial
domain

n

n

5

3

2

4
2
1
8
4
7

9

2

3

8
1
3
9
5
4

4

2

8

2
3
1
4
3
1

36

6

7

1

4 5

71

0
0
0
0
0
0

0
0
0
0
0
0
0
00

0 0 0 0 0

0 00 00
0

0

feature
map X size nxn

in the spatial
domain

standard
max pooling 3x3

with paddingfeature
map X size nxn

in the spatial
domain

n+1

n+1

Fig. 1: Standard down-sampling operations used in CNNs. Left: down-sampling
via convolution with stride two. First the featuremap is padded and the actual
convolution is executed. The stride defines the step-size of the kernel. Hence,
for stride two, the kernel is moved two spatial units. In practice, this down-
sampling is often implemented by a standard convolution with stride one and
then discarding every second point in every spatial dimension. Right: down-
sampling via MaxPooling. Here the max value for each spatial window location
is chosen and the striding is implemented accordingly.

This down-sampling is typically performed via a convolution with stride
greater than one or by so-called pooling layers (see Fig. 1). The most com-
mon pooling layers are AveragePooling and MaxPooling. All of these operations
are highly sensitive to small shifts or noise in the layer input.

Aliasing. CNNs usually have a pyramidal structure in which the data is progres-
sively sub-sampled in order to aggregate spatial information while the number
of channels increases. During sub-sampling, no explicit precautions are taken to

6 Grabinski et al.

avoid aliases, which arise from under-sampling. Specifically, when sub-sampling
with stride two, any frequency larger than N/2, where N is the size of the
original data, will cause pathological overlaps in the frequency spectra (Fig. 2).
Those overlaps in the frequency spectra cause ambiguities such that high fre-
quency components appear as low frequency components. Hence, local image
perturbations (noise) can become indistinguishable from global manipulations.
[17] showed that aliasing in CNNs strongly coincides with the robustness of
the model. Based on this finding, one can hypothesise that models that overfit
high frequencies in the data tend to be less robust. This thought is also in line
with the widely discussed texture bias [12]. To substantiate this hypothesis in
the context of adversarial robustness, we investigate and empirically show that
catastrophic overfitting coincides with an increase in aliasing during adversarial
training. Based on this observation, we expect networks that sample without
aliasing to be better behaved in adversarial training settings. The Frequency-
LowCut pooling, which we propose in the following, trivially fulfills this property.

F(x) F(x) F(x)

Oversampled
Signal

xmax xmax

Undersampled
Signal

Continous Signal in
the Fourier domain

xmax-xmax 000
xmax/2

Aliasing

Fig. 2: Aliasing in the frequency domain. Left a 1D signal with the xmax as
maximal frequency is shown in the frequency domain. When this signal is down-
sampled, the original signal is replicated at a distance depending on the sampling
rate. If sampled at a sufficiently large sampling rate, the distance between the
replica is large and the signals do not overlap (middle). If the sampling rate is
too low, the signal is under-sampled and aliases are observed due to overlapping
replica (right).

3 FrequencyLowCut Pooling

Several previous approaches such as [48,49] reduce high frequencies in features
maps before pooling to avoid aliasing artifacts. They do so by classical blurring
operations in the spatial domain. While those methods reduce aliasing, they can
not entirely remove it due to sampling theoretic considerations in theory and
limited filter sizes in practice (see supplementary material or [13] for details).
We aim to perfectly remove aliases in CNNs down-sampling operations without
adding additional hyperparameters. Therefore, we directly address the down-
sampling operation in the frequency domain, where we can sample according to
the Nyquist rate, i.e. without any aliases, in a straight-forward way. In practice,
the proposed down-sampling operation first performs a Fast Fourier Transform

FLC pooling 7

(FFT) of the feature maps f . Feature maps with height M and width N to be
down-sampled are then represented as

F (k, l) =
1

NM

M−1∑
m=0

N−1∑
n=0

f(m,n)e−2πj(k
M m+ l

N n) . (4)

In the resulting frequency space representation F , all frequencies larger than
the sampling rate over two have to be discarded before down-sampling to avoid
aliases. Sampling of the feature maps in this space amounts to cropping exactly
the remaining low frequencies from F . Since down-sampling in CNNs is com-
monly done with a sampling rate of two, we will examine our FCL pooling with
this sampling rate.

n

feature
map X size nxn

in the spatial
domain

n/2

n/2

feature
map X size nxn

in Fourier
domain

FFT nn

n

IFFTlow pass cut

n/2

n/2

n

n

feature
map X size n/2xn/2

in the Fourier
domain

feature
map X size n/2xn/2

in the spatial
domain

Fig. 3: FrequencyLowCut pooling, the proposed, guaranteed alias-free pooling
operation. We first transform feature maps into frequency space via FFT, then
crop the low frequency components. The result is transformed back into the
spatial domain. It corresponds to a sinc-filtered and downsampled feature map
and is fed into the next convolutional layer.

Then we shift the low frequency components into the middle of the k-space
and obtain Fs. Afterwards, we crop the low frequency components below the
Nyquist frequency Fsd by selecting the frequency space center with M ′ = M

4

and N ′ = N
4 .

Fsd = Fs [:, :,M
′ : 3M ′, N ′ : 3N ′] (5)

After cropping, we shift the feature maps Fsd with height K̂ and width L̂ back
to compute Fd. We transform Fd back to the spatial domain to achieve fully
aliasing free down-sampled feature maps fd with height M

2 and width N
2 .

fd(m̂, n̂) =
1

K̂L̂

K̂−1∑
k=0

L̂−1∑
l=0

Fd(k, l)e
2πj(m̂

K̂
k+ n̂

L̂
l), (6)

Fig. 3 shows the procedure in detail. In the spatial domain, the operation would
amount to convolving the feature map with an infinitely large (non-bandlimited)

sinc(m) = sin(m)
m filter, which can not be implemented in practice.

8 Grabinski et al.

Table 1: Clean training of Preact-ResNet-18 architectures on CIFAR-10. We
compare clean and robust accuracy against FGSM [14] with Linf , ϵ = 8

255 ,
PGD [26] with Linf , ϵ = 1

255 as well as L2 with ϵ = 0.5 (20 iterations) and
common corruptions (CC) [19] (mean over all corruptions and severities).

Method Clean
FGSM
ϵ = 8

255

PGD Linf

ϵ = 1
255

PGD L2

ϵ = 0.5
CC

Baseline 95.08 34.08 7.15 6.68 74.38
FLC Pooling 94.66 34.65 10.00 11.27 74.70

4 Experiments

4.1 Native Robustness of FLC pooling

In the first experiment, we evaluate our proposed FLC pooling in a standard
training scheme with Preact-ResNet-18 architectures on CIFAR-10 (see appendix
for details). Table 1 shows that both the decrease in clean accuracy as well as the
increase in robustness are marginal compared to the baseline models. We argue
that these results are in line with our hypothesis that the removal of aliasing
artifacts alone will not lead to enhanced robustness and we need to combine
correct down-sampling with adversarial training to compensate for the persisting
problems induced by the very high dimensional decision spaces in CNNs.

4.2 FLC pooling for FGSM training

In the following series of experiments we apply simple FGSM adversarial training
with ϵ = 8

255 on different architectures and evaluate the resulting robustness
with different pooling methods. We compare the models in terms of their clean,
FGSM, PGD and AutoAttack accuracy, where the FGSM attack is run with
ϵ = 8/255, PGD with 50 iterations and 10 random restarts and ϵ = 8/255 and
α = 2/255. For AutoAttack, we evaluate the standard Linf norm with ϵ = 8/255
and a smaller ϵ of 1/255, as AutoAttack is almost too strong to be inperceptible
to humans [30]. Additionally, we evaluate AutoAttack with L2 norm and ϵ = 0.5.

CIFAR-10. Table 2 shows the evaluation of a PreAct-ResNet-18 as well as a
WideResNet-28-10 (WRN-28-10) on CIFAR-10 [25]. For both network architec-
tures, we observe that our proposed FLC pooling is the only method that is able
to prevent catastrophic overfitting. All other pooling methods heavily overfit on
the FGSM training data, achieving high robustness towards FGSM attacks, but
fail to generalize this towards PGD or AutoAttack. Our hyper-parameter free
approach also outperforms early stopping methods which are additionally suf-
fering from the difficulty that one has to manually choose a suitable threshold
in order to maintain the best model robustness.

FLC pooling 9

Table 2: FGSM adversarial training of Preact-ResNet-18 and WRN-28-10 archi-
tectures on CIFAR-10. Comparison of clean and robust accuracy (high is better)
against PGD [26] and AutoAttack [7] on the full dataset with Linf with ϵ = 8/255
and L2 with ϵ = 0.5. FGSM test accuracies indicate catastrophic overfitting on
the adversarial training data, hence this column is set to gray.

Method Clean
FGSM
ϵ = 8

255

PGD Linf

ϵ = 8
255

AA Linf

ϵ = 8
255

AA L2

ϵ = 0.5
AA Linf

ϵ = 1
255

Preact-ResNet-18

Baseline: FGSM training 90.81 90.37 0.16 0.00 0.01 53.10
Baseline & early stopping 82.88 61.71 11.82 3.76 17.44 72.95
BlurPooling [48] 86.24 78.36 1.33 0.06 1.96 66.88
Adaptive BlurPooling [49] 90.35 77.39 0.23 0.00 0.07 39.00
Wavelet Pooling [27] 85.02 64.16 12.13 5.92 19.65 10.08
FLC Pooling (ours) 84.81 58.25 38.41 36.69 55.58 80.63

WRN-28-10

Baseline: FGSM training 86.67 83.64 1.64 0.09 1.47 59.39
Baseline & early stopping 82.29 56.36 31.26 28.54 46.03 76.87
Blurpooling [48] 91.40 89.44 0.22 0.00 0.00 38.45
Adaptive BlurPooling [49] 91.10 89.76 0.00 0.00 0.00 7.42
Wavelet Pooling [27] 92.19 90.85 0.00 0.00 0.00 10.08
FLC Pooling (ours) 84.93 53.81 39.48 38.37 52.89 80.27

CINIC-10. Table 3 shows similar results on CINIC-10 [8]. Our model exhibits
no catastrophic overfitting, while previous pooling methods do. It should be
noted that CINIC-10 is not officially reported by AutoAttack. This might explain
why the accuracies under AutoAttack are higher on CINIC-10 than on CIFAR-
10. We assume that AutoAttack is optimized for CIFAR-10 and CIFAR-100 and
therefore less strong on CINIC-10.

CIFAR-100. Table 4 shows the results on CIFAR-100 [25], using the same
experimental setup as for CIFAR-10 in table 2. Due to the higher complexity
of CIFAR-100, with ten times more classes than CIFAR-10, adversarial training
tends to suffer from catastrophic overfitting much later (in terms of epochs) in
the training process. Therefore we trained the Baseline model for 300 epochs.
While the gap towards the robustness of other methods is decreasing with the
amount of catastrophic overfitting, our method still outperforms other pooling
approaches in most cases - especially on strong attacks.

Analysis. The presented experiments on several datasets and architectures
show that baseline FGSM training, as well as other pooling methods, strongly
overfit on the adversarial training data and do not generalize their robustness to-
wards other attacks. We also showed that our FLC pooling sufficiently prevents

10 Grabinski et al.

Table 3: FGSM adversarial training on CINIC-10 for PreAct-ResNet-18 archi-
tectures. We compare clean and robust accuracy (higher is better) against PGD
[26] as well as AutoAttack [7] on the full dataset with Linf with ϵ = 8/255 and
L2 with ϵ = 0.5. FGSM test accuracies indicate catastrophic overfitting on the
adversarial training data, hence this column is set to gray.

Method Clean
FGSM
ϵ = 8

255

PGD Linf

ϵ = 8
255

AA Linf

ϵ = 8
255

AA L2

ϵ = 0.5
AA Linf

ϵ = 1
255

Baseline 87.46 58.83 1.31 0.12 1.55 55.21
Baseline & early stopping 82.79 42.58 27.55 30.76 50.28 79.88
Blurpooling [48] 87.13 54.16 1.29 0.20 4.68 70.56
Adaptive BlurPooling [49] 90.21 52.27 0.05 0.00 0.01 40.96
Wavelet Pooling [27] 88.81 64.16 1.76 0.12 3.38 66.61
FLC Pooling (ours) 82.56 38.39 36.28 49.61 60.51 78.50

Table 4: FGSM adversarial training on CIFAR-100 for PreAct-ResNet-18 archi-
tectures. We compare clean and robust accuracy (higher is better) against PGD
[26] as well as AutoAttack [7] on the full dataset with Linf with ϵ = 8/255 and L2

with ϵ = 0.5. FGSM test accuracies indicate robustness to training data, hence
this column is set to gray. Here, none of the models overfit, while FLC pooling
still yields best overall robustness.

Method Clean
FGSM
ϵ = 8

255

PGD Linf

ϵ = 8
255

AA Linf

ϵ = 8
255

AA L2

ϵ = 0.5
AA Linf

ϵ = 1
255

Baseline 51.92 23.25 15.41 11.13 25.67 44.53
Baseline & early stopping 52.09 23.34 15.51 10.88 25.78 44.61
Blurpooling [48] 52.68 23.40 16.81 12.43 26.79 45.68
Adaptive BlurPooling [49] 52.08 9.77 18.68 6.05 11.32 21.04
Wavelet Pooling [27] 55.08 25.70 18.36 13.76 27.51 47.52
FLC Pooling (ours) 54.66 26.82 19.83 15.40 26.30 47.83

this catastrophic overfitting and is able to generalize robustness over different
networks, datasets and attack sizes in terms of different ϵ-values.

Attack Structures In Figure 4, we visualize AutoAttack adversarial attacks.
Perturbations created for the baseline trained with FGSM differ significantly
from those created for FLC pooling trained with FGSM. While perturbations
for the baseline model exhibit high frequency structures, attacks to FLC pooling
rather affect the global image structure.

4.3 Results on ImageNet

Additionally to the experiments on smaller datasets (like CIFAR and CINIC),
we trained a network including FLC pooling on a larger dataset, namely Ima-

FLC pooling 11

Example Image
Spectrum of the
Example Image

Spectrum Difference
to the Original
Image Example

Spatial Difference
to the Original Image
mean over 100 images

Spectrum Difference
to the Original Image
mean over 100 images

O
r
ig

in
a
l
Im

a
g
e

B
a
s
e
li
n
e

P
e
r
t
u
r
b
a
t
io

n
F
L
C

P
o
o
li
n
g

P
e
r
t
u
r
b
a
t
io

n
s

Fig. 4: Spatial and spectral differences of adversarial perturbations created by
AutoAttack with ϵ = 8

255 on the baseline model as well as our FLC Pooling. On
the left side for one specific example of an airplane and on the right side the
average difference over 100 images.

geNet [9]. Here we might not encounter the issue of robust overfitting for now,
but most adversarial training methods require long training times to achieve
adequate results on such a large dataset. We trained a ResNet50 architecture
with FLC pooling on ImageNet on 4 NVIDIA A100 GPUs, resulting in 63.52%
clean accuracy and 27.29% robust accuracy under auto attack. The median wall
clock time per epoch is around 35 minutes. Table 5 shows our FLC Pooling
in comparison to other approaches on ImageNet reported on RobustBench [6].
The training time of our model should be comparable to the one from Wong et
al. [43], while other reported methods have significantly longer training times.
Yet, the clean accuracy of the proposed model using FLC pooling is about 8%
better than the one reached by [43], with a 1% improvement in robust accuracy.
For example, [11] has an increased training time by factor four compared to our
model on CIFAR10 (see Table 6). This model achieves overall comparable results
to ours. The model by Salman et al. [37] is trained with the training schedule
from Madry et al. [31] and uses a multi-step adversarial attack for training. Since
there is no release of the training script of this model on ImageNet, we can only
roughly estimate their training times. Since they adopt the training schedule
from Madry et al., we assume a similar training time increase by a factor of
four, which is similar to the multi-step times reported for PGD in Table 6.

4.4 Model Confidences

In Table 6, we also evaluate the confidence of model predictions. We compare
each model’s confidence on correctly classified clean examples to its respective

12 Grabinski et al.

Table 5: Comparison clean and robust accuracy against AutoAttack [7] on Ima-
geNet using ResNet-50. We compare against results from RobustBench [6].

Method Clean
PGD Linf

ϵ = 4
255

Training

Baseline [6] 76.52 0.00 standard

Wong et al., 2020 [43] 55.62 26.24 fast FGSM
FGSM & FLC Pooling (ours) 63.52 27.29 fast FGSM

Robustness lib, 2019 [11] 62.56 29.22 multi-step adv. training
Salman et al., 2020 [37] 64.02 34.96 multi-step adv. training

confidence on wrongly classified adversarial examples. Ideally, the confidence on
the adversarial examples should be lower. The results for the different methods
show that FLC yields comparably high confidence on correctly classified clean
examples with a 20% gap in confidence to wrongly classified adversarial exam-
ples. In contrast, the baseline model is highly confident in both cases. Other,
even state-of-the-art robustness models have on average lower confidences but
are even less confident in their correct predictions on clean examples than on er-
roneously classified adversarial examples (e.g. MART [42] and PGD [26]). Only
the model from [44] has a trade-off preferable over the one from the proposed,
FLC model.

4.5 Training Efficiency

Most adversarial training approaches use adversarial image perturbations during
training [14,26,43]. Thereby the time and memory needed depends highly on the
specific attack used to generate the perturbations. Multi-step attacks like PGD
[26] require significantly more time than single step attacks like FGSM [43].
TRADES [46] incorporates different loss functions to account for a good trade-off
between clean and robust accuracy. With our FLC pooling, we provide a simple
and fast method for more robust models. Therefore we compare our method
with state-of-the-art training schedules in terms of time needed per epoch when
trained with their provided default settings. 5

Table 6 shows that FGSM training is fastest. However, FGSM with early
stopping is not able to maintain high robustness against AutoAttack [7] due
to catastrophic overfitting. PGD training can establish robustness against Au-
toAttack. It relies on the same training procedure as FGSM but uses expensive
multi-step perturbations and thereby increases the computation time by a factor
of four. For TRADES the training time per epoch is over six times for AWP and
over eight times higher. Our FLC pooling adds only seven seconds per epoch
while achieving a good clean and robust accuracy.

5 When we re-run [43] from their provided code, the model has different properties than
their deployed model. However, this should not affect training times. We evaluate
both models in subsequent tables whenever deployed models are available.

FLC pooling 13

Table 6: Runtime of adversarial training in seconds per epoch over 200 epochs
and a batch size of 512 trained with a PreAct-ResNet-18 for training on the
original CIFAR-10 dataset without additional data. Experiments are executed
on one Nvidia Tesla V100. Evaluation for clean and robust accuracy, higher is
better, on AutoAttack [7] with our trained models. The models reported by the
original authors may have different numbers due to different hyperparameter
selection. We also report each models confidence on their correct predictions
on the clean data (Clean Confidence) and the models confidence on its false
predictions due to adversarial perturbations (Perturbation Confidence). The top
row reports the baseline without adversarial training.

Method
Seconds per
epoch (avg)

Clean Acc AA Acc
Clean

Confidence
Perturbation
Confidence

Baseline 14.6 ± 0.1 95.08 0.00 100.00 97.89

FGSM & early stopping [43] 27.3 ± 0.1 82.88 11.82 90.50 84.26
FGSM & FLC Pooling (Ours) 34.5 ± 0.1 84.81 38.41 98.84 70.98

PGD [26] 115.4 ± 0.2 83.11 40.35 56.58 75.00
Robustness lib [11] 117 ± 19.0 76.37 32.10 95.22 78.91
TRADES [46] 219.4 ± 0.5 81.49 46.91 53.94 50.46
MART [42] 180.4 ± 0.8 55.49 8.63 24.44 50.17
AWP [44] 179.4 ± 0.4 82.61 49.43 88.83 37.98

When adding additional data like the ddpm dataset to the training as it is
done in all leading RobustBench [6] models, the training time is increased by
a factor of twenty. The ddpm dataset incorporates one million extra samples,
which is over sixteen times more than the original CIFAR-10 dataset.

4.6 Black Box Attacks

PGD and AutoAttack are intrinsically related to FGSM. Therefore, to allow for
a clean evaluation of the model robustness without bias towards the training
scheme, we also evaluate black box attacks. Squares [1], which is also part of
the AutoAttack pipeline, adds perturbations in the form of squares onto the
image until the label flips. Besides Squares, we evaluate two transferred per-
turbations. The first perturbation set is constructed using AutoAttack on the
baseline network which is not robust at all. The second set is constructed from
the baseline network which we trained with FGSM and early stopping, according
to [43]. We evaluate against different PreAct-ResNet-18 and WRN-28-10 models
on CIFAR-10 as well as PreAct-ResNet-18 models on CIFAR-100 provided by
RobustBench [6]. Note that all networks marked with * are models which rely on
additional data sources such as ddmp[20]. Other RobustBench models like [16]
rely on training data that is not available anymore such that fair comparison is
currently not possible. Arguably, we always expect models to further improve as
training data is added.

14 Grabinski et al.

Table 7: Robustness against black box attacks on PreAct-ResNet-18 and WRN-
28-10 models with CIFAR-10. First against Squares [1] with ϵ = 1/255 and
then against perturbations which were created on the baseline network, meaning
transferred perturbations (TP), and the baseline model including early stopping
(TPE). As well as the accuracy under common corruptions (CC).

Model Clean Squares TP TPE CC

Preact-ResNet-18

Baseline 90.81 78.04 0.00 69.33 71.81

FGSM & early stopping [43] 82.88 77.58 77.67 3.76 71.80
Wong et al., 2020 [43] 83.34 80.25 82.03 78.81 74.60
Andriushchenko & Flammarion, 2020 [2] 79.84 76.78 78.65 75.06 72.05
FGSM & FLC Pooling (ours) 84.81 81.40 83.64 80.49 76.15

Rebuffi et al., 2021 [34] * 83.53 81.24 82.36 80.28 75.79

WRN-28-10

Baseline 86.67 76.17 0.09 67.3 77.33

FGSM & early stopping [43] 82.29 78.01 80.8 28.54 72.55
FGSM & FLC Pooling (ours) 84.93 81.06 83.85 72.56 75.44

Carmon et al., 2019 [4] * 89.69 87.70 89.12 83.55 81.30
Hendrycks et al., 2019 [19] 87.11 85.02 86.47 80.12 85.02
Wang et al., 2020 [42] * 87.50 85.30 86.74 80.65 85.30
Zhang et al., 2021 [47] 89.36 87.45 88.70 83.08 80.11

Table 7 shows that for PreAct-ResNet-18 models our FLC pooling is con-
sistently able to prevent black box attacks better as well as to maintain clean
accuracy than other robust models from RobustBench. For WRN-28-10 mod-
els, we see a clear trend that models trained with additional data can achieve
higher robustness. This is expected as wider networks can leverage additional
data more effectively. One should note that all of these methods require different
training schedules which are at least five times slower than ours and additional
data which further increases the training time. For example, incorporating the
ddpm dataset into the training increases the amount of training time by a factor
of twenty. For CIFAR-100 (Table 8) our model is on par with [35].

4.7 Corruption Robustness

To demonstrate that our model generalizes the concept of robustness beyond
adversarial examples, we also evaluate it on common corruptions incorporated
with CIFAR-C [18]. We compare our model against our baseline as well as other
RobustBench [6] models. Similar to the experiments on black box adversarial
attacks we distinguish between models using only CIFAR-10 training data and
models using extra-data like ddpm (marked by * in Table 7) shows that our FLC

FLC pooling 15

Table 8: Robustness against black box attacks for PreAct-ResNet-18 on CIFAR-
100. First against Squares [1] with ϵ = 1/255 and then against perturbations
which were created on the baseline network, meaning transferred perturbations
(TP), and the baseline model including early stopping (TPE). As well as the
accuracy under common corruptions (CC).

Model Clean Squares TP TPE CC

Baseline 51.92 45.74 11.13 23.91 41.22

FGSM & early stopping [43] 52.09 45.75 23.90 10.88 41.15
Rice et al., 2020 [35] 53.83 48.92 45.97 46.11 43.48
FGSM & FLC Pooling (ours) 54.66 48.85 45.59 45.31 44.18

pooling, when trained only on CIFAR-10, can outperform other adversarially
robust models as well as the baseline in terms of robustness against common
corruption for the PreAct-ResNet-18 architecture. As discussed above, WRN-
28-10 models are designed to efficiently leverage additional data. As our model
is exclusively trained on the clean CIFAR-10 dataset we can not establish the
same robustness as other methods on wide networks. However, we can also see a
significant boost in robustness. Table 8 reports the results for CIFAR-100. There
we can see that FLC pooling not only boosts the clean accuracy but also the
robust accuracy on common corruptions.

4.8 Shift-Invariance

Initially, anti-aliasing in CNNs has also been discussed in the context of shift-
invariance [48]. Therefore, after evaluating our model against adversarial and
common corruptions, we also analyze its behavior under images shift. We com-
pare our model with the baseline as well as the shift-invariant models [48,49].

FLC pooling can outperform all these specifically designed approaches in
terms of consistency under shift, while BlurPooling [48] does not outperform the
baseline. We assume that BlurPooling is optimized for larger images sizes like
ImageNet, 224 by 224 pixels, compared to 32 by 32 pixels for CIFAR-10. The
adaptive model from [49] is slightly better than the baseline but can not reach
the consistency of our model.

5 Discussion & Conclusions

The problem of aliasing in CNNs or GANs has recently been widely discussed
[10,22,23]. We contribute to this field by developing a fully aliasing free down-
sampling layer that can be plugged into any down-sampling operation. Previous
attempts in this direction are based on blurring before down-sampling. This can
help to reduce aliasing but can not eliminate it. With FLC pooling we developed

16 Grabinski et al.

Table 9: Consistency of PreAct-ResNet-18 model prediction under image shifts
on CIFAR-10. Each model is trained without adversarial training with the same
training schedule (see appendix for details).

Model Clean Consistency under shift

Baseline 94.78 86.48
BlurPooling [48] 95.04 86.19
adaptive BlurPooling [49] 94.97 91.47
FLC Pooling (ours) 94.66 94.46

a hyperparameter-free and easy plug-and-play down-sampling which supports
CNNs native robustness. Thereby, we can overcome the issue of catastrophic
overfitting in single-step adversarial training and provide a path to reliable and
fast adversarial robustness. While our FLC pooling based model can still be
fooled when the perturbation is sufficiently strong, we can show that our model
predictions are significantly less confident in this case. We hope that FLC pooling
will be used to evolve to fundamentally improved CNNs which do not need to
account for aliasing effects anymore.

References

1. Andriushchenko, M., Croce, F., Flammarion, N., Hein, M.: Square attack: a query-
efficient black-box adversarial attack via random search. In: European Conference
on Computer Vision. pp. 484–501. Springer (2020)

2. Andriushchenko, M., Flammarion, N.: Understanding and improving fast adversar-
ial training. Advances in Neural Information Processing Systems 33, 16048–16059
(2020)

3. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 ieee symposium on security and privacy (sp). pp. 39–57. IEEE (2017)

4. Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J.C., Liang, P.S.: Unlabeled
data improves adversarial robustness. Advances in Neural Information Processing
Systems 32 (2019)

5. Chen, T., Zhang, Z., Liu, S., Chang, S., Wang, Z.: Robust overfitting may be mit-
igated by properly learned smoothening. In: International Conference on Learning
Representations (2021), https://openreview.net/forum?id=qZzy5urZw9

6. Croce, F., Andriushchenko, M., Sehwag, V., Flammarion, N., Chiang, M., Mit-
tal, P., Hein, M.: Robustbench: a standardized adversarial robustness benchmark.
arXiv preprint arXiv:2010.09670 (2020)

7. Croce, F., Hein, M.: Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In: ICML (2020)

8. Darlow, L.N., Crowley, E.J., Antoniou, A., Storkey, A.J.: Cinic-10 is not imagenet
or cifar-10. arXiv preprint arXiv:1810.03505 (2018)

9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Ima-
genet: A large-scale hierarchical image database. In: 2009 IEEE Confer-
ence on Computer Vision and Pattern Recognition. pp. 248–255 (2009).
https://doi.org/10.1109/CVPR.2009.5206848

https://openreview.net/forum?id=qZzy5urZw9
https://doi.org/10.1109/CVPR.2009.5206848

FLC pooling 17

10. Durall, R., Keuper, M., Keuper, J.: Watch your up-convolution: Cnn based gener-
ative deep neural networks are failing to reproduce spectral distributions (2020)

11. Engstrom, L., Ilyas, A., Salman, H., Santurkar, S., Tsipras, D.: Robustness (python
library) (2019), https://github.com/MadryLab/robustness

12. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.:
Imagenet-trained cnns are biased towards texture; increasing shape bias improves
accuracy and robustness. arXiv preprint arXiv:1811.12231 (2018)

13. Gonzalez, R.C., Woods, R.E.: Digital Image Processing (3rd Edition). Prentice-
Hall, Inc., USA (2006)

14. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples (2015)

15. Gowal, S., Qin, C., Uesato, J., Mann, T., Kohli, P.: Uncovering the limits of ad-
versarial training against norm-bounded adversarial examples (2021)

16. Gowal, S., Rebuffi, S.A., Wiles, O., Stimberg, F., Calian, D.A., Mann, T.A.: Im-
proving robustness using generated data. Advances in Neural Information Process-
ing Systems 34 (2021)

17. Grabinski, J., Keuper, J., Keuper, M.: Aliasing coincides with CNNs vulnerability
towards adversarial attacks. In: The AAAI-22 Workshop on Adversarial Machine
Learning and Beyond (2022), https://openreview.net/forum?id=vKc1mLxBebP

18. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common
corruptions and perturbations. Proceedings of the International Conference on
Learning Representations (2019)

19. Hendrycks, D., Lee, K., Mazeika, M.: Using pre-training can improve model ro-
bustness and uncertainty. In: International Conference on Machine Learning. pp.
2712–2721. PMLR (2019)

20. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems 33, 6840–6851 (2020)

21. Hossain, M.T., Teng, S.W., Sohel, F., Lu, G.: Anti-aliasing deep image classifiers
using novel depth adaptive blurring and activation function (2021)

22. Jung, S., Keuper, M.: Spectral distribution aware image generation. In: AAAI
(2021)

23. Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J., Lehtinen, J., Aila,
T.: Alias-free generative adversarial networks. Advances in Neural Information
Processing Systems 34 (2021)

24. Kim, H., Lee, W., Lee, J.: Understanding catastrophic overfitting in single-step
adversarial training (2020)

25. Krizhevsky, A.: Learning multiple layers of features from tiny images. University
of Toronto (05 2012)

26. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale
(2017)

27. Li, Q., Shen, L., Guo, S., Lai, Z.: Wavelet integrated cnns for noise-robust image
classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 7245–7254 (2020)

28. Li, Q., Shen, L., Guo, S., Lai, Z.: Wavecnet: Wavelet integrated cnns to suppress
aliasing effect for noise-robust image classification. IEEE Transactions on Image
Processing 30, 7074–7089 (2021). https://doi.org/10.1109/tip.2021.3101395, http:
//dx.doi.org/10.1109/TIP.2021.3101395

29. Lohn, A.J.: Downscaling attack and defense: Turning what you see back into what
you get (2020)

https://github.com/MadryLab/robustness
https://openreview.net/forum?id=vKc1mLxBebP
https://doi.org/10.1109/tip.2021.3101395
http://dx.doi.org/10.1109/TIP.2021.3101395
http://dx.doi.org/10.1109/TIP.2021.3101395

18 Grabinski et al.

30. Lorenz, P., Strassel, D., Keuper, M., Keuper, J.: Is robustbench/autoattack a suit-
able benchmark for adversarial robustness? In: The AAAI-22 Workshop on Ad-
versarial Machine Learning and Beyond (2022), https://openreview.net/forum?
id=aLB3FaqoMBs

31. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

32. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate
method to fool deep neural networks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 2574–2582 (2016)

33. Rade, R., Moosavi-Dezfooli, S.M.: Helper-based adversarial training: Reducing ex-
cessive margin to achieve a better accuracy vs. robustness trade-off. In: ICML
2021 Workshop on Adversarial Machine Learning (2021), https://openreview.
net/forum?id=BuD2LmNaU3a

34. Rebuffi, S.A., Gowal, S., Calian, D.A., Stimberg, F., Wiles, O., Mann, T.: Fixing
data augmentation to improve adversarial robustness (2021)

35. Rice, L., Wong, E., Kolter, Z.: Overfitting in adversarially robust deep learning.
In: International Conference on Machine Learning. pp. 8093–8104. PMLR (2020)

36. Rony, J., Hafemann, L.G., Oliveira, L.S., Ayed, I.B., Sabourin, R., Granger, E.:
Decoupling direction and norm for efficient gradient-based l2 adversarial attacks
and defenses. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 4322–4330 (2019)

37. Salman, H., Ilyas, A., Engstrom, L., Kapoor, A., Madry, A.: Do adversarially ro-
bust imagenet models transfer better? Advances in Neural Information Processing
Systems 33, 3533–3545 (2020)

38. Sehwag, V., Mahloujifar, S., Handina, T., Dai, S., Xiang, C., Chiang, M., Mittal,
P.: Improving adversarial robustness using proxy distributions (2021)

39. Stutz, D., Hein, M., Schiele, B.: Relating adversarially robust generalization to flat
minima (2021)

40. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
Fergus, R.: Intriguing properties of neural networks. In: International Conference
on Learning Representations (2014), http://arxiv.org/abs/1312.6199

41. Wang, Y., Zou, D., Yi, J., Bailey, J., Ma, X., Gu, Q.: Improving adversarial
robustness requires revisiting misclassified examples. In: International Confer-
ence on Learning Representations (2020), https://openreview.net/forum?id=

rklOg6EFwS

42. Wang, Y., Zou, D., Yi, J., Bailey, J., Ma, X., Gu, Q.: Improving adversarial
robustness requires revisiting misclassified examples. In: International Confer-
ence on Learning Representations (2020), https://openreview.net/forum?id=

rklOg6EFwS

43. Wong, E., Rice, L., Kolter, J.Z.: Fast is better than free: Revisiting adversarial
training. In: International Conference on Learning Representations (2020), https:
//openreview.net/forum?id=BJx040EFvH

44. Wu, D., Xia, S.T., Wang, Y.: Adversarial weight perturbation helps robust gen-
eralization. Advances in Neural Information Processing Systems 33, 2958–2969
(2020)

45. Xiao, Q., Li, K., Zhang, D., Jin, Y.: Wolf in sheep’s clothing - the downscaling
attack against deep learning applications (2017)

46. Zhang, H., Yu, Y., Jiao, J., Xing, E.P., Ghaoui, L.E., Jordan, M.I.: Theoretically
principled trade-off between robustness and accuracy. In: International Conference
on Machine Learning (2019)

https://openreview.net/forum?id=aLB3FaqoMBs
https://openreview.net/forum?id=aLB3FaqoMBs
https://openreview.net/forum?id=BuD2LmNaU3a
https://openreview.net/forum?id=BuD2LmNaU3a
http://arxiv.org/abs/1312.6199
https://openreview.net/forum?id=rklOg6EFwS
https://openreview.net/forum?id=rklOg6EFwS
https://openreview.net/forum?id=rklOg6EFwS
https://openreview.net/forum?id=rklOg6EFwS
https://openreview.net/forum?id=BJx040EFvH
https://openreview.net/forum?id=BJx040EFvH

FLC pooling 19

47. Zhang, J., Zhu, J., Niu, G., Han, B., Sugiyama, M., Kankanhalli, M.:
Geometry-aware instance-reweighted adversarial training. In: International Con-
ference on Learning Representations (2021), https://openreview.net/forum?id=
iAX0l6Cz8ub

48. Zhang, R.: Making convolutional networks shift-invariant again. In: ICML (2019)
49. Zou, X., Xiao, F., Yu, Z., Lee, Y.J.: Delving deeper into anti-aliasing in convnets.

In: BMVC (2020)

https://openreview.net/forum?id=iAX0l6Cz8ub
https://openreview.net/forum?id=iAX0l6Cz8ub

20 Grabinski et al.

A Appendix

A.1 Training Schedules

CIFAR-10 adversarial training schedule: For our baseline experiments on
CIFAR-10, we used the PreAct-ResNet-18 as well as the WideResNet-28-10
(WRN-28-10) architecture as they give a good trade-off between complexity and
feasibility. For the PreAct-ResNet-18 models, we trained for 300 epochs with a
batch size of 512 and a circling learning rate schedule with the maximal learning
rate 0.2 and minimal learning rate 0. We set the momentum to 0.9 and weight
decay to 5e−4. The loss is calculated via Cross Entropy Loss and as an opti-
mizer, we use Stochastic Gradient Descent (SGD). For the adversarial training,
we used the FGSM attack with an ϵ of 8/255 and an α of 10/255 (in Fast FGSM
the attack is computed for step size α once and then projected to ϵ). For the
WRN-28-10 we used a similar training schedule as for the PreAct-ResNet-18
models but used only 200 epochs and a smaller maximal learning rate of 0.08.
CINIC-10 adversarial training schedule: For our baseline experiments on
CINIC-10 we used the PreAct-ResNet-18 architecture. We used 300 epochs, a
batch size of 512 for each training run and a circling learning rate schedule with
the maximal learning rate at 0.1 and minimal at 0. We set the momentum to
0.9 and weight decay to 5e−4. The loss is calculated via Cross Entropy Loss and
as an optimizer, we use Stochastic Gradient Descent (SGD). For the adversarial
training, we used the FGSM attack with an epsilon of 8/255 and an alpha of
10/255.
CIFAR-100 adversarial training schedule: For our baseline experiments on
CIFAR-100 we used the PreAct-ResNet-18 architecture as it gives a good trade-
off between complexity and feasibility. We used 300 epochs, a batch size of 512 for
each training run and a circling learning rate schedule with the maximal learning
rate at 0.01 and minimal at 0. We set the momentum to 0.9 and a weight decay
to 5e−4. The loss is calculated via Cross Entropy Loss and as an optimizer, we
use Stochastic Gradient Descent (SGD). For the adversarial training, we used
the FGSM attack with an epsilon of 8/255 and an alpha of 10/255.
CIFAR-10 clean training schedule: Each model is trained without adver-
sarial training. We used 300 epochs, a batch size of 512 for each training run
and a circling learning rate schedule with the maximal learning rate at 0.2 and
minimal at 0. We set the momentum to 0.9 and a weight decay to 5e−4. The
loss is calculated via Cross Entropy Loss and as an optimizer, we use Stochastic
Gradient Descent (SGD).
ImageNet adversarial training schedule: For our experiment on ImageNet
(see Appendix 4.3) we used the ResNet50 architecture. We trained for 150 epochs
with a batch size of 400, and a multistep learning rate schedule with an initial
learning rate 0.1, γ = 0.1, and milestones [30, 60, 90, 120]. We set the momentum
to 0.9 and weight decay to 5e−4. The loss is calculated via Cross Entropy Loss
and as an optimizer, we use Stochastic Gradient Descent (SGD). For the adver-
sarial training, we used FGSM attack with an epsilon of 4/255 and an alpha of
5/255.

FLC pooling 21

A.2 Aliasing Free Down-Sampling

Previous approaches like [48,49] have proposed to apply blurring operations be-
fore downsampling, with the purpose of achieving models with improved shift
invariance. Therefore, they apply Gaussian blurring directly on the feature maps
via convolution. In the following, we briefly discuss why this setting can not guar-
antee to prevent aliasing in the feature maps, even if large convolutional kernels
would be applied, and why, in contrast, the proposed FLC pooling can guarantee
to prevent aliasing.

To prevent aliasing, the feature maps need to be band-limited before down-
sampling [13]. This band limitation is needed to ensure that after down-sampling
no replica of the frequency spectrum overlap (see Figure 2). To guarantee the
required band limitation for sub-sampling with a factor of two to N/2 where N
is the size of the original signal, one has to remove (reduce to zero) all frequency
components above N/2.

Spatial Filtering based Approaches [48,49] propose to apply approximated
Gaussian filter kernels to the feature map. This operation is motivated by the
fact that an actual Gaussian in the spatial domain corresponds to a Gaussian in
the frequency (e.g. Fourier) domain. As the standard deviation of the Gaussian
in the spatial domain increases, the standard deviation of its frequency represen-
tation decreases. Yet, the Gaussian distribution has infinite support, regardless
of its standard deviation, i.e. the function never actually drops to zero. The con-
volution in the spatial domain corresponds to the point-wise multiplication in
the frequency domain.

Therefore, even after convolving a signal with a perfect Gaussian filter with
large standard deviation (and infinite support), all frequency components that
were ̸= 0 before the convolution will be afterwards (although smaller in magni-
tude). Specifically, the convolution with a Gaussian (even in theoretically ideal
settings), can reduce the apparent aliasing but some amount of aliasing will al-
ways persist. In practice, these ideal settings are not given: Prior works such as
[48,49] have to employ approximated Gaussian filters with finite support (usually
not larger than 7× 7).

FLC Pooling Therefore, FLC pooling operates directly in the frequency do-
main, where it removes all frequencies that can cause aliases.

This operation in the Fourier domain is called the ideal low pass filter and
corresponds to a point-wise multiplication of the Fourier transform of the feature
maps with a rectangular pulse H(m̂, n̂).

H(m̂, n̂) =

{
1 for all m̂,n̂ below M/2 and N/2

0 otherwise
(7)

This trivially guarantees all frequencies above below M/2 and N/2 to be zero.

22 Grabinski et al.

Table 10: Model confidences for robust models PreAct-ResNet-18 for CIFAR-10
from RobustBench compared to the baseline and our FLC Pooling. [6].

Model Clean Acc AA Acc
Clean

Confidence
Perturbation
Confidence

Baseline 95.08 0.00 100.00 97.89

FGSM & early stopping [43] 82.88 11.82 90.50 84.26
FGSM & FLC Pooling (Ours) 84.81 38.41 98.84 70.98
Andriushchenko and Flammarion, 2020 [2] 79.84 43.94 71.93 41.27
Wong et al., 2020 [43] 83.34 43.20 75.30 44.76
Rebuffi et al., 2021 [34] * 83.53 56.65 64.64 37.07

Could we apply FLC Pooling as Convolution in the Spatial Domain? In
the spatial domain, the ideal low pass filter operation from above corresponds to
a convolution of the feature maps with the Fourier transform of the rectangular
pulse H(m̂, n̂) (by the Convolution Theorem, e.g.[13]). The Fourier transform of
the rectangle function is

sinc(m,n) =

{
sin(

√
m2+n2)√

m2+n2
m,n ̸= 0

1 m,n = 0
(8)

However, while the ideal low pass filter in the Fourier domain has finite support,
specifically all frequencies above N/2 are zero, sinc(m,n) in the spatial domain
has infinite support. Hence, we need an infinitely large convolution kernel to
apply perfect low pass filtering in the spatial domain. This is obviously not
possible in practice. In CNNs the standard kernel size is 3x3 and one hardly
applies kernels larger than 7x7 in CNNs.

A.3 Confidences of RobustBench Models

In Table 6 in the main paper, we also report the confidence in the decisions of
our model, for a PreAct-ResNet-18 trained on CIFAR-10. Thereby, we report
the average confidence of models for their correct decisions on clean data as
well as their confidence for erroneous decisions on adversarial attacks. Ideally,
models should be highly confident in the first case and significantly less confident
in the second case. In the following, we report such evaluations for our models
on CIFAR-100 and include robust models from other state-of-the-art methods
trained by the original authors and made available on RobustBench [6].

The overall trend which can be seen in Table 10, 11, and 12 demonstrates
that robust models are much less confident in their false predictions due to
adversarial attacks than non-robust models. Indicating that robust models not
only exhibit robustness against adversarial attacks but also strong indication
through the confidence that a false prediction is indeed wrong.

FLC pooling 23

Table 11: Model confidences for robust models WRN-28-10 from RobustBench
compared to the baseline and our FLC Pooling. [6].

Model Clean Acc AA Acc
Clean

Confidence
Perturbation
Confidence

Baseline 86.67 0.09 95.29 95.86

FGSM & early stopping 82.29 28.54 84.95 66.69
FGSM & FLC Pooling (Ours) 84.93 38.37 95.86 87.81
Hendrycks et al., 2019, [19] 87.11 54.89 75.71 42.32
Wang et al., 2020 [42] 87.50 56.32 69.02 31.12
Zhang et al., 2021 [47] 89.36 59.23 75.75 34.56

Table 12: Model confidences for robust models PreAct-ResNet-18 for CIFAR-100
from RobustBench compared to the baseline and our FLC Pooling. [6].

Model Clean Acc AA Acc
Clean

Confidence
Perturbation
Confidence

Baseline 51.92 11.13 82.68 65.65

FGSM & early stopping 52.09 10.88 82.27 65.42
FGSM & FLC Pooling (Ours) 54.66 15.40 82.44 60.74
Rice et al., 2020 [35] 53.83 18.99 73.04 43.12

Furthermore, we can observe that all robust models reported on Robust-
Bench are less confident in their clean prediction than the baseline or our FLC
pooling. All these models are optimized to achieve a gain in robustness by adding
a significant amount of adversarial or additional data and therefore are less cer-
tain in their overall predictions. In contrast, our FLC pooling can achieve high
confidence on its clean accuracy while achieving robustness and lower confidence
on its false prediction.

Figure 5 demonstrates the confidence distribution of the different models
even clearer. We can see that robust models only trained with specific training
schedules can be equally confident in their true and false predictions. Our FLC
pooling, in contrast, is able to correctly classify samples with high confidence
and it is less confident on its wrong predictions.

In Figure 6, we evaluate how well calibrated the confidences of our model
are, in comparison to state-of-the-art robust models. Therefore, we classify the
predictions of the models by a threshold on their confidence to determine whether
a prediction is correct or wrong. Higher confidences should correspond to correct
predictions. The resulting precision and recall curves indicate that our proposed
model is best calibrated for predictions on clean data and performs on par with
other adversarially robust models on adversarial data.

24 Grabinski et al.

FGSM Baseline
FGSM &

early stopping

0.2 0.4 0.6 0.8 1.0
Confidence

0

20

40

60

80

100

120

De
ns

ity

Predcition Confidences for Clean Samples
correct predicted
wrong predicted

0 20 40 60 80 100
Confidence

0

20

40

60

80

100

120

De
ns

ity
Predcition Confidences for Adversarial Samples

correct predicted
wrong predicted

0.2 0.4 0.6 0.8 1.0
Confidence

0

5

10

15

20

25

30

35

40

De
ns

ity

Predcition Confidences for Clean Samples
correct predicted
wrong predicted

0.2 0.4 0.6 0.8 1.0
Confidence

0

200

400

600

800

1000

1200

1400

1600

De
ns

ity

Predcition Confidences for Adversarial Samples
correct predicted
wrong predicted

FGSM &
FLC Pooling (ours)

Wong et al., 2020 [43]

0.2 0.4 0.6 0.8 1.0
Confidence

0

10

20

30

40

50

60

De
ns

ity

Predcition Confidences for Clean Samples
correct predicted
wrong predicted

0.2 0.4 0.6 0.8 1.0
Confidence

0

25

50

75

100

125

150

175

200

De
ns

ity

Predcition Confidences for Adversarial Samples
correct predicted
wrong predicted

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

2

4

6

8

10

12

De
ns

ity

Predcition Confidences for Clean Samples
correct predicted
wrong predicted

0.2 0.4 0.6 0.8 1.0
Confidence

0

5

10

15

20

25

30

De
ns

ity

Predcition Confidences for Adversarial Samples
correct predicted
wrong predicted

Andriushchenko et al., 2020 [2] Rebuffi et al., 2021 [34]

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

2

4

6

8

10

12

14

De
ns

ity

Predcition Confidences for Clean Samples
correct predicted
wrong predicted

0.2 0.4 0.6 0.8 1.0
Confidence

0

5

10

15

20

25

30

De
ns

ity

Predcition Confidences for Adversarial Samples
correct predicted
wrong predicted

0.2 0.4 0.6 0.8 1.0
Confidence

0

1

2

3

4

De
ns

ity

Predcition Confidences for Clean Samples
correct predicted
wrong predicted

0.2 0.4 0.6 0.8 1.0
Confidence

0

1

2

3

4

De
ns

ity

Predcition Confidences for Adversarial Samples
correct predicted
wrong predicted

Fig. 5: Here, we plot the distribution of the confidences for each model on the
clean and adversarial samples. We separate the results into clean (left) and ad-
versarial samples (right) and in each plot into correctly (blue) and incorrectly
(red) classified samples. Our model with FLC pooling exhibits strong confidence
on its correct predictions on the clean data similar to the baseline with and with-
out early stopping. Models taken from RobustBench [6] are much less confident
in their clean prediction. Further, the confidences from robust models from Ro-
bustBench [6] show a wider spread in confidences, especially the model provided
by Rebuffi et al. [34].

FLC pooling 25

Clean Samples Adv Samples

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Pr
ec

isi
on

FGSM & early stopping
FGSM & FLC Pooling (ours)
Rebuffi
Wong
Andriushchenko

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

FGSM & early stopping
FGSM & FLC Pooling (ours)
Rebuffi
Wong
Andriushchenko

Fig. 6: Precision-Recall-Curves for classification by confidence. Left: We classify
by a threshold on the model confidence between correct and wrong classifica-
tions on clean data. The proposed model has the best calibrated confidences
of all robust models. Right: We classify by a threshold on the confidences be-
tween correct and wrong predictions on adversarial data. Our model performs
on par with the state-of-the-art robust models while the model achieved by early
stopping yields very poor performance.

A.4 AutoAttack Attack Structure

In the main paper we showed one example of an image optimized by AutoAt-
tack [7] to fool our model and the baseline in Figure 4. In Figure 7, we give more
examples for better visualisation and comparison.

A.5 Ablation Study: Additional Frequency Components

In addition to the low frequency components we tested different settings in which
we establish a second path through which we aim to add high frequency or the
original information. We either add up the feature maps or contacted them.
The procedure of how to include a second path is represented in Figure 8. One
approach is to execute the standard down-sampling and add it to the FLC
pooled feature map. The other is to perform a high pass filter on the feature
map and down-sample these feature maps. Afterwards, the FLC pooled feature
maps as well as the high pass filtered and down-sampled ones are added. With
this ablation, we aim to see if we do lose too much through the aggressive FLC
pooling and if we would need additional high frequency information which is
discarded through the FLC pooling. Table 13 show that we can gain minor
points for the clean but not for the robust accuracy. Hence we did not see any
improvement in the robustness and an increase in training time per epoch as
well as a minor increase in model size, we will stick to the simple FLC pooling.

26 Grabinski et al.

Or
ig

in
al

 Im
ag

e

Example Image
Spectrum

 Example Image
Spectrum Difference

 to Original Image
Ba

se
lin

e
 P

er
tu

rb
at

io
n

FL
C

Po
ol

in
g

 P
er

tu
rb

at
io

n

Or
ig

in
al

 Im
ag

e

Example Image
Spectrum

 Example Image
Spectrum Difference

 to Original Image

Ba
se

lin
e

 P
er

tu
rb

at
io

n
FL

C
Po

ol
in

g
 P

er
tu

rb
at

io
n

Or
ig

in
al

 Im
ag

e

Example Image
Spectrum

 Example Image
Spectrum Difference

 to Original Image

Ba
se

lin
e

 P
er

tu
rb

at
io

n
FL

C
Po

ol
in

g
 P

er
tu

rb
at

io
n

Or
ig

in
al

 Im
ag

e

Example Image
Spectrum

 Example Image
Spectrum Difference

 to Original Image

Ba
se

lin
e

 P
er

tu
rb

at
io

n
FL

C
Po

ol
in

g
 P

er
tu

rb
at

io
n

Or
ig

in
al

 Im
ag

e

Example Image
Spectrum

 Example Image
Spectrum Difference

 to Original Image

Ba
se

lin
e

 P
er

tu
rb

at
io

n
FL

C
Po

ol
in

g
 P

er
tu

rb
at

io
n

Or
ig

in
al

 Im
ag

e

Example Image
Spectrum

 Example Image
Spectrum Difference

 to Original Image

Ba
se

lin
e

 P
er

tu
rb

at
io

n
FL

C
Po

ol
in

g
 P

er
tu

rb
at

io
n

Fig. 7: Spectrum and spectral differences of adversarial perturbations created by
AutoAttack with ϵ = 8

255 on the baseline model as well as our FLC Pooling.
The classes from top left down to the bottom right are: Bird, Frog, Automobile,
Ship, Cat and Truck.

FLC pooling 27

n/2

n/2

down-sampling
in the spatial
domain (conv
with stride =2)

high pass filter

n

feature
map X size nxn

in the spatial
domain

n/2

n/2

feature
map X size nxn

in k-space

FFT nn

n

IFFTlow pass cut

n/2

n/2

n

n

feature
map X size n/2xn/2

in k-space

feature
map X size n/2xn/2

in the spatial
domain

IFFT

+

n/2

n/2

down-sampling
in the spatial
domain (conv
with stride =2)

n

feature
map X size nxn

in the spatial
domain

n/2

n/2

feature
map X size nxn

in k-space

FFT nn

n

IFFTlow pass cut

n/2

n/2

n

n

feature
map X size n/2xn/2

in k-space

feature
map X size n/2xn/2

in the spatial
domain

+

Fig. 8: FLC pooling plus, which either includes the original down-sampled signal
like it is done traditionally (right) or with the high frequency components filtered
by a high pass filter in the Fourier domain and down-sampled in the spatial
domain by an identity convolution of stride two (left).

Table 13: Accuracies for CIFAR-10 Baseline LowCutPooling plus the original
or high freqeuncy part of the featuremaps down-sampled in the spatial domain
for FGSM Training. We can see that the additional data does not improve the
robust accuracy and gives only minor improvement for the clean accuracy. Due
to the additional computations necessary for the high frequency /original part
we decided to fully discard them and stick to the pure low frequency cutting.

Method Clean
PGD Linf

ϵ = 8
255

Seconds per
epoch (avg)

Model size
(MB)

FLC pooling 84.81 38.41 34.6 ± 0.1 42.648
FLC pooling + HighPass pooling 85.38 38.02 45.2 ± 0.4 42.652
FLC pooling + Original pooling 85.37 38.30 35.4 ± 0.1 42.652

	FrequencyLowCut Pooling - Plug & Play against Catastrophic Overfitting

