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We obtain a closed formula for the Kähler potential of a broad class of four-dimensional Lorentzian
or Euclidean conformal “Kähler” geometries, including the Plebański-Demiański class and various
gravitational instantons such as Fubini-Study and Chen-Teo. We show that the Kähler potentials
of Schwarzschild and Kerr are related by a Newman-Janis shift. Our method also shows that a
class of supergravity black holes, including the Kerr-Sen spacetime, is Hermitian (but not conformal
Kähler). We finally show that the integrability conditions of complex structures lead naturally to the
(non-linear) Weyl double copy, and we give new vacuum and non-vacuum examples of this relation.

INTRODUCTION

Complex methods as a tool to investigate space-
time structure in General Relativity (GR) have a long
and fruitful history of remarkable developments. Pro-
found constructions, pioneered by Penrose, Newman,
Plebański, Robinson, Trautman, [1–6] among others,
include twistor theory and heavenly structures, but
there are also simple yet intriguing results such as the
“Newman-Janis shift” relating special solutions via com-
plex coordinate transformations.
An important insight regarding complex structures in

GR is provided by Flaherty [7], who showed that type
D vacuum and Einstein-Maxwell spacetimes possess an
analogue of the Hermitian structures of Riemannian ge-
ometry. In Lorentz signature, a Hermitian structure must
necessarily be complex-valued, so its integrability proper-
ties are more subtle than in the Euclidean case. Flaherty
gave a comprehensive analysis of such properties [8, 9],
and he found that the above classes of type D spacetimes
are not only Hermitian but also satisfy the Lorentzian
analogue of the conformal Kähler condition.
In Riemannian geometry, Kähler metrics are encoded

in “generating functions” or scalar Kähler potentials. An
analogous feature in GR occurs in perturbation theory,
where perturbative fields are generated by scalar Debye
potentials. These potentials are instrumental for mod-
ern studies of e.g. black hole stability and gravitational
wave physics. The increasing interest in nonperturbative
structures for gravitational wave science [10], together
with the importance of scalar potentials for perturba-
tion theory, motivate the question of whether there are
“Debye potentials” for exact, astrophysically relevant so-
lutions of GR. Moreover, the recently discovered appli-
cations of the Newman-Janis shift [11, 12] suggest that
complex structures in GR may play an important role in
the understanding of such nonperturbative structures.
Motivated by the above considerations, in this paper

we develop a method to find the Kähler potentials of
a broad class of geometries, including black holes and
gravitational instantons, and we show intimate connec-
tions of this approach with other theoretical structures

of modern interest for gravitational wave physics such
as the Newman-Janis shift and the double copy relation
between gauge and gravity theories.
As an example, consider the Kerr metric g with param-

eters M,a for mass and angular momentum per mass,
respectively. In Boyer-Lindquist coordinates (t, r, θ, φ),
the metric is block diagonal in (dt, dφ) and (dr, dθ), with
components in the first block given by

gtt =
(

∆− a2 sin2 θ
)

Σ−1,

gtφ = − a(∆− (r2 + a2))Σ−1 sin2 θ,

gφφ = (a2∆sin2 θ − (r2 + a2)2)Σ−1 sin2 θ,

where Σ = r2 + a2 cos2 θ,∆ = r2 − 2Mr + a2. Follow-
ing Flaherty [8], one can find four complex scalar fields
(z0, z1, z̃0, z̃1), defined by

dz0 = dt− (a2 + r2)∆−1dr − ia sin θdθ,

dz1 = dφ− a∆−1dr − i csc θdθ,

dz̃0 = dt+ (a2 + r2)∆−1dr + ia sin θdθ,

dz̃1 = dφ+ a∆−1dr + i csc θdθ,

such that the Kerr metric is

g = gtt dz
0dz̃0 + gtφ (dz

0dz̃1 + dz1dz̃0) + gφφ dz
1dz̃1.

In addition, letting Ω−2 = (r − ia cos θ)2, there must
exist a scalar K such that gtt = Ω−2∂z0∂z̃0K, gtφ =
Ω−2∂z0∂z̃1K, gφφ = Ω−2∂z1∂z̃1K. However, expressions
forK do not seem to have been obtained in the literature.
The method developed in this paper computes the gen-

erating function/Kähler potential of Kerr to be

K = 4

∫

r∆−1dr + 4 log sin θ.

As a function K = K(z, z̃), the potential fully generates
the spacetime geometry. Moreover, using Kähler trans-
formations, we shall show that the Kähler potentials for
Kerr and Schwarzschild are simply related by a Newman-
Janis shift. More generally, the geometries studied in this
paper include the general Plebański-Demiański class [13]
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as well as the Chen-Teo family [14] of gravitational in-
stantons. Our method also allows us to prove that a gen-
eral class of supergravity black holes [15], including the
Kerr-Sen spacetime [16], has a Hermitian (not conformal
Kähler) structure.
In addition, we shall show that the integrability of com-

plex structures leads to the existence of special scalar and
massless free fields associated to the geometry, that can
be combined to give a unified geometric description of
the ‘Weyl double copy’ [17–19]. Our results contain not
only the type D and N double copies, but also provide
new examples of this relation for both vacuum and non-
vacuum geometries, including e.g. the general Einstein-
Maxwell Plebański-Demiański class and the Fubini-Study
and Chen-Teo instantons.
Importantly, we shall not impose any field equations:

the conformal Kähler property of the geometries we study
does not depend on a particular field theory. This means
that the conformal factor does not, in principle, play a
role in our construction, but we shall nevertheless include
it since it arises naturally in GR, where the Einstein and
Kähler metrics are conformally related.

COMPLEXIFIED KÄHLER GEOMETRY

Given a 4-dimensional complex geometry (M, g), we
define an almost-Hermitian structure [31] as a (1, 1) ten-
sor field J such that J2 = −I and g(J ·, J ·) = g(·, ·). The
tangent bundle decomposes as TM = T+ ⊕ T−, where
T± corresponds to vectors with eigenvalue ±i under J .
We say that the almost-Hermitian structure is integrable,
and is thus a Hermitian structure, if [T±, T±] ⊂ T± (for
both signs), where [·, ·] is the Lie bracket of vector fields.
One can show that a Hermitian structure implies that
there are four complex scalars (zi, z̃i) such that

g = gij̃dz
idz̃j, (1)

where gij̃ = g(∂zi , ∂z̃j ), with i = 0, 1, j̃ = 0̃, 1̃.
The fundamental 2-form is defined by κ(·, ·) := g(J ·, ·).

We say that a Hermitian geometry is Kähler if dκ = 0,
and conformal Kähler if there is a scalar field Ω2 such
that dκ̂ = 0, where κ̂ = Ω2κ. By the complex version of
the Poincaré Lemma, if dκ̂ = 0 then there exists, locally,
a complex scalar K such that

ĝij̃ = ∂zi∂z̃jK (2)

where ĝij̃ = Ω2gij̃ , cf. [8, Theorem IX.8]. We say that
K is a Kähler potential. It is not unique: one has the
freedom to perform Kähler transformations

K → K + F (zi) + F̃ (z̃i). (3)

The Kähler potential can be found by integrating (2).
Define pj := ∂K/∂z̃j, then pj =

∫

ĝij̃dz
i. Integrating

once again, the potential is K =
∫

pidz̃
i.

In this work we shall study geometries whose metric
has the block-diagonal form

g = aijdσ
idσj + bIJdx

IdxJ (4)

for some coordinates σi = (τ, φ) and xI = (x, y),
and known functions aij , bIJ . Introduce an orthonor-
mal coframe e1 = c1idσ

i, e2 = c2Idx
I , e3 = c3Idx

I ,
e4 = c4idσ

i, for some functions c1i , c
2
I , c

3
I , c

4
i ; such that

g = e1 ⊗ e1 + ...+ e4 ⊗ e4. Define now a null coframe by

ℓ = 1√
2
(e1 + ie2), n = 1√

2
(e1 − ie2),

m = 1√
2
(e3 + ie4), m̃ = 1√

2
(−e3 + ie4).

(5)

The metric is g = 2(ℓ ⊙ n −m ⊙ m̃). We shall consider
almost-Hermitian structures whose fundamental 2-forms
are κ± = i(ℓ∧n±m∧ m̃). For concreteness, let us focus
on κ− ≡ κ.
Let V i = (−∂φ, ∂τ ). We define the 1-forms

ωi := µV iy (ℓ ∧m), ω̃i := µ̃V iy (n ∧ m̃) (6)

where µ−1 = (ℓ ∧m)(∂τ , ∂φ) and µ̃
−1 = (n ∧ m̃)(∂τ , ∂φ).

A calculation shows that

ωi = dσi + EiIdx
I , ω̃i = dσi − EiIdx

I , (7)

for some functions EiI = ωi(∂I), where ∂I = ∂/∂xI . In
addition, the metric and fundamental 2-form are

g = gij̃ ω
i ⊙ ω̃j , κ = i

2gij̃ ω
i ∧ ω̃j (8)

where gij̃ = g(∂σi , ∂σj ). Note that this implies that g00̃ =
gττ , g01̃ = g10̃ = gτφ, g11̃ = gφφ.
The almost-Hermitian structure is integrable iff dωi =

0 = dω̃i: if this is satisfied, then there will be (locally)
zi, z̃i such that ωi = dzi and ω̃i = dz̃i, and from the first
equation in (8) we see that the metric (4) will have the
Hermitian expression (1). Using (7), this integrability
condition has a simple form: dωi = 0 = dω̃i iff

EiI = EiI(x
J ) and ∂[IE

i
J] = 0. (9)

The second equation implies that locally, there are func-
tions ψ0(xI), ψ1(xI) such that EiI = ∂Iψ

i. The (zi, z̃i)
coordinates will then be given by

zi = σi + ψi, z̃i = σi − ψi. (10)

The associated vector fields are ∂zi =
1
2 (∂σi +∂ψi), ∂z̃i =

1
2 (∂σi −∂ψi). In terms of xI , we have ∂ψi = EIi ∂I , where
EIi is the inverse of EiI (thought of as a 2× 2 matrix).
We shall now assume that ∂σ1 = ∂τ and ∂σ2 = ∂φ

are Killing vectors. This includes all of the examples
studied in this paper. Using κ = −igij̃dσ

i ∧ dψj and

ĝij̃ := Ω2gij̃ , a short calculation shows that the conformal

Kähler condition d(Ω2κ) = 0 is

∂ψ0 ĝτφ − ∂ψ1 ĝττ = 0 = ∂ψ0 ĝφφ − ∂ψ1 ĝτφ. (11)
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Assuming the above conditions, the formula K =
∫

pidz̃
i for the Kähler potential can be rewritten as fol-

lows. From Cartan’s formula £vκ̂ = d(vyκ̂) + vydκ̂,
we deduce that the Killing fields have Hamiltonians, i.e.
functions H0, H1 such that dHi = ∂σiy κ̂ = −iĝij̃dψ

j ,
where the second equality follows from the expression of
κ̂ in terms of σi, ψi. Choosing K to be independent of
σi, we get

K = −4i

∫

Hidψ
i. (12)

The integration in ψi can be replaced by an integration
in xI by using dψi = EiIdx

I .

To recover real metrics with different signatures, we
impose reality conditions on the null coframe (ℓ, n,m, m̃).
Euclidean signature (+ + ++) corresponds to requiring
n = ℓ̄ and m̃ = −m̄. The functions EiI in (7) are then
purely imaginary, so ω̃i = ω̄i and z̃i = z̄i. Lorentzian
signature (+−−−) corresponds to ℓ, n real and m̃ = m̄.
The functions EiI in (7) are generally complex, so zi and
z̃i in (10) are not complex conjugates.

BLACK HOLES AND INSTANTONS

Diagonal metrics. Consider the special case of (4)
where g = gττdτ

2+gφφdφ
2+gxxdx

2+gyydy
2. We choose

the frame such that the functions EiI in (7) are Eτx =

i
√

gxx/gττ , E
τ
y = 0, Eφx = 0, Eφy = −i

√

gyy/gφφ. The
Hermitian condition is equivalent to ∂y(gxx/gττ) = 0,
∂x(gyy/gφφ) = 0, and the conformal Kähler condition is
∂x(Ω

2gττ ) = 0, ∂y(Ω
2gφφ) = 0.

A simple example is an arbitrary static, spherically
symmetric spacetime g = f(r)dτ2 − h(r)dr2 − r2(dθ2 +
sin2 θdφ2). Using Ω2 = 1/r2, and regardless of the form
of f(r), h(r), the geometry is conformal Kähler. This in-
cludes not only the well-known spherical black hole space-
times but also solutions from the Einstein-scalar field sys-
tem such as the Janis-Newman-Winicour wormhole [20].
In the special case h = f−1, the Kähler potential is given
by K = 4

[∫

[rf(r)]−1dr + log sin θ
]

.

The Plebański-Demiański class. Consider the metric
(4) with

gττ = [∆r − a2∆x]/(ΠΣ),

gτφ = a[(r2 + a2)∆x − (1− x2)∆r]/(ΠΣ),

gφφ = [a2(1 − x2)2∆r − (r2 + a2)2∆x]/(ΠΣ),

gxx = − Σ/(Π∆x), gxy = 0, gyy = −Σ/(Π∆r)

(13)

where y ≡ r, Σ = r2 + a2x2, α and a are constants, and
Π = Π(r, x), ∆x = ∆x(x), ∆r = ∆r(r) are arbitrary
functions of their arguments. We find that, regardless of
the specific form of Π,∆r,∆x, the geometry is conformal

Kähler, with complex coordinates

z0 = τ − (r∗ − iax∗), z1 = φ− (ar♯ − ix♯),

z̃0 = τ + (r∗ − iax∗), z̃1 = φ+ (ar♯ − ix♯),
(14)

where r∗, x∗, r♯, x♯ are defined by

dr∗ = (r2 + a2)∆−1
r dr, dx∗ = (1− x2)∆−1

x dx,

dr♯ = ∆−1
r dr, dx♯ = ∆−1

x dx,
(15)

and the conformal factor is

Ω2 = Π/(r − iax)2. (16)

The Kähler form κ̂ = Ω2κ is given by

κ̂ =
i

(r − iax)2
{

−dφ ∧ [a(1− x2)dr − i(r2 + a2)dx]

+dτ ∧ (dr − iadx)} . (17)

Notice that this is independent of ∆r,∆x. The Hamilto-
nians areH0 = −i/(r−iax) andH1 = i(a+irx)/(r−iax),
hence, using (12), we find that the Kähler potential is

K = 4

[
∫

r

∆r
dr −

∫

x

∆x
dx

]

. (18)

We stress that the existence of this potential is indepen-
dent of the explicit form of the functions ∆r,∆x.
The Plebański-Demiański family [13, 21] is (13) with

Π = (1− αrx)2 and

∆x = 1 + 2N
a x− x2 + 2αMx3 −

(

λ
3a

2 + α2(Q2 + a2)
)

x4,

∆r = Q2 + a2 − 2Mr + r2 − 2αN
a r3 − (α2 + 1

3λ)r
4,

where Q2 = q2e + q2m, and λ, qe, qm correspond, respec-
tively, to cosmological constant and electric and mag-
netic charges. The rest of the parameters can be related
to mass, angular momentum, acceleration, and NUT
charge, cf. [21] for details. This is the general type D
solution (assuming non-null orbits of the isometry group)
of the Einstein equations with an aligned electromagnetic
field.
We note that, for the case Q = 0, the transformation

(r,M) ↔ ±(iax, iN) leaves the Kähler potential and the
metric invariant, and the coordinates (14) change accord-
ing to zi ↔ z̃i for + and are invariant for −. A detailed
analysis of this and other dualities will be given in a sep-
arate work [22].
Newman-Janis shifts. For the Schwarzschild and

Kerr spacetimes (putting x = cos θ), we find the Kähler
potentials to be

Kschw = 4 log((r − 2M) sin θ), (19a)

Kkerr = 4

[

1

2
log(r2 − 2Mr + a2) + log sin θ

− M√
M2 − a2

tanh−1

(

r −M√
M2 − a2

)]

, (19b)
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where we assume the non-extreme case M2 > a2. Using
(14) and Kähler transformations (3), a calculation shows
that (19a) and (19b) are equivalent to

Kschw = 4
[

− r

2M
+ log sin θ

]

, (20a)

Kkerr = 4

[

− (r − ia cos θ)

2M
+ log sin θ

]

(20b)

where we assume M 6= 0. Thus, the Kähler potentials
are related by a Newman-Janis shift r → r − ia cos θ [5],
although it is not at all obvious from (19).
For M = 0, which corresponds (locally) to flat space-

time, we can see the Newman-Janis shift as follows.
Consider complexified Minkowski space, in complexified
spherical coordinates (rc, θc, φc). In terms of complexi-
fied inertial coordinates (tc, xc, yc, zc), we have the usual
relations x2c + y2c = r2c sin

2 θc, zc = rc cos θc. The Kähler
potential can be shown to be K = 4 log(rc sin θc). Con-
sider first the real slice M given by {tc = t, xc = x, yc =
y, zc = z}, where t, x, y, z are real. Then (rc, θc, φc) be-
come ordinary real spherical coordinates, and the Kähler
potential is

K|M = 4 log(r sin θ). (21)

Now consider a different real sliceM′ given by a Newman-
Janis shift [23]: {tc = t, xc = x, yc = y, zc = z − ia},
where a is a real constant. Choosing the complex radius
to be rc = r − ia cos θ, a calculation gives x2 + y2 =
(r2 + a2) sin2 θ, so

K|M′ = 4
[

1
2 log(r

2 + a2) + log sin θ
]

. (22)

Eqs. (21) and (22) correspond, respectively, to the M →
0 limits in (19a) and (19b).
Supergravity black holes. Consider the metric (4) with

gττ = (R− U)/W, gτφ = (RWu + UWr)/W,

gφφ = (RW 2
u − UW 2

r )/W,

gxx = −W/R, gxy = 0, gyy = −W/U,
(23)

where x ≡ r, y ≡ u, (R,Wr) and (U,Wu) are arbitrary
functions of r and u respectively, and W = a(Wr +Wu),
with real constant a. The metric (23) includes a gen-
eral class of black hole solutions of supergravity [15], in
particular the Kerr-Sen black hole [16].
Using the almost-Hermitian structure associated to the

frame given in [15, Eq. (4.79)], our method shows that
the geometry (23) is Hermitian, with complex coordi-
nates (10), where ψ0 = r∗ + iu∗, ψ1 = r♯ − iu♯, and
dr∗ = a(Wr/R)dr, du

∗ = a(Wu/U)du, dr♯ = (a/R)dr,
du♯ = (a/U)du. However, the conformal Kähler condi-
tion (11) does not hold for this Hermitian structure.
Gravitational instantons. We now specialize to Eu-

clidean signature. Consider first the metric (4) with

gττ = a2x2

4(1+x2)2 , gφφ = gττ(1 + x2 sin2 y), gxy = 0,

gτφ = gττ cos y, gxx = 4
a2x2 gττ , gyy = (1 + x2)gττ ,

where a is an arbitrary constant. Using “(∓)” to denote
quantities associated to κ∓, one can choose frames such
that the functions in (7) are Eτ(∓)x = 2i/(ax), Eτ(∓)y =

±i cot y, Eφ(∓)x = 0, Eφ(∓)y = ∓i csc y. Then a calculation

shows that the geometry is conformal Kähler w.r.t. both
sides, with Ω2

∓ = [(1 + x2)/x2]1∓1/a. For a = ±1, one
side becomes Kähler and the metric is Einstein: this is
the Fubini-Study metric in CP

2.
A new family of gravitational instantons was discov-

ered by Chen and Teo [14]. This is a toric, Ricci-flat
geometry of the form (4) that depends on seven pa-
rameters k, ν, a0 . . . a4. The non-trivial metric compo-
nents are gττ , gτφ, gφφ, gxx, gyy, and depend on functions
F,G,H,X, Y given explicitly in [14, Eq. (2.1)]. The
family contains other known instantons such as Eguchi-
Hanson and Euclidean Plebański-Demiański. It was re-
cently shown [24] that the Chen-Teo geometry is one-
sided type D, and thus (from Ricci-flatness) conformal
Kähler, with Ω2 = (x− y)2/(νx+ y)2. Our method com-
putes the complex coordinates to be dz0 = dτ + dψ0,
dz1 = dφ + dψ1 (cf. (10)), where dψ0 = Eτxdx + Eτydy,

dψ1 = Eφxdx+ Eφy dy, and

Eτx = i

√
k

F

(

Gx

X
+

Hy

(x− y)

)

, Eφx =
−i

√
kx

X
,

Eτy = − i

√
k

F

(

Gy

Y
+

Hx

(x− y)

)

, Eφy =
i
√
ky

Y
.

(24)

The Hermitian condition (9) reduces to ∂yE
τ
x−∂xEτy = 0,

which provides an interpretation for eq. (3.49) in [24].
The Hamiltonians are

H0 =

√
k(x− y)

(1 + ν)(νx + y)
, H1 =

√
kf(x, y)

(νx+ y)(x− y)
,

where f(x, y) = (ν − 1)(a0 + a4x
2y2)− a2x(ν(x − 2y) +

y) + (a1 + a3xy)(νx− y). The Kähler potential can now
be computed using (12):

K =
4k

1 + ν

[

4(1− ν) log(x− y)−
∫

h1
X

dx+

∫

h2
Y

dy

]

where h1(x) = a1+a2(1−2ν)x+a3(2−ν)x2+2a4(1−ν)x3
and h2(y) = a1ν − a2y − a3(1− 2ν)y2 − 2a4(1− ν)y3.

DOUBLE COPY STRUCTURES

In string theory, the KLT relations [25] imply that
gravitational amplitudes are closely related to the square
of Yang-Mills amplitudes. The extension of these rela-
tions to field theory is known as the ‘double copy’. At
the classical level, a recent formulation is the ‘curved
Weyl double copy’ [18], which asserts that for some
vacuum gravity solutions, the Weyl curvature spinor is
ΨABCD = 1

SΦ(ABΦCD) for some scalar field S (“ze-
roth copy”) and symmetric spinor field ΦAB (“single
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copy”), where S satisfies a wave equation and ΦAB sat-
isfies Maxwell’s equations. (We refer to [26, 27] for back-
ground on the 2-spinor formalism.) The relation has been
proven for vacuum type D and type N spacetimes [18, 19].
We shall now show that the integrability conditions of
complex structures give automatically this sort of rela-
tions among scalar, Maxwell, and gravitational fields.
Consider a conformal Kähler geometry, with confor-

mal factor Ω, Kähler form κ̂ab = ϕABǫA′B′ , Weyl spinor
ΨABCD and Ricci spinor ΦABA′B′ . Then one can show
the following identities:

(� + 2Ψ2 +R/6)Ω = 0, (25a)

dκ̂ = 0 = d∗κ̂, (25b)

ΨABCD = Ψ2Ω
−4ϕ(ABϕCD), (25c)

ΦABA′B′ = Φ11|Ω|−4ϕABϕ̄A′B′ . (25d)

Eq. (25a) follows by first noticing that the Lee form fa
(defined by dκ = −2f ∧κ) is fa = ∂a logΩ, then taking a
divergence and using the identity∇afa+f

afa = −(2Ψ2+
R/6) (which can be proved using the Newman-Penrose
formalism). Eq. (25b) follows from the conformal Kähler
condition. Finally, equations (25c)-(25d) follow from the
integrability conditions of a conformal Kähler structure,
where for (25d) we assume Lorentz signature (and that
the Ricci tensor satisfies R(J ·, J ·) = R(·, ·)).
From (25) we see that any conformal Kähler geometry

combines scalar Ω, Maxwell κ̂, and gravitational fields
in a double copy-like structure, without assuming any
field equations. For Einstein manifolds (ΦABA′B′ = 0),

Bianchi identities imply Ω = Ψ
1/3
2 , so we recover the type

D double copy [18] (extended to non-trivial cosmological
constant). More generally, all of the conformal Kähler
examples of the previous sections have the structure (25),
so they represent double copy relations. New examples
include the Fubini-Study and Chen-Teo instantons, but
also the whole (non-vacuum) Plebański-Demiański class.
Furthermore, in the Plebański-Demiański case, the

fields Ω and κ̂ solve flat spacetime equations. More
precisely, we see from (16) that Ω is independent of
{M,N, qe, qm, λ}, and since the case in which these pa-
rameters vanish corresponds to Minkowski, we immedi-
ately get ηab∂a∂bΩ = 0. In addition, from (17) we see
that the Kähler form κ̂ depends only on a, so it must
solve Maxwell’s equations in Minkowski.
The type N double copy [19] is not included in the

above construction, but it also arises from the integrabil-
ity of complex structures. First, consider a Petrov type
II spacetime whose repeated principal spinor oA satisfies

oAoB∇AA′oB = 0. (26)

Eq. (26) is the condition for “half-integrability” of a com-
plex structure (see [28, Section 2.4]). One can show [28,
Prop. 2.6] that there is a scalar Ω such that the Lee form
satisfies oAfAA′ = oA∇AA′ logΩ. Applying ιA∇A′

A to this

equation (where oAι
A = 1), after some computations we

again find that Ω satisfies (25a). Notice that Ω is not
unique: we have the freedom to add Ω → Ω + ν, where
ν is any function such that oA∇AA′ν = 0.
In addition, from [27, Lemma (7.3.15)], eq. (26) im-

plies that there are two complex scalars zi = (z0, z1) such
that dzi = oAZ

i
A′dxAA

′

, for some spinors ZiA′ . It follows
that the 2-form dz0 ∧ dz1 is anti-self-dual and closed, so
it is a Maxwell field. Note that F (z0, z1)dz0 ∧dz1 is also
a Maxwell field for any function F (z0, z1).
Finally, the conditions on oA imply that there is a

scalar λ such that oA∇AA′(λoB) = 0. This leads to
∇AA′

(λΩoA) = 0, which in turn implies that ϕA1...An
=

ΩλnoA1
....oAn

is a massless free field: ∇A1A
′

1ϕA1...An
= 0.

For n = 2 and n = 4, we get the spin 1 and 2 fields
ϕAB = ϕ2oAoB and ψABCD = ψ4oAoBoCoD, with
ϕ2 = Ωλ2 and ψ4 = Ωλ4. These are related by

ψ4 =
1

Ω
(ϕ2)

2. (27)

In the special case in which the spacetime is type N,
ψABCD can be chosen to be the Weyl curvature spinor,
and (27) is the type N double copy relation [19, Eq. (6)].
The non-uniqueness noticed in [19] is due to the freedom
to include the functions ν(z0, z1), F (z0, z1) mentioned
before.

DISCUSSION

A general expression for the Kähler potential K for
the class of conformal Kähler (Lorentzian or Euclidean)
geometries of the form (4) with two Killing fields is given
by eq. (12). This includes the Plebański-Demiański and
Chen-Teo families. The potential K generates not only
the metric, but also the Maxwell field κ̂. Notice that this
electromagnetic field is exactly the Coulomb field of the
Schwarzschild solution, or the

√
Kerr / magic field of the

Kerr solution [11, 29].
In (z, z̃) coordinates, K is not necessarily expressible

in terms of elementary functions. For example, while a
potential for Minkowski is

K(z, z̃) = 4 log

[

z̃0 − z0

1 + ei(z1−z̃1)

]

,

in the Schwarzschild case (20a), r and (z, z̃) are related
by r+2M log(r−2M) = (z̃0−z0)/2, which can be solved
in terms of the Lambert W function.
Nevertheless, since the Kähler potential contains (lo-

cally and up to Kähler transformations) all the infor-
mation of the geometry, it represents a fully non-linear
version of the Debye potentials of perturbation theory in
GR. As such, it is of intrinsic interest for the investigation
of nonperturbative results for gravitational wave physics,
further supported by the intriguing manifestation of the
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Newman-Janis shift in K found in this paper, and by the
fact that, as we showed, Kähler and complex geometry
in GR contain naturally the known instances of the Weyl
double copy.
The general framework and results obtained in this pa-

per motivate applications to a variety of exciting prob-
lems in different areas of interest. In mathematical GR,
potential applications include the analysis of waves on
black hole spacetimes, analytic compactifications, and
possible generalizations of the Chen-Teo instanton. In
gravitational wave science, it would be interesting to
make explicit connections to modern techniques used in
scattering amplitudes and quantum field theory [10, 30].
The relation between Kähler potentials and the Newman-
Janis shift motivates further investigation into the ge-
ometric origin of this trick, together with connections
with its interpretation as a generation of intrinsic spin
[8, Chapter X], see also [11, 12]. A detailed description
of dualities in the Plebánski-Demiański family will ap-
pear elsewhere [22].
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