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We obtain a closed formula for the Kähler potential of a broad class of four-dimensional Lorentzian
or Euclidean conformal “Kähler” geometries, including the Plebański-Demiański class and various
gravitational instantons such as Fubini-Study and Chen-Teo. We show that the Kähler potentials of
Schwarzschild and Kerr are related by a Newman-Janis shift. Our method also shows that a class of
supergravity black holes, including the Kerr-Sen spacetime, is Hermitian. We finally show that the
integrability conditions of complex structures lead naturally to the Weyl double copy.
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Introduction.—Complex methods as a tool to investigate
spacetime structure in general relativity (GR) have a long
and fruitful history of remarkable developments. Profound
constructions, pioneered by Penrose, Newman, Plebański,
Robinson, and Trautman [1–6] among others, include
twistor theory and heavenly structures, but there are also
simple yet intriguing results such as the “Newman-Janis
shift” relating special solutions via complex coordinate
transformations.
An important insight regarding complex structures in GR

is provided by Flaherty [7], who showed that type D
vacuum and Einstein-Maxwell spacetimes possess an
analog of the Hermitian structures of Riemannian geom-
etry. In Lorentz signature, a Hermitian structure must
necessarily be complex-valued, so its integrability proper-
ties are more subtle than in the Euclidean case. Flaherty
gave a comprehensive analysis of such properties [8,9], and
he found that the above classes of type D spacetimes are not
only Hermitian but also satisfy the Lorentzian analog of the
conformal Kähler condition.
In Riemannian geometry, Kähler metrics are encoded in

“generating functions” or scalar Kähler potentials. An
analogous feature in GR occurs in perturbation theory,
where perturbative fields are generated by scalar Debye
potentials. These potentials are instrumental for modern
studies of black hole stability and gravitational wave
physics (e.g., [10–14]). The increasing interest in non-
perturbative structures for gravitational wave science [15],
together with the importance of scalar potentials for
perturbation theory, motivate the question of whether there

are “Debye potentials” for exact, astrophysically relevant
solutions of GR. Moreover, the recently discovered appli-
cations of the Newman-Janis shift [16,17] suggest that
complex structures in GR may play an important role in the
understanding of such nonperturbative structures.
Motivated by the above considerations, in this Letter we

develop a method to find the Kähler potentials of a broad
class of geometries, including black holes and gravitational
instantons, and we show intimate connections of this
approach with other theoretical structures of modern
interest for gravitational wave physics such as the
Newman-Janis shift and the double copy relation between
gauge and gravity theories.
As an example, consider the Kerr metric g with param-

eters M, a for mass and angular momentum per mass,
respectively. In Boyer-Lindquist coordinates ðt; r; θ;ϕÞ, the
metric is block diagonal in ðdt; dϕÞ and ðdr; dθÞ, with
components in the first block given by

gtt ¼ ðΔ − a2sin2θÞΣ−1;

gtϕ ¼ −a½Δ − ðr2 þ a2Þ�Σ−1sin2θ;

gϕϕ ¼ ½a2Δsin2θ − ðr2 þ a2Þ2�Σ−1sin2θ;

where Σ ¼ r2 þ a2cos2θ, Δ ¼ r2 − 2Mrþ a2. Following
Flaherty [8], one can find four complex scalar fields,
ðz0; z1; z̃0; z̃1Þ, defined by

dz0 ¼ dt − ða2 þ r2ÞΔ−1dr − ia sin θdθ;

dz1 ¼ dϕ − aΔ−1dr − i csc θdθ;

dz̃0 ¼ dtþ ða2 þ r2ÞΔ−1drþ ia sin θdθ;

dz̃1 ¼ dϕþ aΔ−1drþ i csc θdθ

such that the Kerr metric is

g ¼ gttdz0dz̃0 þ gtϕðdz0dz̃1 þ dz1dz̃0Þ þ gϕϕdz1dz̃1:
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In addition, lettingΩ−2 ¼ ðr − ia cos θÞ2, there must exist a
scalar K such that gtt ¼ Ω−2

∂z0∂z̃0K, gtϕ ¼ Ω−2
∂z0∂z̃1K,

gϕϕ ¼ Ω−2
∂z1∂z̃1K. However, expressions for K do not

seem to have been obtained in the literature.
The method developed in this Letter computes the

generating function and Kähler potential of Kerr to be

K ¼ 4

Z
rΔ−1drþ 4 log sin θ:

As a function K ¼ Kðz; z̃Þ, the potential fully generates the
spacetime geometry. Moreover, using Kähler transforma-
tions, we shall show that the Kähler potentials for Kerr and
Schwarzschild are simply related by a Newman-Janis shift.
More generally, the geometries studied in this Letter
include the general Plebański-Demiański class [18] as well
as the Chen-Teo family [19] of gravitational instantons. Our
method also allows us to prove that a general class of
supergravity black holes [20], including the Kerr-Sen
spacetime [21], has a Hermitian (not conformal Kähler)
structure.
In addition, we shall show that the integrability of

complex structures leads to the existence of special scalar
and massless free fields associated to the geometry, that can
be combined to give a unified geometric description of the
“Weyl double copy” [22–24]. Our results contain not only
the type D and N double copies, but also provide new
examples of this relation for both vacuum and nonvacuum
geometries, including, e.g., the general Einstein-Maxwell
Plebański-Demiański class and the Fubini-Study and
Chen-Teo instantons.
Importantly, we shall not impose any field equations: the

conformal Kähler property of the geometries we study does
not depend on a particular field theory. This means that the
conformal factor does not, in principle, play a role in our
construction, but we shall nevertheless include it since it
arises naturally in GR, where the Einstein and Kähler
metrics are conformally related.
Complexified Kähler geometry.—Given a four-

dimensional complex geometry ðM; gÞ, we define an
almost-Hermitian structure [25] as a (1,1) tensor field J
such that J2 ¼ −I and gðJ·; J·Þ ¼ gð·; ·Þ. The tangent
bundle decomposes as TM ¼ Tþ ⊕ T−, where T� corre-
sponds to vectors with eigenvalue �i under J. We say that
the almost-Hermitian structure is integrable, and is thus a
Hermitian structure, if ½T�; T�� ⊂ T� (for both signs),
where ½·; ·� is the Lie bracket of vector fields. One can
show that a Hermitian structure implies that there are four
complex scalars ðzi; z̃iÞ such that

g ¼ gij̃dz
idz̃j; ð1Þ

where gij̃ ¼ gð∂zi ; ∂z̃jÞ, with i ¼ 0, 1, j̃ ¼ 0̃; 1̃.
The fundamental 2-form is defined by κð·; ·Þ ≔ gðJ·; ·Þ.

We say that a Hermitian geometry is Kähler if dκ ¼ 0, and

conformal Kähler if there is a scalar field Ω2 such that
dκ̂ ¼ 0, where κ̂ ¼ Ω2κ. By the complex version of the
Poincaré Lemma, if dκ̂ ¼ 0 then there exists, locally, a
complex scalar K such that

ĝij̃ ¼ ∂zi∂z̃jK; ð2Þ

where ĝij̃ ¼ Ω2gij̃, cf. [ [8], Theorem IX.8]. We say that K
is a Kähler potential. It is not unique: one has the freedom
to perform “Kähler transformations”:

K → K þ FðziÞ þ F̃ðz̃iÞ: ð3Þ

The Kähler potential can be found by integrating Eq. (2).
Define pj ≔ ∂K=∂z̃j, then pj ¼

R
ĝij̃dz

i. Integrating once
again, the potential is K ¼ R

pidz̃i.
In this Letter, we shall study geometries whose metric

has the block-diagonal form

g ¼ aijdσidσj þ bIJdxIdxJ ð4Þ

for some coordinates σi ¼ ðτ;ϕÞ and xI ¼ ðx; yÞ, and
known functions aij; bIJ. Introduce an orthonormal coframe
e1 ¼ c1i dσ

i, e2 ¼ c2I dx
I , e3 ¼ c3I dx

I , e4 ¼ c4i dσ
i, for some

functions c1i ; c
2
I ; c

3
I ; c

4
i ; such that g¼e1⊗e1þ���þe4⊗e4.

Define now a null coframe by

l¼ 1ffiffiffi
2

p ðe1þ ie2Þ; n¼ 1ffiffiffi
2

p ðe1− ie2Þ;

m¼ 1ffiffiffi
2

p ðe3þ ie4Þ; m̃¼ 1ffiffiffi
2

p ð−e3þ ie4Þ: ð5Þ

The metric is g ¼ 2ðl ⊙ n −m ⊙ m̃Þ. We shall consider
almost-Hermitian structureswhose fundamental 2-forms are
κ� ¼ iðl ∧ n�m ∧ m̃Þ. For concreteness, let us focus
on κ− ≡ κ.
Let Vi ¼ ð−∂ϕ; ∂τÞ. We define the 1-forms

ωi ≔ μVi ⌟ðl∧mÞ; ω̃i ≔ μ̃Vi ⌟ðn∧ m̃Þ; ð6Þ

where μ−1 ¼ ðl ∧ mÞð∂τ; ∂ϕÞ and μ̃−1 ¼ ðn ∧ m̃Þð∂τ; ∂ϕÞ.
A calculation shows that

ωi ¼ dσi þ Ei
Idx

I; ω̃i ¼ dσi − Ei
Idx

I; ð7Þ

for some functions Ei
I ¼ ωið∂IÞ, where ∂I ¼ ∂=∂xI. In

addition, the metric and fundamental 2-form are

g ¼ gij̃ω
i ⊙ ω̃j; κ ¼ i

2
gij̃ω

i ∧ ω̃j ð8Þ

where gij̃ ¼ gð∂σi ; ∂σjÞ. Note that this implies that
g00̃ ¼ gττ, g01̃ ¼ g10̃ ¼ gτϕ, g11̃ ¼ gϕϕ.
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The almost-Hermitian structure is integrable if and only if
dωi ¼ 0 ¼ dω̃i: if this is satisfied, then therewill be (locally)
zi; z̃i such that ωi ¼ dzi and ω̃i ¼ dz̃i, and from the first
equation in Eq. (8) we see that the metric, Eq. (4), will have
the Hermitian expression, Eq. (1). Using Eq. (7), this
integrability condition has a simple form: dωi ¼ 0 ¼ dω̃i

if and only if

Ei
I ¼ Ei

IðxJÞ and ∂½IEi
J� ¼ 0: ð9Þ

The second equation implies that, locally, there are functions
ψ0ðxIÞ, ψ1ðxIÞ such that Ei

I ¼ ∂Iψ
i. The ðzi; z̃iÞ coordinates

will then be given by

zi ¼ σi þ ψ i; z̃i ¼ σi − ψ i: ð10Þ

The associated vector fields are ∂zi ¼ 1
2
ð∂σi þ ∂ψ iÞ,

∂z̃i ¼ 1
2
ð∂σi − ∂ψ iÞ. In terms of xI , we have ∂ψ i ¼ EI

i∂I ,
where EI

i is the inverse of E
i
I (thought of as a 2 × 2 matrix).

We shall now assume that ∂σ1 ¼ ∂τ and ∂σ2 ¼ ∂ϕ are
Killing vectors. This includes all of the examples studied in
this Letter. Using κ ¼ −igij̃dσi ∧ dψ j and ĝij̃ ≔ Ω2gij̃, a
short calculation shows that the conformal Kähler condition
dðΩ2κÞ ¼ 0 is

∂ψ0 ĝτϕ − ∂ψ1 ĝττ ¼ 0 ¼ ∂ψ0 ĝϕϕ − ∂ψ1 ĝτϕ: ð11Þ

Assuming the above conditions, the formula K ¼R
pidz̃i for the Kähler potential can be rewritten as follows.

From Cartan’s formula £vκ̂ ¼ dðv ⌟ κ̂Þ þ v ⌟ dκ̂, we deduce
that the Killing fields have Hamiltonians, i.e., functionsH0,
H1 such that dHi ¼ ∂σi

⌟ κ̂ ¼ −iĝij̃dψ j, where the second

equality follows from the expression of κ̂ in terms of σi, ψ i.
Choosing K to be independent of σi, we get

K ¼ −4i
Z

Hidψ i: ð12Þ

The integration in ψ i can be replaced by an integration in xI

by using dψ i ¼ Ei
Idx

I .
To recover real metrics with different signatures, we

impose reality conditions on the null coframe ðl; n; m; m̃Þ.
Euclidean signature ðþ þ þþÞ corresponds to requiring
n ¼ l and m̃ ¼ −m̄. The functions Ei

I in Eq. (7) are then
purely imaginary, so ω̃i ¼ ω̄i and z̃i ¼ z̄i. Lorentzian
signature ðþ − −−Þ corresponds to l; n real and m̃ ¼ m̄.
The functions Ei

I in Eq. (7) are generally complex, so zi and
z̃i in Eq. (10) are not complex conjugates.
Black holes and instantons.—Diagonal metrics:

Consider the special case of Eq. (4) where g ¼ gττdτ2þ
gϕϕdϕ2 þ gxxdx2 þ gyydy2. We choose the frame such that

the functions Ei
I in Eq. (7) are Eτ

x ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxx=gττ

p
, Eτ

y ¼ 0,

Eϕ
x ¼ 0, Eϕ

y ¼ −i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gyy=gϕϕ

p
. The Hermitian condition is

equivalent to ∂yðgxx=gττÞ ¼ 0, ∂xðgyy=gϕϕÞ ¼ 0, and
the conformal Kähler condition is ∂xðΩ2gττÞ ¼ 0,
∂yðΩ2gϕϕÞ ¼ 0.
A simple example is an arbitrary static, spherically

symmetric spacetime g ¼ fðrÞdτ2 − hðrÞdr2 − r2ðdθ2þ
sin2θdϕ2Þ. Using Ω2 ¼ 1=r2, and regardless of the form
of fðrÞ, hðrÞ, the geometry is conformal Kähler. This
includes not only the well-known spherical black hole
spacetimes but also solutions from the Einstein-scalar field
system such as the Janis-Newman-Winicour wormhole [26].
In the special case h ¼ f−1, the Kähler potential is given
by K ¼ 4fR ½rfðrÞ�−1drþ log sin θg.
The Plebański-Demiański class: Consider the metric

Eq. (4) with

gττ ¼ ½Δr−a2Δx�=ðΠΣÞ;
gτϕ ¼ a½ðr2þa2ÞΔx− ð1− x2ÞΔr�=ðΠΣÞ;
gϕϕ ¼ ½a2ð1− x2Þ2Δr− ðr2þa2Þ2Δx�=ðΠΣÞ;
gxx ¼−Σ=ðΠΔxÞ; gxy ¼ 0; gyy ¼−Σ=ðΠΔrÞ; ð13Þ

where y≡ r, Σ ¼ r2 þ a2x2, a ¼ const, and Π ¼ Πðr; xÞ,
Δx ¼ ΔxðxÞ, Δr ¼ ΔrðrÞ are arbitrary functions of their
arguments. We find that, regardless of the specific form of
Π;Δr;Δx, the geometry is conformal Kähler, with complex
coordinates

z0 ¼ τ − ðr� − iax�Þ; z1 ¼ ϕ − ðar♯ − ix♯Þ;
z̃0 ¼ τ þ ðr� − iax�Þ; z̃1 ¼ ϕþ ðar♯ − ix♯Þ; ð14Þ

where r�; x�; r♯; x♯ are defined by

dr� ¼ ðr2 þ a2ÞΔ−1
r dr; dx� ¼ ð1 − x2ÞΔ−1

x dx;

dr♯ ¼ Δ−1
r dr; dx♯ ¼ Δ−1

x dx; ð15Þ

and the conformal factor is

Ω2 ¼ Π=ðr − iaxÞ2: ð16Þ

The Kähler form κ̂ ¼ Ω2κ is given by

κ̂ ¼ i
ðr − iaxÞ2 f−dϕ ∧ ½að1 − x2Þdr − iðr2 þ a2Þdx�

þ dτ ∧ ðdr − iadxÞg: ð17Þ

Notice that this is independent ofΔr,Δx. The Hamiltonians
are H0 ¼ −i=ðr − iaxÞ and H1 ¼ iðaþ irxÞ=ðr − iaxÞ,
hence, using Eq. (12), we find that the Kähler potential is

K ¼ 4

�Z
r
Δr

dr −
Z

x
Δx

dx

�
: ð18Þ
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We stress that the existence of this potential is independent
of the explicit form of the functions Δr, Δx.
The Plebański-Demiański family [18,27,28] is Eq. (13)

with Π ¼ ð1 − αrxÞ2 and

Δx ¼ 1þ 2N
a

x − x2 þ 2αMx3 −
�
λ

3
a2 þ α2ðQ2 þ a2Þ

�
x4;

Δr ¼ Q2 þ a2 − 2Mrþ r2 −
2αN
a

r3 −
�
α2 þ 1

3
λ

�
r4;

where α ¼ const, Q2 ¼ q2e þ q2m, and λ; qe; qm correspond,
respectively, to cosmological constant and electric and
magnetic charges. The rest of the parameters can be related
to mass, angular momentum, acceleration, and Newman-
Unti-Tamburino charge, cf. [27] for details. This is the
general type D solution (assuming non-null orbits of the
isometry group) of the Einstein equations with an aligned
electromagnetic field.
We note that, for the case Q ¼ 0, the transformation

ðr;MÞ ↔ �ðiax; iNÞ leaves the Kähler potential and the
metric invariant, and the coordinates, Eq. (14), change
according to zi ↔ z̃i for þ and are invariant for −.
A detailed analysis of this and other dualities will be given
in a separate work [29].
Newman-Janis shifts: For the Schwarzschild and Kerr

spacetimes (putting x ¼ cos θ), we find the Kähler poten-
tials to be

Kschw ¼ 4½log jr − 2Mj þ log sin θ�; ð19aÞ

Kkerr ¼ 4

�
1

2
log jr2 − 2Mrþ a2j þ log sin θ

−
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2
p f

�
r −Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
��

; ð19bÞ

where f ¼ tanh−1 if r is in between the two roots of Δr and
f ¼ coth−1 outside the roots and we assume M2 ≠ a2.
Using Eq. (14) and Kähler transformations, Eq. (3), a

calculation shows that Eqs. (19a) and (19b) are equivalent to

Kschw ¼ 4

�
−

r
2M

þ log sin θ

�
; ð20aÞ

Kkerr ¼ 4

�
−
ðr − ia cos θÞ

2M
þ log sin θ

�
; ð20bÞ

where we assume M ≠ 0. Thus, the Kähler potentials are
related by a Newman-Janis shift r → r − ia cos θ [5],
although it is not at all obvious from Eq. (19).
ForM ¼ 0, which corresponds (locally) to flat spacetime

[30], we can see the Newman-Janis shift as follows.
Consider complexified Minkowski space, in complexified
spherical coordinates ðrc; θc;ϕcÞ. In terms of complexified
inertial coordinates ðtc; xc; yc; zcÞ, we have the usual

relations x2c þ y2c ¼ r2c sin2 θc, zc ¼ rc cos θc. The Kähler
potential can be shown to be K ¼ 4 logðrc sin θcÞ.
Consider first the real slice M given by
ftc ¼ t; xc ¼ x; yc ¼ y; zc ¼ zg, where t, x, y, z are real.
Then ðrc; θc;ϕcÞ become ordinary real spherical coordi-
nates, and the Kähler potential is

KjM ¼ 4 logðr sin θÞ: ð21Þ

Now consider a different real sliceM0 given by a Newman-
Janis shift [31]: ftc ¼ t; xc ¼ x; yc ¼ y; zc ¼ z − iag,
where a is a real constant. Choosing the complex
radius to be rc ¼ r − ia cos θ, a calculation gives
x2 þ y2 ¼ ðr2 þ a2Þ sin2 θ, so

KjM0 ¼ 4

�
1

2
logðr2 þ a2Þ þ log sin θ

�
: ð22Þ

Equations (21) and (22) correspond, respectively, to the
M → 0 limits in Eqs. (19a) and (19b).
Supergravity black holes: Consider the metric,

Eq. (4), with

gττ ¼ ðR−UÞ=W; gτϕ ¼ ðRWuþUWrÞ=W;

gϕϕ ¼ ðRW2
u −UW2

rÞ=W;

gxx ¼−W=R; gxy ¼ 0; gyy ¼−W=U; ð23Þ

where x≡ r, y≡ u, ðR;WrÞ and ðU;WuÞ are arbitrary
functions of r and u, respectively, and W ¼ aðWr þWuÞ,
with real constant a. The metric, Eq. (23), includes a
general class of black hole solutions of supergravity [20], in
particular the Kerr-Sen black hole [21].
Using the almost-Hermitian structure associated to the

frame given in [ [20], Eq. (4.79)], our method shows that
the geometry, Eq. (23), is Hermitian, with complex coor-
dinates, Eq. (10), where ψ0 ¼ r� þ iu�, ψ1 ¼ r♯ − iu♯, and
dr� ¼ aðWr=RÞdr, du� ¼ aðWu=UÞdu, dr♯ ¼ ða=RÞdr,
du♯ ¼ ða=UÞdu. However, the conformal Kähler condi-
tion, Eq. (11), does not hold for this Hermitian structure.
Gravitational instantons: We now specialize to

Euclidean signature. Consider first the metric, Eq. (4), with

gττ ¼
a2x2

4ð1þ x2Þ2 ; gϕϕ ¼ gττð1þ x2sin2yÞ; gxy ¼ 0;

gτϕ ¼ gττ cosy; gxx ¼
4

a2x2
gττ; gyy ¼ ð1þ x2Þgττ;

where a is an arbitrary constant. Using “(∓)” to denote
quantities associated to κ∓, one can choose frames such
that the functions in Eq. (7) are Eτ

ð∓Þx ¼ 2i=ðaxÞ,
Eτ
ð∓Þy ¼ �i cot y, Eϕ

ð∓Þx ¼ 0, Eϕ
ð∓Þy ¼∓ i csc y. Then a

calculation shows that the geometry is conformal Kähler
with regard to both sides, with Ω2∓ ¼ ½ð1þ x2Þ=x2�1∓1=a.
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For a ¼ �1, one side becomes Kähler and the metric is
Einstein: this is the Fubini-Study metric in CP2.
A new family of gravitational instantons was discovered

by Chen and Teo [19]. This is a toric, Ricci-flat geometry of
the form, Eq. (4), that depends on seven parameters
k; ν; a0…a4. The nontrivial metric components are
gττ; gτϕ; gϕϕ; gxx; gyy, and depend on functions F, G, H, X,
Y given explicitly in [ [19], Eq. (2.1)]. The family contains
other known instantons such as Eguchi-Hanson and
Euclidean Plebański-Demiański. It was recently shown [32]
that the Chen-Teo geometry is one-sided type D, and
thus (from Ricci-flatness) conformal Kähler, with
Ω2 ¼ ðx − yÞ2=ðνxþ yÞ2. See also [33]. Our method com-
putes the complex coordinates to be dz0 ¼ dτ þ dψ0, dz1 ¼
dϕþ dψ1 [cf. Eq. (10)], where dψ0 ¼ Eτ

xdxþ Eτ
ydy,

dψ1 ¼ Eϕ
x dxþ Eϕ

y dy, and

Eτ
x ¼ i

ffiffiffi
k

p

F

�
Gx
X

þ Hy
ðx− yÞ

�
; Eϕ

x ¼−i
ffiffiffi
k

p
x

X
;

Eτ
y ¼−i

ffiffiffi
k

p

F

�
Gy
Y

þ Hx
ðx− yÞ

�
; Eϕ

y ¼ i
ffiffiffi
k

p
y

Y
: ð24Þ

The Hermitian condition, Eq. (9), reduces to
∂yEτ

x − ∂xEτ
y ¼ 0, which provides an interpretation for

Eq. (3.49) in [32]. The Hamiltonians are

H0 ¼
ffiffiffi
k

p ðx − yÞ
ð1þ νÞðνxþ yÞ ; H1 ¼

ffiffiffi
k

p
fðx; yÞ

ðνxþ yÞðx − yÞ ;

where fðx;yÞ¼ ðν−1Þða0þa4x2y2Þ−a2x½νðx−2yÞþy�þ
ða1þa3xyÞðνx−yÞ. The Kähler potential can now be
computed using Eq. (12):

K ¼ 4k
1þ ν

�
4ð1 − νÞ logðx − yÞ −

Z
h1
X
dxþ

Z
h2
Y
dy

�
;

whereh1ðxÞ¼a1þa2ð1−2νÞxþa3ð2−νÞx2þ2a4ð1−νÞx3
and h2ðyÞ ¼ a1ν − a2y − a3ð1 − 2νÞy2 − 2a4ð1 − νÞy3.
Double copy structures.—In string theory, the Kawai-

Lewellen-Tye relations [34] imply that gravitational ampli-
tudes are closely related to the square of Yang-Mills
amplitudes. The extension of these relations to field theory
is known as the “double copy.” At the classical level, a
recent formulation is the “curved Weyl double copy” [23],
which asserts that for some vacuum gravity solutions, the
Weyl curvature spinor is ΨABCD ¼ ð1=SÞΦðABΦCDÞ for
some scalar field S (“zeroth copy”) and symmetric spinor
field ΦAB (“single copy”), where S satisfies a wave
equation and ΦAB satisfies Maxwell’s equations. (We refer
to [35,36] for background on the 2-spinor formalism.) The
relation has been proven for vacuum type D and type N
spacetimes [23,24]. We shall now show that the integra-
bility conditions of complex structures give automatically

this sort of relations among scalar, Maxwell, and gravita-
tional fields.
Consider a conformal Kähler geometry, with conformal

factor Ω, Kähler form κ̂ab ¼ φABϵA0B0 , Weyl spinor ΨABCD,
and Ricci spinor ΦABA0B0. Note that, as κ̂ab is a Kähler
form, it must necessarily be (anti-)self-dual (cf. [ [37],
Theorem 3.1]); we choose anti-self-dual for concreteness.
Then one can show the following identities:

ð□þ 2Ψ2 þ R=6ÞΩ ¼ 0; ð25aÞ

dκ̂ ¼ 0 ¼ d�κ̂; ð25bÞ

ΨABCD ¼ Ψ2Ω−4φðABφCDÞ; ð25cÞ

ΦABA0B0 ¼ Φ11jΩj−4φABφ̄A0B0 : ð25dÞ

Equation (25a) follows by first noticing that the Lee form
fa (defined by dκ ¼ −2f ∧ κ) is fa ¼ ∂a logΩ, then
taking a divergence and using the identity ∇afa þ fafa ¼
−ð2Ψ2 þ R=6Þ (which can be proved using the Newman-
Penrose formalism). Equation (25b) follows from the
conformal Kähler condition. Finally, Eqs. (25c) and (25d)
follow from the integrability conditions of a conformal
Kähler structure, where for Eq. (25d) we assume
Lorentz signature [and that the Ricci tensor satisfies
RðJ·; J·Þ ¼ Rð·; ·Þ].
FromEq. (25) we see that any conformal Kähler geometry

combines scalar Ω, Maxwell κ̂, and gravitational fields in a
double copylike structure, without assuming any field
equations. For Einstein manifolds (ΦABA0B0 ¼ 0), Bianchi
identities imply Ω ¼ Ψ1=3

2 , so we recover the type D double
copy [23] (extended to nontrivial cosmological constant).
More generally, all of the conformal Kähler examples of the
previous sections have the structure, Eq. (25), so they
represent double copy relations. New examples include
the Fubini-Study and Chen-Teo instantons, but also the
whole (nonvacuum) Plebański-Demiański class.
Furthermore, in the Plebański-Demiański case, the

fields Ω and κ̂ solve flat spacetime equations. More
precisely, we see from Eq. (16) that Ω is independent of
fM;N; qe; qm; λg, and since the case in which these
parameters vanish corresponds to Minkowski, we immedi-
ately get ηab∂a∂bΩ ¼ 0. In addition, from Eq. (17) we see
that the Kähler form κ̂ depends only on a, so it must solve
Maxwell’s equations in Minkowski.
The type N double copy [24] is not included in the above

construction, but it also arises from the integrability of
complex structures. First, consider a Petrov type II space-
time whose repeated principal spinor oA satisfies

oAoB∇AA0oB ¼ 0: ð26Þ

Equation (26) is the condition for “half-integrability” of a
complex structure (see [ [38], Section 2.4]). One can
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show [ [38], Prop. 2.6] that there is a scalar Ω such that the
Lee form satisfies oAfAA0 ¼ oA∇AA0 logΩ. Applying ιA∇A0

A
to this equation (where oAιA ¼ 1), after some computations
we again find that Ω satisfies Eq. (25a). Notice that Ω is not
unique: we have the freedom to addΩ → Ωþ ν, where ν is
any function such that oA∇AA0ν ¼ 0.
In addition, from [ [36], Lemma (7.3.15)], Eq. (26)

implies that there are two complex scalars zi ¼ ðz0; z1Þ
such that dzi ¼ oAZi

A0dxAA
0
, for some spinors Zi

A0 . It fol-
lows that the 2-form dz0 ∧ dz1 is anti-self-dual and closed,
so it is a Maxwell field. Note that Fðz0; z1Þdz0 ∧ dz1 is also
a Maxwell field for any function Fðz0; z1Þ.
Finally, the conditions on oA imply that there is a scalar λ

such that oA∇AA0 ðλoBÞ ¼ 0. This leads to∇AA0 ðλΩoAÞ ¼ 0,
which in turn implies that φA1…An

¼ ΩλnoA1
…:oAn

is a
massless free field: ∇A1A0

1φA1…An
¼ 0. For n ¼ 2 and

n ¼ 4, we get the spin 1 and 2 fields φAB ¼ φ2oAoB
and ψABCD ¼ ψ4oAoBoCoD, with φ2 ¼ Ωλ2 and ψ4 ¼ Ωλ4.
These are related by

ψ4 ¼
1

Ω
ðφ2Þ2: ð27Þ

In the special case in which the spacetime is type N, ψABCD
can be chosen to be the Weyl curvature spinor, and Eq. (27)
is the type N double copy relation [ [24], Eq. (6)]. The
nonuniqueness noticed in [24] is due to the freedom to
include the functions νðz0; z1Þ, Fðz0; z1Þ mentioned before.
Discussion.—A general expression for the Kähler poten-

tial K for the class of conformal Kähler (Lorentzian or
Euclidean) geometries of the form, Eq. (4), with two
Killing fields is given by Eq. (12). This includes the
Plebański-Demiański and Chen-Teo families. The potential
K generates not only the metric, but also the Maxwell field
κ̂. Notice that this electromagnetic field is exactly the
Coulomb field of the Schwarzschild solution, or the

ffiffiffiffiffiffiffiffiffi
Kerr

p
or magic field of the Kerr solution [16,39].
In ðz; z̃Þ coordinates, K is not necessarily expressible in

terms of elementary functions. For example, while a
potential for Minkowski is

Kðz; z̃Þ ¼ 4 log

�
z̃0 − z0

1þ eiðz1−z̃1Þ

�
;

in the Schwarzschild case, Eq. (20a), r and ðz; z̃Þ are related
by rþ 2M logðr − 2MÞ ¼ ðz̃0 − z0Þ=2, which can be
solved in terms of the Lambert W function.
Nevertheless, since the Kähler potential contains (locally

and up to Kähler transformations) all the information of the
geometry, it represents a fully nonlinear version of the
Debye potentials of perturbation theory in GR. As such, it
is of intrinsic interest for the investigation of nonperturba-
tive results for gravitational wave physics, further sup-
ported by the intriguing manifestation of the Newman-Janis

shift in K found in this Letter, and by the fact that, as we
showed, Kähler and complex geometry in GR contain
naturally the known instances of the Weyl double copy.
The general framework and results obtained in this Letter

motivate applications to a variety of exciting problems in
different areas of interest. In mathematical GR, potential
applications include the analysis of waves on black hole
spacetimes, analytic compactifications, and possible gen-
eralizations of the Chen-Teo instanton. In gravitational
wave science, it would be interesting to make explicit
connections to modern techniques used in scattering
amplitudes and quantum field theory [15,40,41]. The
relation between Kähler potentials and the Newman-
Janis shift motivates further investigation into the geometric
origin of this trick, together with connections with its
interpretation as a generation of intrinsic spin [ [8],
Chapter X], see also [16,17]. A detailed description of
dualities in the Plebánski-Demiański family will appear
elsewhere [29].
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