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Supplementary Materials

S1. Bayesian Regression Analyses

We used R’s brms package for all Bayesian regression analyses (Bürkner, 2017).

We chose a normal prior for all fixed effects and used default priors for intercept and

interaction terms. For all analyses taking P (Correct) as dependent variable via logistic

link function, we used Normal(0,1) prior for log odds ratio coefficients, such that under

the prior, a 2.7 fold increase or decrease in the chance of answering correctly would

equate to 1 Standard Deviation. We found default brm sampling settings resulted in

unstable estimates in some cases, particularly for Bayes Factors. Therefore we doubled

the number of MCMC chains from 4 to 8 and increased the length of the chains fivefold

from 2,000 to 10,000 iterations, finding this greatly improved stability. We report

estimates, 95% credible intervals following (Kruschke, 2013) and for comparison with

traditional p values we include Probability of Direction (PD) statistics (Makowski,

Ben-Shachar, Chen, & Lüdecke, 2019) and comment on Regions of Practical

Equivalence (ROPE) with the nulls (Kruschke, 2018). We also performed a sensitivity

analysis for key analyses varying the prior between a strong prior expectation for the

null Normal(0, 0.2) and a diffuse Normal(0,5). The full analysis pipeline is included in

the OSF Repository.

We also fit Bayesian regressions to predict intervention efficiency relative to

optimally efficient choices. Since this constitutes proportion data, we model it using a

Bayesian beta regression. However, this is complicated by the presence of proportions of

exactly zero (5 of 92) and one (17 of 92). Beta regression requires data to be in (0, 1)

rather than [0, 1]. Thus, we followed Smithson and Verkuilen (2006) and used the

correction x′ = x×(N−1)+ 1
2

N
as a principled re-scaling of the proportions before fitting the

model. Conceptually this incorporates a prior of 1
2 on each participant’s proportion, and

so accommodates that some proportions are based on more trials than other, with most

zeros and ones occurring for participants who performed a small number of

interventions in total. For example, if a participant performs only two interventions, but

both are maximally efficient, their proportion is adjusted from 1 to 1×1+ 1
2

2 = .75, while
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four maximally efficient interventions would lead to 0.875.

To measure whether accuracy was statistically above chance in each condition, we

used proportionBF from R’s BayesFactor library (Morey & Rouder, 2011). To test

whether accuracy differed by age for participants characterised as Test Multiple, we

used contingencyTableBF function from the same library. For this, we selected the

‘jointMulti’ sampling scheme under which total N is fixed, and observations are assigned

to cells with fixed probability.

S2. Number of interventions and guesses by Age Group and Condition

Table S1 details Poisson regressions predicting number of interventionsa and

guesses as a function of age group and condition.

Table S1

Poisson Regressions Predicting Number Interventions and Guesses by Age Group and

Condition

N Interventions N Guesses

β 95% CI Bayes Factor β 95% CI Bayes Factor

Intercept 2.99 2.33–3.78 1.29 0.89–1.82

Age group (Younger) 0.93 0.67–1.3 0.18 0.83 0.51–1.36 0.25

Condition (Sparse) 1.17 0.85–1.6 0.25 1.11 0.7–1.76 0.32

Age group × Condition 0.91 0.58–1.44 0.25 1.39 0.73–2.64 0.52
Note: β coefficients and confidence intervals transformed to natural odds ratios.

Reference groups for factors indicated in brackets

S3. Expected information gain calculation

In this task, the learner is confronted with a causal system with N = 6 binary

independent variables, I, of which a subset of variables C ⊆ I (i.e., individual switches)

can affect the outcome when active (i.e., switched to the “on” position, and one binary

outcome, o (i.e., the lights turning on). The probability of the outcome given a specific
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setting of variables is

P (o = 1|C) =


1, if ∃ c ∈ C ∧ (c = 1),

0, otherwise.
(1)

Simply put, the outcome occurs if, and only if, any of the variables in C are

currently active. The learner must decide how to manipulate the variables to determine

which are causally relevant. We assume that the learner’s optimal strategy consists of

choosing a switch setting, s ∈ S, which maximizes the Expected Information Gain

(EIG) with respect to the system. EIG quantifies the expected reduction in uncertainty

over the hypotheses H after having made an intervention on the system and observed

an outcome. Here, the learner’s hypotheses are possible sets of causally relevant

variables, i.e., H = {C1, ..., C6}. Note that the contents of H differ between conditions

because of the differences in sparsity. In the Sparse condition, each set (e.g., C1)

contains only one switch because only one switch can activate the lights, while in the

Dense condition, each C contains a combination of 5 switches, as all but one switch can

turn on the lights. We consider a simple case of binary outcomes (o = 1 or o = 0) with

the likelihood of an outcome given by Equation 1. A learner’s EIG is calculated as

EIG(s|H) = SE(H)−
1∑

j=0
P (o = j|s)SE(H|s, o = j), (2)

where SE represents the Shannon entropy over a distribution of hypotheses (Shannon,

1951), which in this study are possible causes of the light turning on. The marginal

likelihood of each outcome is then given by

P (o = j|s) =
6∑

i=1
P (o = j|Ci; s) (3)

and the prior entropy (i.e., the uncertainty as to whether each candidate hypothesis is

correct before a test) is

SE(H) = −
6∑

i=1
P (Ci) logP (Ci). (4)

After observing the outcome of a test, the learner’s beliefs about each hypothesis are
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updated following Bayes’ rule,

P (Ci|o) = P (o|Ci)P (Ci)∑6
j=1 P (o|Cj)P (Cj)

, (5)

and the entropy over the updated set of hypotheses becomes

SE(H|s, o) = −
6∑

i=1
P (Ci|o)logP (Ci|o). (6)

S4. Early stopping and unnecessary tests

Stopping early and making unnecessary tests are two kinds of search errors that

can provide additional insight into the quality of a learner’s search. Stopping one’s

search before identifying the correct switch may occur if a participant searched

inefficiently and runs low on tests and chooses to guess. However, guessing before it is

advantageous to do so might indicate a misunderstanding of the task or application of

an inappropriate strategy. Making “unnecessary tests” — that is, tests that occur after

the target switch could have been identified and which therefore do not provide any

additional information from a normative perspective — would suggest that children

may find it difficult to keep track of the evidence gathered previously, or that they don’t

believe a trial fully rules out a switch setting.

The number and percentages of children stopping early and performing

unnecessary tests is shown in Table S2. Performing unnecessary tests was rare, with

only three children performing (either one or two) unnecessary tests. However, stopping

early was common in both conditions for younger children and just in the Dense

condition for older children.

Bayesian logistic regressions, predicting early stopping with Condition and Age

Group, show that the odds of stopping early is higher in the Dense condition

OR = 2.69, 95%CI = [1.22, 6.1], PD = 99.2%, BF = 7.3 but does not appear to differ

by age group OR = 0.67, 95%CI = [0.3, 1.5], PD = 83.4%, BF = 0.64. There was

moderate evidence of an interaction such that older children were more likely to stop

early in the Dense condition OR = 3.62, 95%CI = [1.07, 12.21], PD = 98.1%, BF = 5.3.

For comparison, our random intervention baseline simulations produced test sequences
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Table S2

Counts and Percentage of Children Stopping Early and Number of Unnecessary Tests

Performed, and Average Number of Total Tests Performed (SD).

Age group Condition
N

Participants

Stopped

Early

Tested

Unnecessarily
N tests

Younger Sparse 21 10 (47%) 1 (5%) 3.00± 1.94

Dense 25 12 (48%) 1 (4%) 3.52± 1.33

Older Sparse 26 3 (12%) 1 (4%) 2.81± 1.30

Dense 20 13 (59%) 0 (0%) 3.00± 1.52

that rarely resolved all uncertainty by the time participants made their judgment,

effectively being classified as stopping early 60% of the time in the Sparse condition,

and 89% of the time in the Dense condition.
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