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ABSTRACT
Among other improvements, the Martini 3 coarse-grained force field provides a more accurate description of the solvation of protein pockets
and channels through the consistent use of various bead types and sizes. Here, we show that the representation of Na+ and Cl− ions as “tiny”
(TQ5) beads limits the accessible time step to 25 fs. By contrast, with Martini 2, time steps of 30–40 fs were possible for lipid bilayer systems
without proteins. This limitation is relevant for systems that require long equilibration times. We derive a quantitative kinetic model of time-
integration instabilities in molecular dynamics (MD) as a function of the time step, ion concentration and mass, system size, and simulation
time. We demonstrate that ion–water interactions are the main source of instability at physiological conditions, followed closely by ion–ion
interactions. We show that increasing the ionic masses makes it possible to use time steps up to 40 fs with minimal impact on static equilibrium
properties and dynamical quantities, such as lipid and solvent diffusion coefficients. Increasing the size of the bead representing the ions (and
thus changing their hydration) also permits longer time steps. For a soluble protein, we find that increasing the mass of tiny beads also on
the protein permits simulations with 30-fs time steps. The use of larger time steps in Martini 3 results in a more efficient exploration of
configuration space. The kinetic model of MD simulation crashes can be used to determine the maximum allowed time step upfront for an
efficient use of resources and whenever sampling efficiency is critical.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0095523

INTRODUCTION

Compared to its predecessors,1,2 the recent Martini 3 force
field3 constitutes a significant advance in biomolecular simulations.
Martini 3 offers consistently parameterized coarse-grained (CG)
interaction sites of different sizes and a better coverage of the chem-
ical space by a whole range of new bead types. This results in an
improved representation of the molecular shape, packing, and inter-
actions in general. The diversity of the ion models was strongly
increased, now featuring five bead types Q1–Q5 in three resolu-
tions ranging from “tiny” (T, 2-to-1 mapping) via “small” (S, 3-to-1
mapping) to “regular” (R, 4-to-1 mapping) beads. The parame-
terization of the beads features a Martini Hofmeister series from
hard, more inorganic ions (Q5) to soft, more organic ions (Q1).
In addition, specific interactions (e.g., those of cation-π type) can
be incorporated using labels that were previously only available in

the polarizable version.4 The new features of Martini 3 resulted in a
change in the resolution of hard ions, such as Na+ and Cl−, which
are routinely added to biomolecular simulation systems to establish
physiological conditions in terms of ionic strength. The size of both
Na+ and Cl− ions changed from R to T, which means that in Martini
3, the ions are modeled without a hydration shell. This is in contrast
to Martini 2, where a hydration shell was considered to be included
in the larger R-bead type used for Na+ and Cl−.

While Martini 2 simulations were routinely run with a time
step of Δt = 30 fs5–7 according to the recommendation of the new-rf
parameter set,8 the currently recommended time step is Δt = 20 fs,
which was used for all test systems during the parameterization of
the force field. In several previous studies employing Martini 2, even
Δt = 40 fs was used.2,9,10 However, this was deemed excessive by the
developers of the model,11 and the use of such large time steps is
generally discouraged.
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Here, we show that the representation of Martini 3 ions as
“tiny” charged beads of type TQ5 requires an integration time step
no larger than 25 fs. For Δt > 25 fs, the tendency of the time inte-
gration to become unstable and crash the simulations increases
significantly. We develop a quantitative kinetic model of the rate of
crashing as a function of the integration time step, ion concentra-
tion, and ionic mass. By fitting the three parameters of this model
globally to the observed crash statistics of the molecular dynamics
(MD) runs, we identify ion–ion and ion–water interactions as the
main culprits. We explore two possible solutions that permit simula-
tions to run with larger time steps: by modifying the ionic mass and
by changing the bead type of the ions. While the former keeps the
desired resolution with almost no perturbations to the system, the
latter is consistent with the multi-resolution approach of Martini 3.
The effects and trade-offs made by these solutions are evaluated
and discussed in detail. Moreover, the statistical model employed
here to estimate the rate of crashing can be applied to determine an
optimal time step for MD-based high-throughput campaigns. With
integration stability being the major factor limiting the time step
size, the general formalism used here to determine the maximum
allowed time step should prove useful for an efficient deployment
of resources and whenever sampling efficiency is critical in MD
simulation.

THEORY
Altering the mass or bead type

In classical MD simulations, Newton’s equations of
motion (usually augmented with thermostats and barostats)
are integrated numerically with finite time steps. The integra-
tion time step Δt is chosen in a trade-off between accuracy,
e.g., to conserve the total energy, and the computational efficiency
of sampling configuration space. To maximize efficiency, the
time step is commonly chosen close to the stability limit of time
integration.12 For classical non-polarizable models, this limit is
determined by the fastest molecular motions, in particular the
rattling of stiff covalent bonds and tight non-covalent interactions,
and the hard collisions between molecules on highly anharmonic
potential surfaces.

For NaCl solutions and lipid bilayers, we observed that Mar-
tini 3 MD simulations required shorter time steps than in equivalent
setups simulated with the Martini 2 model. As the main culprit,
we identified the newly introduced ions modeled as “tiny” charged
(TQ5) beads and their ion–ion interactions. As possible remedies,
we consider (i) changing the ionic masses and (ii) changing the bead
type from tiny to small (SQ5) or regular (RQ5).

The motivation behind changing the ionic mass is the invari-
ance of Newton’s equations of motion under a uniform scaling
of all masses and of time by α and

√
α, respectively. Whereas

scaling all particle masses does not improve configuration space
sampling, we expect that increasing the ionic mass will permit a
longer time step. The displacements of heavier ions at each time
step are smaller, which should reduce the risk of an uncontrolled
clash, causing an instability in the numerical time integration. If such
ion displacements limit the time step, we expect that the maximum
allowed time step for stable time integration scales with the ionic
mass m as

Δt′

Δt
≈
√

m′

m
, (1)

where we ignored the motions of the other particles. Then, starting
from a time step Δt = 20 fs, doubling and quadrupling the ionic mass
m would make it possible to use Δt′ = 30 and 40 fs, respectively.

Importantly, changes in particle mass leave the equilibrium
structural properties unchanged because the classical mechanical
partition function separates into kinetic and configurational contri-
butions. However, the dynamics of the system is generally modified
in a nontrivial manner. Nevertheless, with a longer time step, one
can expect a faster sampling of the relevant configuration space for
the molecules with unmodified masses.

In Martini simulations, usually only relatively slow diffusive
motions are of interest because the fast intramolecular and collision
dynamics is impacted significantly by coarse-graining. Translational
and rotational diffusion are dominated by hydrodynamic effects, as
reflected in the Stokes–Einstein theory of 3D diffusion13 and in the
Saffman–Delbrück theory of 2D diffusion in lipid bilayers embedded
in a 3D solvent.14 Both theories predict that the diffusion coefficient
of a dissolved molecular species does not depend directly on its mass,
only on its size and the viscosity of the surrounding medium. There-
fore, we expect that ionic mass changes have minimal impact on the
diffusive dynamics.

Nevertheless, changes in the mass of some of the particles can
potentially change the viscosity of the aqueous solvent and the mem-
brane. Here, we consider increasing the mass of the ions described by
TQ5 beads, leaving all other masses untouched. Importantly, these
particles constitute only a tiny fraction of the molecules in the aque-
ous solvent and do not enter within the lipid bilayers. Therefore,
we expect that doubling their mass will have only a very limited
effect on the viscosity of the solvent and membrane and thus, in
turn, on the diffusive dynamics of all species, including the ions
themselves. We test this assumption by monitoring the diffusivity
of the solvent and lipid species as a function of ionic mass. We
keep the box dimensions constant in this comparison and do not
correct for the large finite size effects in the computed diffusion
coefficients.15,16

Modification of the bead type of the ions is based on the
notion that in Martini 3, a change in the bead size of the ions
represents a change in their hydration. Bead-size changes (accom-
panied by the corresponding changes in mass) are thus consistent
with the coarse-graining philosophy of the force field (see the
supplementary material of the original Martini 3 paper3). More-
over, the current resolution of lipid head groups, such as the choline
moiety of phosphatidyl-choline (PC) lipids, is already low due to
the employed 6-1 mapping,2,17 where six non-hydrogen atoms are
grouped together into a single interaction site. Therefore, ade-
quate modeling of protein-less bilayers currently does not require
a high resolution of the ions. We thus expect that an increase
in the ion bead size will not significantly perturb the membrane
properties.

Crash probability as a function of the time step

In the following, we develop a kinetic model of the probability
that a simulation with a given time step will crash during a given total
simulation time. We assume that, rarely, the position updates in time
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integration place particles within a strongly repulsive region of the
potential surface such that the subsequent force evaluation leads to
numerical instabilities either immediately or after a few uncontrolled
further integration steps.

Let Δt be the integration time step. With v the velocity in
one dimension, the corresponding displacement is then Δx = vΔt,
ignoring the higher-order acceleration terms. We now assume
that displacements Δx > Δxcrit are critical and lead to crashes.
The velocities of a particle of mass m at inverse temperature β
satisfy a Maxwell–Boltzmann distribution, p(v)dv = exp(−βmv2/2)√

βm/(2π)dv. The probability of a critical displacement during a
simulation time step becomes

P(Δx > Δxcrit) = ∫
∞

Δxcrit/Δt
dv exp(−βmv2/2)

√
βm/(2π)

≈ γΔt exp(−1/(2γ2Δt2))√
2π

, (2)

with 1/γ2 = βmΔx2
crit. Here, we used the asymptotic expansion

of the complementary error function. In a simulation system,
we expect that a certain fraction

√
2π f of the particle displace-

ments (here, those of the “tiny” ions and their interaction part-
ners) can result in such catastrophic clashes. The probability
Q =
√

2π f P(Δx > Δxcrit) of a catastrophic displacement in a given
time step is approximately

Q = f γΔt exp(−1/(2γ2Δt2)). (3)

Assuming uncorrelated events and 0 < Q≪ 1, the probability that a
simulation run of n time steps will not crash is

P = (1 −Q)n ≈ exp[−t f γ exp(−1/(2γ2Δt2))], (4)

with t = nΔt the total time. The crash times are thus pre-
dicted to be distributed exponentially, p(tcrash)dtcrash = kcrash
exp(−kcrashtcrash)dtcrash, with a rate that depends on the simulation
time step as

kcrash(Δt) = f γ exp(−1/(2γ2Δt2)) = k0
crash exp(−1/(2γ2Δt2)). (5)

The crash rate has two parameters, f and γ, whose product defines
k0

crash = f γ. In our systems, we expect that the dimensionless factor
f depends on the concentration cion of ions as f = (acion

2 + bcion)V ,
with coefficients a and b, and V the system volume. Based on the
definition and consistent with Eq. (1), we expect γ to depend on the
mass of the ions approximately as γ∝ 1/

√
m.

METHODS
Simulation of NaCl solutions

To demonstrate the effect of changing ionic masses (or the lack
thereof) on the viscosity μf of the fluid surrounding the bilayer, we
prepared water boxes with 0, 0.075, 0.15, and 0.3M NaCl concentra-
tions using insane.py17 and the option -salt. All cubic boxes had an
initial edge length of 10 nm. We simulated these NaCl solutions with
the standard Martini 3 CG force field3 and the Gromacs package18

(version 2020.1). To eliminate differences stemming from finite size
effects between these systems,15 we took the smallest box as reference
and removed the appropriate number of molecules from all others.
This procedure resulted in equilibrium box lengths between 8.93 and
8.97 nm for all NaCl solution systems. No corrections were applied
to account for finite size effects on diffusion. At every concentration,
we performed simulations with time steps of 20, 30, and 40 fs and
using the original, doubled, and quadrupled ionic masses (denoted
as 1 × m, 2 × m, and 4 × m, respectively) to systematically test the
effects on the diffusion coefficient and therefore on the viscosity of
the bulk medium. Following a short energy minimization using a
steepest descent algorithm, every system was equilibrated during a
1 μs run with a time step of 20 fs. This was followed by 3 μs-long
production runs using 20, 30, or 40 fs time steps. Coordinates were
saved for analysis every 0.5 ns. The temperature of the systems was
kept at 310 K using a velocity re-scale thermostat.19 The pressure was
maintained at 1 bar using an isotropic Parrinello–Rahman barostat20

(pref = 1 bar and τp = 12 ps).
To gain insight into the origin of the simulation crashes, we

performed a large number of additional simulations using various
combinations of parameters and concentrations. These simulations
are collected in Table S1. In this set, every simulation used the set-
tings as described above but with a fixed number of desired steps
(nsteps = 108) instead of fixed total simulation time and without try-
ing to match the overall volumes. The majority of these simulations
could not achieve the specified nsteps = 108, and the only observable
extracted from them was the time of crashing, as described below.
To reduce the statistical uncertainty in the evaluation of the crash
rate, every simulation was repeated 40 times.

Simulation of DPPC bilayers

We also performed MD simulations of fully solvated DPPC
bilayers containing Na+ and Cl− ions with the Martini 2 and Mar-
tini 3 CG force fields. The initial systems were prepared using
insane.py.17 All bilayers were constructed in an initial box of
18 × 18 × 18 nm3 and solvated with 14 405 CG waters (pure W
for Martini 3 and 10% WF antifreeze2 for Martini 2). The equilib-
rium membrane area in the simulation boxes was about 17× 17 nm2,
larger than ≈8 × 8 nm2 used in the Martini 3 validation test. Every
simulation system contained 0.15M NaCl, as added with insane.py
using the flag -salt 0.15. We performed all simulations with Gromacs
2020.1 and used 20, 30, and 40 fs time steps. We simulated a Mar-
tini 2 membrane for reference and Martini 3 membranes using TQ5
(standard Martini 3), SQ5, and RQ5 (=Q5) beads as monovalent
ions. Finally, we tested the effect of increasing the ionic mass by
a factor of 2. The doubled mass corresponds to using the interac-
tions of TQ5 along with the mass of RQ5. The abbreviated labels of
the above lipid simulations are M2, M3(-TQ5), M3-SQ5, M3-RQ5,
and M3-2×m, respectively. All membranes were energy minimized
using a steepest descent algorithm and further minimized by run-
ning 50 ns trajectories using 5 fs time steps. This was followed by a
5 μs equilibration using a time step of 20 fs. Then, production runs
of 10 μs were performed using 20, 30, and 40 fs time steps and
writing the positions to disk every 0.5 ns. The temperature of the
systems was kept at 310 K using a velocity re-scale thermostat.19 The
pressure of the systems was controlled in a semi-isotropic man-
ner with a compressibility of 3 × 10−4 bar−1. For the initial energy
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FIG. 1. Snapshots of the NaCl solution system (left) and the DPPC lipid bilayer
system (right). Sodium and chloride ions are shown as yellow and green spheres
and DPPC lipids as orange tubes. Water is represented as a transparent surface.
The images were rendered using Visual Molecular Dynamics (VMD). 21

minimization, we employed the Berendsen barostat22 (pref = 1 bar
and τp = 1 ps), while the equilibration and production proceeded
with the Parrinello–Rahman barostat20 (pref = 1 bar and τp = 12 ps).
Figure 1 shows illustrative snapshots of the simulated NaCl solutions
and lipid bilayers.

Analysis

In our numerical tests, we ran 40 simulations for each system,
except for the shortest time steps (which resulted in consistently
stable trajectories) and the longest time steps (which caused crashes
almost immediately; see Table S1 for details). The time ti is the tar-
geted run length, ti = Δt × 108, if run i completed normally, or the
time of the crash caused by an instability. For the exact definition of
a crash, see Sec. 1.1 in the supplementary material. From the times
ti, we estimate the rate of crashing (and thus the reciprocal of the
mean time to a crash) using a maximum-likelihood estimator for
right-censored data and Poisson statistics,

kcrash =
1

tcrash
= ncrash

∑40
i=1ti

, (6)

where 0 ≤ ncrash ≤ 40 is the number of crashes observed in the 40
runs. We assessed the uncertainty of the estimator using the stan-
dard error σ = kcrash/

√
ncrash, which corresponds to the Cramér–Rao

bound. This estimator gives us some guidance on the molecular
factors causing the crashes. For instance, if ion–water interactions
were dominant, we would expect kcrash ∝ cion, where cion is the
ion concentration. By contrast, if ion–ion interactions were domi-
nant, we would expect kcrash ∝ (cion)2, as discussed in the Theory
section.

From the trajectories of the bulk NaCl solutions, we deter-
mined the diffusion coefficients D3D of water. We computed the
diffusion coefficients with an optimal Generalized Least Squares
(GLS) estimator,23 as implemented in the DiffusionGLS24 package.
The trajectories were unwrapped using a scheme that correctly
takes into account volume fluctuations in the NPT ensemble,25 as
implemented in qwarp.26

We evaluated the properties of the membrane system using
the same observables as in the validation of the original Martini 3
force field: area-per-lipid Al, thickness d (both of them obtained with
FATSLiM27), area compressibility modulus KA (computed from
the projected area fluctuations, without correction for finite size

effects28), and Sn order parameter (using do-order-gmx5.py, available
on the Martini website www.cgmartini.nl). In addition, we also cal-
culated the density profile of the ions along the membrane normal
and the lateral diffusion coefficient Dlat of the lipid centers of mass
within the membrane.

RESULTS AND DISCUSSION
Stability of Martini 3 NaCl solution simulations
as a function of the time step

We performed extensive MD simulations of the NaCl solutions
at time steps between 20 and 40 fs and in a range of ion concentra-
tions (see Table S1 for details). By computing the rate of crashing
kcrash using Eq. (6), we found more frequent crashes at longer time
steps and with the increasing number of ions, indicating an issue
with the stability of the numerical time integration associated with
the ions of bead type TQ5. To describe the time step dependence
of these crashes, we fitted Eq. (5) to the kcrash values. As shown in
Fig. 2, the slope of the curves in the semi-logarithmic representation
is constant. Accordingly, a single γ parameter accurately captures the
time-step dependence of the crash tendency independent of the ion
concentration.

According to the theory, the prefactor k0
crash = f γ in Eq. (5)

accounts for the ion concentration dependence. Indeed, the values
of the dimensionless concentration factor f = k0

crash/γ obtained from
the intercept of the fits in Fig. 2 exhibit a linear-quadratic concen-
tration dependence on the ion concentration, as shown in Fig. 3.
We incorporated this concentration dependence and the depen-
dence on the overall system volume V into Eq. (5) in the form
k0

crash(cion, V) = γ(ac2
ion + bcion)V . The time step, concentration, and

volume dependent crash rate then becomes

FIG. 2. Rate of crashing in the NaCl solutions as a function of the time step size.
Shown is kcrash on a semi-logarithmic scale as a function of 1/Δt2. The individual
colors correspond to fixed concentrations. The concentrations increase from the
bottom curve (0.075M) to the top (0.5M). The solid lines represent fits of Eq. (5)
using a common γ value.
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FIG. 3. Dependence of the rate of crashing on the ion concentration. Shown is the
dimensionless concentration factor f = k0

crash/γ = (ac2
ion + bcion)V , cion = 2cNaCl

obtained from the intercept of the linear fits in Fig. 2 as a function of the ion concen-
tration in NaCl solutions. The solid line shows a fit of a linear-quadratic dependence
on cion with a fixed value of γ.

kcrash(cion, V , Δt) = γ(ac2
ion + bcion)V exp(− 1

2γ2Δt2 ), (7)

where a = 7.5820×10−7 mM−2 nm−3, b = 3.2043×10−4 mM−1 nm−3,
and γ = 5.2568 ps−1. Note that a rearrangement of the prefactor gives
k0

crash(cion, V) = γnions(acion + b), where nions is the total number of
TQ5 ions in the system.

Equation (5) with a linear-quadratic concentration dependence
accurately accounts for the observed crash rates kcrash across ion
concentrations and time steps. As shown in Fig. 4, we achieved
an excellent agreement between the numerical data for time steps
between 29 and 32 fs and the simple 3-parameter theory. As a final
validation, we varied the system size. As predicted by the theory,
kcrash depends linearly on the overall volume of the system
(see Fig. S1). Incorporating the concentration and system size
dependence into Eq. (5) gives a general equation, Eq. (7), capable of
predicting the expected number of crashes. The analysis presented
here required a careful control of certain simulation parameters. In
particular, we found that using a fixed value of Verlet buffer toler-
ance instead of a fixed neighbor list cut-off (rlist) effectively masked
the functional form of the concentration dependence of kcrash (see
Fig. S2).

FIG. 4. Rate of crashing in the NaCl solutions as a function of the NaCl concentration analyzed for different time steps. The panels correspond to Δt = 29, 30, 31, and 32 fs.
The solid black lines are fits of Eq. (6) with three parameters γ, a, and b. The error bars represent the standard error. Note that the y-scale varies between the panels and
that cion = 2cNaCl.
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In addition to estimating the crash rate, our model also allows
us to determine the particle types involved in the crashes. At
physiological ion concentrations, cNaCl = cion/2 ≈ 150 mM, crashes
are more likely to be caused by ion–water collisions than ion–ion
collisions. According to the theory, their ratio is about acion/b ≈ 0.71.
Supported by the data, the theory also predicts an extremely steep
increase in kcrash as a function of the time step, which was also the
main reason for the use of such a seemingly narrow range of Δt
between 29 and 32 fs. With relatively short (108 steps) runs of a small
(∼6000 particles) test system, the theory predicts that one would have
to perform ∼10 000 s of simulation time at Δt = 20 fs to reach a sin-
gle failure even in the most concentrated (500 mM) system. On the
other extreme of the scale, Δt = 40 fs results in a failure after every
∼500 steps (every 20 ps) on average. These numbers are supported by
our observations in simulations using the respective time steps. As a
practical example, we applied Eq. (7) to predict kcrash in a system
of 150 mM NaCl solution consisting of 105 particles correspond-
ing to a cubic box of edge length ∼23 nm. The estimated kcrash as
a function of the time step is presented in Fig. 5. Using Δt = 25 fs,
one can expect one crash about every 366 μs of simulation time,
while Δt = 26 fs already results in a crash every 41 μs. We expect
that the addition of proteins or a lipid bilayer to the systems does
not fundamentally alter kcrash, provided that they do not introduce
additional numerical instabilities. As a consequence, our scaling law
limits the largest accessible time step to Δt ≤ 25 fs in any practical
application.

Increased ionic mass stabilizes time integration

In numerical tests of the NaCl solutions, we found that an
increase in the mass of the ions described by TQ5 beads resulted
in more stable time integration. According to Eq. (1), we expect
that increasing the ionic masses by a factor of (m′/m)2 = 402/302

≈ 1.7778 will allow us to use a time step longer by a factor of 4/3.

FIG. 5. Rate of crashing in a 150 mM NaCl solution consisting of 105 CG beads,
as estimated using Eq. (7). Horizontal lines indicate kcrash for runs with time steps
of Δt = 25, 26, and 27 fs (bottom to top). The lines are labeled by the expected
mean time to a first crash.

In the more elaborate model [Eq. (5)], the ionic mass m enters
through γ. For a modified ionic mass m′, we have γ′ = γ

√
m/m′.

In practice, the mass m′ may have to be adjusted to account for
the more complex coupled motions of the different particles. As
shown in Fig. S3, we obtain excellent agreement of the crash rate
predicted using Eq. (5) with the data obtained for the heavier ions
by using an effective mass of m′ = 1.7188m instead of the nom-
inal ionic mass of 1.7778m, which amounts to a difference of
around 3.5%.

These findings further confirm that the ions of TQ5 type indeed
determine the stability of the NaCl solutions. Moreover, they also
demonstrate that an ionic mass increase improves the stability by
allowing a time step scaled approximately by the square root of
ionic masses after and before mass correction, in close agreement
with the prediction of Eq. (1). Taking the 0.3M test system as an
example, doubling the masses at Δt = 30 fs reduces the estimated
crash rate kcrash from ≈10/μs to ≈10−8/μs, while quadrupling the
masses at Δt = 40 fs reduces the estimated kcrash from ≈105/μs to
≈10−10/μs.

Multivalent metal ions play an important role in biology. For
reference, we simulated systems containing concentrated CaCl2
using the same protocol as above (see Table S2) to test if the pres-
ence of Ca2+ ions limits the allowable time steps. In Martini 3, Ca2+

ions are represented as “small” beads. In our tests, we found that
changes in the mass of the “tiny” Cl− stabilized the time integration,
implying that the “small” Ca2+ ions are not causing integration insta-
bilities. We conclude that ion size, not ion charge, is the dominant
factor restricting the allowable time step.

Increased ionic masses leave the structure
of NaCl solutions unchanged and minimally
impact their dynamics

To investigate the perturbations caused by an increase in ionic
masses, we analyzed the structure and dynamics of the NaCl solu-
tions. As expected, the modification of the ionic masses does not
impact the structural properties (Fig. S7). We found the ion–ion
radial distribution functions (RDFs) to be independent of the inte-
gration time step and the ionic mass. The diffusion coefficients
D3D of CG water obtained from these systems are collected in
Table I. The data confirm our expectations based on hydrody-
namic considerations:13,14 changing the mass of the ions has only
small effects on the diffusion coefficient for a given time step. At
a NaCl concentration of 300 mM, a four-fold increase in ionic
mass reduced the water diffusivity by about 2%. We expect that
the ionic mass will impact the librational motion; however, these
non-diffusive motions occur on timescales below the frequency
of sample collection (Fig. S4). The observed decrease in diffusiv-
ity with the increasing NaCl concentration is in agreement with
the tendency observed in experiments.29 However, we also noticed
a mass-independent small decrease in D3D with increasing time
step Δt. When compared to the conventional approach of fit-
ting a straight line to an ad hoc interval of the MSD curve, the
D3D values calculated with a GLS estimator show smaller errors,
more consistent estimates between replicas and clearer tendencies
across the simulations (see Table S4 along with Figs. S4 and S6
in the supplementary material). Therefore, care must be taken not
only when one compares diffusion coefficients from simulations
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TABLE I. Estimated D3D diffusion coefficient (nm2/ns) of the CG water beads in Martini 3 NaCl solutions at various ion
concentrations. The results are listed for ionic masses multiplied by factors 1, 2, and 4 and for time steps of 20, 30, and 40 fs.
The errors are smaller than 0.01 nm2/ns. These values were obtained from the correctly unwrapped trajectories25 using
DiffusionGLS.23,24 Entries are missing where simulations suffered from a high rate of crashing kcrash. The results are listed
without corrections for finite system size.15

0.0M 0.075M 0.15M 0.3M

1 ×m 1 ×m 2 ×m 4 ×m 1 ×m 2 ×m 4 ×m 1 ×m 2 ×m 4 ×m

20 fs 2.43 2.26 2.25 2.25 2.11 2.10 2.08 1.81 1.80 1.77
30 fs 2.28 2.15a 2.14 2.14 ⋅ ⋅ ⋅ 2.00 2.00 ⋅ ⋅ ⋅ 1.73 1.71
40 fs 2.10 ⋅ ⋅ ⋅ 1.99a 1.98 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1.86 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1.62

aThese simulations had kcrash around O(1/simulation)

performed using different time steps but also when using different
estimators.23

Ionic mass increase has no discernible
effect on the structure and dynamics
in lipid membrane systems

Having established the lack of appreciable effects of ionic mass
in bulk aqueous solution, we turned our attention to the neat DPPC
bilayers. As for NaCl solutions, missing entries in all subsequent
tables indicate that a high crash rate made it impossible to obtain
converged results. The average values of area-per-lipid Al and mem-
brane thickness d are collected in Tables II and III. DPPC lipids
modeled with the standard Martini 3 model [denoted M3(-TQ5)]
have a smaller Al value and correspondingly higher d than in Mar-
tini 2 (M2), consistent with its parameterization. Doubling the mass
of TQ5 (system M3-2×m) and subsequently increasing Δt have no
detectable effect on either of these quantities.

The lipid models in Martini 3 are designed to be softer than
those in Martini 2.3 Correspondingly, DPPC lipids in the Mar-
tini 3 validation exhibited KA values of 232.9 ± 13.3 mN/m, in
excellent agreement with the experimentally measured value of
231 ± 20.0 mN/m.30 The KA values calculated in this work are col-
lected in Table IV. Our values are also in general agreement with
the experimental data but somewhat below them. The discrepancy
is not surprising: KA values are sensitive to both the length of the
time steps31 and system size,31,32 consistent with our simulations.
In particular, the dependence on system size originates from the
difference between real and projected membrane areas due to the
undulations of the membrane.28 A word of caution is needed at this
point: a common practice when simulating large patches of planar

TABLE II. Average area-per-lipid Al (Å2) from simulations of DPPC bilayers. The error
is less than ±0.5 Å2. Entries are missing where simulations failed to run properly. M2
and M3 refer to Martini 2 and Martini 3, respectively.

M2 M3(-TQ5) M3-SQ5 M3-RQ5 M3-2×m

20 fs 60.6 59.7 59.7 59.8 59.7
30 fs 60.5 ⋅ ⋅ ⋅ 59.5 59.6 59.5
40 fs 60.4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 59.4 ⋅ ⋅ ⋅

TABLE III. Membrane thickness d (nm) from simulations of DPPC bilayers. The error
is less than 0.025 nm. Entries are missing where simulations failed to run properly.

M2 M3(-TQ5) M3-SQ5 M3-RQ5 M3-2×m

20 fs 4.147 4.195 4.194 4.190 4.195
30 fs 4.151 ⋅ ⋅ ⋅ 4.202 4.198 4.203
40 fs 4.157 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4.209 ⋅ ⋅ ⋅

membranes is to apply weak harmonic restraints to a quarter of
the lipids in one of the two leaflets.16,33 Such “pinning” of a subset
of lipids suppresses long wavelength undulations. The suppression
of undulations should be taken into account when comparing KA
from simulations of different sizes. As we saw with Al and d, dou-
bling the ionic masses does not influence KA. However, doubling Δt
from 20 to 40 fs resulted in a noticeable decrease (10%–20%) in KA
for the M2 and M3-RQ5 systems, where runs with Δt = 40 fs were
stable.

The lipid tail order parameter values Sn presented in Table V
show a higher degree of order in Martini 3 than in the previous
version. Because Sn is computed as an average over the bonds involv-
ing lipid tail beads, the values are unaffected by changes in the
surrounding medium. An increase in Δt causes a minute increase
in Sn, which matches our expectation of straighter lipid chains based
on the computed membrane thickness values.

In addition to the properties used in the optimization of the
Martini 3 force field, we calculated the density profile of the ions
along the membrane normal and lateral diffusion coefficient Dlat
of the lipid centers of mass. Similar to the radial distribution pro-
files of the NaCl solutions (Fig. S7), Fig. 6 demonstrates that the

TABLE IV. Area compressibility modulus KA (mN/m) from simulations of DPPC bilay-
ers. The error is less than 2 mN/m. Entries are missing where simulations failed to
run properly. The results are listed without corrections for finite size.28

M2 M3(-TQ5) M3-SQ5 M3-RQ5 M3-2×m

20 fs 279 220 221 216 218
30 fs 254 ⋅ ⋅ ⋅ 197 197 204
40 fs 243 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 179 ⋅ ⋅ ⋅
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TABLE V. Average order parameter Sn of the carbon chains from simulations of
DPPC bilayers. The error is less than 0.001. Entries are missing where simulations
failed to run properly.

M2 M3(-TQ5) M3-SQ5 M3-RQ5 M3-2×m

20 fs 0.455 0.481 0.481 0.479 0.481
30 fs 0.457 ⋅ ⋅ ⋅ 0.485 0.483 0.485
40 fs 0.460 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.488 ⋅ ⋅ ⋅

obtained density profiles are insensitive to changes in the ionic mass,
which is also true for the separate density profiles of Na+ and Cl−

(see Fig. S8).
Compared to Martini 2, the lateral diffusion coefficient Dlat

of DPPC lipids decreased in Martini 3, consistent with the higher
order of the lipid chains, as seen from Table VI. The GLS esti-
mator again provided diffusion coefficients with smaller statistical
errors and clearer tendencies (see Table S5 and Fig. S5 in the
supplementary material). Note, however, that these diffusion coeffi-
cients were not corrected for finite-size effects.16 From the computed
Dlat values, it is clear that simply changing the mass of TQ5 beads
without increasing Δt does not noticeably alter the diffusion coeffi-
cient of the lipids, which is in accord with our results for the NaCl
solutions.

Bead type changes have minimal impact
on the structure and dynamics of the membrane

As an alternative solution to changing the masses, one can
modify the bead type used to represent ions in Martini 3. The use
of SQ5 beads allowed us to increase Δt to 30 fs, meaning that not
a single crash was detected in the 40 replicas of the NaCl solutions.
However, the combination of SQ5 beads and Δt = 40 fs resulted in an

FIG. 6. Number density profile of ions along the direction normal to the DPPC
membrane. The mid-plane of the bilayer is located at z = 0 nm. The results are
shown for a time step Δt = 20 fs and are representative of all time steps.

TABLE VI. Lateral diffusion coefficients Dlat (10−2 nm2/ns) from simulations of DPPC
bilayers. The error is smaller than 0.1 ×10−2 nm2/ns. Entries are missing where
simulations failed to run properly.

M2 M3(-TQ5) M3-SQ5 M3-RQ5 M3-2×m

20 fs 5.80 5.58 5.64 5.64 5.54
30 fs 5.69 ⋅ ⋅ ⋅ 5.54 5.49 5.46
40 fs 5.51 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 5.31 ⋅ ⋅ ⋅

average of 5 crashes per simulation. Further increasing the bead size
to RQ5 made it possible to run simulations at Δt = 40 fs. The proce-
dure of increasing the bead size is fully consistent with the Martini 3
philosophy, and it represents the inclusion of hydrating waters in the
ionic bead. Just as in the case of mass changes, we assessed the dif-
ferences that occur upon changing the bead type from TQ5 to SQ5
or RQ5.

The average values of Al, d, and KA are listed in Tables II–IV,
respectively, in columns M3-SQ5 and M3-RQ5. Similar to changing
the ionic mass, modifying the bead type while keeping Δt constant
has virtually no effect on these values. Whereas increasing Δt does
not affect Al and d values, we found the KA values to decrease notice-
ably by 10%–20%. Nevertheless, the changes introduced between
Martini 2 and Martini 3 are largely preserved independent of the
time step. Moreover, the lipid tail order parameters Sn in Table V
are insensitive to the ionic bead type, while an increase in Δt pro-
duces an increase comparable to that observed in the system with
doubled masses (also in Table V).

The modification of the bead type altered the distribution of
ions around the membrane. However, as Fig. 6 shows, these changes
are minor compared to those between the Martini 2 and 3 ver-
sions and between different atomistic force fields.34 The alteration
of the bead type also produced a detectable increase in the lipid dif-
fusivity, indicating a somewhat more fluid liquid phase (Table VI).
However, the effects of changing the time step Δt on lipid diffusion
are larger than the effects of changing the ionic mass in the ranges
considered.

To assess the impact of changing the ionic mass or the bead type
in systems containing charged lipids or unsaturated lipid chains, we
also tested DPPC bilayers containing 5% PI-(4,5)P2 (C16:0/18:1 with
phosphatidylinositol 4,5-bisphosphate head group)35 and neat DIPS
(di-C16:2-C18:2 with phosphatidylserine head group) bilayers using
the Martini 3 force field. The results are presented in Tables S6 to
S10 and Figs. S9 and S10 for the PI-(4,5)P2-containing membranes
and in Tables S11 to S15 and Fig. S11 for the neat DIPS membranes.
The PI-(4,5)P2-containing simulations were limited to a maximum
time step of Δt = 30 fs. While the differences in the computed quan-
tities of the PI-(4,5)P2-containing membranes as a function of ion
type were commensurate with those observed in our simulations
of neat DPPC membranes, the properties of the neat DIPS bilayers
showed somewhat larger changes with the ion bead type. By con-
trast, altering the ion masses did not have any significant impact on
the membrane properties, irrespective of the membrane composi-
tion. We conclude that for highly charged membrane systems, the
effect of modifying the ionic bead type must be carefully assessed,
as it might affect relevant system properties, such as the gel–fluid
melting temperature of the system.
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Increase in “tiny” bead masses enables protein
simulations at Δt = 30 fs

A remaining open question is if biomolecular systems con-
taining proteins and lipid membranes can be simulated at Δt = 30
fs. To assess the possibility of using a time step of Δt = 30 fs in
protein systems, we tested the stability of the soluble protein hen
egg-white lysozyme (HEWL) at time steps larger than Δt = 20 fs.
We did not observe any crashes for time steps up to Δt = 28 fs.
To be able to run a simulation at Δt = 30 fs, we followed the same
strategy as with the ions and increased the masses of the T (“tiny”)
beads in the protein to the default S (“small”) bead mass of 54. This
enabled stable simulations of HEWL with a time step of Δt = 30 fs
without significantly affecting the structure of the protein. Details
on the simulations and a comparison of the protein backbone root
mean square fluctuations and ion occupancy are provided in the
supplementary material (Sec. 15). We suggest to use increased T
bead masses in proteins for the equilibration of the lipid membrane
in mixed protein–lipid systems and to switch back to the original
masses for rigorous production runs.

Energy conservation in Martini 3 simulations

The energy conservation in coarse-grained simulations has
been the subject of intense debate.11,36 To investigate the conser-
vation of energy in Martini 3, we simulated an all-atom system
consisting of 4139 TIP4P-D water molecules37 (denoted as AA), a
neat Martini 3 water box of the same volume (1050 water beads,
denoted as CG-small), and another neat Martini 3 water box with
the same number of beads (4139) as molecules in the all atom
system (denoted as CG-large). Every simulation was performed in
five replicas. After an initial equilibration at constant temperature,

FIG. 7. Time course of the total energy Etotal during a single, representative replica
of the 5 ns long simulations. AA denotes the all-atom TIP4P-D water system and
CG-large a neat Martini 3 water box that contains the same number of beads as
the molecules in AA. The labels 1, 2, 3, 4, and 30 fs indicate the time steps. In the
case of CG-large, only the 30 fs system is shown for clarity. See Table S3 for a list
of the corresponding energy drifts.

the simulations were continued for 5 ns without thermostatting,
i.e., nominally at constant energy. Over this time, the total energy
exhibited a linear drift. The total energies Etotal are plotted as a func-
tion of the simulation time in Fig. 7. The corresponding energy
drift values dEtotal/dt in Table S3 were estimated from the slope in
straight-line fits. We found the energy drift values in the CG-small
and CG-large systems to be nearly identical despite the difference
in system size (see Table S3). Importantly, the energy drift in the
coarse-grained systems is ∼100-fold smaller than in the all-atom
system even for a time step of 40 fs in the CG simulations. We
attribute the more strict energy conservation to the smoothness of
the potential energy function of coarse-grained force fields. How-
ever, a deeper investigation of this issue is beyond the scope of this
study.

CONCLUSIONS

The recently developed Martini 3 force field has successfully
addressed several fundamental issues raised by Alessandri et al.38

Most importantly, the introduction of specific cross-interaction
terms between particles of different sizes created a consistent
framework for the use of different bead sizes.

Here, we showed that the introduction of the “tiny” Martini 3
bead type for representing unhydrated Na+ and Cl− ions limits the
accessible time step to below 25 fs. To achieve this, we performed
extensive statistical analyses of the rate of crashing and developed
a quantitative model of the crash rate kcrash(cion, Δt, V). The model
revealed the role of ion–ion and ion–water collisions in bringing
about the crashes. The insight into the factors limiting the stabil-
ity of MD time integration for neat NaCl aqueous solutions could
be transferred to larger and more complex systems containing lipid
bilayers. The knowledge of such stability limits greatly facilitates
the rational design of computational experiments and the optimal
use of available resources. A particular example is the free energy
method of Lechner et al. relying on fast-switching trajectories, where
the optimum efficiency of the algorithm was achieved using Δt
just short of the stability limit.12,39 Another example is the setup
of in silico high throughput campaigns, such as the optimization
of compositions of ionic liquids40 or deep eutectic solvents41 for
liquid–liquid extractions, where the statistical model can be applied
to determine an optimal time step for a given set of molecular
systems.

Moreover, our simulations of NaCl solutions demonstrated
that increasing the ionic mass has no significant effects on the struc-
ture or dynamics of the system (beyond the timescale of librational
motions). Doubling (quadrupling) the masses allowed us to per-
form simulations at Δt = 30 fs (40 fs), but this resulted in somewhat
slower diffusion. The properties of membrane systems containing
DPPC lipids were also insensitive to doubling the mass. The larger
time step had a minute effect on the structure of the bilayer, and
the change in Dlat was even smaller than in the case of the NaCl
solutions.

As an alternative consistent with the philosophy of Martini 3,
we explored the impact of changing the size of the charged bead
used to represent ions. Again, we noticed only a minor influence
on the dynamical and structural properties of protein-less bilayers
while making the use of an increased time step possible.
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Increased ionic masses or altered bead types allowed us to use
a time step of Δt = 30 fs (with SQ5) or 40 fs (with RQ5) to model
protein-less bilayers. Increased time steps can provide crucial speed-
up, e.g., for simulating phase separating lipid mixtures.5,42 Although
simulations of neat DPPC bilayers were running stably even at 40 fs,
we do not recommend going beyond 30 fs. Major reasons to avoid
time steps as long as Δt = 40 fs, besides the general consensus,11

are the following: (i) the structural and dynamical properties of the
system undergo relatively larger changes between 30 and 40 fs than
between 20 and 30 fs as seen, e.g., in the diffusion coefficients
of water in NaCl solutions; (ii) in the simulations of neat DPPC
bilayers, only the M3-RQ5 system could tolerate such a high time
step; (iii) the introduction of more finely mapped lipids, such as
phosphatidylinositol 4,5-bisphosphate,35 precludes the use of 40 fs
(see the supplementary material). Our analysis indicated that to
reach Δt = 30 fs, it suffices to either double the ionic mass or change
the bead type to SQ5, which both have only a mild effect on the
behavior of the system. Moreover, we showed that by increasing the
T bead mass in proteins, it is also possible to simulate proteins using
a time step of Δt = 30 fs.

Another known issue that limits the time step in three-
component phase separating systems is the presence of insufficiently
converged constraints.43 We plan to address this problem in a future
publication.

SUPPLEMENTARY MATERIAL

See the supplementary material for the definition of crash in
simulations, the influence of rlist, doubling of masses, changing the
volume, and Ca2+ on kcrash, the magnitude of total energy drift in all-
atom and CG simulations, the diffusion coefficients obtained with
the conventional estimator and its comparison with the GLS estima-
tor, the ion–ion radial distribution functions in the NaCl solutions,
the density profiles of ions around the DPPC membrane, the results
concerning the PI-(4,5)P2 containing membranes and neat DIPS
membranes, and the results for a soluble protein.
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