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Multi-principal-component alloys have attracted great interest as a novel paradigm in alloy design, with
often unique properties and a vast compositional space auspicious for materials discovery. High entropy alloys
(HEAs) belong to this class and are being investigated for prospective nuclear applications with reported superior
mechanical properties including high-temperature strength and stability compared to conventional alloys. Com-
putational materials design has the potential to play a key role in screening such alloys, yet for high-temperature
properties, challenges remain in finding an appropriate balance between accuracy and computational cost. Here
we develop an approach based on density-functional theory (DFT) and thermodynamic integration aided by
machine learning based interatomic potential models to address this challenge. We systematically evaluate and
compare the efficiency of computing the full free energy surface and thermodynamic properties up to the melting
point at different stages of the thermodynamic integration scheme. Our new approach provides a ×4 speed-up
with respect to comparable free energy approaches at the level of DFT, with errors on high-temperature free
energy predictions less than 1 meV/atom. Calculations are performed on an equiatomic HEA, TaVCrW—a
low-activation composition and therefore of potential interest for next generation fission and fusion reactors.

DOI: 10.1103/PhysRevB.105.214302

I. INTRODUCTION

The development of alloys based on multiple principal
components (elements) is an area of broad interest within
the material science community. These alloys—known var-
iously as multi principal component alloys (MPCAs), high
entropy alloys (HEAs) and compositionally complex alloys
(CCAs)—access the interior regions of hyper-dimensional
compositional space, away from the corners that are sampled
by conventional alloys, opening up a vast, largely untapped
expanse of compositions. HEAs can be considered a sub-
category of MPCAs alongside CCAs. In this paper, we
adopt the definition of HEAs as MPCAs consisting of a
single extended solid solution.1 Due to their multi-principal-
component makeup, HEAs (and MPCAs more generally)
exhibit often unique and interesting properties compared
with traditional alloys including, depending on the com-
position, superior high-temperature strength and stability

*y.zhou4@lboro.ac.uk
1There is not yet an agreed definition of HEAs in the literature.

Aside from the definition, we adopt, some define HEAs as alloys
consisting of 5 or more principal components in equiatomic or nearly
equiatomic concentrations (original definition), while others use the
term rather as we use MPCA in this paper to encompass both single-
phase solid solutions and CCAs.

and good corrosion resistance [1,2]. HEAs are therefore
one class of materials that are under consideration as po-
tential structural materials for next generation fission and
fusion reactors, being designed to operate at higher temper-
atures than current reactors—in some cases up to 1000 ◦C.
Structural materials used in current generation reactors are
unsuitable for such applications [3] and new materials are
required that can withstand high thermal stress at higher tem-
peratures, more corrosive environments and higher neutron
fluxes [4,5].

Another important consideration in next generation reactor
design is that elements should be low activation, i.e., suitable
for recycling or disposal in nonactive landfills approximately
100 years after removal from the reactor [6–8]. This precludes
the use of Ni or Zr [9,10] and limits the elements from which
HEA compositions can be drawn to low activation candidates
Ti, V, Cr, Mn, Fe, Ta, and W. Previous studies indicated that
in fusion reactors, W-based HEAs (W0.38Ta0.36Cr0.15V0.11)
showed outstanding radiation resistance [11]. The quinary
system Cr-Ta-Ti-V-W and its subsystems have also been
investigated in terms of phase stability and order-disorder
transition temperatures [12]. In total, there are 29 different
combinations of low activation elements to investigate for
quinary HEAs and a vast composition space to probe for
nonequiatomic compositions. Thus a methodology that can
predict the properties of the materials in advance would be
extremely useful.
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High-temperature thermodynamic properties of solids,
including the thermal expansion, heat capacity, etc., are
computationally expensive to calculate accurately. Using
density-functional theory (DFT) and ab initio molecular dy-
namics (AIMD), the thermodynamic properties can be derived
from the volume and temperature dependencies of the free
energy. However, calculated directly from AIMD, this would
require in the order of 107 AIMD steps [13] to achieve statis-
tical convergence, making it infeasible.

Several approximation schemes exist in the literature
which take into account phonon excitations at different levels.
The most popular technique is the quasiharmonic approxi-
mation (QHA) method [14,15]. However, this approach does
not take into account the anharmonicity of phonons, which
can significantly affect thermodynamic properties at higher
temperatures [16]. Other approaches based on effective har-
monic Hamiltonians capture some of the high-temperature
phonon-phonon interactions and can approximately account
for temperature-induced changes [17–22].

Although computationally more challenging, numerically
exact vibrational free energies can be obtained using thermo-
dynamic integration (TI). Specifically, fully anharmonic free
energies can be computed using QHA as an initial reference
and AIMD runs using the Langevin thermostat. An important
step in improving the efficiency of TI-based methods was
the upsampled thermodynamic integration using Langevin
dynamics (UP-TILD) approach [13] in which low DFT pa-
rameters (energy cutoff, k-points, etc.) were used to accelerate
evaluation of TI integrals, with a post-processing “upsam-
pling” step to bring results back to DFT accuracy.

Further improvements in efficiency were achieved with
the two-stage upsampled thermodynamic integration using
Langevin dynamics (TU-TILD) [23] approach, based on
UP-TILD, but with the introduction of tailored interatomic po-
tentials to characterise an intermediate reference state within
the TI scheme. The purpose of these potentials is to accelerate
the algorithm, with no loss of accuracy in the anharmonic free
energies (converged to within ±1 meV/atom). The TU-TILD
method has already been used to calculate the free energies
and ab initio thermodynamic properties of ZrC and vacancies
in ZrC [23,24]. In these calculations, reference-free modified
embedded atom method (RF-MEAM) potentials were used
to characterise the intermediate reference state [25] and a
×50 improvement in efficiency was achieved in comparison
with the UP-TILD approach. Thermodynamic properties to
the melting point for other systems such as Cu, Ni, Al, and
W have also been calculated using TU-TILD in previous
works. The results show remarkable agreement to experimen-
tal data [26,27].

Our objective here is to further improve the efficiency
of the TU-TILD approach to ready it for high throughput
screening of MPCAs. To achieve this we use machine learned
interatomic potentials, specifically moment tensor potentials
(MTPs), to define our intermediate reference state. The ef-
ficiency of MTPs in predicting DFT energies, forces and
phase space for a disordered five-component HEA has been
demonstrated earlier for the NbMoTaVW system [28] for a
single (V, T ) point. The DFT free energy and atomic forces
at 3000 K were compared to that predicted by the MTP, an
embedded-atom method (EAM) potential [29,30], an effective

harmonic potential, and a 0 K harmonic potential. Of these,
the MTP-predicted forces had by far the lowest errors and
the corresponding MTP free energy was more accurate by
an order of magnitude, thereby making the MTPs the best
candidate for the intermediate state in the TU-TILD scheme.
In the present work, we extend this approach to calculate
free energies for an entire grid of (V, T ) points from which
thermodynamic properties such as the lattice expansion, bulk
modulus and specific heat are calculated.

Throughout our calculations we perform a critical analysis
of various parts of the TU-TILD scheme in terms of the
accuracy of the predicted properties and the efficiency of the
overall approach. Efficiency gains are achieved by reducing
the number of separately optimised potentials required to de-
fine the intermediate reference and by exploring the efficacy
of different initial references. Moreover, since MTPs are ex-
tremely effective in replicating the DFT phase space, we also
propose a modification to the TU-TILD method whereby the
most expensive second TI stage is completely avoided, with
only a nominal change in the accuracy of the results.

We apply our accelerated scheme to the low-activation
equiatomic body-centred cubic (BCC) TaVCrW system as a
first application of TU-TILD in computing the full free energy
surface and thermodynamic properties of an MPCA.

II. METHODOLOGY AND COMPUTATIONAL DETAILS

The Helmholtz energy of a system, referred hereafter as
the total free energy, can be expressed as the sum of different
contributions. For a nonmagnetic, fixed chemical configu-
ration (i.e., a chemically ordered or a particular disordered
atomic arrangement), the total free energy can be adiabatically
decomposed as

F (V, T ) = E0K(V ) + F el(V, T ) + F vib(V, T ) + F cpl(V, T ),
(1)

where E0K is the total energy at T = 0 K, F el is the elec-
tronic free energy of the static lattice, F vib is the free energy
coming from atomic vibrations and F cpl represents adiabatic
coupling terms, i.e., the effect of vibrations on the electronic
free energy and vice-versa [26]. The first two terms in Equa-
tion (1) are computed using inexpensive DFT calculations.
The more challenging vibrational free energy and the coupling
contribution are calculated using the TU-TILD scheme. In
a recent work [12], Monte-Carlo simulations predicted an
order-disorder temperature of around 1300 K for TaVCrW
below which there was short-range-ordering. Configurational
entropy will thus have an effect on the thermodynamic prop-
erty predictions around this temperature, but this is beyond the
scope of the present work.

Here, we focus primarily on high-temperature thermody-
namic properties and for all calculations, we assume a fully
disordered BCC solid solution across the entire temperature
range. The chemical disorder is modelled by a 128-atom
BCC TaVCrW special quasirandom structure (SQS) [31]. The
structure is created in such a way that the correlation function
of the first two shells of the neighbor-pair interactions is
minimized. The accuracy of the total vibrational free energy
was tested between three different SQS for selected (V, T )
points for which it varied by less than 1 meV/atom. Hence

214302-2



THERMODYNAMICS UP TO THE MELTING POINT IN A … PHYSICAL REVIEW B 105, 214302 (2022)

the final thermodynamic properties are presented here for a
single SQS.

Once F (V, T ) is known over the relevant volume-,
temperature-range, a free energy surface can be parame-
terised. A Legendre transformation on the free energy surface
gives the Gibbs energy G(P, T ) = F (V, T ) + PV . From
this, thermodynamic properties including the temperature-
dependent lattice constant alat(T ), isothermal bulk modulus
BT (T ) and isobaric heat capacity CP(T ) can be com-
puted [32,33] as given by

alat(T ) = 3
√

2V (T ) with V (T ) =
(

∂G(P, T )

∂P

)
T

, (2)

BT (T ) = 1

κ
with κ = − 1

V

(
∂2G(P, T )

∂P2

)
T

, (3)

and

CP(T ) = −T

(
∂2G(P, T )

∂T 2

)
P

. (4)

The DFT energies and forces entering the different free
energy contributions were calculated with the VASP soft-
ware package using the projector augmented wave (PAW)
method [34–37]. Both GGA and LDA exchange-correlation
functionals were used [38,39]. Semi-core p electrons were
included as valence states.

A. Energy of the static lattice

The first term in Eq. (1), E0K(V ) was obtained by fitting the
Vinet equation of state [40] to E0K values calculated across
a relevant set of volumes. The temperature-dependent part
of the static electronic free energy F el(V, T ) was computed
as [33]

F el(V, T ) = F el
tot (V, T ) − E0K(V ), (5)

where F el
tot is the total electronic free energy according to the

finite temperature formulation of DFT [41] calculated at a
finite electronic temperature with the corresponding Fermi
smearing. In our calculations, electronic free energies were
extracted from DFT runs on a mesh of 10 temperatures and 9
volumes and the pure T dependent contribution was obtained
by subtracting the energy at T = 0 K. These DFT runs were
performed with a plane wave cutoff of 650 eV and a k-point
grid of 5 × 5 × 5. A dense temperature sampling was ob-
tained using a physically motivated fit F el(T ) = − 1

2 T Sel(T ),
with

Sel(T ) = −2kB

∫
dεNel(T )[ f ln f + (1 − f ) ln(1 − f )],

(6)
where f = f (ε, T ) is the Fermi-Dirac distribution function
and Nel(T ) represents an energy-independent electronic den-
sity of states [33]. Nel(T ) was used as a fitting quantity by
expanding it to a fourth-order polynomial in T . Following this,
the volume dependence was parametrized with a fourth-order
polynomial in V . One needs to keep in mind that this term
only calculates the electronic free energy of the static lattice.
At higher temperatures, the atoms are no longer in their ideal
positions, and hence the electronic free energy is affected by

high-temperature vibrations. This change in the electronic free
energy is represented by the F cpl(V, T ) term in Eq. (1).

B. Vibrational free energy including coupling

The total vibrational free energy including explicit anhar-
monic contributions was calculated at DFT accuracy using
the TU-TILD scheme. TU-TILD provides the vibrational
free energy difference between an initial reference state that
describes the system and DFT, which also accounts for
the change in the electronic free energy due to vibrations
F cpl(V, T ). This can be written as

F vib(V, T ) + F cpl(V, T ) = F ref(V, T ) + �F ref→DFT(V, T ),
(7)

where F ref(V, T ) is the free energy calculated using the initial
reference and �F ref→DFT(V, T ) is the remaining contribution
calculated using TU-TILD.

1. Reference state for the vibrational free energy

Earlier TU-TILD-based studies used the QHA as
a reference [23,26,28]. Using the finite displacement
method [39,42,43] this requires DFT calculations for all
symmetry-inequivalent atomic displacements to obtain the
harmonic force constants matrix for a given volume. For a
128-atom disordered SQS, this would require 384 DFT cal-
culations which would be prohibitively expensive. Instead we
opt here for more computationally efficient initial reference
models, while carefully testing to ensure that the choice of the
initial reference does not affect the total free energy.

The first reference state considered was an Einstein
solid [44], in which all atoms are assumed to be oscillating
with the same single frequency. We assessed three different
Einstein solids as an initial reference: (i) with a fixed force
constant of 5.83 eV/Å2 (average frequency of 4.03 THz), (ii)
with a fixed force constant of 12.63 eV/Å2 (average frequency
of 5.93 THz), and (iii) with volume-dependent force constants
ranging from 5.83 to 12.63 eV/Å2. We refer to these models
hereafter as Einstein(1), Einstein(2), and qh-Einstein, respec-
tively. The frequencies for Einstein(1) and Einstein(2) were
chosen as follows. Firstly, we computed the 0 K QH phonon
frequencies of the four unaries at the volume corresponding to
room temperature. The mean value of these frequencies was
found to be 9.23 eV/Å2. To this we subtracted and added
approximately one-third of the value to make a lower and
upper bound that subsequently corresponds to Einstein(1) and
Einstein(2), respectively. Choosing different Einstein solids as
reference states was done primarily to evaluate the accuracy of
the methodology. We will show later (in Table III) that these
reference frequencies do not affect the total free energies.

The second reference model considered was an effec-
tive QH model where the force constants were fit to
high-temperature AIMD data, similar in nature to the
temperature-dependent effective harmonic potentials [19,45].
Four effective harmonic force constants were fit to atomic
forces from AIMD runs at four different volumes (cor-
responding to lattice constants 3.035, 3.095, 3.175, and
3.255 Å) at 500 K using the implementation in the S/PHI/nX
code [46]. Each effective force constant was then parame-
terised by a third-order polynomial in volume which served
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as the reference for each volume point in the TI. From the
volume-dependent effective force constants, effective phonon
frequencies were calculated by constructing the dynamical
matrix and solving the eigenproblem [47,48]. We refer to this
reference as “qh-effective” in this work.

For each of the above cases, the reference free energy
F ref (V, T ) (per atom) was analytically calculated from the
corresponding frequencies as given by

F ref = 1

N

3N∑
i=1

{
1

2
h̄ωref

i + kBT ln

[
1− exp

(
− h̄ωref

i

kBT

)]}
, (8)

where N is the number of atoms and the summation is over the
3N frequencies ωref

i . In the Einstein models, the frequencies
corresponding to the same species were the same. For the
“qh-effective” reference, the free energies were recalculated
on a much denser 20 × 20 × 20 q-point grid in reciprocal
space. For a temperature mesh with 1 K steps, the reference
free energy was then parameterised using 11 volumes with a
third order polynomial in V .

2. TU-TILD

In order to account fully for anharmonicity, we performed
TU-TILD calculations from each of the references up to
DFT. According to the conventional TU-TILD formalism
that has been well established for known systems in the lit-
erature [23,26–28], the free energy difference between the
reference and full DFT energy is given by

�F ref→DFT = �F ref→MTP + �F MTP→DFT + 〈�E〉up

=
∫ 1

0
dλ1〈EMTP − E ref〉λ1

+
∫ 1

0
dλ2

〈
EDFT

low − EMTP
〉
λ2

+ 〈�E〉up, (9)

with

〈�E〉up = −kBT ln

〈
exp

(
−EDFT

high − EDFT
low

kBT

)〉
low

. (10)

In Eq. (9), the λ’s are coupling parameters between the initial
(λ = 0) and final (λ = 1) states in a TI for which the energy
of the coupled system is Eλ = (1 − λ)E initial + λEfinal and
for which the corresponding atomic forces are F(i)

λ = (1 −
λ)F(i),initial + λF(i),final (with i labeling the atoms), driving the
Langevin dynamics. 〈. . . 〉 denotes ensemble averaging, “ref”
corresponds to the reference model [Einstein(1), Einstein(2),
qh-Einstein or qh-effective in this case], “MTP” is an inter-
mediate interatomic potential (described in Sec. II B 3) that
is fit to DFT energies and forces (the intermediate potential
can be any interatomic model, in this work we use MTPs),
�F ref→MTP is the free energy difference between the refer-
ence and potential, �F MTP→DFT is the free energy difference
between the potential and low-parameter DFT and 〈�E〉up is
the upsampled energy calculated using the free energy pertur-
bation theory [49] from configurations from a low-parameter
AIMD run. EDFT

low and EDFT
high are DFT energies with low and

high convergence parameters, respectively.
The �F ref→DFT calculations were performed on a dense

mesh of 10 temperatures from 250 to 2500 K and 11 volumes

Temperature (K)

500
1000

1500
2000

2500 La
tti

ce
co

ns
ta
nt

(Å
)

3.05
3.10

3.15
3.20

3.25

F
v
ib

(m
eV

/a
to

m
)

−1500

−1000

−500

0

Conventional TU-TILD
Direct upsampling

FIG. 1. Grid of (V, T ) points on which TU-TILD and direct
upsampling calculations were performed. Vibrational free energies
calculated using both methodologies using the GGA exchange-
correlation functional are plotted at each point for comparison
(magenta dots for TU-TILD and black dots for direct upsam-
pling). The deviation in the magenta and black dots are within
±1.5 meV/atom.

for each temperature (cf. Fig. 1). Both the AIMD run and
the fitted interatomic potentials predict a solid phase up to
2500 K. Hence we chose 2500 K, which is also the highest
temperature to which an interatomic potential was fitted to, as
the temperature upper bound for the free energy calculations.
One should keep in mind that this is not the actual melting
temperature, but a value close to it, and one for which the alloy
is most certainly in a solid phase. In order to precisely calcu-
late the melting temperature, more advanced techniques [50]
are needed. As discussed earlier, different sets of calculations
were performed to assess the four different initial references
(two volume-independent Einstein solids, qh-Einstein, and
qh-effective). The integrals in Equation (9) were numerically
calculated using a tangential fit through the data points. E ref

was analytically calculated, EMTP using LAMMPS [51,52] and
EDFT

low and EDFT
low using VASP.

Thermodynamic integration was performed on a 11 × 10
(V, T ) mesh as mentioned above. The first TI from “ref”
to MTP to compute �F ref→MTP, which is computationally
extremely cheap, was done for a set of 20 λ points for
each (V, T ). Each Langevin dynamics run was performed
for 300 000 steps with a time step of 0.5 fs. The second TI
from MTP to “DFT-low” to compute �F MTP→DFT, which
is significantly more expensive since it involves DFT calcu-
lations, was done for a set of 5 λ points for each (V, T ).
Following a pre-equilibration using the interatomic potential
for 1000 steps, each Langevin dynamics run was performed
for 500 steps with a time step of 2 fs. During this stage, low
convergence DFT parameters were used—an energy cutoff of
300 eV and a 2 × 2 × 2 k-point grid. The DFT energies were
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calculated with the electronic temperature set equal to the
system temperature. In this way, the temperature-dependent
electronic free energy is properly included in the �F MTP→DFT

values. The number of steps and λ values were chosen to en-
sure convergence of the �F ref→DFT to within 1 meV/atom. In
Eq. (10), the upsampled DFT energies were calculated using
stricter parameters—a 450 eV energy cutoff and a 4 × 4 × 4
k-point grid and again with the electronic temperature turned
on, on 10 configurations from the low-parameter DFT run,
until 〈�E〉up converged. Once the �F ref→DFT calculations
were finished for the set of (V, T ), we used the values to fit
a much denser surface in (V, T ). Using the analytical formula
derived in Ref. [13], a smooth anharmonic free energy surface
was fitted using a renormalized frequency with basis functions
1, T , V , V 2, and V 3.

The performance of the above described TU-TILD relies
on the accuracy and robustness of the intermediate interatomic
potential. The more accurately the interatomic potential de-
scribes the configurational phase space and energy of the
system, the fewer the number of expensive Langevin dy-
namics runs needed to achieve statistical convergence on the
DFT energies. Here we fitted machine-learning-based MTPs
and used them as the intermediate potential in the TU-TILD
scheme.

3. MTP fitting

MTPs are a class of machine learned potentials based on
atomic environment descriptors and linear regression [53].
MTPs describe the local atomic environment of the ith atom
by the moments of inertia of neighboring atoms, with the
moments given by

Mn,ν =
∑

j

fn,i, j (ri j ) ri j ⊗ ri j ⊗ . . . ⊗ ri j︸ ︷︷ ︸
ν times

, (11)

where the radial functions fn,i, j (ri j ) define shells, n =
0, 1, . . . , around the ith atom, with contributions from atom
j which can depend on the types of atoms i and j. Different
tensor contractions of these moments M form basis functions
of the MTP. A linear combination of these basis functions is
parameterised to reproduce energy, atomic forces and stress
data from AIMD runs. MTPs have been shown to outperform
other machine learning based potentials [54] and more con-
ventional EAM-based potentials [28] which prompted our use
of them.

The MTPs were fit using the MLIP package [53,55]. First,
AIMD simulations were carried out at 500, 1500, 2000,
and 2500 K and 11 volumes at each temperature for 5 ps.
The volume range at each temperature was chosen based on
the Debye-Grüneisen approximation [56] from the energy-
volume curve in Sec. II A. A cutoff of 300 eV, a k-point mesh
of 2 × 2 × 2 and the corresponding exchange correlation were
used for generating the fitting database. Separate MTPs were
fit to configurations corresponding to each temperature (con-
figurations from all volumes were included for a particular
temperature). The MTPs were of level 16 with 608 parameters
and fitting weights for the energies, atomic forces, and stresses
were set to 1, 0.1 Å2, and 0.001 Å6, respectively.

Regarding the application of our fitted MTPs in our TI,
we analysed two scenarios. In the first case, we performed

TI calculations using all the four MTPs depending on the
temperature of the TILD run. This is similar to previous
studies of multicomponent alloys using TU-TILD (although
in these studies potentials were computed and applied for
different volumes rather than temperatures) [23,24]. In the
second case, we explored a new approach, where we used
only the MTP potential that was fit to 2500 K AIMD runs
for the entire temperature-range during TU-TILD. Here, it is
beneficial to use the highest temperature fitted MTP for the
entire temperature range (in comparison to fitting a single
MTP to configurations from different temperatures) since the
volume range and the configurations spanned by the highest
temperature MD runs are diverse enough to serve as a good
training set for an efficient single MTP. The final thermody-
namic properties and computational efficiency were compared
in both cases, where either four MTPs were used or where a
single MTP was used across the entire temperature-range.

4. Direct upsampling

Apart from systematically investigating multiple reference
potentials and MTPs in the conventional TU-TILD formal-
ism, an additional improvement to the TU-TILD methodology
is proposed here which is inspired by the exceptional per-
formance of MTPs in replicating the DFT configurational
space. According to this proposition, the more expensive
�F MTP→DFT calculation in the TU-TILD scheme can be com-
pletely avoided.

A similar modification was suggested earlier [24] where
thermodynamic properties in a ZrC system were calculated
only up to the accuracy of the intermediate interatomic po-
tential. The results compared well to DFT since there was
no significant change in the electronic free energy with tem-
perature and the intermediate interatomic potential was able
to capture the phonon-phonon interactions accurately. This
is, however, insufficient for the here investigated refractory
system because of the significant temperature-dependent elec-
tronic free energy changes. Hence, apart from avoiding the
second stage of TU-TILD, we perform here direct upsampling
on configurations generated by the interatomic potential in
order to directly capture the difference in free energies (in-
cluding the electronic contribution) between the interatomic
potential and DFT.

The upsampling is performed directly on configurations
generated from MD runs using the MTP. According to this
modified formalism, referred from here on as direct upsam-
pling, �F ref→DFT from Eq. (7) can be decomposed as

�F ref→DFT = �F ref→MTP + 〈�E〉up-new

=
∫ 1

0
dλ〈EMTP − E ref〉λ + 〈�E〉up-new, (12)

with

〈�E〉up-new = −kBT ln

〈
exp

(
−EDFT

high − EMTP

kBT

)〉
MTP

, (13)

where 〈�E〉up-new is the upsampled energy calculated using
free energy perturbation theory directly from configurations
generated by the MTP. The high-parameter DFT conditions
in our application of the proposed direct-upsampling method
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FIG. 2. Flowchart summarising the standard TU-TILD approach and the improvements developed herein. We compare four different initial
reference models (orange boxes), where Einstein(1) and Einstein(2) correspond to two different Einstein solids with different fixed frequencies,
qh-Einstein is a volume-dependent Einstein solid and qh-effective is a volume-dependent effective harmonic model. Two different scenarios
for the intermediate MTP potential are considered (red boxes), where we compare using multiple MTPs that have been fitted to different
temperatures and a single 2500 K fitted MTP, for the entire temperature range. The steps inside the grey box are a part of the standard
TU-TILD. In this work, we have improved on this by directly upsampling from the MTP stage (〈�E〉up−new). After the current extensive study,
the authors recommend the direct-upsampling method (marked with black arrows) for future studies.

were the same as described in Sec. II B 2, where the DFT
energies were calculated with the electronic temperature equal
to the system temperature. The temperature-dependent elec-
tronic free energy gets indirectly included in the 〈�E〉up-new

term. For each (V, T ), 10 configurations were chosen by
which 〈�E〉up-new was converged to within 1 meV/atom.

Similar to the conventional TU-TILD, direct upsampling
was also performed on a 11 × 10 (V, T ) grid. To visualize the
density of the mesh on which TU-TILD and direct upsam-
pling calculations were performed, Fig. 1 shows the calculated
vibrational free energy values on the (V, T ) grid points. The
comparison of the free energy values using both methodolo-
gies will be discussed later in Sec. III F.

Once the upsampling calculations were finished, we ap-
plied a surface fitting to a much denser (V, T ) grid with the
same basis functions as in Sec. II B 2.

After E0K(V ), F el(V, T ) (both Sec. II A) and F vib(V, T ),
F cpl(V, T ) (both Sec. II B) were calculated on a dense (V, T )
grid, they were summed up to obtain the full free energy
F (V, T ) from which thermodynamic properties including
lattice expansion, isobaric heat capacity and bulk modulus
were numerically calculated using Eqs. (2)–(4), respectively.
The entire workflow describing TU-TILD and direct up-
sampling for vibrational free energy calculation is shown
in Fig. 2. The different reference potentials are in orange
boxes and the two different intermediate MTP scenarios are
in red boxes. The steps inside the grey box, which belong
to the conventional formalism, can be completely avoided
in our proposed modification. This new modified TILD
methodology with direct upsampling—which is the most op-
timal procedure for thermodynamic property predictions—is
represented with thick black arrows and formulas in the
flowchart.

III. RESULTS AND DISCUSSION

A. MTP fitting

As detailed in Sec. II B 3, we fitted different MTPs to
AIMD runs performed at 500, 1500, 2000, and 2500 K. Table I
shows the root mean square errors (RMSE) in energies and
atomic forces for each of the MTPs with respect to the DFT
values in the corresponding dataset. Each of the MTPs is
fitted to within 3 meV/atom accuracy. The RMSE in atomic
forces increases with increasing temperature of the AIMD
runs from which configurations are taken. Since we also tested
the performance of a single 2500 K MTP across the entire
temperature range, the RMS errors in energies and forces
predicted by MTP-2500K compared to the AIMD data at all
four temperatures is shown in Table II.

The performance of MTPs as an intermediate state in the
TU-TILD scheme can also be assessed by comparing the
differences in energies and forces during TI to DFT. In Fig. 3,
we show one such comparison. Here, the MTP that was fit to
2500 K AIMD runs was used to run Langevin dynamics at
2500 K and at a lattice constant of 3.09 Å. Figure 3(a) shows

TABLE I. RMS errors in energies and atomic forces of the fitting
dataset for each of the MTPs with respect to the DFT values.

RMSE in energies RMSE in forces
Potential (meV/atom) (eV/Å)

MTP-500K 2.02 0.11
MTP-1500K 2.78 0.18
MTP-2000K 2.47 0.21
MTP-2500K 2.36 0.25
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FIG. 3. (a) 〈EDFT
low − EMTP〉λ and standard deviation as a function of λ at 2500 K and 3.09 Å during a TI from MTP to DFT-low and (b) the

corresponding atomic force correlation between MTP-2500 and DFT for λ = 1.

the variation of 〈EDFT
low − EMTP〉λ and the standard deviation of

the energy difference as a function of λ. Figure 3(b) shows the
atomic force correlation between MTP and DFT for λ = 1.
The area under the red curve, which gives the free energy
difference between the MTP and DFT, is around 1 meV/atom,
and the standard deviation is close to 2 meV/atom for all
λ values. The RMSE in the atomic forces is 0.15 eV/Å for
λ = 1. Although not explicitly shown here, the accuracy of all
the MTPs for TI calculations at other temperatures and vol-
umes is equally good, with gradually increasing free energy
difference with V and T . Table I and Fig. 3 convey the fact
that MTPs are extremely effective as an intermediate state in
TU-TILD.

B. Initial reference models in TU-TILD

We investigated four different reference models in terms
of their efficiency and practicability. Figure 4 shows the rel-
evant 〈EMTP − E ref〉λ curves as a function of λ between the
reference models Einstein(1), Einstein(2), qh-Einstein, and
qh-effective, and the 2500 K fitted MTP at 2500 K and 3.16 Å
lattice constant. The curve for the qh-Einstein reference falls
in between the two Einstein(1) and (2) curves, which is rea-

TABLE II. RMS errors in energies and atomic forces predicted
by MTP-2500K at all four temperatures with respect to DFT.

RMSE in energies RMSE in forces
MTP-2500K (meV/atom) (eV/Å)

AIMD 500K 1.95 0.08
AIMD 1500K 2.46 0.10
AIMD 2000K 4.48 0.14
AIMD 2500K 2.36 0.25

sonable because it corresponds to an interpolation between
these two endpoints. Further, the qh-Einstein reference shows
a similar behavior as the qh-effective reference, although
the latter shows a smoother λ dependence. Upon adding the
reference free energy F ref to �F ref→MTP (the free energy
difference between the reference and the 2500 K MTP) for
the four different references, we obtain the total vibrational
free energy predicted by the 2500 K MTP. �F ref→MTP is
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FIG. 4. 〈EMTP − E ref〉λ versus λ during TI between the differ-
ent references and the 2500 K MTP at 2500 K. Einstein(1) and
Einstein(2) represent Einstein models with spring constants 5.83 to
12.63 eV/Å2, respectively, qh-Einstein is a volume-dependent Ein-
stein solid reference and qh-effective denotes a volume-dependent
effective harmonic reference.
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TABLE III. Vibrational free energy up to the 2500 K MTP
(F vib = F ref + �F ref→MTP) in meV/atom using the four different
references at 2500 K with lattice constant 3.16 Å.

Reference F ref �F ref→MTP F vib

Einstein(1) −1675.49 65.09 −1610.40
Einstein(2) −1424.03 −185.93 −1609.96
qh-Einstein −1597.70 −12.34 −1610.04
qh-effective −1566.20 −43.21 −1609.41

calculated as the area under the curves. These values are
tabulated and summed up to obtain the vibrational free energy
in Table III. We observe that the final vibrational free energy
values are within ± 1 meV/atom irrespective of the reference.
This is shown here for a single (V, T ) point, but it remains
valid for all data points at which free energies are calculated.
In each case, the difference in the free energy based on the
reference model is compensated by the free energy differ-
ence during TI. In Fig. 4, the qh-effective reference gives the
smoothest λ-dependence of all the curves. Avoiding strong
nonlinear dependencies in particular at large λ values leads to
the smallest error while calculating the area under the curve
(�F ref→MTP). Therefore we use qh-effective as the reference
for all future results described in this article.

C. Thermodynamic properties using the conventional TU-TILD
approach

First we demonstrate the results obtained using qh-
effective as initial reference, four MTPs across the tem-
perature range, the conventional TU-TILD formalism (i.e.,

including the second TI), and using the GGA exchange cor-
relation functional. During TI at a given temperature, an MTP
that was fit either to that particular temperature or a slightly
higher temperature was used (MTP-2500K for 2500 and
2250 K, MTP-2000K for 2000 and 1750 K and so on). Once
the full free energy surface F (V, T ) was obtained, thermody-
namic properties were numerically calculated by taking the
corresponding derivatives along different directions. Figure 5
shows the lattice constant alat, the isobaric heat capacity CP

and the bulk modulus BT as a function of temperature, com-
puted at different levels of approximation: high-temperature
effects up to the accuracy of the qh-effective model given by
the orange lines, including the temperature-dependent elec-
tronic contributions on the static lattice given by green lines,
including anharmonicity as predicted by the MTP given by
the blue lines, including the temperature-dependent change
in electronic free energy due to vibrations (coupling) given
by the black lines and up to full DFT accuracy given by the
magenta dots.

The 0 K lattice constant is calculated as 3.105 Å, which is
very close to the calculated value from Vegard’s law [57] using
the DFT-GGA 0 K lattice constants of the unaries (3.088 Å)
and using the experimental lattice constants of the unaries
(3.098 Å). Similarly, the 0 K bulk modulus is predicted to
be 223 GPa, which is in close proximity to the Vegard’s law
calculated value of 236 GPa using unary GGA calculations
and 215 GPa from unary experimental values [58–60]. The
static electronic contribution has a considerable effect on the
thermodynamic properties at higher temperatures as repre-
sented by the green shaded region in Fig. 5.

Including anharmonicity (represented by the blue shaded
region; at the level of the MTP and with respect to the qh-
effective reference) enhances the temperature dependence of
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FIG. 5. Lattice constant, isobaric heat capacity and bulk modulus as a function of temperature for TaVCrW as predicted by the conventional
TU-TILD approach using the GGA exchange correlation function; qh-effective was used as the reference and four MTPs were used across
the temperature range in the TU-TILD calculation. The thermodynamic properties are shown to different levels of approximation. The orange,
green, blue and black lines correspond to properties predicted to qh-effective, qh-effective including static electronic, MTP, and low-parameter
DFT including coupling accuracy respectively. The magenta dots are up to full DFT accuracy. The green and blue shaded regions represent the
contribution of the static electronic and anharmonic free energies to the thermodynamic properties respectively. The black arrows (shown only
at 2500 K) denote the shift in the thermodynamic properties upon including coupling effects.
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FIG. 6. Comparison of the electronic free energies extracted
from AIMD runs—including the effect of vibrations—with those
computed for an ideal static lattice at 2500 K. The energies are com-
pared for the TaVCrW HEA with three unaries that it is composed of.
Unary Cr is not shown here due to the challenges involved to account
for its complex magnetic nature [62].

the lattice expansion, the isobaric heat capacity and the slope
of the bulk modulus as shown by the blue curves in Fig. 5. This
demonstrates that anharmonic contributions to the vibrational
free energy cannot be neglected for accurate thermodynamic
property predictions in TaVCrW, especially at temperatures
near the melting point, even though a qh-effective model is
used as the reference. Including the effect of coupling to
the total free energies partially compensates the strong an-
harmonic contribution, with the strength of the compensation
depending on the specific thermodynamic quantity. It should
be stressed that the change in thermodynamic properties rep-
resented by the shift from the blue to the black curves is not
an effect of the free energy difference between MTP and DFT-
low [which is very small as evidenced from Fig. 3(a)], but
predominantly due to the temperature-dependent electronic
free energy change coming from high-temperature vibrations
(coupling effect). This shift in properties due to the coupling
is also denoted by the black arrows shown only at 2500 K in
Fig. 5.

In order to further emphasise the fact that vibrations have a
strong impact on the high-temperature electronic free energy,
especially in refractory systems, we explicitly indicate these
values in Fig. 6. Here, the electronic free energy (Eq. 5) of
the static lattice (shown in lighter shade) is compared to that
obtained as an average from 5 different snapshots from an
AIMD run at 2500 K. In these calculations, the electronic
temperature corresponds to 2500 K. It is observed that, for the
given point, the electronic free energy for TaVCrW changes
by 13 meV/atom due to atomic vibrations. For comparison,
results are also plotted for the corresponding refractory unar-
ies at 2500 K. The change in the electronic free energy coming
from vibrations can be related to the smearing of the electronic

density of states (DOS) at higher temperature and the value at
the Fermi level as compared to the static electronic DOS. The
qualitative change in the value of the DOS at the Fermi level
at high temperature is different for Ta in comparison to V and
W, and hence coupling reduces the electronic free energy in
Ta. Based on such an analysis, one can also speculate how
the static and smeared out electronic DOS would look for the
TaVCrW system. The background behind the electronic free
energies and coupling effects has been studied in thorough
detail in Ref. [61]. The values in Fig. 6 indicate that the
electron-phonon coupling term is likewise not negligible for
accurate thermodynamic property predictions in these sys-
tems. As will be discussed later, these electronic free energy
changes can be more efficiently captured by directly upsam-
pling from the MTP. Once we have total DFT free energies
at low accuracy, upsampling the energies to high parameter
DFT accuracy has negligible effect on the thermodynamic
properties as evidenced by magenta dots that fall on top of
the black curves in Fig. 5.

D. Effect of the exchange-correlation functional

The thermodynamic properties were estimated using both
GGA and LDA exchange-correlation functionals. Figure 7
illustrates the alat, CP, and BT predicted using both functionals
by the conventional TU-TILD method. Here, we show the
calculated values up to MTP accuracy and including the cou-
pling term up to full DFT accuracy. The exchange correlation
has the same effect in both of these cases. As is the case
with other metals and alloys [63–65], the LDA functional
predicts a harder system with a higher BT and smaller alat

in comparison to GGA. The predicted CP as the temperature
nears the melting point becomes smaller for LDA than for
GGA. Temperature has the same effect on the thermodynamic
property predictions using either functionals.

E. Single MTP vs multiple MTPs

Here, we discuss the effect of using a single MTP in per-
forming TU-TILD calculations across the entire temperature
range as opposed to using multiple MTPs. In Sec. III A, we
had shown the RMSE in energies and forces and �F MTP→DFT

(free energy difference between the MTP and DFT-low) to
be the key quantities that affect the performance of the MTP
in a TU-TILD methodology. Hence, we now compare these
values at different temperatures while using four MTPs (based
on the fitted temperature) and a single MTP across the full
temperature range, see Fig. 8. For a particular temperature,
the various dots represent increasing volume as one moves
from left to right. Both the RMSEs and the free energy dif-
ferences between MTP and DFT for all temperatures fall in
the same range irrespective of the use of a single or multiple
MTPs suggesting that they would be equally efficient in a
TU-TILD scheme up to the melting point. The robustness of
a single MTP fitted to high-temperature MD data facilitates
an accurate prediction of thermodynamic properties, not only
at temperatures near the fitted data, but across the entire tem-
perature range. By using just a single MTP, we also reduce
the number of initially expensive AIMD runs that are needed

214302-9



YING ZHOU et al. PHYSICAL REVIEW B 105, 214302 (2022)

0 500 1000 1500 2000 2500
Temperature (K)

3.04

3.06

3.08

3.10

3.12

3.14

3.16

3.18

L
at

ti
ce

co
ns

ta
nt

(Å
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FIG. 7. Lattice constant, isobaric heat capacity and bulk modulus as a function of temperature for TaVCrW as predicted by TU-TILD using
the GGA (orange) and the LDA (blue) exchange correlation functionals. Dashed curves correspond to the estimation up to the MTP level. The
solid curves include additionally the adiabatic electron-phonon coupling implicit in the TI from MTP to DFT.

for fitting MTPs and the corresponding computational cost,
without any loss of accuracy.

Using a single MTP has another additional benefit. The
free energies calculated with a single MTP are smoother in
V and T (this is already noticed in the change in �F MTP→DFT

values with volume at different temperatures in Fig. 8) and
fitting an accurate surface to these values is accomplished
more efficiently. The thermodynamic properties were also
computed using the single MTP as the intermediate state. Cru-
cially, as we shall see in the next section, there is no significant
change in lattice constant, bulk modulus and isobaric heat
capacity even while using a single MTP.

F. Direct upsampling

The novelty compared to the conventional TU-TILD
methodology that is proposed in this work is direct upsam-
pling where upsampling was performed directly after the first
stage of TU-TILD on configurations generated by the MTP. A
comparison of the total vibrational free energy using the con-
ventional TU-TILD using four MTPs across the temperature
range and using direct upsampling using only the MTP-2500K
across the entire temperature range with the GGA exchange-
correlation functional for the entire grid of (V, T ) points can
be observed already in Fig. 1. The data points match within
DFT accuracy even at high temperatures and large volumes.
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FIG. 8. Correlation of the RMSE in atomic forces and the free energy difference between MTP and DFT-low (�F MTP→DFT) calculated
using (a) four MTPs and (b) a single MTP for all (V, T ). Symbols of the same color represent different volumes for a fixed temperature;
generally, the volume increases from left to right.
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FIG. 9. Lattice constant, isobaric heat capacity and bulk modulus as a function of temperature for TaVCrW as predicted by direct
upsampling using a single MTP fitted to 2500 K in comparison to the previously computed values using conventional TU-TILD.

This indicates that by performing direct upsampling using a
single high-temperature fitted MTP, we achieved an accuracy
of ±1.5 meV/atom for full free energy points. A consequence
of this is Fig. 9 which shows the thermodynamic properties
predicted from direct upsampling using a single MTP, repre-
sented by the black lines. The results lie on top of the values
predicted by the conventional TU-TILD method, represented
by magenta dots. The dots are the same as the ones in Fig. 5.

Owing to the robustness of the MTPs, using only a single
high-temperature fit MTP and performing direct upsampling
tremendously reduces the computational cost of obtaining
thermodynamic properties up to melting point to DFT accu-
racy. This is summarised in the next section.

G. Computational costs

The computing resources consumed for the 128-atom qua-
ternary system are listed in Table IV. Since we use a single
MTP in comparison to four MTPs, the number of initial
AIMD calculations reduces by one fourth. Besides this, the
biggest gain in speed is achieved by avoiding the expensive

TABLE IV. Approximate computing time for thermodynamic
properties up to melting point in a 128-atom TaVCrW SQS using
conventional TU-TILD and direct upsampling. TI calculations are
on a 11 × 10 (V, T ) mesh. The time is in 1K core hours.

Cost New cost
(TU-TILD (Direct upsampling

Contribution with 4 MTPs) with 1 MTP)

E0K 2 2
F el 100 −
F ref (qh-effective) − 12
AIMD for MTPs 100 25
�F ref→MTP 15 15
�F MTP→DFT 720 −
〈�E〉up 210 −
〈�E〉up−new − 210

Total ≈ 1100 ≈ 260

second stage of the TU-TILD formalism (TI from the inter-
atomic potential to low parameter DFT). Static electronic free
energy calculations are also avoided since the temperature-
dependent electronic free energy is included during direct
upsampling.

IV. CONCLUSIONS

Thermodynamic properties of the low activation TaVCrW
MPCA have been computed ab initio up to 2500 K. Assuming
a fully disordered BCC system, we have included all relevant
finite temperature excitations: electronic, harmonic, anhar-
monic and (adiabatic) electron-phonon coupling. The static
electronic free energy at high temperatures is considerable in
this alloy, similar to what is observed for its refractory unary
endmembers, and it significantly affects thermodynamic prop-
erties (particularly the heat capacity). The effective harmonic
model obtained from a fit to ab initio molecular dynamic
forces at 500 K does not account for all vibrational inter-
actions. As temperature increases, a substantial anharmonic
contribution to the vibrational free energy and the resulting
thermodynamic properties is observed. The effect of anhar-
monicity is found to be as critical as the static electronic
contribution. In addition, high-temperature vibrations couple
to the electronic free energy in this alloy, again in line with
the refractory unaries that it contains. Thus, to reach DFT
accuracy in the final property predictions, this effect is non-
negligible and has to be taken into account.

To achieve the just summarized results for a disordered,
chemically complex MPCA efficiently, we have exploited the
predictive capabilities of moment tensor potentials (MTPs) in
a conventional two-stage upsampled thermodynamic integra-
tion using Langevin dynamics (TU-TILD) methodology. The
MTPs have been fitted to high-temperature ab initio data to
this end. An extensive analysis of the various stages of TU-
TILD in calculating free energies up to the melting point has
been performed. The choice of the initial reference to approx-
imate the vibrational free energy of the solid does not affect
the final free energy. However, from a practical perspective,
an effective harmonic reference provides an ideal interplay
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between fitting time and the eventual time needed for statisti-
cal convergence of free energy calculations during thermody-
namic integration and serves as the optimum reference. Owing
to the robustness and superior performance of MTPs, we
have also proposed a computationally cheaper modification
to the TU-TILD methodology referred to as direct upsam-
pling. Here, the free energy difference to high-parameter DFT
across the entire temperature range is calculated directly on
configurations generated by a single high-temperature fitted
MTP, thereby avoiding the highly expensive second-stage of
TU-TILD and reducing the total computational cost by 75%.

In addition to the properties predicted for the TaVCrW
alloy, the benefits of the current study are twofold. First, the
performance of the MTP in predicting the configurational
phase space even for a complex system such as a disor-
dered HEA asserts its application for other systems. Secondly,
through the in-depth analysis and comparison to the conven-
tional methodology conducted herein, our modified formalism
is well positioned for thermodynamic property prediction and
high-throughput screening of other MPCAs. The methodol-
ogy will be extended to investigate other low activation HEAs
and nonstoichiometric systems in forthcoming articles.
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