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Chapter 1  

Introduction 

 

1.1 Background of Parkinson’s disease (PD) 

PD is one of the most common neurodegenerative diseases in the world. The primary 

neuropathology of PD is characterized by the loss of dopaminergic neurons in the substantia 

nigra and the formation of intra-neuronal protein inclusions, called Lewy bodies [1, 2]. The 

prevalence of PD is conservatively estimated to be about 0.3% of the general population and 

as high as 3% in people over 80 years of age [2]. About 6 million people around the world 

currently have PD. Moreover, the incidence of PD increases 5-10 times after the age of 60. As 

the world’s population ages, the number of PD patients is expected to be twice as large in 2030 

as it was in 2005, increasing the medical and economic burden on families and society [2]. The 

prevalence and causes of PD are still unclear and complex, a phenomenon that may be due to 

a combination of genetic and environmental factors [1-3]. In current studies, researchers have 

found that the prevalence and incidence of PD are related to gender [3, 4], race [3], certain 

genetic factors [5], and certain environments (such as chronic exposure to pesticides or certain 

chemicals, or a history of traumatic brain injury) [6]. As with other neurodegenerative diseases, 

there is currently no cure for PD. Therefore, modifying disease progression and further 

attenuating the disability caused by the disease is a critical need in current and future research 

efforts. 

1.2 Clinical features of PD 

The main clinical manifestation of PD is the presence of motor impairments. The most common 

motor symptoms are rest tremor, abnormal muscle tone (‘rigidity’), slowness of movement 

(‘bradykinesia’), and postural instability [1, 7]. Other motor features include postural 

abnormalities, gait disturbances and freezing, micrography, disorganized speech, and 

impairment of facial expression [1, 8]. Typically, motor symptoms are asymmetrically 
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expressed [9]. The manifestation of these symptoms varies markedly from patient to patient 

and may progress differently depending on the predominant symptoms [10]. In addition, there 

is a growing recognition that PD is not just a disorder of the motor system but a complex disease 

in which non-motor symptoms occur in addition to the major motor symptoms. The non-motor 

symptoms include a large variety of cognitive impairments, mood disorders, affect disorders, 

and pain [11, 12]. Among these, hyposmia, depression, constipation, and rapid eye movement 

sleep behaviour disorder are the most common symptoms [1, 11, 12]. The non-motor symptoms 

can even arise earlier than the emergence of motor symptoms [13]. However, so far, the main 

clinical criterion for diagnosing PD is the presence of the cardinal symptoms of bradykinesia, 

rigidity and tremor. The degree of motor impairment is frequently scored by using the 

Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) [14]. 

The improvement in motor symptoms in response to levodopa is also a supportive feature in 

diagnosing PD [15].  

1.3 The role of basal ganglia-thalamocortical (BGTC) circuits in the 

pathophysiology of PD 

Discoveries in the anatomy and function of BGTC networks have improved the 

characterization of neuropathological abnormalities in PD, and studies of genetic and 

experimental forms of Parkinson’s syndrome have advanced this tremendous progress. 

1.3.1 Organization of BGTC circuits 

The anatomic components of the basal ganglia, in the strictest sense, contain the striatum and 

the globus pallidus (GP, internus: GPi; externus: GPe), whereas the related nuclei consist of 

the substantia nigra (SN, pars compacta: SNc; pars reticulata: SNr), and the subthalamic 

nucleus (STN), as shown in Fig. 1.1 [16, 17]. The striatum is the main input structure of the 

basal ganglia, which converges the cortical projections and receives inputs from the SNc [18]. 

The thalamus then receives the projections from the striatum through the pathways containing 

the GP, STN, and SNr and project back to cortical areas [18]. Several groups of anatomically 

parallel and segregated loops in BGTC circuits are also functionally different. The main BGTC 

circuits have been grouped as motor, associative, limbic, and oculomotor (not shown in Fig. 

1.1); they originated from and projected back to functionally and spatially distinct cortical 

regions through specific locations of the basal ganglia nuclei and thalamus, respectively [19].  
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Figure 1.1 The schematic diagram of the anatomical and functional organization of BGTC 

circuits. Left: The main components and their anatomical locations of BGTC circuits. Right: The 

BGTC circuits can be functionally segregated into several parallel circuits. For example, this figure 

displays the motor circuit, associative circuit, and limbic circuit. Functionally distinct circuits also 

correspond to spatially distinct cortical regions to spatially distinct sub-areas in the basal ganglia nuclei. 

The figure is reproduced from “The expanding universe of disorders of the basal ganglia”, Obeso et al., 

2014, Lancet. Copyright 2014 by Elsevier Ltd. Reproduced with permission in the thesis.  

The motor BGTC circuit is studied predominantly because of its direct relevance to the 

pathophysiology of movement disorders. The most frequently applied model of BGTC motor 

circuits consists of three pathways (Fig. 1.2, left), termed the ‘direct’ pathway, the ‘indirect’ 

pathway, and the ‘hyperdirect’ pathway [20]. The first two pathways mainly involve the 

functions of the striatum, which receive excitatory (glutamatergic) projections from the cortex 

through medium spiny neurons (MSNs) [21]. MSNs express dopaminergic receptors receiving 

ascending input from dopaminergic projections arising from SNc. The ‘direct’ pathway is 

defined as direct inhibition (by GABAergic neurotransmitters) of the SNr/GPi by MSNs 

expressing D1 receptors, whereas in the ‘indirect’ pathway, signalling from the striatum to the 

GPi requires modulation through the GPe-STN loop [22, 23]. That is, GPe neurons receive 

inhibitory (GABAergic) projections from MSNs expressing D2 receptors, which then affect 

the activity of GPi neurons directly and indirectly via the STN [23]. Finally, GPi and SNr 

GABAergic neurons exert inhibitory influences on the thalamus, which in turn produces 

excitatory effects on the cortex, resulting in the closure of the BGTC loop. It has been 

demonstrated that the activation of the ‘direct’ pathway facilitates the movement while the 

activation of ‘indirect’ pathway suppresses the movement [24, 25]. In addition, a ‘hyperdirect’ 

pathway through a monosynaptic projection directly from the cortex to the STN acts in parallel 
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to the ‘direct’ and ‘indirect’ pathways, but it is thought to conduct much faster [26, 27]. The 

activity of the STN, another prominent input nucleus from the cortex to the basal ganglia – and 

also regulated by the GPe-STN loop – is now commonly used as an important target to treat 

Parkinson's motor symptoms [18].  

In the normal state, the balance of the three BGTC pathways is regulated by the dopamine level 

in the brain. According to one hypothesis about the role of the three pathways in BGTC circuits 

for motor movement [27, 28], the information arriving at the GPi/SNr can initiate a dynamic 

process of ‘enhancement-inhibition-enhancement’ of neuronal activity, because motor 

information is transmitted in the three pathways at different speeds. Because the GPi/SNr is 

connected to the thalamus via inhibitory GABAergic nerve fibres, dynamic modulation of the 

GPi/SNr neuronal activity can lead to a corresponding ‘inhibition-activation-inhibition’ 

process in cortical neuronal activities. Although it still represents a gross simplification of the 

functions of the BGTC circuits, this dynamic model provides a means to explain the precise 

initiation and cessation of movement.  

 

Figure 1.2 The classical model of BGTC circuits in the healthy state (left) and Parkinsonian state 

(right). The blue and red lines represent the inhibitory and excitatory projections, respectively. The 

thickness of the lines in the Parkinsonian state represents the increase or decrease in activations of the 

associated connections compared to that in the healthy state. The dashed lines represent the loss of 

related connections in the Parkinsonian state. 

Nevertheless, there is no doubt that the functional organization of BGTC circuits is far more 

complex than what is presented in the model consisting of three classical pathways. For 

example, it was reported that the STN could not only receive inputs from the GPe or cortex, 

but also that it could be directly modulated by the SNc through dopaminergic receptors [29]. 

Besides, there is evidence in rats for a direct projection from the STN to the cortex, indicating 
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that the connection between the STN and the cortex may not be unidirectional [30]. The 

systematic functional connectivity and mechanisms underlying behavioural processing of the 

BGTC circuits still needs to be explored further. 

1.3.2 Pathophysiology of PD 

1.3.2.1 The role of the basal ganglia 

The best known neuropathologic feature of PD is the loss of dopaminergic neurons in the SNc-

striatum pathway and the widely progressive accumulation and aggregation of intracellular 

protein (α-synuclein), which eventually irreversibly disrupt both the structure and function of 

neurons. The loss of dopamine mainly leads to the symptom of bradykinesia in PD patients. 

Related studies have shown that the loss of dopaminergic neurons in the SNc largely affects 

the normal functions of BGTC circuits. The classical pathophysiological model of BGTC 

circuits is illustrated in Fig. 1.2, right, based on the imbalance of the ‘direct’ and ‘indirect’ 

pathways [31, 32]. Specifically, reducing dopamine leads to a decrease in excitation of MSNs 

in the ‘direct’ pathway and a decrease in inhibition of MSNs in the ‘indirect’ pathway. The 

decreased inhibition of GPi and SNr neural activity caused by the excessive activity in the STN 

through the ‘indirect’ pathway and less inhibition through the ‘direct’ pathway leads to 

enhanced inhibitory input to the thalamus, thus resulting in the motor impairment of PD due to 

reduced thalamocortical excitation. This classical model has been developed through the 

experimental studies of the firing rate in the basal ganglia showing the reduced firing rate of 

GPe neurons and enhanced firing rate of STN and GPi neurons in Parkinson-like states [33-

35].  

However, this model has significant limitations because it oversimplifies the complexity of the 

BGTC organization [36]. For example, it is still unclear how the dysfunction of the ‘hyperdirect’ 

pathway in the Parkinsonian state would influence STN activity [37].  Besides, the effects of 

dopamine loss from extrastriatal nuclei in the generation of PD impairments are not considered 

in the classical model [38]. Moreover, the significance of firing rate changes for the 

pathophysiology of movement disorders is being challenged due to inconsistent experimental 

results regarding the functional organizations of striatal neurons [39, 40]. Modern models that 

consider more elements, such as brain oscillatory or non-oscillatory activities, newly 

discovered anatomical loci, and synaptic plasticity related to the pathophysiology of PD, need 

to be investigated for a better understanding of the pathophysiological mechanisms of PD [41].   

1.3.2.2 The role of the cerebral cortex 
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The cerebral cortex is the main input and output of the BGTC circuits. It also processes and 

combines information from both outside brain stimuli and other subcortical and cortical brain 

regions. The activities of cortical neurons are also influenced by the interaction with and within 

local microcircuits. The functional organization of the primary motor cortex (M1) is shown in 

Fig. 1.3, which displays the layer-specific inputs and outputs of this region [42]. The inputs 

and outputs of different layers on the motor cortex not only process the signals from the basal 

ganglia, but also connect with other cortical areas. Besides, D1 and D2 receptors are distributed 

differently among layers. Therefore, the activities in the cortex in the Parkinsonian state are 

likely to differ from those in the basal ganglia [43, 44].  

 

Figure 1.3 Schematic diagram of layer-specific inputs and outputs of the motor cortex. (DAT: 

dopamine transporter; RRA: retrorubral area; TH: tyrosine hydroxylase; VTA: ventral tegmental area). 

The figure is reproduced from “Critical involvement of the motor cortex in the pathophysiology and 

treatment of Parkinson’s disease”, Lindenbach & Bishop, 2016, Neuroscience and Biobehavioural 

Reviews. Copyright 2013 by Elsevier Ltd. Reproduced with permission in the thesis. 

Studies in Parkinsonian animal models suggest that the loss of dopamine increases the burst-

like firing pattern in M1 pyramidal tract neurons [45], while it decreases the magnitude and the 

temporal pattern of neuronal activities during movement [46]. Dopamine depletion can also 
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lead to plasticity changes in M1, as demonstrated by the reduced number of dendritic spines in 

pyramidal tract neurons located in layer 5b [47]. Although the underlying mechanism is still 

unclear, the motor cortex has been suggested to play a vital role in the generation of 

bradykinesia of PD [48, 49], a fact that indicates the motor impairment of PD patients may not 

be alleviated by changing basal ganglia physiology alone, but also by altering the brain 

activities in motor cortex. 

1.4 Target BGTC circuits for the treatment of PD 

Therapies for PD are currently symptom-specific, primarily through modulation of the BGTC 

dopamine pathways [50]. There are two major categories of therapies used in clinical practice 

for PD, namely pharmacotherapy and deep brain stimulation (DBS). 

1.4.1 Pharmacotherapy 

Levodopa is currently the most widely used drug for the treatment of PD [50]. Levodopa is a 

direct precursor of the neurotransmitter dopamine. It crosses the blood-cerebrospinal fluid 

barrier, enters the central nervous system, and is converted into dopamine by the action of 

dopamine decarboxylase to replenish low dopamine levels [51]. Compensatory dopamine 

could restore the normal function of the BGTC circuits and improve the motor symptoms such 

as tremor and bradykinesia [51]. The effect of this drug is notable and can also be used to 

support the diagnosis of PD [15]. However, long-term use of levodopa can have side effects 

[52]; the major ones, also known as levodopa-induced dyskinesia and motor fluctuations, are 

characterized by involuntary movements of the head, hands, feet, limbs, and trunk [53]. 

Levodopa-induced dyskinesia and motor fluctuations occur primarily due to unstable dopamine 

concentrations in the brain [54]. Unlike a continuous supply of dopamine under normal 

conditions, the use of levodopa causes phasic stimulation of dopaminergic neurons [54].  

1.4.2 DBS therapy and its development 

DBS therapy in PD was first proposed in the late 1980s [55]. In the late 1990s and early 2000s, 

it was adopted in Europe, Canada, Australia, and the United States to treat severe PD. DBS of 

the thalamus, STN, and GPi have been developed to treat the motor symptoms of PD [56]. DBS 

is utilized particularly when motor fluctuations occur and for the treatment of tremor that is 

resistant to pharmacotherapy [57]. Exactly how DBS improves Parkinsonian motor symptoms 

has not yet been fully established. However, several lines of evidence have been demonstrated 

that DBS could ‘wash out’ or override the target nuclei’s abnormal electrical activities [56]. 

The current, most preferred target for DBS treatment is the STN [58]. DBS of the STN can 
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mainly improve the symptoms of bradykinesia and rigidity. Besides, STN DBS has been 

reported to reduce medication use by more than 50% [59]. DBS of the GPi can also be applied 

to improve bradykinesia but cannot reduce medication use during the treatment [58, 59]. 

Thalamic DBS could also be considered to treat patients when resting tremor is the 

predominant symptom [58, 59]. In recent decades, researchers have been seeking more 

effective and individualized DBS treatment protocols. Adaptive DBS and closed-loop DBS 

have been proposed as promising directions for the development of future DBS therapies [60]. 

In adaptive DBS, the stimulation is guided by the ongoing electrical activities recorded from 

the target nuclei or related nuclei to treat the pathological features of PD more effectively [61, 

62]. Therefore, identifying and verifying characteristic abnormal electrophysiological signs in 

the BGTC circuits for PD has been considered a main focus of neuroscientists in recent years, 

and this endeavour will continue. Besides, DBS therapy still presents limitations. The main 

limitation is that DBS treatment is not suitable for all PD patients. Because of the invasive 

surgical risks associated with implanting a DBS system, DBS implantation should, in principle, 

only be considered in PD patients who present with motor fluctuations or dyskinesias that are 

not adequately controlled by optimal medical therapy or who develop medicine-refractory 

tremor [57]. Surgical risk and risk of stimulation-induced side effects are higher in patients 

with aged over 70-75 years [57]. In addition, patients can also experience high treatment cost 

from DBS therapy [57, 63]. 

1.4.3 Potential non-invasive brain stimulation (NIBS) treatment for PD 

NIBS therapy, taking advantage of the absence of invasive surgical risk, high safety, easy 

adjustability, and low cost, has been considered an alternative adjuvant therapy for PD (for 

review, please refer to Biagioni et al. [64]). NIBS can be sub-grouped as transcranial magnetic 

stimulation (TMS) and transcranial electric stimulation (tES, which can mainly be subdivided 

into transcranial direct current stimulation [tDCS] and transcranial alternating current 

stimulation). In TMS, secondary currents at the cortical surface generated by transient changes 

in the magnetic field trigger neuronal action potentials. In tES, an electrical current is applied 

directly to modulate neural membrane potentials but not trigger action potentials. It has the 

potential to normalize the BGTC circuits via the cortical-STN ‘hyperdirect’ pathway or 

corticostriatal pathway. Evidence has also been provided that high-frequency repetitive TMS 

(rTMS) could increase dopamine release in the striatum [65, 66].  

NIBS therapies have been studied and shown to have effects on several neural diseases, such 

as TMS for depression [67], and tDCS for stroke [68]. However, the effectiveness of NIBS in 
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PD is still at the stage of academic clinical trials. Kim and co-workers – reviewing the studies 

related to the effects of NIBS on freezing of gait of PD patients – made a positive conclusion 

that the freezing of gait could be improved after NIBS [69]. Most of the studies reviewed rTMS 

on the motor cortex and prefrontal cortex, while the effect size when targeting the motor cortex 

is larger than targeting the prefrontal cortex [69]. It has also been reported that tDCS can benefit 

bradykinesia of PD that the effects last for longer than 3 months [70]. Besides, another 

advantage of NIBS therapy over DBS is that NIBS is expected to improve non-motor 

symptoms in PD patients [71]. However, the effects of NIBS on PD are not always consistent. 

Several research groups have reported negative findings when applying rTMS over the motor 

cortex to treat dyskinesia [72]. In addition, even though positive effects of rTMS have been 

reported, the long-term sustainability of this modality is uncertain [73]. One reason for the 

variability in the effects of NIBS in PD patients may be that stimulation is applied without 

taking into account the variability in intrinsic brain states of patients.  

1.5 Oscillatory nature of pathological BGTC circuits 

As a summary from the section 1.4, neurostimulation for PD is widely accepted as a partial 

alternative and adjunctive treatment option to pharmacotherapy under current conditions. It 

urges physicians and neuroscientists to explore optimal stimulation parameters and protocols, 

either for the development of adaptive DBS or NIBS therapies, to achieve significant 

improvement in symptoms with fewer side effects and improved safety for PD patients. Besides, 

stimulation treatment can also play a role in studying systematically the functional mechanisms 

that operate in pathological BGTC circuits. Electrophysiological biomarkers of PD are of great 

importance, not only because they may provide necessary targets guiding and informing 

stimulation interventions, but also because they shed light on the pathophysiological 

mechanisms of PD. In the following sections, the abnormal oscillatory activities in BGTC 

circuits in the Parkinsonian state are reviewed. If they can be recorded simultaneously during 

the stimulation treatment, it may be possible to adjust stimulation in real time. They may also 

be interesting as surrogate endpoint for NIBS interventions, if they are tightly coupled to motor 

behaviour. 

1.5.1 Neural oscillations 

Neural oscillations are rhythmic neural activities generated throughout the central neural 

system, which have been investigated from the microscopic to the macroscopic levels [74]. 

Oscillations at the microscopic level can be detected as a sequence of spiking trains or from 

the fluctuations of membrane potentials that do not reach the threshold producing action 
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potentials [75]. The synchronization among firing rates in neural populations at the mesoscopic 

level can also lead to oscillatory activities [75]. In addition, at the macroscopic level, the 

recurrent network between different brain regions can also give rise to oscillations [76]. Neural 

oscillations can be recorded invasively as local field potentials (LFP) using implanted 

electrodes in the subcortical regions or electrocorticography (ECoG) on the surface of the 

cortex. It can also be recorded non-invasively through electroencephalography (EEG) or 

magnetoencephalography (MEG). Although the recording approaches can be different, all 

recordings are thought to reflect similar underlying oscillations of neural activity [77, 78]. 

Commonly, brain oscillations can be subdivided based on the features of frequency, such as δ 

(1-4 Hz), θ (4-8 Hz), α (8-12 Hz), β (12-30 Hz), and γ (> 30 Hz). Oscillations in different 

frequency bands not only reflect the neural processing under different temporal resolution but 

also relate to functions at different spatial resolution [76]. The characteristics and dynamic 

modulations of neural oscillations have been related to brain functions and behaviours from 

many aspects, such as perception, memory, sleep, consciousness, and motor coordination [79-

81]. More importantly, evidence from animal and human recordings suggest that the features 

of neural oscillations play a crucial role in both the physiological and pathophysiological 

BGTC circuits, making them potential biomarkers for Parkinson's pathology [82, 83]. 

Recordings from a Parkinsonian animal model showed that the magnitude of oscillations was 

dramatically increased in the basal ganglia in the Parkinsonian state [82].  

1.5.2 Neural oscillations in the Parkinsonian state 

So far, three leading frequency bands of oscillations generated from BGTC circuits have been 

found to be associated with PD, namely the θ/α frequency band (4-10 Hz), the β frequency (12-

30 Hz), and the γ frequency band (>60 Hz) [83]. Alternations in these oscillations are thought 

to reflect distinct mechanisms underlying the generation of PD abnormalities.  

1.5.2.1 Oscillations in the θ/α frequency band 

Increasing the oscillations in the θ/α frequency range is considered to associate with the resting 

tremor of PD. In studies of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated 

monkeys, the percentage of neurons that showed oscillatory bursting at around 3-10 Hz was 

dramatically increased in the STN, GPe, GPi, and thalamus, along with the development of 

Parkinsonian symptoms with tremor at a similar frequency range (4-11 Hz) [84]. The 

observations have also been confirmed by studies that applied microelectrodes to record signals 

in the basal ganglia of PD patients and with limb tremor [85, 86]. Although the dopamine 

depletion could cause the presence of resting tremor, its severity was reported to have no direct 
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correlation with the reduction of dopamine in striatum [87]. Besides, not all human PD patients 

or MPTP-affected monkeys develop the resting tremor, in contrast to bradykinesia and rigidity 

[88]. Because MPTP is recognized as a neurotoxin that destroys the dopaminergic neurons in 

SNc, these findings may indicate that resting tremor is not entirely related to the pathological 

dopaminergic pathways of PD [89]. Moreover, the tremor-related oscillations can also be found 

in cerebellothalamocortical circuits and more extended cortical areas, which suggests that other 

non-dopaminergic pathways may also play a role in the generation of resting tremor [90]. 

Therefore, tremor-related oscillations are not always considered as a main biomarker of PD. 

1.5.2.2 Oscillations in the β band 

The characteristics of β oscillations have been primarily studied in PD. β oscillations are 

commonly known to be associated with the initiation and maintenance of voluntary movement 

[91-93], and they are hypothesized as a critical hallmark in pathophysiological BGTC circuits 

[94]. Abnormal synchronized β oscillatory activity has been found at multiple levels in the 

basal ganglia in Parkinsonian animal models such as MPTP-treated monkeys [95] and 6-

hydroxydopamine-lesioned rodents [96], as well as in PD patients [82, 97]. Besides, it has been 

reported that the enhanced β power in the STN and GPi of PD patients is more related to the 

severity of bradykinesia and rigidity rather than tremor [98], and the suppression of β power 

under levodopa treatment in the basal ganglia is only correlated with the alleviation of 

bradykinesia and rigidity [99]. These findings indicate that the generation of pathological β 

activities in the basal ganglia is closely related to the pathology of dopaminergic pathways in 

BGTC circuits. Levodopa treatment and STN DBS treatment could effectively reduce β 

synchronization [99, 100]. Several studies in the Parkinsonian rodent model have detected that 

hyperactivity of MSNs in the striatum in a state of chronic dopamine depletion could lead to 

an increase in activities of the β frequency range; these activities are then propagated to the 

STN and GP, suggesting that the striatum is an important source for generating abnormal β 

oscillations in the Parkinsonian state [101, 102]. Besides, the coherence of the activities at the 

β frequency range between different basal ganglia nuclei, or between the basal ganglia and 

cortex, has been found to be increased abnormally [103-105]. In addition, considering that 

physiological β activity is not elevated continuously but comprises short-lived phasic burst , 

recent studies have also found another biomarker of PD in the STN, which is the longer 

maintenance duration of the β bursts [106, 107]. Based on the above findings, researchers have 

proposed a more efficient way to treat PD by closed-loop DBS, which uses the amplitude and 

phase of β activity in the STN as the neural target [108, 109]. However, as all information about 

oscillations in the basal ganglia in humans has been derived from patients with movement 
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disorders, our understanding of the normal basal ganglia network functions is still limited. 

Although the motor cortex is tightly connected with the basal ganglia, it remains uncertain how 

the activities in BGTC circuits are reflected in electrical activity recorded from the motor cortex. 

Only around 20% of the variance in the cortical activities in the β band is reported to be 

explained by basal ganglia activities in PD patients [110, 111]. The findings regarding 

overactive β activities on the cortical level are not consistent. ECoG recordings from 

Parkinsonian animal models and recordings from PD patients have revealed abnormally 

enhanced β activities in the cortex [112-116], while others have reported no differences 

between patients and controls [117, 118]. Therefore, detecting a more reliable 

electrophysiological neural signature of PD at the cortical level remains an important scientific 

goal. 

1.5.2.3 Oscillations in the γ band 

Compared with numerous studies on β activities, little is known about the role of γ activities in 

the function of BGTC circuits. The relatively most studied γ oscillations are the activities 

around 60-90 Hz. It has been reported that the γ activities recorded by LFP in the thalamus and 

STN increased in the awake state, during movement, and after levodopa treatment [119, 120]. 

Besides, Litvak et al. reported that the power of γ activities (60-90 Hz) in M1 and high-

frequency activities (200-300 Hz) in the STN, and the coherence between M1 and STN at 60-

90 Hz in PD patients, could also be increased with movement and levodopa treatment. These 

findings suggest that the synchronization in BGTC circuits at 60-90 Hz reflects a prokinetic 

state [121]. By contrast, it has also been reported that broadband γ activities recorded by ECoG 

are increased in PD patients in the off-medication state over the sensorimotor area [117]. 

Finally, γ activities are also enhance during the hyperkinetic state of patients [120, 122]. 

Therefore, broadband γ activities on the cortex and narrowband γ oscillations at 60-90 Hz in 

the basal ganglia are likely to reflect distinct neural mechanisms. However, because the 

findings are inconsistent and no actual relationship between the γ activities and the motor 

severity of PD has been found, it is still unknown whether the γ power itself has a pathological 

role in PD. 

1.5.3 Phase-amplitude coupling (PAC) as a new oscillatory sign for PD 

Overall, the oscillatory features of pathological BGTC circuits of PD have been widely 

investigated. However, the pathophysiology of PD has been suggested to be more complicated 

and may involve multiple functional modalities [123]. Evidence of inconsistent findings of 

increased β synchronization in Parkinsonian animal model and PD patients indicates that only 
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activities in the β frequency range insufficiently capture the pathophysiological mechanism in 

PD [41, 124]. Therefore, the fact has prompted the investigation of interactions in Parkinson’s-

related oscillations at different temporal and spatial dimensions throughout the BGTC network. 

1.5.3.1 Cross-frequency coupling (CFC) 

As discussed above, the neural oscillations in different frequency bands play a crucial 

functional role at different temporal and spatial scales in the brain. More importantly, the 

rhythms in distinct frequencies can also interact with each other, enabling brain functions such 

as the local-to-global or long-range communication across brain regions. Those interactions 

can also be called CFC, and mainly include phase-phase coupling, amplitude-amplitude 

coupling, phase-frequency coupling, and PAC, as shown in Fig. 1.4 [125]. Because the 

parameters characterizing neural oscillations (frequency, phase, and amplitude) represent 

different patterns of information transmission, the different types of CFCs may characterize 

different implications of brain activities [125, 126], and may be associated with a variety of 

neurological disorders [127-129]. The synaptic and electrical coupling between subpopulations 

of interneurons has been suggested as a potential mechanism underlying CFC [129, 130]. 

 

Figure 1.4 Schematic diagram for different types of CFC. (a) The rhythm of low-frequency 

oscillations. (b) High-frequency oscillations whose amplitude is coupled to the amplitude of low-

frequency oscillations. (c) High-frequency oscillations whose phase is coupled to the phase of low-

frequency oscillations. (d) High-frequency oscillations whose frequency is coupled to the phase of low-

frequency oscillations. (e) High-frequency oscillations whose amplitude is coupled to the phase of low-

frequency oscillations. The figure is reproduced from “Cross-frequency coupling between neuronal 

oscillations”, Jensen et al., 2007, Trends in Cognitive Science. Copyright 2007 by Elsevier Ltd. 

Reproduced with permission in the thesis. 

Specifically, PAC – as a class of CFC, referring to the modulation of amplitudes of high-

frequency oscillations by phase from activities at relatively low frequencies – is considered a 
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fundamental mechanism behind cognitive processing [131, 132] and motor processing [133]. 

In recent decades, researchers have identified that exaggerated PAC between the phase of β 

activities and amplitudes of broadband γ activities holds promise as a new biomarker at both 

the subcortical and cortical levels [108].  

1.5.3.2 Abnormal PAC in the Parkinsonian state 

The exaggerated coupling between the phase of β (13-30 Hz) oscillations and the amplitude of 

high-frequency oscillations (~250-350 Hz) had first been reported in the STN LFP recordings 

of PD patients [134-136]. The abnormal coupling in the STN was found to be correlated with 

the clinical severity of PD patients [134]. More intriguingly, using the combination of DBS 

electrode and ECoG electrode recordings on motor areas, de Hemptinne and co-workers [118] 

demonstrated enhanced coupling between the β phase of the STN and the γ amplitude of the 

premotor cortex (PMC)/M1, as well as enhanced coupling between the phase of M1 β activities 

and PMC/M1 γ activities (~50-200 Hz) in PD patients. This finding indicates that depletion of 

dopamine not only changes the coupling pattern in the basal ganglia, but extends across the 

BGTC pathways. Several studies using EEG/MEG sensor recording demonstrated that 

abnormal cortical PAC could even be detected non-invasively [137-139], which may motivate 

the potential use of exaggerated cortical PAC as a Parkinsonian target for NIBS treatment. 

Although no direct relationship has been found between clinical severity and the abnormal 

cortical coupling, researchers have demonstrated that the exaggerated coupling can be reduced 

by levodopa treatment and DBS therapy of the STN and GPe [138-140]. The reduction in 

abnormal PAC by levodopa has been correlated with the alleviation of bradykinesia and rigidity 

[139, 140], supporting the hypothesis that abnormal cortical PAC may be involved in the 

pathophysiological mechanisms of these motor symptoms characteristic of PD. All these 

findings highlight the possibilities to establish the abnormal cortical PAC as a surface 

biomarker for PD. 

Nevertheless, the mechanisms underlying abnormal cortical PAC need to be explored further. 

Regarding the generation of PAC in the Parkinsonian state, several hypotheses have been 

proposed. One hypothesis states that it is generated as the local neuronal spiking activities in 

the motor cortex that is entrained by β activity synchronized in the basal ganglia and propagated 

through BGTC circuits [118]. This hypothesis is supported by the existence of abnormal STN-

M1 β-γ PAC [118]. On the other hand, several studies have detected non-sinusoidal waveforms 

of β activities highly correlated with the strength of PAC, indicating that the cortical PAC may 

arise from synchronized synaptic input to the motor cortex [115, 141]. In fact, PAC measured 
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through electrophysiological signals can simultaneously exhibit both entrained and 

synchronized modes [142]. Therefore, investigating the origin of abnormal cortical PAC would 

help researchers to understand the pathophysiology of PD. Furthermore, the characteristics of 

PAC in the Parkinsonian state have not been investigated fully, especially the dynamics of PAC 

during movement in the presence of bradykinesia and rigidity, which is essential to help 

researchers understand the causal relationship between the manifestation of PAC and motor 

impairment of PD.  
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Chapter 2  

Task definition 

 

Researchers have studied a large number of biomarkers classified as clinical, biochemical, 

genetic, and neuroimaging biomarkers for the diagnosis and treatment of Parkinson’s disease 

(PD) [143]. Among these, electrophysiological biomarkers stand out because they are directly 

related to the pathological operation of basal ganglia-thalamocortical (BGTC) circuits. 

Electrophysiological biomarkers not only shed light on pathological mechanisms of PD, but 

may also have value for neurophysiological interventions through electrical stimulation to 

improve the motor impairment of PD patients. The neuro-pathophysiology of PD seems to 

involve interactions between distinct neuronal activities across the BGTC system. In the past 

decade, a specific oscillatory pattern, termed phase-amplitude coupling (PAC) between the 

phase of β activities and the amplitude of γ activities, has been proposed as a biomarker for the 

pathological network of PD [144, 145] that is more selective than the enhancement of spectral 

power in the β-frequency band. The exaggerated coupling in the resting state has been found 

in the subthalamic nucleus (STN), motor cortex, and the interaction between the two regions 

[118, 136]. The enhanced cortical PAC in the resting state has also been considered a promising 

non-invasive biomarker of PD [137, 139]. However, the characteristics of cortical PAC and its 

underlying mechanisms remain unclear, limiting its utility in treating PD. Therefore, it is 

essential to have a more comprehensive understanding of the features and functional role of 

cortical PAC in the Parkinsonian state, as well as the related pathophysiological mechanisms 

underlying PD.  

2.1 Research questions  

In this thesis, I aim to understand the pathophysiological role of enhanced cortical PAC both 

in the resting state and during voluntary movement derived by non-invasive scalp 

electroencephalography (EEG) recordings. Specifically, I am interested in the following 

research questions: 
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1) What is the spatial organization of abnormally enhanced β-broadband γ PAC in the cortex 

of PD patients? 

2) What is the mechanism generating the exaggerated cortical PAC in PD at rest? 

3) How is PAC during voluntary movement directly related to Parkinsonian motor symptoms? 

By answering the above questions, we will advance our comprehension of the mechanism 

underlying abnormal PAC, as well as gain further insight into pathophysiological mechanism 

of PD. Such fundamental knowledge will help researchers better understand the functional role 

of the abnormal PAC as a non-invasive biomarker for PD, and may ultimately improve the 

development of non-invasive stimulation treatment for the disease. 

2.2 Outline of the thesis  

In Chapter 3, we provide detailed information about the characteristics of subjects, the 

experimental design, and the main methodology we applied to investigate the research 

questions in the thesis. The specific methods that were used for specific findings are also 

described in detail in the corresponding chapters of the results. 

The following four chapters aim to give readers a comprehensive view of the experimental 

findings of the thesis. In order to answer the first research question, in Chapter 4, we set out 

to investigate spatiotemporal features of the cortical PAC of PD patients in the resting state, 

focusing on the anatomical spatial distribution of abnormal cortical PAC. The anatomical 

spatial distribution of the pathological signal is of great importance because the anatomy of the 

cortex also relates to the information of specific brain functions. Therefore, examining 

anatomical spatial distribution may shed light on the relationship between the neuronal nature 

and symptoms of the disease.  

In the subsequent study, reported in Chapter 5, we go a step further to investigate the potential 

mechanisms of abnormal PAC. We aim to investigate the mesoscopic organizations of 

abnormal PAC of PD patients in the resting state, which may indicate the origin of PAC-

involved β and γ activities. Specifically, we investigate the phase relationship between the 

PAC-involved β and γ activities, as well as their spatial source distributions at a local region.  

Although we have a better understanding of abnormally enhanced PAC in the resting state of 

PD patients from the Chapter 4 and 5, it is still unclear how the abnormal coupling is related 

directly to the behavioural abnormalities of PD patients. Therefore, the remaining two chapters 
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(Chapter 6 and 7) of the experimental findings help us to solve the third research question. 

Before investigating the features of movement-related PAC of PD, we need first to understand 

the motor behaviour that is related to the motor impairment of PD. In the clinic, bradykinesia 

is evident by using finger tapping tests [146]. Thus, in Chapter 6, we test several types of 

repetitive voluntary finger movements and comprehensively characterize the behavioural 

normality and abnormality in PD patients. 

Subsequently, in Chapter 7, the dynamics of PAC is estimated during transients of movements 

in those brain regions related to motor control, that showed an abnormal pattern at rest. We 

investigate the absolute strength of PAC in different movement tasks, its modulation during 

the change in movement states, as well as the differences of both between PD patients and 

healthy subjects. We expect this study to reveal insight into the functional role of PAC in the 

execution of repetitive movements and its possible association with the pathophysiology of PD. 

Finally, Chapter 8 provides a general summary and detailed discussion of all the findings of 

this thesis, as well as the future directions and expectations. Through this thesis, I hope that the 

reader will gain a more comprehensive understanding of the functional role of cortical β-

broadband γ PAC in PD, its underlying physiological and pathophysiological mechanisms, and 

its potential application as a non-invasive surface biomarker for PD patients. 
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Chapter 3  

General methodology 

 

This chapter is intended to introduce the reader to the methodology regarding the core research 

questions of this thesis. In this chapter, we describe the recruitment of subjects, the 

experimental design of the protocol, the equipment and techniques used for electrical signal 

recording, and the main analytical methods used to address the main research questions of this 

thesis. Thereby, we aim to provide the reader with a deeper understanding of the thesis’s core 

technical approaches and facilitate the reproduction of the results. 

3.1 Participants 

The study protocol was approved by the local Ethics Committee at the Medical Faculty of 

Leipzig University (Reference number: 147/18-ek). All participants were right-handed, as 

confirmed by the Edinburgh Handedness Inventory [147]. Written informed consent was 

obtained from all study participants.  

We recruited 21 patients with Parkinson’s disease (PD) according to the current diagnostic 

criteria [148] from the outpatient clinic of the Department of Neurology, University of Leipzig 

Medical Center. Motor function of all patients was assessed before the experiments, using part 

III of the Movement Disorders Society Unified Parkinson’s Disease Rating Scale (MDS-

UPDRS III) [149]. A neurologist confirmed that patients were in a practically defined “off-

medication” state after overnight withdrawal (at least 12 h) of Parkinsonian medication. The 

exclusion criteria for PD patients were: severe tremor (resting tremor score > 2), presence of a 

neurological disorder other than PD, presence of deep brain stimulation (DBS) electrodes or 

other cranial implants, and refusal or inability to participate in magnetic resonance imaging 

(MRI) scanning. Two patients were excluded from the cohort. One was excluded because of 

serious tremor activity interfering with the electroencephalogram (EEG), and the other was 

excluded from MRI scanning because of uncertificated metal implant. Therefore, 19 patients 

were included in the subsequent analysis. The structural MRI images for all patients were 
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acquired at the Max Planck Institute for Human Cognitive and Brain Sciences (MPI CBS), 

except for one patient whose MRI image was acquired at University of Leipzig Medical Center. 

The detailed characteristics of patients are presented in Table 3.1. On average, patients had 

been diagnosed with PD 5.3 ± 4.5 years before the current investigation. 

Table 3.1 Characteristics of PD patients 

ID Sex Age, 

years 

Disease 

Duration, 

years 

Clinically more 

affected body side 

Total MDS-

UPDRS III 

(medication off) 

L-Dopa 

equivalent 

dose mg/day 

01 Male 57 4 Right 15 310 

02 Female 46 1 Left 6 210 

03 Male 54 1 Left 22 400 

04 Female 65 3 Left 10 152 

05 Male 55 1 Left 12 500 

06 Male 49 4 Right 30 735 

07 Male 67 12 Right 20 682.5 

08 Female 74 11 Left 24 400 

09 Male 75 3 Left 30 525 

10 Male 76 2 Right 12 100 

11 Female 78 4 Left 32 300 

12 Female 58 6 Left 19 955 

13 Male 71 12 Left 35 1395 

14 Male 56 2 Right 11 355 

15 Female 57 3 Left 26 930 

16 Male 63 6 Right 20 400 

17 Male 61 17 Right 29 1185 

18 Male 38 2 Right 21 520 

19 Male 57 6 Right 14 930 

MDS-UPDRS III: part III of the Movement Disorders Society Unified Parkinson’s Disease Rating Scale; L-Dopa: 

levodopa 

Twenty-three age- and sex-matched healthy controls were recruited through various media. 

One healthy subject was excluded from the analysis due to an abnormal finding on the MRI. 

Exclusion criteria for healthy controls included the presence of any neurological disorder and 

the use of psychotropic medication. The structural MRI images for all healthy controls were 

available in the database of MPI CBS. The parameter settings of the MRI images of healthy 

controls were the same for the patients. MRI images represent 3-Tesla, T1-weighted images 

scanned by an MPRAGE sequence with the dimensions in 240*256*176 and the voxel sizes in 

1×1×1 mm3.  

In the following signal preprocessing procedures (please refer to section 3.4), two healthy 

controls were excluded from the later analysis because of poor data quality. In the end, the 

results presented in this thesis are based on the recordings from 19 patients (6 females, age ± 
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standard deviation [SD]: 60.89 ± 10.80 years) and 20 controls (8 females, age ± SD: 62.55 ± 

7.85 years). There was not a significant age difference between patients and controls (p = 

0.527). 

3.2 Experimental movement paradigm 

3.2.1 Movement recording 

Pressing and tapping tasks (please refer to section 3.2.2) were recorded by using a custom-

made device consisting of a force transducer and two photoelectric beam sensors (Fig. 3.1A). 

The digital signal from the force transducer served to determine the real time movement onset 

and offset of the pressing task. During the pressing task, the onset of pressing was defined as 

the moment when the force transducer passed a threshold of 1.3 N. This threshold was 

determined based on the pilot measurements. The maximum force that the transducer could 

detect was 4.4 N.  

The lower photoelectric sensor was placed at a height just above the finger when it was placed 

on the pressure sensing board, and the higher photoelectric sensor was placed at the height of 

the extended index finger in a position parallel to the table. During the tapping tasks, the real 

time movement onset of index finger extension was defined as the time when the light beam 

of the lower photoelectric sensor was interrupted by the extended index finger. The signal from 

the upper photoelectric sensor was used as a criterion regarding the height of the extended 

index finger during tapping. In a tapping movement, an omission was recorded if the index 

finger was not fully extended to the height of the upper photoelectric sensor. Fig. 3.1B 

illustrates how information of movement events was determined during the pressing and 

tapping tasks. The mechanical onsets recorded online were verified visually afterwards for 

mechanical or performance errors. 

3.2.2 Movement tasks 

Participants were asked to perform three different voluntary movement tasks involving 

repetitive index finger actions: pressing, and tapping at a slow and fast speed. We tested the 

performance of the patients on the hand side most prominently affected by the disease as 

indicated by the bradykinesia MDS-UPDRS III hemi-body scores (10 patients on the left and 

9 patients on the right). In healthy controls, the side for performing the movement tasks was 

chosen pseudorandomly to match the respective sub-sample sizes of patients (10 controls on 

the left and 10 controls on the right). Before the start of each trial, the subjects were asked to 

place their arm on an armrest and place their index finger on the pressure sensing board. The 
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participants were asked to start the index finger movements as soon as a white cross appeared 

at the centre of the computer screen. 

The experimental protocol is illustrated in Fig. 3.1C. In the pressing task, the subjects were 

asked to perform a self-initiated pressing and releasing movement using their index finger at a 

comfortable rate (2 trials of 3 min each). In the slow tapping tasks, subjects were asked to 

perform a self-paced tapping at a relatively slow but comfortable tapping rate (6 trials of 30 s 

each) with the instruction ‘tap at self-determined speed’ given before each trial. In the fast 

tapping tasks, subjects were asked to tap as fast as possible in each trial (10 trials of 12 s or 15 

s each, two blocks [9 patients and 11 controls tapped for 12 s per trial in the second block of 

fast tapping tasks]) with the instruction ‘tap as fast as possible’ given before each trial. Between 

trials and tasks, subjects were allowed sufficient time to rest in order to minimize fatigue. 

During both tapping tasks, subjects were asked to tap using their maximal index finger 

extension. Two conditions were designed for each tapping task (Fig. 3.1D). The conditions 

differed in the absence or presence of feedback on whether the extension of the index finger 

had met the upper height criterion as detected by the upper photoelectric light beam. In the first 

condition, subjects were asked to perform repetitive tapping at the instructed tapping rate 

without receiving feedback about the tapping amplitude (Fig. 3.1D, left). In the second 

condition, they received continuous colour feedback indicating whether the index finger 

extension had reached the upper height criterion reported by the upper photoelectric sensor 

(Fig. 3.1D, right). In the feedback conditions, subjects were instructed to increase their index 

finger height according to the feedback if necessary. The feedback was updated after every 

single tapping movement. Therefore, the motor tasks consisted of five conditions: repeated 

pressing at a slow rate, slow tapping without feedback, slow tapping with feedback, fast tapping 

without feedback, and fast tapping with feedback. 

The quantitative performance measurement includes the estimation of movement rate, tapping 

variability, completion ratio, and decrement of tapping amplitude. The precise procedures for 

the estimation of performances and related results are described in detail in Chapter 6, which 

illustrates the performance characteristics of PD patients. 
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Figure 3.1 Experimental design. (A) Schematic diagram of the repetitive movement device, 

comprising a force transducer (green plate) and two photoelectric sensors (light barriers; white. (B) 

Schematic representation of the force and amplitude trajectories during pressing (upper curve) and slow 

tapping (lower curve), respectively. In pressing, movement onset was defined as the moment when the 

force signal exceeded the lower force threshold (1.3 N). No force signals were resolved above the upper 

threshold of 4.4 N. In tapping, movement onset was defined as the moment when the index finger was 

extended above the light beam of the lower photoelectric sensor. An omission was recorded if the index 

finger was not extended high enough to reach or cross the light beam of the upper sensor. (C) 

Experimental protocol for movement tasks. (D) Experimental design of the tapping tasks. There are two 

conditions for each tapping task. Left: In the first condition, subjects perform repetitive tapping when 

looking at the cross all the time. Right: In the second condition, subjects start tapping when looking at 

a cross but then receive continuous colour feedback indicating the tapping magnitude. Green indicates 

that subjects perform appropriately when the maximum tapping magnitude is beyond the higher beam 

light sensor. Red indicates that the subjects tapped too low to reach the higher light sensor. Subjects 

were asked to adjust their tapping when receiving red feedback. 

3.2.3 The definition of four trigger points indicating movement transitions 

3.2.3.1 The definition of mechanical trigger points 

To investigate the dynamics of brain activities during transitions between movement states, we 



General methodology 

30 
 

first determined in each subject when movement transitions occurred between different 

movement phases. Therefore, we first separated the movement into five periods by four trigger 

points derived from the digital kinetic (pressing) or kinematic (tapping) signals recorded in real 

time during the movement for each individual. Trigger points were established individually for 

each movement cycle. Because the movement transient is too quick during the fast tapping task 

to be segmented, this part of the analysis included the pressing and slow tapping tasks 

exclusively. 

For the pressing task, the four mechanical trigger points were defined as 1) the movement onset 

– the real-time mechanical onset (force level exceeding 1.3 N); 2) the end of the pressing build 

up – the detected end of the pressing build-up that was defined as the moment when the pressing 

force exceeded the maximally detectable force of the device (4.4 N) or – if the maximally 

attained force level was below 4.4 N – the sign of the slope changed from at least two 

consecutive positive signs to 0 or negative; 3) the start of releasing – the detected start of 

releasing that was defined as the moment when the force fell below 4.4 N or – if the maximally 

attained force level was below 4.4N – the sign of the slope changed from 0 or positive to at 

least two consecutive negative signs; and 4) and the movement offset – the real-time 

mechanical offset (force level falling below 1.3 N). 

For the tapping task, the four mechanical trigger points were defined based on the lower and 

upper photoelectric sensors as 1) movement onset  – the time when the index finger had reached 

the height of the lower photoelectric sensor; 2) the end of finger extension – the time when the 

index finger had been extended up to the height of the upper photoelectric sensor; 3) the start 

of finger flexion – the time when the index finger had been lowered below the upper 

photoelectric sensor; and 4) the movement offset –the time when the index finger had been 

lowered below the lower photoelectric sensor. 

3.2.3.2 The definition of adjusted trigger points at the level of the cortex 

Importantly, to estimate the timing of the transition times at the cortical level with the best 

possible accuracy, we adjusted the trigger points by considering the influence of general delay 

(including general mechanical and electromechanical delays, as well as the corticomuscular 

conduction time) from mechanical trigger points (defined in section 3.2.3.1) across subjects in 

pressing and tapping events. The electromechanical delay is the time delay between the onset 

of muscle activation and the measurable movement – reflecting both electrochemical and 

mechanical processes – had previously been demonstrated to be around 50 ms [150]. The 

corticomuscular conduction time was defined as the time lag from the activation of the motor 
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cortex to the activation of muscle, which was measured as 20 ms in general, as demonstrated 

by the transcranial magnetic stimulation (TMS) experiment [151].  

It is then important to estimate the mechanical delay. For practical purposes, movement onset 

and offset were defined by the time of passing the lower force threshold for pressing tasks or 

the activation of the lower light beam sensor for tapping tasks. The mechanical delay was 

defined as the delay from the actual movement onset/offset to the practically defined real-time 

mechanical events as determined by the force threshold or photoelectric sensor signal.  

We used kinetic signals recorded from the force transducer in both pressing tasks and slow 

tapping tasks to objectively assess the actual movement onset and offset. For each subject, the 

digital signals derived from the force transducer were first segmented into 3 s epochs (-1 s 

before the real-time mechanical onset/offset and 2 s after the real-time mechanical onset/offset). 

The values representing signals of the four light beam sensors were set to NaN. Then the signals 

were interpolated to bring the sampling rate to the same value (2 kHz). An averaged digital 

signal across epochs was calculated for each subject. Because the frequency of the movements 

for pressing and slow tapping tasks was considerably lower than 5 Hz for our cohort, the signals 

were smoothed through a second-order low-pass Butterworth filter at 10 Hz to avoid 

interference from high-frequency activities.  

We determined the actual movement onset for pressing movements when pressure acceleration 

reached the maximum and the movement offset as the time when pressure acceleration reached 

the minimum. To this end, we calculated the second derivative of the digital signals in every 

10 ms window with a 5 ms time step. The movement onset was then determined at the location 

of the peak (local maximum) close to the real-time mechanical onset, or the location of the 

valley (local minimum) close to the real-time mechanical offset, as shown in Fig. 3.2A&B (left 

panel), respectively. The mechanical delay for each subject on the movement onset/offset is 

given by the time differences between the actual onset/offset to the real-time detected 

mechanical onset/offset. The general mechanical delay was then calculated as the averaged 

mechanical delay across subjects. In this way, the general mechanical delay at the movement 

onset was 43 ms (Fig. 3.2A, right panel), while the general mechanical delay at movement 

offset was 9.8 ms (Fig. 3.2B, right panel). 

For slow tapping movements, we determined the actual movement onset when the pressure rate 

reached the minimum, which indicated that the finger had left the pressure plate (one subject 

was excluded from the analysis because of the loss of the online records of the force transducer). 
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Therefore, we calculated the first derivative of the digital signals in every 10 ms window with 

a 5 ms time step. The movement onset was then determined on the valley (local minimum) 

close to the real-time mechanical onset, as shown in Fig. 3.2C (left panel). Therefore, the 

general mechanical delay across subjects at the movement onset was calculated to be 60 ms 

(Fig. 3.2C, right panel). Regarding the movement offset, we checked when the finger started 

to touch the pressure plate. We found a quick (< 10 ms) deflection of the force signal right after 

the finger flexion had crossed the lower light beam sensor (Fig. 3.2D). We neglected this delay 

at the movement offset because of its brevity. 

Overall, in the pressing task, the general delay in total from the adjusted movement onset at the 

cortical level to the real-time mechanical onset of pressing was estimated as 113 ms (20 ms + 

50 ms + 43 ms). The general delay from the adjusted movement offset to the real-time 

mechanical offset of pressing was estimated as 60 ms (20 ms + 50 ms -10 ms). Besides, due to 

the force saturation (the maximum force that can be detected is 4.4 N) during the pressing in 

most cases, the realistic ending of pressing and start of releasing cannot be acquired, the general 

delays for the two trigger points between the movement onset and offset only included the 

general electromechanical delay and the corticomuscular conduction time, which are 70 ms. 

In the slow tapping task, the general delay in total from the adjusted movement onset at the 

cortical level to the real-time mechanical onset of tapping was estimated as 130 ms (20 ms + 

50 ms + 60 ms). The general delay from the adjusted movement offset to the real-time offset 

of tapping only contains the general electromechanical delay and the corticomuscular 

conduction time, which in total was 70 ms. Moreover, because the device did not record the 

entire trace of the finger tapping when the finger left the pressing board, the general delays for 

the two trigger points between the movement onset and offset only included the general 

electromechanical delay and the corticomuscular conduction time, which are 70 ms. 

We further applied the adjusted trigger points at the cortical level to investigate in detail the 

EEG oscillatory activities during movement transitions in Chapter 7. 
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Figure 3.2 Estimation of mechanical delays in pressing and slow tapping tasks via digital signals 

from force transducer. (A) Mechanical delay at the movement onset of pressing task. Left: the adjusted 

movement onset was determined at the local maximum of the second derivative of the digital signals 

from the force transducer for each subject. Right: the general mechanical delay was estimated by the 

time difference between the real-time mechanical onset (0 ms point) and the averaged moments for 

adjusted movement onset across subjects. (B) Mechanical delay at the movement offset of pressing task. 

Left: the adjusted movement onset was determined at the local maximum of the second derivative of 

the digital signals from the force transducer for each subject. Right: the general mechanical delay was 

estimated by the time difference between the real-time mechanical offset (0 ms point) and the averaged 

movements for adjusted movement offset across subjects. (C) Mechanical delay at the movement onset 

of slow tapping task. Left: the adjusted movement onset was determined at the local minimum of the 

first derivative of the digital signals from the force transducer for each subject. Right: the general 

mechanical delay was estimated by the time difference between the real-time mechanical onset (0 ms 

point) and the averaged moments for adjusted movement onset across subjects. (D) Mechanical delay 

at the movement offset of the slow tapping task. The line plot showed interpolated digital signals of all 

subjects. Most subjects showed a quick and large force response right after the finger flexion interrupted 

the lower light sensor (real-time mechanical offset, 0 ms point). The period from real-time mechanical 

offset to the deflection of the force transducer was neglected because of its brevity. 

3.3 EEG recording  

In the present thesis, the brain signals of each subject were recorded using a 64-channel EEG 

system (eegoTMmylab, ANT Neuro, the Netherlands) with 24-bit resolution and sampled at 

2000 Hz. Vertical electrooculography and bipolar electromyography (EMG) of the first dorsal 

interosseous (FDI) muscle were also recorded. The EMG signals were recorded from the hand 
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performing the movement tasks (refer to section 3.2.2, left hand: 10 patients and 10 controls; 

right hand: 9 patients and 10 controls).  

Before the start of the EEG recordings, the positions of the EEG electrodes were recorded using 

a three-dimensional optical digitization system (EEG Pinpoint, Localite, Germany). To allow 

better and more accurate offline co-registration between an individual’s electrode positions and 

head models created from structural MRI images, we also acquired another three fiducial 

markers (nasion, left pre-auricular and right pre-auricular) and 30 face markers (markers on the 

nasal and brow bones).  

Regarding the EEG recording, we first recorded 5 min of the signal under resting conditions. 

Subjects were asked to relax and to fixate on a white cross displayed at the centre of a black 

computer screen 80 cm in front of them during the recordings. Then, signals were recorded 

under the movement tasks described above. The experimental recording protocol is presented 

in Fig. 3.3. 

 

Figure 3.3 the experimental paradigm for EEG recording.  The 6 conditions were recorded for all 

subjects in the same chronological order (FB-: without colour feedback, FB+: with colour feedback). 

3.4 EEG signal preprocessing 

EEG signals were first preprocessed using the EEGLAB toolbox [152] 

(https://sccn.ucsd.edu/eeglab/index.php) and custom MATLAB scripts. The basic pre-

processing procedures were the same for each subject under each recording session using a 

standard pipeline. Signals were first detrended and then high-pass filtered at 0.5 Hz (eegfilt.m 

in EEGLAB with a finite impulse response filter default settings). Channels with poor data 

quality were excluded either based on visually detected artefacts (long-term large spiking-like 

activities) or if their power spectra failed to follow the canonical 1/f pattern [153]. Independent 

component analysis (ICA) was applied to remove the components that contained eye 

movement artifacts, channel noise, line noise, heart beats, or major muscle artifacts. Before 

removing ICA components, artifacts from transitory muscle activities were detected visually 

and marked in the continuous raw data. The data of two healthy controls were excluded from 

later analysis through preprocessing, because more than 50% of the data in the resting state 

recordings were contaminated by noise. Afterwards, all data were re-referenced to the average 

https://sccn.ucsd.edu/eeglab/index.php
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of all electrodes.  

3.5 EEG source analysis 

Although the EEG technique allows non-invasive investigations of brain activities, the 

traditional analysis based on sensor signals suffers from spatial mixing due to the volume 

conductor properties of the head. Therefore, spatial demixing methods are important for 

separating the source signals and assigning them to specific locations in the brain. 

3.5.1 Surface Laplacian  

One common method to improve the spatial specificity at the sensor level is the calculation of 

current source density (CSD), also known as a surface Laplacian. It is a second spatial 

derivative operator that increases spatial specificity by attenuating the broad spatial features of 

the signals [154]. These broad spatial features can be volume conducted potentials or 

contaminating muscle activities that affect the electric potentials on the entire (or large parts of 

the) head surface. In contrast to source imaging (see section 3.5.2), it does not require any 

volume conductor model of the head. Here, we computed the surface Laplacian using spherical 

spline interpolations as introduced by Perrin et al. [155] and implemented in the CSD toolbox 

(https://psychophysiology.cpmc.columbia.edu/Software/CSDtoolbox) in the MATLAB 

environment. 

3.5.2 EEG source imaging 

Although CSD helped us isolate the local functional brain activities from broadly distributed 

signals, the spatial information we obtained is still limited to the topography of the EEG sensors. 

As a result, we still lacked information on the correspondence between the signals at the 

electrodes and the signals at the realistic anatomical cortical sites. Over the past two decades, 

researchers have developed approaches that convert EEG electrode signals into a true 

neuroimaging modality by combining structural MRI images containing realistic anatomical 

information with EEG signals containing information with a high temporal resolution. This is 

referred to as EEG source imaging or source reconstruction. Two main vital concepts in source 

analysis are the forward solution and the inverse problem. The forward solution is to compute 

the possible relationship between given source configurations in the brain and the potentials of 

the given EEG electrode, while solving the inverse problem is to estimate the feature of the 

sources based on the observed EEG. In this thesis, we used EEG source imaging to differentiate 

the fine spatial structure of cortical oscillators within a local region.  

The main procedures for EEG source estimation in the present thesis are displayed in Fig.3.4. 

https://psychophysiology.cpmc.columbia.edu/Software/CSDtoolbox
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The method mainly comprises four main steps: 1) creating a realistic head model using 

individual MRI image; 2) solving the inverse problem by applying a beamformer filter; 3) 

defining the functionally related brain regions according to the cortical anatomy; and 4) 

deriving spatiotemporal source components. In the following sections, I introduce the 

procedures step by step. 

3.5.2.1 Forward solution 

To improve source localization accuracy, the computation of a forward solution in the thesis 

requires information about the location of possible sources, the position of electrodes, and a 

volume conduction model based on individual MRI images and individual EEG electrode 

positions. The volume conduction model describes how the currents flow through the tissue, 

which needs the realistic geometrical description of the head (a realistic forward head model) 

and a description of the conductivity of tissues. We implemented Freesurfer [156] 

(https://surfer.nmr.mgh.harvard.edu/) and Fieldtrip toolbox (https://www.fieldtriptoolbox.org/) 

[157] in the thesis to address the forward solution. First, we co-registered the recorded electrode 

positions to the MRI using the fiducial markers. Then, we applied the Freesurfer toolbox to the 

individual MRI images to construct triangulated surfaces describing the outer boundary of the 

head, the inner and outer boundaries of the skull, and the surface of the cortex. The first three 

surfaces (each surface subsampled to 5120 vertices) were used to construct a realistic head 

model by applying the boundary element method (BEM) for the description of volume 

conduction properties of the head [158]. The BEM approximates the volume conduction 

properties by treating the realistic compartments of the head as isotropic and homogeneous 

conductivities. It is more accurate than the simplified spherical symmetry model which does 

not consider the true shape of the head components [159]. Moreover, the BEM has the 

advantage of using only surface meshes instead of volume meshes, resulting in a more efficient 

calculation compared with the finite element method [160]. Specifically,  we generated a BEM 

model by applying the linear collocation method with an isolated skull approach (named ‘dipoli’ 

in Fieldtrip toolbox) [161] with optimized volume conductivity (0.33 S/m for the scalp and 

brain compartments, 0.33/40 S/m for the skull) [162]. In addition, the cortical surface was used 

to construct source space that describes a set of positions and orientations of equivalent current 

dipoles (subsampled to 8196 dipoles) distributed on the realistic surface. Finally, using the 

volume conduction model, the information of source space, and the information of co-

registered electrode positions, we computed the lead-field matrix, which describes the output 

of a particular electrode (matrix row) due to a particular dipole source (matrix column). The 

dipole orientations were chosen perpendicular to the surface because EEG is mainly generated 

https://surfer.nmr.mgh.harvard.edu/
https://www.fieldtriptoolbox.org/
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by the apical dendrites of pyramidal cells [163]. 

3.5.2.2 Inverse problem 

The inverse problem of EEG source analysis is not unique, which means that any EEG pattern 

at the sensors could be traced back to many possible source configurations [154]. Beamforming 

is one of the most common adaptive distributed source imaging approaches [164, 165] and 

offers optimal spatial resolution [166, 167]. Beamforming in EEG source analysis acts as a 

spatial filter calculating the linear combinations of signals measured at different sensors, 

retaining the signal components from the desired direction or location while suppressing 

interference from other directions or locations [168]. In this thesis, because we aimed to project 

the time-domain signals from the sensor level to source space, a spatial filter was constructed 

by using a linearly constrained minimum variance (LCMV) beamformer [169] on the 

covariance matrix of artifacts-removed EEG signals (𝐶) and the lead-field matrix (𝐿). Then for 

each dipole location 𝑟, the spatial filter 𝑊 was calculated as: 

𝑊𝑇 = (𝐿𝑇(𝑟)𝐶−1𝐿(𝑟))
−1
𝐿𝑇(𝑟)𝐶−1. 

We used the equation that has been implemented in the Fieldtrip toolbox 

(beamformer_lcmv.m). 

3.5.2.3 Selecting the region of interest (ROI) 

With the two procedures described in sections 3.5.2.1 and 3.5.2.2, we constructed the signals 

of 8196 source dipoles throughout the constructed cortical surface from the EEG sensor signals. 

Source signals were then selected and grouped corresponding to particular cortical ROIs 

associated with specific brain functions. In our study, the ROIs were defined by the Human 

Connectome Project atlas based on multi-modal parcellation of the cortex [170]. In the atlas, 

180 cortical areas are defined. One of our main focuses in the thesis is the spatial organization 

of abnormal cortical phase-amplitude coupling (PAC) of PD.  Because the abnormal PAC of 

PD has been reported in recordings from C3 and C4 EEG electrodes [137, 139] – which only 

broadly reflect neuronal activity originating from sensorimotor brain regions – we aimed at the 

further spatial specification of PAC, mainly focusing on the regions involved in motor control. 

Thus, we kept a fine resolution in the regions ‘Somatosensory and Motor Cortex’ and 

‘Paracentral Lobular and Mid Cingulate Cortex’. Specifically, as described in the supplement 

of the work by Glasser et al. [171], the region ‘Somatosensory and Motor Cortex’ contains 

three (sub)regions, namely the primary motor cortex, the primary somatosensory cortex, and 

the primary somatosensory complex, and the region ‘Paracentral Lobular and Mid Cingulate 
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Cortex’ contains three (sub)regions, namely the cingulate motor area, the supplementary motor 

area, and area 5. For all other parts of the brain, we retained the coarser resolution of 20 regions 

as defined by Glasser et al. (2016) to avoid statistical power issues. As a result, 26 ROIs were 

defined covering the whole brain at variable resolution. 

3.5.2.4 Source-space ICA 

From the method in section 3.3.2.3, the signals of sources from a local brain region extracted 

by the defined parcellation are likely to share similar information. However, the large regions 

might still contain smaller networks of neural loops that can be differentiated by the EEG data 

and may interact with each other locally. These subnetworks can be further delineated 

according to their activation time course (or oscillation patterns) and spatial distribution. In 

signal processing, ICA was introduced as a computational method for separating a multivariate 

signal into statistically independent subcomponents. It has been widely used on EEG sensor 

signals to create scalp maps with mutually independent activation time courses (also applied in 

section 3.4)  [172]. Here, we used the source-space ICA method developed by Jonmohamadi 

]173[et al.  to segregate the local subnetworks in the source signals of a specific brain region. 

Specifically, principal component analysis (PCA) was first applied to reduce the noise by 

keeping the main components explaining 95% of the data variance. Then, to detect statistically 

independent stationary sources, we employed ICA to evaluate the PCA-truncated source 

signals separately for each ROI. PCA and ICA were computed by runica.m in EEGLAB with 

the rank of 95% data variance.  

In the thesis, considering the analysis of PAC described in section 3.6, we applied the 

beamformer weights and PCA-ICA weights to the artefact-marked signals to generate 

continuous, breakpoint-free data (artefacts should be finally removed after applying bandpass 

filters to signals for PAC calculation). Therefore, we applied the above steps to all the data sets 

covered in this thesis. However, there are still some differences in the number and 

characteristics of the acquired source ICA signals due to the different data sets we investigated 

and discussed in the different chapters. I describe the details of methods in Chapter 4 and 7.  
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Figure 3.4 Workflow of ROI-based EEG source analysis. We first used individual MRI images and 

electrode positions to create forward models. The model is displayed as a brain outline (the head model 

in light pink and the source model in dark pink) with sensors (green dots) on the top left of the figure. 

Using the HCP atlas information, we created the ROI lead-field matrix. After preprocessing of EEG 

sensor signals, artefacts-removed and artefacts-marked EEG datasets were prepared for further analysis. 

A data covariance matrix was computed using artefacts-removed EEG signals. Next, we applied 

beamformer techniques to project artefacts-removed EEG signals from the sensor to source space. PCA-

ICA was then applied on artefacts-removed source signals of each ROI to obtain the ICA weighting 

matrices. We then applied PCA-ICA weighting matrices to artefacts-marked EEG signals to obtain 

artefact-marked time series of the ICA source components.  

3.6 Methods for computing PAC 

In order to assess quantitatively the degree of coupling between the phase of low-frequency 

activity and the amplitude of high-frequency activity, we first have to extract their 

corresponding phase and amplitude information. One of the most common ways to extract 

time-resolved phase and amplitude information for the calculation of PAC is the Hilbert 
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transformation [174]. It calculates the analytical representation for a real-valued signal. The 

analytical signal is formulated in a polar coordinate as: 

𝑆𝑎(𝑡) = 𝐴(𝑡)𝑒𝑗∅(𝑡), 

where the analytical representation is 𝑆𝑎(𝑡), A(t) represents the instantaneous amplitude or 

envelope, and ∅(𝑡) represents the instantaneous phase. Note that to obtain a reliable estimation 

of the instantaneous phase, the data should first be bandpass filtered. 

There are several methods to evaluate PAC, but none has been chosen as the gold standard for 

detecting the phenomenon. In general, there are three most widely used methods to measure 

the strength of PAC; the phase-locking value (PLV) [175], the mean vector length (MVL) [176], 

and the Kullback–Leibler modulation index (KL-MI) [177]. The disadvantage of PLV in the 

calculation of PAC is that, in contrast to the other two methods, PLV needs additional 

transformation to extract phases from the envelopes of high-frequency activities while the 

actual amplitude information is not used. Therefore, in the present thesis, we used KL-MI and 

MVL exclusively to calculate the PAC under different considerations.  

3.6.1 KL-MI method 

The MI was calculated by comparing statistically the distance between the phase-amplitude 

distribution from real signals to the uniform distribution. First, we created phase-amplitude 

distributions as shown in Fig. 3.5. The phases (from -180 to 180 degrees) extracted from the 

low-frequency signal were sorted into a certain number of bins (in the thesis, we used 18 bins), 

and the amplitudes of the high-frequency signal were averaged accordingly for each bin. A 

uniform phase-amplitude distribution would represent an identical amplitude at each phase bin, 

while a non-uniform distribution would reflect the presence of PAC. The state of the 

distribution is assessed quantitatively by Shannon entropy, a measure representing the amount 

of information inherent in a variable: 

𝐻(𝑝) = −∑𝑝(𝑖) log(𝑝(𝑖)),

𝑁

𝑖=1

 

where p is the vector of normalized averaged amplitudes per phase bin and N is the total number 

of bins. The maximum Shannon entropy is obtained for a uniform phase-amplitude distribution. 

MI is defined by a distribution that significantly deviates from the uniform distribution, 

calculated by means of the Kullback–Leibler divergence:  
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𝑀𝐼 =
log(𝑁) − 𝐻(𝑝)

log⁡(𝑁)
. 

In this equation, log(N) – H(p) represents the Kullback–Leibler divergence and log(N) 

indicates the uniform distribution. 

 

Figure 3.5 The procedure for calculating PAC using the KL-MI method. The raw signal was first 

bandpass filtered to obtain low-frequency and high-frequency signals. Then the phase of low-frequency 

and the amplitude of high-frequency signal were extracted using the Hilbert transform. The modulation 

index was calculated according to the phase-amplitude distributions. The figure is reproduced from 

“Effect of levodopa on electroencephalographic biomarkers of the parkinsonian state”, Miller, AM., et 

al., 2019, Journal of neurophysiology. Copyright 2019 by American Physiological Society. Reproduced 

with permission in the thesis. 

3.6.2 MVL method 

The MVL would assess PAC differently. We also first obtained the phase information from 

low-frequency oscillations and the amplitude information from high-frequency oscillations by 

bandpass filters and Hilbert transform. Importantly, in this method, the phase information from 

low-frequency oscillations and amplitude information from high-frequency oscillations is 

recombined as a new complex value in each data point, yielding a surrogate analytical time 

series. The complex values of that time series can be presented as vectors in a polar plane. If 

the amplitude is not coupled to a certain phase, the directions and the amplitudes would be 

distributed randomly and uniformly across the polar plane and would cancel each other out 
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when geometrically averaged. If there is coupling, different phase angles will be associated 

with different amplitudes, and averaging will result in a non-zero vector length. The MVL was 

calculated according to the following formula: 

𝑀𝑉𝐿 = ||
∫ 𝑎(𝑡)𝑒𝑖𝜃𝑡𝑑𝑡
𝑇

0

√1
𝑇∫

𝑎2(𝑡)𝑑𝑡
𝑇

0

||, 

where a is the amplitude of high-frequency activities and 𝜃 is the phase of low-frequency 

activities. The complex value was normalized by the root mean square of the amplitudes to 

avoid the effect of high-frequency amplitudes itself [178]. 

The reliability of PAC measurement could be affected by the data length and the signal-to-

noise ratio [179]. If a signal is a perfect coupled signal without any noise component, one 

complete cycle of the low-frequency rhythm would be enough of the PAC measurement. 

However, because the real signal recorded from the brain contains significant noise, enough 

cycles would be counted to average out the effects of noise. Tort and co-workers [179] 

estimated θ-γ PAC from local field potential  signals and suggested that computing the KL-MI 

from the data more than 30 s (or more than 200 cycles in theta rhythm) could provide a reliable 

measurement. They also reported that both the KL-MI and MVL methods perform well in long-

term datasets, which has also been demonstrated by other researchers [180]. Because the KL-

MI has been reported to be the most conservative method with less sensitivity to noise [181-

183], it has been chosen as the preferred method for PAC measurement in many studies with 

long-term electrocorticography or EEG recordings [118, 137, 139, 140].  

By contrast, when dealing with the issues that PAC has to be measured on a small time scale 

(several cycles of low-frequency rhythms), the MVL has been reported to perform better than 

the KL-MI for calculating PAC in very short epochs [178, 184]. Moreover, researchers have 

suggested performing surrogate control analysis to avoid the artificial coupling caused by 

random fluctuations in a short epoch [179, 185]. The control analysis could generate a chance 

distribution of PAC values from surrogate time series that share statistical properties with the 

PAC value from the original data [185]. The surrogate time series can be created by shuffling 

the amplitudes of high-frequency time series. Then we could measure the distance of the 

original PAC to the surrogate PAC distribution by computing the z-score of PAC: 

𝑧𝑃𝐴𝐶 = ⁡
𝑃𝐴𝐶𝑜𝑟𝑖 −𝑚𝑒𝑎𝑛(𝑃𝐴𝐶𝑠𝑢𝑟𝑟)

𝑠𝑡𝑑(𝑃𝐴𝐶𝑠𝑢𝑟𝑟)
， 
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where 𝑧𝑃𝐴𝐶  refers to z-score transformed PAC, 𝑃𝐴𝐶𝑜𝑟𝑖  refers to the original PAC value, 

𝑚𝑒𝑎𝑛(𝑃𝐴𝐶𝑠𝑢𝑟𝑟) refers to the average of the surrogate PAC distribution, and 𝑠𝑡𝑑(𝑃𝐴𝐶𝑠𝑢𝑟𝑟) 

refers to the standard deviation of the surrogate PAC distribution. A zPAC value greater than 

1.96 (95% confidence interval) indicates that the original PAC is unlikely to be detected by 

chance. 

Based on all the above considerations, in this thesis, we applied the KL-MI method to calculate 

PAC with long-term datasets (i.e., long-term resting-state recording in Chapter 4) and the 

MVL method with surrogate control analysis to calculate the PAC in short epochs to investigate 

movement-related PAC (in Chapter 7). Therefore, while the general algorithms for calculating 

PAC that are applied in the thesis have been described above, the precise procedures for their 

particular application are described in the methodological sections of the corresponding 

chapters (Chapters 4 and 7).  

3.7 Statistical methods 

Due to the limitation of the number of subjects and the fact that not all results are normally 

distributed, we applied non-parametric statistical tests. In particular, we applied the two-tailed 

Wilcoxon rank-sum test (MATLAB rank-sum function) to compare between groups and the 

two-tailed Wilcoxon signed-rank test (MATLAB signed-rank function) to compare within 

groups. Moreover, to investigate the main and interaction effects of multiple factors (such as 

group, ROIs, and conditions), we used the ARTool package in the R environment (an 

introduction can be found at https://depts.washington.edu/acelab/proj/art/index.html), which 

implements a non-parametric factorial analysis of variance (ANOVA) [186]. ARTool, also 

referred to as aligned rank transform, first aligns the responses for each measurement of main 

and interaction effects and transforms the aligned data into ranks. Then, the transformed data 

are examined in a factorial ANOVA. The details of factor settings are further explained in the 

corresponding chapters (Chapters 6 and 7). Moreover, we applied false discovery rate (FDR) 

correction to the p-values (FDR p < 0.05) to deal with multiple comparisons. 

  

https://depts.washington.edu/acelab/proj/art/index.html
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4.1 Introduction 

Exaggerated phase-amplitude coupling (PAC) between β and broadband-γ activities has been 

detected in the subthalamic nucleus (STN), motor cortex, and interactions between the two 

regions of patients with Parkinson’s disease (PD) via electrocorticography (ECoG) and local 

field potential (LFP) recordings [118, 187]. It has also been shown that enhanced PAC, as well 

as Parkinsonian bradykinesia, can be reduced by dopaminergic therapy [139] or through deep 

brain stimulation (DBS) in STN [134, 138, 140], suggesting that abnormally enhanced PAC 

might represent a neural circuit abnormality that is close to the causative pathophysiological 

mechanism underlying Parkinsonian bradykinesia. Recently, two electroencephalography 

(EEG) studies have shown that even non-invasive techniques can be used to differentiate 

patients from healthy individuals and that the state of drug-induced improvement of mobility 

https://doi.org/10.1093/brain/awaa400
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in PD patients can be differentiated from the akinetic state by means of PAC [137, 139]. 

However, one main issue related to the abnormal PAC of PD has not been satisfactorily 

addressed, which restricts its further investigation and application as a non-invasive biomarker. 

This issue is that the spatial localization of the brain regions from where the pathological 

coupling originates has been incompletely explored. EEG sensor signals show a poor spatial 

correspondence to the brain areas generating the underlying neuronal activity, because each 

signal represents a mixture of differently weighted contributions from numerous brain areas 

due to the volume conduction effects. In addition, the electrode positions on the scalp are 

determined by the precision of the operation of wearing the electrode cap and the layout of the 

cap, a fact that may lead to differences in the signal obtained from the same electrode in 

different subjects. This issue is vital because the spatial distribution of abnormal PAC informs 

about its possible origin within anatomically segregated loops of the basal ganglia-

thalamocortical (BGTC) system, which may relate to the distinct motor and non-motor 

functions [188]. Fortunately, the recent development of EEG source analysis provides means 

to solve this problem partially. Therefore, in this chapter, we applied advanced EEG source 

analysis to investigate the spatial distribution of the exaggerated PAC of PD patients.  

4.2 Methods 

4.2.1 Data recording 

The characteristics of the participants and experimental procedures have been described in 

Chapter 3 (Section 3.1). Since this chapter aims to characterize the anatomical spatial origin of 

the enhanced PAC in the resting state of PD patients, as reported in previous studies [118, 137], 

the data from the 5 min resting state recordings of 19 PD patients and 20 age and sex-matched 

healthy controls were analysed.  

4.2.2 Data processing 

The pre-processing procedures and the procedures for source reconstruction of the EEG signals 

have been described in Chapter 3 (Section 3.4 & 3.5.2). In brief, after the standard procedures 

to prepare the EEG sensor signals, we obtained EEG source signals by projecting EEG sensor 

signals recorded in the resting state to the individual cortical surface using a linear constrained 

minimum variance (LCMV) beamformer filter [169]. Furthermore, source-space independent 

component analysis (ICA) was applied to separate independent spatiotemporal components 

from the source signals in each of the 26 region of interests (ROIs) that have been introduced 

in Chapter 3 (Section 3.5.2.4). Table 4.1 presents the sizes of 26 ROIs as indexed by the average 
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numbers of dipoles across subjects, and the average number of ICA components derived under 

the current analysis for patients and controls in all 26 ROIs. None of the 26 ROIs showed 

significant differences in the number of ICA components between patients and controls (two-

tailed Wilcoxon rank-sum test, p > 0.05).  

Table 4.1 Information on 26 ROIs (mean ± standard deviation) 

ROI Number of 

dipoles 

Number of ICA 

components (patients) 

Number of ICA 

components (controls) 

Primary motor cortex 96.3±8.0 10.7±0.5 10.6±0.5 

Primary somatosensory 

cortex 

119.8±9.9 10.8±0.6 10.9±0.5 

Primary somatosensory 

complex 

132.3±10.0 11.0±0.5 10.9±0.6 

Premotor cortex 135.2±11.4 10.7±0.6 10.8±0.5 

Cingulate motor areas 43.3±4.7 6.7±0.5 6.6±0.5 

Supplementary motor cortex 80.0±11.3 8.4±0.6 8.3±0.5 

Area 5 55.2±5.2 7.6±0.6 7.5±0.5 

Early auditory cortex 77.1±7.4 7.0±0.4 7.0±0.5 

Auditory association cortex 140.5±8.1 7.5±0.5 7.6±0.6 

Primary visual cortex 90.5±14.9 8.8±0.7 8.7±0.8 

Early visual cortex 170.5±19.2 10.5±0.9 10.7±1.0 

Dorsal stream visual cortex 77.5±6.3 8.2±0.7 8.1±0.5 

Ventral stream visual cortex 87.4±8.6 7.6±0.6 7.6±0.6 

MT + Complex and 

Neighboring visual cortex 

90.4±10.0 7.9±0.8 7.8±0.8 

Posterior opercular cortex 98.9±8.9 7.2±0.3 7.2±0.5 

Insular and frontal opercular 

cortex 

132.1±8.4 8.6±0.7 8.6±0.9 

Medial temporal cortex 140.2±9.8 6.6±0.5 6.7±0.4 

Lateral temporal cortex 263.1±15.3 8.4±0.7 8.6±0.6 

Temporo-Parieto-Occipital 

Junction 

113.9±11.7 8.0±0.7 8.1±0.7 

Superior parietal cortex 181.0±18.4 11.4±0.7 11.3±0.8 

Inferior parietal cortex 339.7±29.4 12.4±0.7 12.6±0.8 

Posterior cingulate cortex 248.7±13.8 12.0±1.0 12.0±0.8 

Anterior cingulate and medial 

frontal cortex 

185.2±11.5 10.3±1.7 10.8±1.0 

Orbital and polar frontal 

cortex 

195.1±10.2 7.9±0.9 8.1±0.7 

Inferior frontal cortex 125.9±9.8 8.0±0.8 8.0±0.7 

Dorsolateral prefrontal 

cortex 

282.9±22.0 12.1±0.9 12.5±1.1 

ROI: Region of interest; ICA: Independent component analysis 

4.2.3 PAC calculation 

We calculated PAC values on sensor and source signals through the Kullback-Leibler 
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modulation index (KL-MI) as described in Chapter 3 (Section 3.6.1). We computed KL-MI 

values in phase-amplitude signal pairs in which the frequencies of phase signals range from 4 

to 40Hz in 2Hz steps and that of amplitude signals from 32 to 200 Hz in 4 Hz steps. First, we 

filtered the signals for phase and amplitude estimation. For the phase estimation, we applied a 

set of narrow-band bandpass filters to the original signal, ranging from 4 to 40 Hz in 2 Hz steps 

with 2 Hz bandwidth. For the amplitude estimation, we applied bandpass filters from 32 to 200 

Hz in 4 Hz steps with 40 Hz bandwidth. The reason for applying 40 Hz bandwidth for the 

amplitude estimation is because it is recommended to set the bandwidth of the filter at least the 

same as the frequency for the phase estimation so that the modulation frequencies can be 

covered [189]. Thus, for each sensor or component pair (explained in the next paragraph), we 

gained 18*42 phase-amplitude pairs. Marked artefacts were removed from the signals only 

after filtering to avoid pseudo γ oscillations produced by filtering sharp edges. Hilbert 

transform was applied to the filtered signals to extract instantaneous phase and amplitude 

separately. Only the phase-amplitude pairs whose phase frequency was lower than the lower 

cutoff frequency of amplitude signals were considered for calculating KL-MI values. 

In sensor space, we calculated KL-MI values for each sensor signal separately. To enhance the 

spatial specificity of the sensor signals, we applied the surface Laplacian (as described in 

Chapter 3, Section 3.5.1) before computing PAC. At the source level, we calculated KL-MI 

values in ICA component pairs within each ROI. That is, we not only calculated the KL-MI 

values for each component separately, but also investigated the coupling between different 

components within the same ROI.  

Next, a single KL-MI value was computed for each sensor or component pair by averaging the 

KL-MI values over the a priori defined phase-frequency range of 13-30 Hz, and the a priori 

defined amplitude-frequency range of 50-150 Hz [137]. This yielded, for a ROI with n ICA 

components at the source level, n × n KL-MI values were calculated.  

Finally, we computed a single PAC value for each ROI of each subject for comparison between 

groups. This was obtained by weighted averaging across the n × n KL-MI values. Considering 

the different contributions of the ICA components to the original source signals, they were 

weighted by the percent of variance (pvar) for each component pair before averaging. The pvar 

reflects to what percentage the specific ICA component pair can explain the variance of the 

original data. The pvar for each ICA component can be computed as (refer to ‘pvarf’ function 

in EEGLAB): 
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𝑝𝑣𝑎𝑟 = 100 − 100 ∗
𝑚𝑒𝑎𝑛 (𝑣𝑎𝑟(𝑑𝑎𝑡𝑜𝑟𝑖 − 𝑑𝑎𝑡𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑗))

𝑚𝑒𝑎𝑛(𝑣𝑎𝑟(𝑑𝑎𝑡𝑜𝑟𝑖))
. 

Here, 𝑑𝑎𝑡𝑜𝑟𝑖  represents the original source signals, 𝑑𝑎𝑡𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑗  represents the signals 

projected back from ICA components signals to source signals after removing the specific ICA 

component. In our study, considering that every two components in a pair would both have 

impacts on the PAC calculation, the pvar of each component pair is calculated as the geometric 

mean of the pvar values of the corresponding two components. 

4.2.4 Power spectral density (PSD) 

For calculating PSD, we applied Welch’s method implemented in MATLAB (function 

‘pwelch’) [190], which is one of the most popular methods for PSD estimation. The window 

was set to Hamming window in 2000 ms with 50% overlap. We then computed the normalized 

log PSD values for each ICA component. The normalization was done by subtracting the mean 

log PSD across frequencies (excluding 50 Hz and its harmonics) to reduce the inter-subject 

variability. 

4.2.5 Statistical analysis 

We defined the ‘contralateral’ hemisphere for patients as the hemisphere contralateral to the 

clinically more affected hemi-body (also the selected hand side for electromyography [EMG] 

recording), and controls as the hemisphere contralateral to the selected hand side for EMG 

recording (details in Chapter 3, section 3.3). For statistical comparison, we applied 

nonparametric statistical tests. Specifically, the two-tailed Wilcoxon ‘rank-sum’ test was used 

for comparisons between groups and the two-tailed Wilcoxon ‘signed-rank’ test for 

comparisons within subjects. We applied false discovery rate correction to the p-values (FDR 

p < 0.05) to deal with multiple comparisons. 

4.3 Result 

4.3.1 Exaggerated PAC in multiple cortical sources 

β-broadband γ PAC as computed by the KL-MI method in 26 brain regions showed a markedly 

inhomogeneous distribution across the brain, which was similar between patients and controls. 

However, comparison between patients and controls revealed specific regional differences as 

illustrated in Fig. 4.1. First, we analyzed the differences in PAC by pooling the homologous 

regions of both hemispheres (Fig. 4.1A). In patients, β-γ PAC was enhanced, relative to 

controls, in 6 ROIs comprising the inferior frontal cortex (IFC, FDR corrected, p=0.034, 
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Z=2.80), the dorsolateral prefrontal cortex (DLPFC, FDR corrected, p=0.034, Z=2.88), the 

premotor cortex (PMC, FDR corrected, p=0.023, Z=3.33), the primary motor cortex (M1, FDR 

corrected, p=0.037, Z=2.63), the primary somatosensory cortex (SS-Broadman area 3 [BA3], 

FDR corrected, p=0.037, Z=2.68), and the primary somatosensory complex (SS-Broadman 

area 1&2 [BA1&2], FDR corrected, p=0.034, Z=2.80). Z-statistic was highest for PMC. 

Because of the asymmetry in clinical Parkinsonian motor symptoms, we also separately 

considered the hemispheres located contralaterally and ipsilaterally to the clinically more 

affected hemi-body. In the contralateral hemisphere of patients, 5 ROIs including DLPFC 

(FDR corrected, p=0.035, Z=2.99), PMC (FDR corrected, p=0.035, Z=3.25), M1 (FDR 

corrected, p=0.035, Z=2.80), BA3 (FDR corrected, p=0.035, Z=2.77), and BA1&2 (FDR 

corrected, p=0.035, Z=2.74) showed higher PAC than in controls (Fig. 4.1B). The 

comodulograms of the median KL-MI values in all five regions also clearly shows enhanced 

PAC in patients (Fig. 4.1C). However, the differences did not reach statistical significance in 

the ipsilateral hemisphere (Fig. 4.1B) although we found the similar tendency that patients have 

relatively higher PAC value than controls (uncorrected DLPFC: p=0.062, PMC: p=0.062, M1: 

p=0.070, BA3: p=0.084, BA1&2: p=0.16). We also did not explicitly find significant 

differences of PAC between contralateral and ipsilateral hemispheres in either patients or 

controls (uncorrected p > 0.1). PAC from temporal ROIs (i.e., the lateral temporal cortex, FDR 

corrected, p=0.172, Z=1.62, the medial temporal cortex, FDR corrected, p=0.412, Z=0.96) did 

not differ between patients and controls, suggesting that the enhanced PAC in patients was 

unlikely to be driven by muscle artifacts from pericranial muscles. Since we did not find any 

differences in the number of ICA components between patients and controls in any of the 26 

ROIs, the PAC differences between patients and controls are unlikely to be caused by 

differences in the number of components. Moreover, we applied a Pearson correlation test to 

estimate the correlation in each ROI between the number of components and PAC values for 

39 subjects. It showed no significant correlation in any of the 26 ROIs (FDR p>0.2). 
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Figure 4.1 PAC observed at the source level. (A) Analysis of PAC distribution across 26 ROIs of the 

whole brain anatomy when averaging PAC from two hemispheres. Left: Regions marked as red showed 

significant differences between patients and controls after FDR correction. Right: Boxplot showing the 

PAC of the 6 ROIs, which presents significant differences between patients and controls (marked by 

asterisks). (B) Analysis of PAC distribution across 26 ROIs of the whole brain anatomy by considering 

contralateral and ipsilateral hemisphere separately. Left: The five regions marked in red show 

significant differences between patients and controls in the contralateral hemisphere after FDR 

correction. Right: Boxplots presenting that PAC of the 5 ROIs shows a significant difference in the 

contralateral hemisphere between patients and controls (upper right), and in the ipsilateral hemisphere 

(bottom right) the differences between groups do not reach the significance but follow the same 

tendency as in the contralateral hemisphere. (C) Group comodulograms showing the median of single 

KL-MI across subjects on the contralateral hemisphere in each group in the 5 ROIs. 
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In addition, to further prove that the selection of methods for the calculation of PAC would not 

primarily affect the result, we also tested the measurement of PAC in M1 using the mean vector 

length (MVL) algorithm (as described in Chapter 3, Section 3.6.2) in replacement of KL-MI 

algorithm. The Pearson correlation analysis showed a highly linear correlation between the two 

measurements (p<0.001, R=0.93).   

4.3.2 Non-significant differences between patients and controls on sensor level 

Previous studies reported enhanced PAC of PD patients when PAC was directly computed 

from signals of C3 and C4 electrodes [191] located over motor regions. However, in our study, 

patients and controls did not differ when the analysis was performed on signals recorded by C3 

or C4 electrode, roughly located above the contralateral or ipsilateral motor areas, respectively 

(contralateral hemisphere: p=0.126; ipsilateral hemisphere: p=0.267). Besides, we did not find 

any significant difference between groups in signals from other electrodes, including the F3/F4 

(FDR corrected, contralateral: p=0.438; ipsilateral: p=0.693), the FC3/FC4 (FDR corrected, 

contralateral: p=0.178; ipsilateral: p=0.747), and the CP3/CP4 (FDR corrected, contralateral: 

p=0.178; ipsilateral: p=0.693), which are related to the frontal and sensorimotor areas (Fig. 

4.2). No difference was present between patients and controls even when sensors from both 

hemispheres were collectively considered (FDR, F3&4 p= 0.553, FC3&4 p=0.177, C3&4 

p=0.177, CP3&4 p=0.177). 

 

Figure 4.2 Analysis of PAC on sensor level. Left: F3&F4, FC3&FC4, C3&C4, CP3&CP4, which are 

related to frontal and motor-sensory areas, were selected for comparison to the results on the source 

level. Right: Boxplot showing the PAC extracted from the 4 pairs of electrodes on the contralateral 

hemisphere of both patients and controls. None of the differences reached statistical significance. To 

refer collectively to the electrodes relating to the most affected hemispheres of patients, we used 

notation with a slash ‘/’ (e.g., F3/4), because the most affected hemispheres varied between patients. 

For instance, the F3/4 refers either to F3 or F4, depending on the patient’s dominantly affected side. 

4.3.3 The relationship between exaggerated PAC and the severity of motor 

impairment 

To explore the relationship between source located PAC and the severity of motor impairment 

of PD patients, we computed the correlation between PAC values of contralateral and 
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ipsilateral hemispheres with the total Movement Disorders Society Unified Parkinson’s 

Disease Rating Scale III (MDS-UPDRS III) hemi-body scores. The correlations between PAC 

and clinical scores in all 5 ROIs are shown in Fig. 4.3. We found the overall PAC to be 

significantly correlated with MDS-UPDRS III hemi-body scores in M1, but not in the other 4 

ROIs. 

 

Figure 4.3 Relationship between PAC and clinical severity of the 5 ROIs. We found only significant 

correlation between mean PAC with MDS-UPDRS III hemi-body scores in M1 but not in the other 4 

ROIs (black lines designate statistically significant correlations). 

4.3.4 PAC is not solely driven by power 

We examined the possibility that enhanced PAC may be driven by altered spectral power in 

either the β or γ band in patients. In M1 (Fig. 4.4A), β power differed significantly between 

patients and controls in both the contralateral hemisphere (FDR, p = 0.040), and the ipsilateral 

hemisphere (FDR, p = 0.019). Furthermore, γ power differed significantly in the contralateral 

hemisphere (FDR, p = 0.011), but not in the ipsilateral hemisphere (FDR, p = 0.093). The other 

4 ROIs showed similar results.  

We calculated the Spearman correlation between PAC and β or γ power for each ROI (Table 

4.2). We found no relationship between β power and PAC in any of the 5 ROIs. While γ power 

was not significantly correlated with PAC in either DLPFC, PMC, or M1, both metrics were 

correlated in BA3 and BA1&2. Since power was not correlated with PAC in any of the three 

regions exhibiting the largest PAC difference between patients and controls (DLPFC, PMC or 

M1), the enhancement of power is unlikely to underlie the enhancement of PAC in patients. 

Moreover, we compared the frequencies at which the largest PAC value was noted with the 

frequencies where the largest β or γ power was detected. A correlation test applied on each 

signal pair in M1 showed no correlation between the peak PAC frequency and the power peak 
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frequency in either the β or γ band (Fig. 4.4B). Similar results were obtained in the other 4 

ROIs (data not shown). Three examples from the dataset of patients are displayed in Fig. 4.4C. 

Together, the above findings indicate that the detected PAC enhancement in patients was 

unlikely to be driven by differences in spectral power.  

 

Figure 4.4 Relationship between PSD and PAC in M1. (A) Boxplots of PSD in the β frequency range 

(right), and in the γ frequency range (left) in patients and controls. Significant differences between 

groups are marked by asterisks. (B) Left: Non-significant correlation between power peak frequency at 

β range and peak PAC frequency for phase. Right: Non-significant correlation between power peak 

frequency at γ range and peak PAC frequency for amplitude. (C) Examples of comodulograms of PAC 

and the related β and γ power from patients. Left: Phase- and amplitude-frequency of the largest PAC 

are related to the β and γ power peak. Middle: Lack of PAC even when there is a clearly discernible β 

power peak. Right: The phase frequency and the amplitude-frequency of the largest PAC are not related 

to the β and γ power peaks. 
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Table 4.2 Correlation between PAC and PSD 

ROI β power vs. PAC γ power vs. PAC 
 

Contralateral side Ipsilateral side Contralateral side Ipsilateral side 
 

Patient Control Patient Control Patient Control Patient Control 

DLPFC p=0.322, 

R=0.31 

p=0.248, 

R=0.39 

p=0.248, 

R=-0.41 

p=0.937, 

R=0.04 

p=0.322, 

R=0.314 

p=0.248, 

R=0.47 

p=0.417, 

R=-0.24 

p=0.937, 

R=0.020 

PMC p=0.763, 

R=-0.10 

p=0.316, 

R=0.33 

p=0.587, 

R=-0.19 

p=0.763, 

R=0.07 

p=0.080, 

R=0.55 

p=0.080, 

R=0.52 

p=0.472, 

R=0.25 

p=0.272, 

R=0.38 

M1 p=0.423, 

R=-0.24 

p=0.326, 

R=0.30 

p=0.804, 

R=-0.06 

p=0.470, 

R=0.19 

p=0.060, 

R=0.59 

p=0.075, 

R=0.51 

p=0.075, 

R=0.52 

p=0.125, 

R=0.43 

BA3 p=0.585, 

R=-0.15 

p=0.208, 

R=0.35 

p=0.585, 

R=0.13 

p=0.500, 

R=0.209 

p=0.003, 

R=0.75 

p=0.003, 

R=0.71 

p=0.208, 

R=0.39 

p=0.147, 

R=0.44 

BA1&2 p=0.547, 

R=-0.20 

p=0.110, 

R=0.43 

p=0.605, 

R=0.13 

p=0.563, 

R=0.17 

p=0.016, 

R=0.64 

p=0.003, 

R=0.74 

p=0.110, 

R=0.43 

p=0.019, 

R=0.59 

ROI: Region of interest; PAC; phase-amplitude coupling; DLPFC: Dorsolateral prefrontal cortex; PMC: Premotor 

cortex; M1: Primary motor cortex; BA3: Broadman area 3; BA1&2: Broadman area 1&2. p values were corrected 

(for each ROI); significant p values (FDR p < 0.05) are marked in bold. 

4.4 Summary 

This chapter aims to demonstrate the spatial distribution of exaggerated β-broadband γ PAC 

on the cortex of PD patients from non-invasive EEG recordings at rest. By applying an 

advanced source localization algorithm, the present study has localized abnormal PAC in 

DLPFC, PMC, M1 and SS (including BA3, BA1&2) contralateral to clinically more affected 

body side of PD patients compared with healthy controls. The present findings appear to be the 

first to provide non-invasive evidence of abnormal PAC located in DLPFC and SS. This finding 

may indicate the role of DLPFC and SS in the pathophysiology of BGTC circuits of PD. 

Besides, we also found a relationship between the exaggerated PAC in M1 and the clinical 

severity as indicated by UPDRS III hemi-body scores, highlighting the significance of the 

abnormal coupling in the motor impairment of PD. However, we did not detect the enhanced 

PAC of PD patients at the EEG sensor level. This may suggest that source reconstruction helps 

to increase the signal-to-noise ratio and thereby enhances the chance for non-invasive detection 

of this biomarker. Furthermore, we found no consistent relationship between enhanced power 

and exaggerated PAC, which indicates that the exaggerated PAC in patients was not solely 

driven by spectral power.  

  



Enhanced phase-amplitude coupling in the resting state of patients with Parkinson’s disease 

58 
 

 



 

59 
 

 

 

Chapter 5  

Neural circuits contributing to abnormal phase-

amplitude coupling of Parkinson’s disease 

 

Based on: 

Spatiotemporal features of β-γ phase-amplitude coupling in Parkinson’s disease derived 

from scalp EEG 

Ruxue Gong1,2, Mirko Wegscheider1, Christoph Mühlberg1, Richard Gast2, Christopher 

Fricke1, Jost-Julian Rumpf1, Vadim Nikulin3, Thomas R. Knösche*2, Joseph Classen*1 

(*) co-corresponding authors 

 

1. Department of Neurology, Leipzig University Medical Center, Leipzig, Germany 

2. Method and Development Group Brain Networks, Max Planck Institute for Human Cognitive and 

Brain Sciences, Leipzig, Germany 

3. Research Group Neural Interactions and Dynamics, Department of Neurology, Max Planck Institute 

for Human Cognitive and Brain Sciences, Leipzig, Germany 

 

Published in Brain, Volume 144, Issue 2, February 2021, Pages 487–503, 

https://doi.org/10.1093/brain/awaa400 

 

5.1 Introduction 

In Chapter 4, we addressed the anatomical spatial distribution of abnormal β (13-30 Hz)-

broadband γ (50-150 Hz) phase-amplitude coupling (PAC) of patients with Parkinson’s disease 

(PD) in the resting state. This chapter continues to investigate the mechanisms of enhanced 

resting PAC in PD on a mesoscopic scale. We seek to elucidate the spatial relationship between 

PAC-involved β and γ activities and its relationship to the Parkinsonian motor impairment.  

Three main scenarios could underlie PAC between β and γ oscillations. First, the manifestation 

of the β-γ PAC could originate from a single non-sinusoidal oscillator of β rhythm, in which 

the fast activities are simply harmonic components of non-sinusoidal slow oscillations from 

Fourier transformation [192]. In the second scenario, both slow and fast activities are nested 

https://doi.org/10.1093/brain/awaa400
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and originate from a single oscillator, in which slow and fast rhythms are tightly phase coupled 

[193]. Furthermore, slow and fast activities may originate from relatively independent neural 

circuits co-located in the same brain region, in which β and γ networks are only weakly coupled. 

In this scenario, the β signal could only modulate the gain of the γ network, resulting in PAC 

without phase-phase coupling [131]. All of these scenarios may have important implications 

for the mechanisms of PAC and its pathophysiological significance. Previous research has 

demonstrated the role of non-sinusoidal β oscillations in the generation of exaggerated PAC 

[141]. However, it is still unknown whether non-phase-phase coupled activities could also 

cause exaggerated PAC in PD. Moreover, the three scenarios may be linked to distinct spatial 

patterns of the coupled activities. In the first two scenarios, the β and γ activities would be 

generated in the same network or two highly dependent networks (which then would essentially 

form a single network). In the latter scenario, the spatial distributions of these two oscillators 

could be different and, in principle, distinguishable via their dynamics. However, it is not a 

priori clear that they can be distinguished within the methodological limits of scalp 

electroencephalography (EEG). With the help of independent spatiotemporal components 

derived from the EEG source signals by source-space independent component analysis (ICA) 

in a local region, we aim to gain a more comprehensive understanding of the mechanism 

generating exaggerated PAC in PD at rest. 

5.2 Methods 

In Chapter 4, we have demonstrated exaggerated β-broadband γ PAC in the resting state of PD 

patients compared with healthy controls. The enhanced PAC was located in the dorsolateral 

prefrontal cortex (DLPFC), the premotor cortex (PMC), the primary motor cortex (M1), and 

the somatosensory cortex (SS, including primary somatosensory cortex [Broadman area 3, 

BA3] and primary somatosensory complex [Broadman area 1&2-BA1&2]), contralateral to the 

clinically more affected body side. Therefore, in this chapter, we focused on the spatiotemporal 

characteristics of the 5 brain regions. 

5.2.1 PAC calculation 

The detailed procedure for calculating PAC at the source level has been described in Chapter 

3 and 4. In general, we obtained source signals of components derived by source-space ICA in 

a local region of interest (ROI), the method that was described in Chapter 3, section 3.5.2. Then, 

for n ICA components in a ROI, we computed a single PAC value (averaged Kullback–Leibler 

modulation indexes [KL-MI] in the phase-frequency range from 13-30 Hz and amplitude-

frequency range from 50-150 Hz) for each component pair in order to create a n × n pairwise 
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PAC matrix among all component pairs (Chapter 4, section 4.2.3). The n × n pairwise PAC 

matrix of a ROI is shown in Fig. 5.1A. In Chapter 4, we obtained weighted average PAC value 

across the overall n × n pairs for each subject and performed the group comparison between 

patients and controls. In this chapter, to further investigate the function of subnetworks to the 

enhanced PAC, we segregated the PAC values in which the β and γ activities stem from 

different components or the same components. Then, for each subject in a specific region, we 

computed weighted averages of PAC values between different components as inter-component 

coupling (PACinter), and of PAC values from identical components as intra-component coupling 

(PACiden). 

5.2.2 Waveform analysis 

When estimating the strength of phase-phase coupling between β and γ activities, the common 

method is computing the n:m phase-locking value in which the β and γ phases and the ratio 

between the phases are directly defined [194, 195]. However, a direct phase definition is not 

feasible for broadband-γ activity since it is composed of many different frequencies. Thus, in 

order to test whether some of the γ-phases are indeed locked to the β-phase, we defined the 

phase-phase coupling between β and broadband-γ activities as the correlation of the γ signal 

with β-phase across β-cycles. For this, we applied the method of waveform analysis. 

To examine whether the PAC-involved γ activities were also phase-phase coupled to β 

activities, we generated averaged waveforms for γ activities (50-150 Hz, z-score normalized) 

time-locked to the β-phase (13-30 Hz, z-score normalized, then Hilbert transformed) zero 

crossings. We also averaged the envelopes of γ activities (from Hilbert transformation), time-

locked to the β-phase. For calculating the averaged waveforms, we extracted epochs of 160ms 

(a period of around 2 cycles at 13 Hz) from both signals centered at the β-peaks. To avoid 

overlapping, we used only every second epoch for averaging. The maximum amplitudes of the 

averaged waveforms in a β-cycle were identified as the phase-locked amplitude (PLA) to the 

β-phase. The mean PLA of component pairs represented PLA for each subject. The PLAs of γ 

oscillations were defined as PLAosci, while those of γ envelopes were defined as PLAamp. By 

comparing PLAosci and PLAamp within subjects, and between groups, we examined to which 

degree abnormal PAC in PD is accompanied by phase-phase coupling. 

5.2.3 The contributions of ICA components to PAC 

For each PAC value of a component pair, one ICA component provides the β-phase, and 

another (or the same) component provides the γ-amplitude. The overall contribution of a 

particular component to the β-phase information or γ-amplitude information in PAC of an ROI 
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can then be quantified by summing all PAC values that involve that component as a β-

contributor or as a γ-contributor, respectively. For each ROI, the values can be arranged in a 

matrix, as illustrated in Fig. 5.1A. In that matrix, the sum of each column represents the 

cumulative contribution of β-phases by the respective component, while the sum of each row 

represents the cumulative contribution of γ-amplitudes by the respective component. In order 

to obtain the relative contributions of a component to the β-phases and γ-amplitudes, 

respectively, these values were normalized to the sum of the entire PAC matrix of the ROI.  

Finally, to estimate the inequality of the relative contributions of ICA components to β-phases 

and γ-amplitudes of the observed PAC in an ROI, a Gini coefficient [196] was calculated in 

each case. As shown in Fig. 5.1B, the Gini coefficient is usually defined mathematically based 

on the Lorenz curve, which plots the proportion of the cumulative proportion of values in the 

y-axis obtained by the cumulative share of populations in the x-axis. Thus, the line at 45 degrees 

represents perfect equal distributions, while the extreme line at 90 degrees to the x-axis 

represents perfect inequality (Fig. 5.1B). The Gini coefficient can then be calculated as the 

ratio of the area between the line of equality and the Lorenz curve (Area A in Fig. 5.1B) over 

the total area under the line of equality (Area A and B in the Fig. 5.1B).  

Therefore, in our study, a high Gini coefficient indicates that the most contribution to the PAC 

comes from a few components, while a low Gini coefficient means that there are no such 

prominent contributors. By comparing the Gini coefficients between two groups, we 

circumvented the problem that ICA components differ between subjects, and this approach 

enabled us to investigate whether some subnetworks in the same ROI stand out among others 

with regard to their contribution to the β-phases and γ-amplitudes involved in the observed 

PAC of PD patients. 
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Figure 5.1 Methodology for the estimation of subnetworks contributions. (A) A pairwise PAC 

matrix across components in a ROI. For each subject, we computed single KL-MI values (average KL-

MI values in the phase-frequency range [13-30 Hz] and amplitude-frequency range [50-150 Hz]) for n 

× n component pairs to create a pairwise PAC matrix among n ICA components. Each column 

represents the KL-MI values when the respective component provided the β-phases. Each row 

represents the KL-MI values when the respective component provided the γ-amplitudes. (B) Diagram 

for the calculation of Gini coefficients. See text for more explanation. 

5.2.4 PAC weighted ICA topography 

Each ICA source component defines an independent network with a unique spatiotemporal 

pattern [197] on the individual cortical surface. For each ICA component, we computed the 

topography as the spatial distribution of absolute values of the ICA weights. To characterize 

the topographic distributions of sources contributing to β-phases and coupled γ-amplitudes for 

each subject, we computed the average ICA topographies (as ‘β-topography’ and ‘γ-

topography’, respectively) by averaging the topographies of all ICA components after 

weighting them according to their relative contributions to β-phases and γ-amplitudes, 

respectively. To compare the ICA topographies of the left or right hemisphere across subjects, 

they were mapped and morphed to the left hemisphere of a template source model from 

“fsaverage_sym”. Absolute Spearman correlation coefficients were calculated for each subject 

to compare the spatial similarity between the β- and γ-topography, and between subjects to 

estimate the spatial similarity of the topographies across subjects. 

5.2.5 Statistical analysis 

For statistical comparison, we applied nonparametric statistical tests (also introduced in 

Chapter 3, section 3.7). Specifically, we applied Wilcoxon non-parametric rank-sum tests for 

between-group comparisons and signed-rank tests for within-group comparisons.  We applied 
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false discovery rate correction to the p-values (FDR p-values<0.05) to deal with multiple 

comparisons. In addition, we applied Spearman correlation to investigate the relationship 

between PAC values and clinical scores indexed by part III of Movement Disorders Society 

Unified Parkinson’s Disease Rating Scale (MDS-UPDRS III). 

5.3 Results 

5.3.1 Enhanced PAC-involved oscillations are not solely phase-phase coupled 

While PAC indicates a coupling between γ-amplitude and β-phase, its presence does not imply 

nor exclude the possibility of additional phase-phase coupling. Therefore, we addressed this 

issue separately. The phase-phase coupling between PAC-involved β and γ activity can be 

distinguished when γ activity is averaged across epochs centred at a specific β-phase. This idea 

is illustrated in Fig. 5.2, which shows two cases. In both cases, the amplitude of high-frequency 

oscillation (HFO) is coupled to the phase of the low-frequency oscillation (LFO), but only in 

one case, there is additional phase-phase coupling between HFO and LFO. The average 

waveform of HFO in the non-phase-locked case results in a relatively flat waveform compared 

with that of the envelope of HFO, while the HFO is retained in the other case. In both cases, 

the shape of the envelopes is similar to the phase-amplitude distribution which is used for 

calculating PAC as indicated by KL-MI values. Therefore, the largest amplitude of the 

averaged waveform can be used for estimating the phase relationship between PAC-involved 

activities.  

 

Figure 5.2 Simulation of phase-locked and non-phase-locked conditions on PAC-involved 

oscillations. Left: Two oscillatory signals in which the amplitude of the high-frequency oscillation 

(HFO, red) is coupled to the peak of the low-frequency oscillation (LFO, black). In the upper case, the 

phase relation between both signals varies over time, whereas in the bottom case, the HFO is phase-

locked to the LFO. Middle: The varying phase relation (upper case) results in a relatively flat average 

waveform (red) of the LFO, when compared with the average of the instantaneous envelope of HFO 

(blue). By contrast, in the bottom part, the HFO is retained when it is phase-locked to the LFO. Right: 

In both cases, the KL-MI values are identical. 
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The results in M1 revealed that the PLAamp was larger than PLAosci both in the contralateral 

(Fig. 5.3A, left) and ipsilateral hemispheres for each subject, which rules out that γ and β 

activities were completely phase-phase coupled in both patients (FDR p < 0.001) and controls 

(FDR p < 0.001). In addition, in the contralateral hemisphere (Fig. 5.3A, left), we found no 

significant difference of PLAosci between patients and controls (FDR p = 0.399), but a 

significant difference in PLAamp (FDR p = 0.005). We found no significant difference between 

the two groups in either PLAosci (FDR, p = 0.189) or PLAamp (FDR, p = 0.479) in the ipsilateral 

hemisphere. Correlation analysis revealed no significant correlation between PAC and the 

PLAosci (Fig. 5.3A, middle) in patients (FDR p = 0.278) and controls (FDR p = 0.456) in the 

contralateral hemisphere, but a significant positive correlation between PAC and the PLAamp 

(Fig. 5.3A, right), both in patients (FDR p < 0.001, R = 0.80) and controls (FDR p = 0.016, R 

= 0.58).  

 

Figure 5.3 Waveform estimation of PLA. (A) Experimental results on PLA in M1 on the contralateral 

hemisphere. Left: Paired plot showing that PLAosci (PLA of γ oscillations) was always lower than 

PLAamp (PLA of γ envelopes) within subjects. Furthermore, PLAamp were significantly larger in patients 

than in controls. Significant differences are marked by asterisks. Middle: No significant correlation of 

PLAosci vs. mean PAC in patients and controls. Right: Significant correlation of PLAamp vs. mean PAC 

in patients (red line) and controls (black line). (B) Experimental results on PLA in BA3 on the 

contralateral hemisphere. Left: Paired plot showing that PLAosci were always lower than PLAamp in 

patients and controls. Furthermore, PLAamp was significantly larger in patients than in controls. 

Significant differences between patients and controls are marked by asterisks. Middle: Significant 

correlation of PLAosci vs. mean PAC in patients (red line) but not in controls. Right: Significant 

correlation of PLAamp vs. mean PAC in patients (red line) and controls (black line). Lines are only 

displayed if the correlation was statistically significant. 

The results for DLPFC and PMC were highly similar to M1, but slightly different from SS (Fig. 
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5.3B). In SS, the PACosci was also correlated with PAC in patients, which indicates that the 

phase-coupled β and γ activities also contribute to the generation of PAC. However, even in 

the SS areas, the PLAosci values are still lower than PLAamp values (FDR p < 0.001). These 

findings demonstrate that PAC-involved β and γ activities are not completely phase-phase 

coupled, and PAC between β and γ activities that are not strictly phase-phase coupled becomes 

stronger in the pathological state. 

5.3.2 Subnetworks contributing to PAC 

We further characterized abnormal PAC by investigating whether the enhanced PAC of 

patients could be caused by β and γ activities from different ICA components. We segregated 

the KL-MI values of phase-amplitude pairs originating from two different components 

(PACinter) and those from the same component (PACiden). The results are shown in Fig. 5.4. 

Compared with controls, in the contralateral hemisphere of patients (Fig. 5.4B), significantly 

enhanced PACiden was found in DLPFC (FDR p = 0.018), PMC (FDR p = 0.006), M1 (FDR p 

= 0.016), BA1&2 (FDR p = 0.026), and in BA3 (FDR p = 0.074), where the difference was 

marginally significant. In addition, we found a significant difference of PACinter between 

patients and controls in all 5 ROIs (FDR corrected, DLPFC: p = 0.001, PMC: p = 0.001, M1: 

p = 0.001, BA3: p = 0.001, BA1&2: p = 0.001, Fig. 5.4A). Although KL-MI values were 

relatively higher when phase-amplitude pairs were from identical components, we also found 

the couplings between different components to be enhanced in patients compared with controls. 

This result indicates that the PAC-involved β and γ activities could be generated from different 

subnetworks, which provides support for our conclusion that abnormally enhanced coupling 

comprises distinct subnetworks in at least the 5 brain regions of patients. 

 

Figure 5.4 PAC computed on identical or different ICA components. (A) PAC differences for all 

ROIs between patients and controls from interactions between different components. (B) PAC 

differences for all ROIs between patients and controls from identical ICA components, in the 

contralateral hemisphere. Significant differences between groups are marked by asterisks. 

In Chapter 4, we reported that the overall PAC (no segregation between component pairs within 
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a given region) is significantly correlated with MDS-UPDRS III hemi-body scores in M1, but 

not in the other 4 ROIs. In this chapter, we also investigated the relationship between the 

severity of motor impairment of PD patients and the PAC generated from either identical 

components or from the interaction between different components, respectively. Therefore, we 

computed the correlations between clinical scores and PACinter as well as PACiden, as displayed 

in Fig. 5.5. PACinter showed a significant correlation with UPDRS III hemi-body scores in PMC, 

M1, BA3, and BA1&2. However, we did not find a significant correlation between clinical 

scores and PACiden in any of the 5 ROIs. Moreover, we did not find any significant correlation 

between PAC values from DLPFC and clinical scores. 

 

Figure 5.5 Correlation between PAC and clinical scores of the 5 ROIs. Upper: Correlation between 

mean PAC from the interaction between different components (PACinter) and MDS-UPDRS III hemi-

body scores. Bottom: Correlation between mean PAC from identical components (PACiden) and MDS-

UPDRS III hemi-body scores. Correlation coefficients and the corresponding p-values are also shown. 

p values were corrected (for each ROI). Significant p values are marked by an asterisk. Black lines 

designate statistically significant correlations. 

5.3.3 The contributions of subnetworks to enhanced PAC 

Since PACinter was correlated with the clinical severity, we asked whether the enhanced PACinter 

in patients resulted from the abnormal enhancement of all or just a few dominant components. 

Since ICA components are generally different across subjects, this question cannot be 

examined directly. However, the pathological dominance of a subset of components in patients 

can be inferred indirectly by comparing the distribution of relative contributions of components 

to PAC between groups. An abnormal contribution of only a subset of components in patients 

would be likely if the relative contributions of components were more unevenly distributed in 

patients than in controls. By contrast, if there were no outstanding contributors to the PAC 

enhancement in patients, the contributions of ICA components to the β-phases or γ-amplitudes 
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of PAC would be similarly distributed in patients and controls. The evenness/unevenness of 

the distribution can be estimated by the Gini coefficient, a metric widely used in social statistics 

(see Methods section 5.2.3). Since the enhanced PAC in patients was more robust in the 

contralateral hemisphere, this analysis was done on that hemisphere. 

As shown in Fig. 5.6, Gini coefficients in the sensorimotor cortex were significantly different 

between patients and controls, suggesting that the contributions of different ICA components 

to the β-phases (FDR corrected, M1: p = 0.005, BA3: p = 0.028, BA1&2: p = 0.008) and γ-

amplitudes (FDR corrected, M1: p = 0.044, BA3: p = 0.040, BA1&2: p = 0.030) depended on 

the disease state. DLPFC and PMC showed significant differences between patients and 

controls in terms of contributions to β-phases (FDR corrected, DLPFC: p = 0.047; PMC: p = 

0.017), although not the contributions to γ-amplitudes (FDR corrected, DLPFC: p = 0.407; 

PMC: p = 0.089). This finding indicates that, compared with relatively equivalent contributions 

of subnetworks to PAC in controls, a relatively small number of subnetworks in the prefrontal 

and sensorimotor areas of patients contribute β-phases or γ-amplitudes to exaggerated PAC. 

 

Figure 5.6 Gini coefficients regarding subnetworks contributions to β-phases and γ- amplitudes 

in DLPFC, PMC, M1, BA3, and BA1&2. (A) Boxplot of Gini coefficients comparing the inequality 

of contributions of ICA components to β-phases between patients and controls. (B) Boxplot of Gini 

coefficients comparing the inequality of contributions of ICA components to γ-amplitudes between 

patients and controls. Significant differences between patients and controls are marked by asterisks. 

Besides, the Gini coefficients of both patients and controls in all the five regions also showed 

significant correlations with the PAC strengths, regardless of the coefficients to β-phases or γ-

amplitudes, as shown in Table 5.1. These findings indicate that the enlarged PAC is related to 

enhanced contributions from a few subnetworks in at least those five regions.  
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Table 5.1. Correlation between PAC and Gini coefficients 

ROI Gini coefficients of contributions to  

β-phases vs. PAC 

Gini coefficients of contributions to  

γ-amplitudes vs. PAC 

 Patients Controls Patients Controls 

DLPFC p<0.001, 

R=0.81 

p<0.001, 

R=0.80 

p=0.001*, 

R=0.71 

p=0.053, 

R=0.44 

PMC p=0.003, 

R=0.68 

p<0.001, 

R=0.75 

p=0.026, 

R=0.51 

p=0.001, 

R=0.71 

M1 p=0.002, 

R=0.73 

p=0.033, 

R=0.48 

p=0.011, 

R=0.61 

p<0.001, 

R=0.77 

BA3 p<0.001, 

R=0.90 

p=0.002, 

R=0.67 

p=0.002, 

R=0.69 

p<0.001 

R=0.79 

BA1&2 p<0.001, 

R=0.83 

p=0.004, 

R=0.63 

p=0.003, 

R=0.68 

p=0.002 

R=0.69 

ROI: Region of interest; PAC: Phase-amplitude coupling; DLPFC: Dorsolateral prefrontal cortex; PMC: Premotor 

cortex; M1: Primary motor cortex; BA3: Broadman area 3; BA1&2: Broadman area 1&2. p values were corrected 

(for each ROI); significant p values (FDR p < 0.05) in marked in bold.  

5.3.4 The spatial organization of subnetworks 

Finally, we examined how the networks contributing to β-phases and γ-amplitudes involved in 

PACinter were spatially organized on a local scale. As introduced in the Methods section, we 

studied the ‘β-topography’ and ‘γ-topography’ for each subject in the contralateral hemisphere. 

The β-topography and γ-topography in a local region represent the averages of the spatial 

distributions of the ICA components, after weighting them by their respective contributions to 

the PAC in terms of β-phases and γ-amplitudes. Fig. 5.7 illustrates examples of β-topographies 

and related γ-topographies of the 5 ROIs. The example shows a similar but not identical spatial 

pattern between both topographies within each ROI. 

 

Figure 5.7 Examples of weighted average β-topographies and the corresponding γ-topographies 

of the 5 ROIs. ICA weights were z-score normalized. Note that the spatial patterns are similar between 

β- and γ-topographies within the ROIs but not completely identical.  

For statistic estimation of the spatial similarity between β- and γ-topographies within each 
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subject in each of the five brain regions, we computed the spatial similarity for each subject, 

which is displayed in the histograms (Fig. 5.8). In M1, the results showed that the β- and γ-

topographies for each individual were highly spatially correlated, both in patients (R = 0.96 ± 

0.03) and in controls (R = 0.98 ± 0.02). The other four regions showed similar results. However, 

there was a strong tendency for the β-γ topographic similarities of patients to be reduced in M1 

compared with controls (Wilcoxon rank-sum test, p = 0.051). This observation indicates that 

abnormally enhanced interactions became more prevalent between a few spatially distinct 

subnetworks in patients than in controls. The lower spatial similarity within patients was also 

observed in BA1&2 (p = 0.026), but not in the other 3 regions.  

 

Figure 5.8 The spatial similarity between β- and γ- topographies in 5 ROIs. Histogram of Spearman 

correlation coefficients of 5 ROIs showing raw correlation values between β- and γ-topographies for 

patients and controls (the dash lines represent the median value of each group). The spatial similarity 

between β- and γ- topographies is significantly lower in M1 and BA1&2 of patients than controls, while 

not in the other 3 ROIs. The scatter plots show significant correlations between β-γ topographic 

similarity and Gini coefficient of component contributions to β-phases and γ-amplitudes (red and black 

lines indicate statistically significant correlations) in all 5 ROIs.  
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However, the β-γ topographic similarities were negatively correlated with the Gini coefficients 

for component contributions to γ-amplitudes as well as to β-phases in all five regions (Fig. 5.8), 

which indicates that the more inhomogeneous the contributions of subnetworks to the enhanced 

PAC, the more pronounced the difference between source distributions providing β-phases and 

γ-amplitudes. 

Furthermore, when estimating the topographic similarity across subjects in M1 (Fig. 5.9), we 

found that both the similarities of β-topographies among patients (median R = 0.30) and 

controls (median R = 0.25) were low, and similar findings were detected in terms of the 

similarities of γ-topographies among patients (median R = 0.30) and controls (median R = 0.24). 

The other 4 ROIs also showed similar results. These findings indicate that there was no 

consistent spatial pattern of β-γ PAC across subjects. 

 

Figure 5.9 Histograms of Spearman correlation coefficients of weighted average topographies in 

M1 across subjects. Note the large variability of similarities of topographies across subjects. Black 

dashed lines represent the median coefficient of each distribution and show low similarity among 

subjects. 

5.4 Summary 

This chapter goes a step further from macroscopic level to mesoscopic level, investigating the 

temporal and spatial organization of β and γ activities involved in the generation of exaggerated 

PAC in the resting state in the 5 ROIs (i.e., DLPFC, PMC, M1, BA3, BA1&2) of PD patients. 

We demonstrated that the PAC-involved β and γ activities were not strictly phase-phase 

coupled, which suggests that two different, not rigidly coupled, oscillators producing β and γ 

activities may play a role in the generation of exaggerated PAC of patients in the resting state. 
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It was further demonstrated that PAC interactions, involving both identical and spatially 

distinct components, could distinguish patients from healthy controls in at least the 5 ROIs. In 

addition, a relationship with the clinical motor severity as indexed by UPDRS III hemi-body 

scores was only found for the couplings between different components, highlighting the 

pathophysiological significance of inter-component coupling. Moreover, we only found 

significant correlations in PMC, M1, BA3, and BA1&2, but not in DLPFC, which may 

underscore the specificity of the PAC phenomenon to motor control functions. The 

investigation on the contributions of components to PAC-involved β and γ activities by Gini 

coefficients showed that only a relatively small number of spatiotemporal components 

contribute to enhancing the inter-component PAC of patients. Interestingly, the unequal 

contribution of components to the enhanced PAC was associated with larger discrepancies 

between the spatial distribution of sources generating PAC-involved β-activities and γ-

activities. This finding may suggest that the abnormal enhancement of PAC in PD reflects the 

abnormal dominance of a relatively small number of coupled subnetworks. Moreover, we did 

not find a uniform pattern of PAC-weighted topographies across patients or controls – which 

may be due to physiological heterogeneity – emphasizes the importance of individualized 

treatment of PD. 
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6.1 Introduction 

In Chapters 4 and 5, we have investigated the features of phase-amplitude coupling (PAC) at 

rest. However, it is still unclear how abnormal PAC is involved in the pathophysiology of 

Parkinsonian motor symptoms. In order to understand the functional role of PAC during 

movement and its direct relationship with motor impairment of patients with Parkinson’s 

disease (PD), it is crucial to have a view about the behavioural abnormalities of PD patients in 

advance. 

The behavioural abnormalities of PD patients have been investigated for decades. Slowing and 

amplitude decrement in repetitive movements represent cardinal manifestations of 

bradykinesia of PD patients [146]. Experiments have also confirmed that the reaction time can 

https://medrxiv.org/cgi/content/short/2021.07.26.21261085v1
https://doi.org/10.1152/jn.00541.2021
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be prolonged due to the pre-movement excitability increasing more slowly in patients than in 

normal subjects [198]. However, not all studies show such a difference in reaction time [187]. 

Moreover, not all movement parameters are actually abnormal in patients, such as, the tapping 

rate when asked to tap at the most comfortable pace [199]. Besides, it has also been reported 

that external sensory inputs may help patients to improve their performance [200, 201]. It 

seems that voluntary repetitive movements rather than cued movements would be more related 

to the cardinal motor symptoms of PD. 

A unifying pathophysiological mechanism should reflect the behavioural pattern, i.e., it should 

be abnormal during abnormal motor behaviour and normal during normal motor behaviour. 

Therefore, in this study, we designed multiple self-paced, repetitive movement tasks involving 

different movement patterns, movement rates, and the presence of movement-related feedback. 

We used these tasks to gain a more comprehensive understanding of the status of abnormal and 

normal movement patterns in our group of PD patients when performing voluntary movements, 

as well as the relation of their motor performance to their clinical assessment. This study is an 

essential premise for investigating the characteristics of PAC during the movement of PD 

patients. 

6.2 Methods 

The description of the movement tasks has been introduced in Chapter 3, section 3.2. Briefly, 

we conducted three different types of repetitive voluntary movement tasks, which consist of a 

pressing task (repetitive press-release actions), slow tapping tasks (repetitive tapping at 

subjects’ comfortable rate), and fast tapping tasks (repetitive tapping at subjects’ fastest rate). 

We designed each of the tapping tasks in two conditions. The conditions differed in the absence 

or presence of feedback on whether the index finger extension had met the upper height 

criterion (upper photoelectric sensor). We recorded the digital signals produced by the device 

for movement measurement as introduced in Chapter 3. The signal acquisition schematic is 

shown in Fig. 6.1A. 

6.2.1 Performance estimation 

In each tapping task, motor performance was indexed by tapping rate, tapping variability, and 

the completion ratio. The mean tapping rate was calculated in each tapping task as the number 

of all index finger extensions crossing the lower light beam per second. The tapping variability 

was calculated as the standard deviation of the normalized movement intervals across a trial. 

A larger standard deviation means a greater inter-tap-variability of the tapping movements. The 
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movement intervals were obtained as the time intervals between adjacent movement onsets of 

each trial. Concerning the variation of movement rates between subjects, time intervals were 

normalized to the maximum interval in a trial. We finally computed the mean tapping 

variability across trials per task for each subject. The completion ratio was computed as the 

ratio of index finger extensions reaching the level of the upper photoelectric sensor divided by 

the total number of index finger extensions in a task.  

Based on the completion ratio, we further evaluated the degree of decrement of tapping 

amplitude in tapping tasks. The decrement of amplitude can be evaluated on two scales: the 

decrement within and across trials in a task. The decrement within a trial was defined as the 

decrease of tapping amplitude over one trial. To estimate the decrement, the trials were first 

divided into 12 time bins in the slow and the fast tapping task (the first 12 s). Decrement was 

then defined as a decrease of the completion ratios from the first to the twelfth time bin in a 

trial. We evaluated the decrement by estimating the effect of time bin on the completion ratios 

in a mixed model (completion ratios ~ time bin + random(1|SubjectID)). To compare the 

decrements in the slow and fast tapping tasks over identical time spans, we also calculated 

completion ratios for each 1 s time bin during the first 12 s of slow tapping. 

The decrement across trials was defined as the continuous decrease of the averaged completion 

ratios across trials within a task. In this case, we computed the completion ratio of each trial (6 

trials in slow tapping and 10 trials in fast tapping) for each participant. The decrement across 

trials was also evaluated in a mixed-effect model (Completion ratios ~ Trial No. + 

random(1|SubjectID)).   

6.2.2 Electromyography (EMG) signal processing 

The EMG signals were first preprocessed together with the EEG signals in the procedures of 

demeaning, high pass filtering at 0.5 Hz, and artifacts detection (also refer to Chapter 3). We 

then applied a broad bandpass filter (5-200 Hz) as well as notch filters (50 Hz and its harmonics) 

to the EMG signals. The EMG signals were then segmented into 3 s epochs, starting with 1 s 

before the mechanical movement onset (lower photoelectric sensor) to 2 s after the mechanical 

movement onset. We obtained the smoothed EMG signals by applying a 5th order Butterworth 

low pass filter at 5 Hz to the rectified signals. For each subject, the EMG signals were averaged 

across epochs. Based on the mean EMG signal of each subject, we calculated the EMG slope 

as the slope between the 25% and 75% percentile of the normalized EMG amplitudes close to 

the mechanical onset (as shown in Fig. 6.1B). EMG signals were z-score normalized before 

computing the EMG slope to compensate for individual variability of EMG amplitudes. 



Abnormal repetitive finger tapping of patients with Parkinson’s disease 

76 
 

 

Figure 6.1 Schematic diagram of performance estimation. (A) Example digital signals of the 

pressing and slow tapping tasks. Top: Example digital signals indicating the force of repetitive pressing. 

Bottom: Example digital signals indicating the finger extension during rhythmic tapping. Note that the 

device was not recorded beyond the upper thresholds (either maximum force in pressing task and upper 

amplitude threshold in tapping task). (B) The estimation of the EMG slope, defined as the slope of the 

blue line connecting the 25% and 75% percentiles (red dots) of the normalized EMG signal closest to 

the mechanical onset of tapping. 

6.2.3 Statistical analysis 

We applied Wilcoxon non-parametric rank-sum tests for between-group comparisons and 

signed-rank tests for within-group comparisons. To investigate the effects of factors, especially 

the effects of Group and Feedback on the performance in the tapping tasks, we applied a 

nonparametric ANOVA as described in Chapter 3 (Section 3.7). We applied Spearman 

correlation to compute the correlation between performance and clinical scores indexed by part 

III of Movement Disorders Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS 

III). False discovery rate correction (FDR, p < 0.05) was applied for multiple comparisons. 

6.3 Results 

6.3.1 Performance in pressing task 

We estimated the performance reflected by the mean movement rate and the characteristics of 

the EMG signals. Patients and controls performed presses and releases at similar rates (patients, 

0.33 ± 0.08 /s; controls, 0.31 ± 0.09 /s; p = 0.633; Fig. 6.2A). Regarding the characteristics of 

the EMG signals, we found no differences in EMG maximum amplitudes between patients and 

controls (p = 0.684, Fig. 6.2B). We also estimated the EMG slopes associated with pressing 

and releasing. In both cases patients could perform as normal as controls (press: p = 0.527; 

release: p > 0.99, Fig. 6.2C). 
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Figure 6.2 Performance estimation in pressing task. (A) Bar plot showing mean movement rates. (B) 

Boxplot showing maximum EMG amplitudes. (C) Boxplot showing EMG slope during index finger 

pressing (left) and releasing (right). No differences between patients and controls were found. 

6.3.2 Performance in slow tapping tasks 

To evaluate performance in the slow tapping tasks, we applied a two-way mixed ANOVA with 

the factors Group (2 levels, patients and controls) and Feedback (2 levels, with or without 

feedback) on the three performance parameters (mean tapping rate, tapping variability, and 

completion ratio). The tapping rate was slightly higher in patients compared with controls 

(main effect: Group, F(1,37) = 4.68, p = 0.037, Fig. 6.3A, left). With visual feedback, the 

tapping rate increased in both groups (main effect: Feedback, F(1,37) = 14.63, p < 0.001), 

probably through an effect of pacing by the visual feedback. As for the tapping variability, we 

did not find any differences between patients and controls (main effect: Group, F(1,37) = 0.19, 

p = 0.667, Fig. 6.3A, middle), and the group comparison was not affected by feedback (main 

effect: Feedback, F(1,37) = 0.11, p = 0.74). However, in terms of the averaged completion ratio 

in the slow tapping task, we found a significant interaction effect between Group and Feedback 

(F(1,37) = 8.91, p = 0.005, Fig. 6.3A, right). As shown in the right panel of Fig. 6.3A, although 

post-hoc testing revealed that the completion ratio increased with visual feedback in patients 

(p = 0.005), but not in controls (p = 0.081), no significant differences were found between 

patients and controls in either the without-feedback (p = 0.115) or the with-feedback condition 

(p = 0.220). 

The decrement of the tapping amplitude within a trial, defined as the decrease of completion 



Abnormal repetitive finger tapping of patients with Parkinson’s disease 

78 
 

ratio along with the time bins within a trial of each task, was evaluated for tapping without 

visual feedback. Mixed ANOVA analysis on the completion ratio in the sequence of 12 time 

bins within a 30 s trial revealed an interaction between Group and Time Bins in the slow 

tapping task (F(11,407) = 7.19, p < 0.001). Subsequently, we evaluated the decrement trend by 

computing the mixed-effects model ‘Completion ratio ~ Time bin + random(Subjects)’, 

separately for patients and controls. Patients showed a significant effect of Time Bin on the 

completion ratio in slow tapping (t(226) = -4.69, p < 0.001, FDR corrected), whereas in controls, 

the completion ratio increased with time (t(198) = 3.87, p < 0.001, FDR corrected). However, 

when we only considered the first 12s of the tapping for comparison to the fast tapping task, 

the decrease of the completion ratio during a trial was not present in patients (t(226) = -1.58, p 

= 0.115; Fig. 6.3B, left). 

Furthermore, the comparisons between groups revealed significant differences (after FDR 

correction) in completion ratio in 4 out of the 6 trials (Fig. 6.3B, right). The decrement of 

tapping amplitude across trials was then evaluated by a mixed-effect model ‘Completion ratio 

~ Trial No. + random(Subjects)’ for patients and controls, respectively. The result showed that 

for both patients (t(112) = -1.96, p = 0.106, FDR corrected) and controls (t(118) = 0.87, p = 

0.383, FDR corrected), there was no significant effect of trial order in the completion ratios, 

which suggests that the differences of completion ratios of trials between patients and controls 

were not caused by the decrement of tapping amplitude over trials in slow tapping tasks. 

We also investigated the features of EMG signals in the slow tapping tasks. Patients and 

controls showed no significant differences in the maximum amplitude (p=0.922; Fig. 6.3C, 

left). However, regarding the EMG slope at the tapping onset (index finger extension), we 

found a significantly lower EMG slope in patients compared with controls (FDR corrected, p 

< 0.001; Fig. 6.3C, middle). The EMG slope associated with finger flexion did not significantly 

differ between patients and controls (FDR corrected, p = 0.133; Fig. 6.3C, right).  
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Figure 6.3 Performance estimation in slow tapping tasks. (A) Bar plots showing the tapping rate 

(left), tapping variability (middle), and completion ratios (right) between patients and controls (dotted 

– without feedback, hatched - with feedback). (B) Error bar plots showing the decrement of tapping 

amplitude within a trial as represented by the completion ratios in the sequence of time bins in the first 

12 s within a trial (left), and decrement across trials as represented by the completion ratios in the 

sequence of trials in slow tapping task without feedback (right). (C) Characteristics of EMG signals in 

slow tapping tasks, showing no significant difference of maximum EMG amplitude between patients 

and controls (left), a significant difference in the EMG slope regarding index finger extension (middle), 

and no significant difference of EMG slope regarding index finger flexion (right). 

6.3.3 Performance in fast tapping tasks 

We also applied the ANOVA analysis to the fast tapping tasks to estimate the effects of Group 

and Feedback on the subjects’ tapping variability, tapping rate, and mean completion ratio. 

Regarding the test of tapping rate, we found no interaction effects between the Group and 

Feedback (F(1,37) = 0.91, p = 0.34). Instead, patients had a lower tapping rate in fast tapping 

compared with controls (main effect: Group, F(1,37) = 18.22, p < 0.001, Fig. 6.4A, left). 

Tapping rate increased with visual feedback (main effect: Feedback, F(1,37) = 9.46, p = 0.004) 

for all subjects. Tapping variability was higher during fast tapping in patients compared with 
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that of controls (main effect: Group, F(1,37) = 14.33, p < 0.001, Fig. 6.4A, middle), while 

visual feedback had no effects on the tapping variability (main effect: Feedback, F(1,37) = 0.68, 

p = 0.416). Besides, ANOVA analysis on completion ratio showed a significant interaction 

effect between Group and Feedback (F(1,37) = 8.65, p = 0.006, Fig. 6.4A, right). Post-hoc tests 

(Fig. 6.4A, right) revealed that the completion ratio in patients was lower than in controls, both 

without feedback (p = 0.021) and with feedback (p = 0.013). Besides, with visual feedback, 

patients increased the completion ratio to a greater extent than controls (Fig. 6.4A, right).  

With respect to the decrement within a trial, the mixed ANOVA analysis on the completion 

ratio in the sequence of the first 12 s within a trial revealed an interaction between Group and 

Time Bins in the fast tapping task (F(11,407) = 3.05, p<0.001), as shown in the left panel of 

Fig. 6.4B. In order to evaluate whether there is a decrease of completion ratio over time points, 

we computed the mixed-effects model ‘Completion ratio ~ Time Bin + random(Subjects)’ 

separately for patients and controls. Patients in this case still showed a significant effect of 

Time Bin on the decrease of the completion ratio in fast tapping (t(226) = -5.45, p < 0.001, 

FDR corrected).  

Comparing the completion ratios over 10 trials in the task, patients also showed a significantly 

lower completion ratio compared with controls in the last 4 trials (Fig.6.4B, right). By 

estimating the decrement across trials using mixed-effects model ‘Completion ratio ~ Trial No. 

+ random(Subjects)’, we found that the sequence of trials has significant effects on the 

completion ratio in patients (t(188) = -5.61, p < 0.001, FDR corrected) but not in controls (t(198) 

= 0.25, p = 0.804, FDR corrected). The above findings suggest that, in fast tapping tasks, 

patients show a marked decrement of tapping amplitude both within a trial and across trials 

compared with controls. 
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Figure 6.4 Performance estimation in fast tapping tasks. (A) Bar plots showing the tapping rate 

(left), tapping variability (middle), and completion ratios (right) between patients and controls (dotted 

– without feedback, hatched - with feedback). (B) Error bar plots showing the decrement of tapping 

amplitude within a trial as represented by the completion ratios in the sequence of 12 time bins within 

a trial (left), and decrement across trials as represented by the completion ratios in the sequence of 10 

trials in fast tapping task without feedback (right). 

6.3.4 The relationship between performance features and clinical severity 

We explored the relationship between various abnormal performance metrics in the tapping 

tasks and the clinical severity of motor impairment in PD patients as indexed by the hemi-body 

bradykinesia and rigidity scores from MDS–UPDRS III. The EMG slope at tapping onset in 

slow tapping was significantly correlated with the clinical scores (Fig. 6.5, left, p=0.015, R=-

0.55). There was a tendency of negative correlation between the tapping rate in fast tapping 

without feedback and the bradykinesia and rigidity hemi-scores (Fig. 6.5, right, p=0.079, R=-

0.41). We did not find any correlation between tapping variabilities and clinical scores. Besides, 

bradykinesia and rigidity hemi-scores were not correlated with the decrement within a trial 

(computed as the difference of the completion ratios between the 1st and 12th time bins), neither 

were they correlated with the decrement across trials. 
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Figure 6.5 Correlation between performance and hemi-body bradykinesia and rigidity scores 

from MDS–UPDRS III. Left: The scatter plot shows a significant correlation between EMG slope of 

index finger extension in the slow tapping task and clinical scores. Right: The scatter plot shows a 

marginally significant correlation between tapping rate in fast tapping without feedback and clinical 

scores. 

6.4 Summary 

This chapter comprehensively investigated the behavioural characteristics and the EMG signals 

in the three forms of self-paced repetitive movements (pressing, slow tapping, and fast tapping) 

in PD patients compared with healthy controls. In the pressing task, PD patients have the ability 

to perform press-release actions as normal as healthy persons. By contrast, patients exhibited 

motor abnormalities in the tapping tasks. In slow tapping, even though the tapping rate was 

even higher in patients than in controls, evidence for the slowness of the movement was 

manifested by the reduced EMG slope during finger extension, which indicated that PD 

patients have difficulties recruiting muscles to initiate finger extension. Regarding the 

performance in fast tapping, the motor impairment of PD patients did significantly reduce the 

tapping rate and increased tapping variability. As expected, the slowness of movement 

execution in patients – kinetically indexed by reduced EMG slope in slow tapping task, and 

slower tapping rate in fast tapping task – was evident to correlate with clinical scores evaluating 

bradykinesia and rigidity. Moreover, in contrast to healthy controls, PD patients showed a 

decrement of tapping amplitude, especially when tapping at their fastest rates. In addition, we 

also found that the colour feedback could help both patients and controls to improve their 

tapping performance in meeting the amplitude criterion, even under faster tapping speed. In 

summary, the motor disabilities of PD patients manifest themselves differently in different 

types of voluntary repetitive movements. In our study, PD patients presented more behavioural 

abnormalities in repetitive tapping movements than repetitive pressing movements.  
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7.1 Introduction 

Chapter 4 and Chapter 5 have demonstrated the enhanced β-broadband γ phase-amplitude 

coupling (PAC) in the motor control regions from recordings via scalp electroencephalography 

(EEG) during the resting state of patients with Parkinson’s disease (PD), suggesting that it 

could be considered as a pathophysiological biomarker of PD. However, even though the 

exaggerated PAC in the resting state was confirmed to be associated with clinical severity of 

motor impairment indexed by clinical scores in our study and the previous literature [134], we 

still lack evidence regarding the direct relationship between PAC and the impaired motor 

performance of PD patients. Therefore, it is crucial to investigate the features of PAC during 

movement. 

https://medrxiv.org/cgi/content/short/2021.07.26.21261085v1
https://doi.org/10.1152/jn.00541.2021
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It has been reported that movement-related PAC derived from recordings of local field 

potentials (LFP) from the subthalamic nucleus (STN) and globus pallidus externa (GPe), as 

well as from electrocorticography (ECoG) recordings in the sensorimotor areas of PD patients 

was reduced compared with that from the resting state [136, 140, 187, 202]. Furthermore, brain 

stimulation-induced acceleration of movement during a complex reaching and tracking task 

was associated with reduced cortical movement-related PAC [140]. These observations appear 

to provide circumstantial evidence that bradykinesia of PD patients is related to persistently 

enhanced PAC during movement. However, PAC derived from scalp EEG during a verbally 

cued intermittent hand opening/closing task did not differ between patients in the off-

medication state and healthy subjects [139]. Even in the studies reporting persistent PAC 

enhancement during movement, the relationship between the strength of PAC and the motor 

impairment remained unclear since none of the studies reported whether the execution of the 

movements was actually impaired in PD patients [118, 136]. Because abnormalities of 

movement-related PAC may not become apparent until kinematic abnormalities occur, the lack 

of information on kinematics means that it is unknown how PAC is involved in the 

pathophysiology of movement disorders. On the other hand, there is a possibility that not the 

overall strength of PAC, but its dynamics during the movement, is related to the production of 

behavioural abnormalities. Several studies in patients with non-movement disorders [133, 203] 

and in PD patients [187] suggest that PAC might be involved in the regulation of motor control. 

However, the question how it is incorporated into the pathophysiology of bradykinesia has not 

been solved. 

In Chapter 6, we have demonstrated that PD patients could perform as normal as healthy 

subjects in repetitive pressing tasks, while they showed behavioural abnormalities when 

performing tapping tasks. In this chapter, we aim to investigate the functional role of PAC 

related to the movement dynamics and the relationship between PAC and various forms of 

movement behaviour in PD that differ concerning whether or not they are abnormal. 

7.2 Methods 

7.2.1 EEG signal recording 

The characteristics of participants and experimental procedures have been described in Chapter 

3, Section 3.1-3.4. In this chapter, we used the recordings of all six conditions conducted in our 

experiment (i.e., the resting state, pressing task, slow tapping without feedback, slow tapping 

with feedback, fast tapping without feedback, fast tapping with feedback) from 19 PD patients 

and 20 healthy controls. The details of experimental settings for movement tasks were 
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introduced in Chapter 3, Section 3.2. 

7.2.2 EEG signal processing 

The pre-processing procedures and the procedures for source reconstruction of the EEG signals 

have been described in Chapter 3 (Section 3.4 & 3.5.2). We applied the standard pre-processing 

procedures to the EEG sensor signals of all conditions. Regarding the EEG source 

reconstruction, in brief, we calculated and applied a common linearly constrained minimum 

variance (LCMV) beamformer filter with the merged data of all conditions, and then applied 

source-space independent component analysis (ICA) separately to each brain region of each 

condition. In order to eliminate any interference of high-frequency activities that are not in the 

range of interest and to optimize the calculation of source-space ICA, before removing the 

artifacts and merging the raw data for the calculation of the beamformer filter, we applied a 

300 Hz low pass filter (EEGLAB default filter) to the EEG sensor signals recorded under all 

the conditions. The brain regions that we were interested in this study were those motor regions 

that we found previously to show statistically enhanced PAC in PD patients PD compared with 

controls (Chapter 4), namely the premotor cortex (PMC), the primary motor cortex (M1), the 

primary somatosensory cortex (Broadman area 3 [BA3]), and the primary somatosensory 

complex (Broadman area 1&2 [BA1&2]). The information regarding the average number of 

components per region for subjects in the six conditions was provided in Table 7.1. 

Table 7.1 ICA components derived from ROI source signals 

Regions  Resting Pressing TappSlow 

FB- 

TappSlow 

FB+ 

TappFast 

FB- 

TappFast 

FB+ 

PMC Patients 10.5±0.6 10.2±0.7 10.2±0.9 10.2±0.9 10.0±0.9 10.1±0.9 

Controls 10.7±0.7 10.5±0.5 10.8±0.8 10.6±0.7 10.4±0.8 10.3±0.9 

M1 Patients 10.5±0.5 10.5±0.5 10.4±0.8 10.5±0.8 10.4±0.8 10.5±0.9 

Controls 10.7±0.7 10.6±0.8 10.5±0.8 10.5±0.8 10.3±0.9 10.3±0.9 

BA3 Patients 10.6±0.7 10.7±0.7 10.6±1.0 10.5±0.9 10.4±1.0 10.5±0.9 

Controls 10.9±0.6 10.8±0.6 10.8±0.7 10.7±0.8 10.7±0.7 10.6±0.7 

BA1&2 Patients 10.8±0.7 10.6±0.8 10.7±0.9 10.7±0.9 10.6±0.9 10.7±0.7 

Controls 11.0±0.7 10.9±0.7 10.9±0.8 10.9±0.7 10.7±0.8 10.8±0.8 

TappSlow: slow tapping task; TappFast: fast tapping task; FB-: without feedback; FB+: with feedback; PMC: 

Premotor cortex; M1: Primary motor cortex; BA3: Broadman area 3; BA1&: Broadman area 1&2. 

Next, all datasets were segmented in epochs of 3 s duration (-1 s to 2 s relative to the online 

mechanical onset) to obtain movement-related information. In order to apply the same 

procedure to the resting dataset, we randomly generated and inserted 150 fake markers into the 

original raw datasets, and generated the information of epochs based on the fake markers. 
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Moreover, we only used every second movement onset trigger to minimize the overlapping of 

movements for the fast tapping task. The number of recorded movement cycles varied among 

different movement tasks, where the least number of repetitions were performed in the pressing 

task. To obtain a comparable number of movement cycles across conditions, we selected 

randomly the number of trials in resting, slow tapping, and fast tapping conditions, such that 

the number of trials matched that derived from the pressing task. The numbers of epochs of 

each condition that were entered in the following analysis are provided in Table 7.2. 

Table 7.2 Number of epochs in each condition 

 Resting Pressing TappSlow, 

FB-  

TappSlow, 

FB+ 

TappFast, 

FB- 

TappFast, 

FB+ 

p-value 

Patients 105.6±12.1 104.9±26.3 110.2±26.3 110.8 ±25.5 101.4±15.2 99.4 ±14.8 >0.2 

Controls 108.5±5.3 103.6±28.6 101.1±30.6 103.2 ±31.4 103.3±15.7 100.6±18.2 >0.06 

p-value 0.36 0.99 0.21 0.39 0.34 0.35  

TappSlow: slow tapping task; TappFast: fast tapping task; FB-: without feedback; FB+: with feedback. p values 

were estimated by signed-rank tests within group and rank-sum tests between group 

7.2.3 Movement-related PAC calculation 

The raw data of source signals were first filtered for β (13-30 Hz) activities and γ (50-150 Hz) 

activities. In subsequent, the Hilbert transform was applied to extract the phase of the β band 

and the amplitude of the γ band. Then, for each 3 s epoch in a component, we computed PAC 

in successive windows (300 ms, corresponding to 4-10 cycles for the β activities) shifted by 

50ms time steps. We applied the normalized mean vector length (MVL) (for details of the 

method see Chapter 3, Section 3.6). Since the shifted window was so short that it might result 

in an inaccurate measurement of the PAC, the z-score of MVL (zMVL) was calculated using 

the mean and standard deviation of 200 surrogates created by recombining the instantaneous 

phase and randomized shuffled amplitudes (for details of the method see Chapter 3, Section 

3.6). zMVL values not larger than 1.96 (equivalent to 95% confidence interval) were assigned 

the value 0. Therefore, for each 3 s epoch in a component, we had 55 zMVL values with 50 ms 

time resolution. 

For each subject, we calculated pairwise zMVL values among ICA component pairs within 

each region as introduced previously (Chapter 4, Section 4.2.3). In brief, we calculated the 

epochs of the time series of zMVL values among n × n component pairs in a region. We then 

computed the single time series by computing the weighted average of zMVL values across 

epochs and n × n component. The weights for averaging were defined as the percentage of 

variance accounted for each component pair per region (also refer to Chapter 4, Section 4.2.3).  
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7.2.3.1 Fluctuations of movement-related PAC 

To estimate the fluctuations of PAC over time in different tasks, we calculated the coefficient 

of variance (CoV) of the movement-related PAC for each task for each subject. CoV was 

calculated as the ratio of the standard deviation to the mean across 55 time points of averaged 

PAC for each subject. 

7.2.3.2 State-related PAC 

To compare PAC across conditions and groups, we computed the mean PAC value by 

averaging across the 55 time points of 3 s epochs for each subject in each condition. 

7.2.3.3 Dynamic PAC (dynPAC) estimation 

To investigate movement-related PAC dynamics, we separated the movement and grouped the 

respective movement-related PAC values into 5 periods separated by 4 trigger points derived 

from the digital kinetic (pressing) or kinematic (tapping) signals recorded during the movement 

for each individual. Trigger points were initially established individually for each movement 

cycle in each task based on the force threshold for the pressing task and amplitude threshold 

for the slow tapping task (also refer to Chapter 3, Section 3.2.3). Importantly, to estimate the 

timing of the transition times at the cortical level with the best possible accuracy, we shifted 

the mechanical trigger points by considering the influence of the general mechanical delays, 

the general electromechanical delays (50 ms), and the corticomuscular conduction time (20 ms) 

across subjects in pressing and slow tapping events relative to the mechanical trigger points. 

The details for the definition of mechanical trigger points and delays between the mechanical 

trigger points and the adjusted trigger points at the cortical level were introduced in Chapter 3, 

Section 3.2.3.  

Therefore, for the pressing task, also considering the 50 ms time resolution of the movement-

PAC values, the 4 trigger points at the cortical level were defined as: 1) the movement onset – 

150 ms before the real-time mechanical onset; 2) the end of the force build-up – the closest 

time point to the 70 ms before the mechanical-detected end of the force build-up; 3) the start 

of releasing – the closest time point to 70 ms before the mechanical-detected start of releasing; 

and 4) the movement offset – the closest time point to 60 ms before the real-time mechanical 

offset. Accordingly, the PAC values in movement epochs were grouped into the 5 periods for 

movements in the pressing task, defined as: P1 (the pre-pressing onset period) – during 200 ms 

before the movement onset to the movement onset; P2 (the post-pressing onset period) - the 

period from the movement onset until the end of the force build-up; P3 (the sustained pressing 

period) – the period from the end of the force build-up to the start of the force release; P4 (the 
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releasing period) – the period from the start of releasing to the movement offset; and P5 (the 

post-offset period) – the period from the movement offset to 200 ms after the movement offset. 

For the slow tapping task, also considering the time resolution (50 ms) of movement-related 

PAC time series, the adjusted 4 trigger points on the cortex level were defined based on the 

lower and upper photoelectric sensors as: 1) movement onset – 150 ms before the real-time 

mechanical movement onset; 2) the end of finger extension – the time point closest to 70 ms 

before the mechanical-detected end of finger extension; 3) the start of finger flexion – the time 

point closest to 70 ms before the mechanical-detected start of finger flexion; and 4) the 

movement offset – the time point closest to 70 ms before the real-time mechanical movement 

offset. Accordingly, the 5 periods were defined as: T1 (the pre-extension onset period) – the 

period from 200 ms before the movement onset to movement onset; T2 (the post-extension 

onset period) – the period from the movement onset to the end of finger extension; T3 (the 

extension period) – the period during which the index finger remained extended at or above 

the upper photoelectric sensor; T4 (the index finger flexion period) – the period from the start 

of finger flexion to the movement offset of the tap; and T5 (the post-flexion offset period) – 

the period from the movement offset to 200 ms after the movement offset.  

The zMVL values in the single movement cycle were then first grouped in the 5 periods of 

pressing and slow tapping tasks, respectively. We then averaged the zMVL values in each of 

the periods across trials for each subject. 

7.2.4 Movement-related power spectrum density (PSD) 

The movement-related PSD was calculated by the Welch method in MATLAB in time-

frequency representation. In order to be comparable with the movement-related PAC, the PSD 

was calculated in 300 ms shifted windows with 50ms time steps in 3 s epochs (hann window, 

frequency resolution = 1 Hz) of all conditions. Then, the PSD was transformed to base 10 

logarithmic power for group comparison and presenting. The power was normalized by 

subtracting the mean power across all time points and trials from 4 to 300 Hz (excluding 50 Hz 

and its harmonics) to account for the inter-subject variability. 

7.2.5 Statistical analysis 

All analyses were performed in the brain regions contralateral to the hand side on which the 

subject was asked to perform the movement tasks. We mainly applied non-parametric analysis 

of variance (ANOVA) tests to examine the main effects and interaction effects of the factors 

including Group, Tasks and Regions (Please refer to the introduction in Chapter 3, Section 3.7). 



  Chapter 7 

89 
 

For post-hoc tests, we applied a non-parametric Wilcoxon rank-sum test for between-group 

comparison and Wilcoxon signed-rank test for within-group comparison across conditions. We 

also applied a paired non-parametric test (Wilcoxon signed-rank test) between PAC values in 

the movement transients for each task of each group. In addition, we estimated the correlations 

between the results of PAC and performance parameters by Spearman coefficients. False 

discovery rate (FDR) correction was applied in multiple tests to avoid type I errors in null 

hypothesis testing.   

7.3 Results 

7.3.1 State-related PAC during repetitive movement  

We examined whether PAC averaged over the whole movement period of each different 

condition (“state-related PAC”) was modulated differently by different tasks in patients and 

controls. To reduce the number of factors, we first established that visual feedback about the 

upper height criterion did not modulate the strength of state-related PAC by applying 3-way 

ANOVA with factors of Group (patient, controls), Region (4 levels) and Feedback (FB+, FB-) 

for the slow tapping and fast tapping tasks. The factor Feedback did not show any interaction 

effect or main effect in either the slow (F(1,37) = 0.26, p = 0.616) or the fast tapping tasks 

(F(1,37) = 0.04, p = 0.840). Therefore, in the following analysis, we combined the conditions 

with and without feedback in the slow and fast tapping tasks. A 3-way (Group, Task, Region) 

mixed ANOVA performed on the zMVL values averaged over the entire 3 s epochs showed 

that state-related PAC was modulated differently in patients and controls by the tasks (Group 

× Task; F(3,111) = 4.69, p = 0.004; Fig. 7.1). Post-hoc rank-sum testing revealed enhanced 

PAC in patients compared with controls in the resting state (p = 0.016), in agreement with the 

findings in Chapter 4. PAC was also enhanced in the pressing task (p = 0.012), but not in any 

of the tapping tasks (p > 0.5). Post-hoc tests also showed that state-related PAC in patients was 

reduced during all active movement tasks compared with the resting state (resting vs. pressing, 

p = 0.033; resting vs. slow tapping, p = 0.010; resting vs. fast tapping, p < 0.001). However, 

we found no significant reduction of state-related PAC during pressing (p = 0.296), during slow 

tapping (p = 0.654) or fast tapping (p = 0.135) compared with the resting state. ANOVA 

revealed that PAC differences among the conditions were affected by the motor control area 

(Task × Region; F(9,333) = 2.64, p = 0.006). However, since we found no interaction effects 

among the three factors (Task × Region × Group; F(9,333) = 0.40, p = 0.933), the effect of 

brain regions was unlikely to affect the differences between groups. 

The above findings show differences between the resting state and movement-related state-
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related PAC, especially in patients. Among the movement tasks, state-related PAC differed 

between patients and controls only in the pressing task, where motor behaviour was similar 

between patients and controls. By contrast, state-related PAC was remarkably similar between 

patients and controls in the tapping tasks, where motor behaviour was different. Because state-

related PAC was derived from EEG recorded during active movement, abnormal enhancement 

of PAC per se is unlikely to be directly connected with the motor impairment. 

 

Figure 7.1 State-related PAC derived from movement-related epochs averaged across the 4 

regions. Three-way nonparametric ANOVA showed significant interaction effects (designated by an 

asterisk) between Group and Tasks. Post-hoc tests of the Group*Task interaction effect showed 

significant differences (designated by an asterisk) between the resting state and all 3 movement tasks 

in the patients. Note that state-related PAC differed between patients and controls at rest and during 

pressing. 

7.3.2 The fluctuations of movement-related PAC 

We then considered the possibility that dynamic modulation of PAC might be more directly 

related to the underlying pathophysiology of motor impairment than its absolute level. We first 

visualized dynamic PAC and EMG activity recorded from the first dorsal interosseous (FDI) 

muscle, aligned with the online mechanical onset of the movement (Fig. 7.2A). Alignment with 

movement onset confirmed that PAC was generally reduced from rest to all movement tasks 

in patients, as shown in the previous paragraph. Additionally, it became evident that the PAC 

values in the pressing and slow tapping tasks appeared to be markedly modulated along the 

movement cycle in controls. By contrast, this modulation was considerably less pronounced at 

rest and during fast tapping. For pressing and slow tapping, PAC rapidly and markedly declined 

from a brief peak before rebounding again around movement onset. Modulation appeared to 

be less marked in patients.  

To statistically assess the degree of fluctuation of movement-related PAC for each task 
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quantitatively, we computed first the CoV across movement time series. A two-way mixed 

ANOVA test (CoV ~ Group × Task) showed significant interaction effects (F(3,111) = 3.07, p 

= 0.031, Fig. 7.2B). In pressing, post-hoc tests revealed that the fluctuation was stronger for 

both patients (signed-rank, p = 0.005) and controls (p = 0.006) compared with the resting state. 

In slow tapping, the fluctuation was larger than in the resting state of controls (signed-rank, p 

= 0.033) but not of patients (p = 0.872). Since the resolution of PAC calculation does not permit 

assessment of modulation across very short movement cycles, reductions of fluctuation of PAC 

across a movement cycle of fast tapping task (signed-rank, controls, p = 0.044; patients, p = 

0.084) must be interpreted with caution.  

 

Figure 7.2 The fluctuation of PAC in the 3s time series. (A) Time series (mean ± standard error [SE]) 

of rectified EMG recorded from FDI muscle (upper panel) and PAC (lower panel), averaged after 

alignment with arbitrary time points (rest) or movement onset (pressing, slow and fast tapping). (B) 

Boxplot showing coefficient of variance across 4 conditions. The two-way ANOVA showed interaction 

effects between Group and Tasks. 

In addition, the post-hoc comparisons of CoV between patients and controls did not reveal 

differences in the resting state (rank-sum, p = 0.567), pressing task (p = 0.967), and fast tapping 
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task (p = 0.244), but a marginally significant difference in the slow tapping task (p = 0.070). 

The larger time-series variance of PAC in the pressing and slow tapping tasks compared with 

rest may indicate a modulation of PAC under particular movement events. Therefore, we 

subsequently investigated the modulation of movement-related PAC across transitions between 

different movement states in the pressing and slow tapping tasks (“dynamic PAC”) only. 

7.3.3 The dynamics of movement-related PAC  

We investigated the dynamics of PAC in more detail by looking at the modulation of PAC 

between 5 periods separated by 4 measured trigger points. The dynamic trigger points were 

firstly defined based on the kinetic (pressing) or kinematic (tapping) events along the 

movement cycle, as shown in Fig. 7.3A. Then, the 4 trigger points from the pressing and 

tapping mechanical events were further adjusted by considering the general mechanical and 

electromechanical delays, as well as the corticomuscular conduction time to estimate the timing 

of the transition times at the cortical level with the best possible accuracy. The details for the 

definition of the four adjusted trigger points are described in the method section. 

In the pressing task, PAC was markedly modulated around movement transitions. Figure 7.3B 

illustrates the averaged dynamics of PAC across the first 3 periods as resulting from aligning 

data with the adjusted trigger point #1 (defining the transition between pre-movement onset 

and force build-up, left panel), and the last 3 periods as resulting from aligning data with the 

adjusted trigger point #4 (defining the transition between force release and pressing offset, right 

panel). As shown in Fig. 7.3B, close to the mechanical onset of pressing, PAC appeared to 

decrease from a brief maximum, reaching a minimum before rising again (also evident in Fig. 

7.2). Besides, alignment with the transition at the offset of releasing revealed a PAC motif 

similar to that at the onset of pressing (Fig. 7.3B, right panel). Two-way mixed ANOVA on 

Group and Period showed significant main effects for the factors Group (F(1,37) = 5.51, p = 

0.024) and Period (F(4,148) = 4.90, p < 0.001), whereas there was no interaction effect between 

the two factors (F(4,148) = 1.19, p = 0.317). As shown in Fig. 7.3C, post-hoc tests indicated 

that, across subjects, dynPAC decreased significantly during the build-up of the pressing force 

compared with the pre-onset period (P1 vs. P2, p < 0.001). Then, the PAC value rebounded 

during maintained pressing (P2 vs. P3, p = 0.070) at marginal effects. The dynPAC showed the 

tendency of decreasing from P3 to P4, which was, however, not significant (P3 vs. P4, p = 

0.118), while the PAC values significantly decreased from force releasing to post-movement 

offset period (P4 vs. P5, p = 0.034). This finding indicates that dynPAC was modulated across 

movement transitions before force build-up and releasing actions. Because there was no 



  Chapter 7 

93 
 

interaction effect, PAC was not differently modulated between patients and controls. 

We also investigated PAC dynamics in the slow tapping movement cycles in a manner similar 

to the pressing task. Since the presence or absence of colour feedback had no significant effects 

on the PAC values in slow tapping, the evaluation of PAC dynamics was based on combining 

the two conditions. Similar to the pressing task, we found marked modulation of dynPAC in 

the slow tapping task. As shown in Figure 7.3D, PAC declined from a brief maximum before 

index finger extension onset to post-extension onset in controls. Then PAC started to rebound 

after reaching a minimum during the period in which the index finger was above the higher 

amplitude threshold and continuously increased during the index finger flexion period and 

post-offset period. Patients showed similar modulation patterns, although PAC changes in 

patients were flatter than in controls (also evident in Fig. 7.2). A two-way mixed ANOVA of 

dynPAC values on the factors of Group and Period revealed a significant two-way interaction 

between Group and Period (F(4,148) = 3.59, p = 0.008). This finding indicated that PAC was 

modulated differently in patients and controls. Post-hoc tests revealed that while dynPAC 

decreased from T1 to T2 in both patients (signed-rank, p = 0.016) and controls (signed-rank, p 

= 0.006), the decrease of PAC associated with index finger extension (T2) was smaller in 

patients than in controls, as showed in Fig. 7.3E. Then there was a continuous decrease of PAC 

from T2 to T3 (signed-rank, p = 0.005) followed by a rebound from T3 to T4 (signed-rank, p 

= 0.021) in controls, while the modulation was less pronounced in patients (signed-rank, T2-

T3: p = 0.260, T3-T4: p = 0.260). However, from the finger-flexion period to the post-flexion 

offset period, no significant PAC increase was found in both controls (signed-rank, p = 0.126) 

and patients (signed-rank, p = 0.520). Notably, the absolute PAC values did not differ between 

patients and controls in any of the 5 periods (rank-sum, all p > 0.2). This finding showed less 

PAC modulation in patients during selected periods of the tapping cycle than in controls during 

slow tapping movement.  
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Figure 7.3 PAC dynamics (dynPAC) across movement transitions. (A) Definition of 5 periods of 

movement transitions based on 4 trigger points in the pressing task (left) and the slow tapping task 

(right). The trigger points were first established using 4 kinetic (force threshold for pressing) or 

kinematic (amplitude criterion for tapping) events along the movement cycle. The adjusted trigger 

points (displayed in B&D) were then determined by further considering the mechanical and 

electromechanical delays, as well as the corticomuscular conduction time to estimate the transition time 

points at the cortical level. (B) Pressing task. DynPAC as resulting from averaging after alignment with 

the adjusted trigger points on the (left) onset (#1) and (right) offset (#4). The timing of the other 2 

trigger points #2 and #3) was determined based on the averaged durations of periods across subjects. 

(C) Error bar plot showing the movement-related dynPAC the 5 periods of the pressing cycle in patients 

and controls. (D) Slow tapping task. DynPAC resulting from averaging across subjects after alignment 

with the adjusted trigger point #1. The timing of the other 3 adjusted trigger points was based on the 

average duration of the following 3 periods across subjects. E. Error bar plot showing the movement-

related dynPAC of the 5 periods in a single tapping cycle in patients and controls. SE: standard error. 



  Chapter 7 

95 
 

We subsequently tested the hypothesis that the magnitude of the PAC change around 

movement onset determines the ability to recruit FDI muscles engaged in the tapping (EMG 

slope as introduced in Chapter 6) and thus may contribute to the motor impairment in slow 

tapping performance in patients. Although the EMG slope was correlated with the PAC change 

between T1 and T2 in patients (R = -0.52, p = 0.024). EMG slope and PAC change were not 

significantly correlated in controls (R = -0.12, p = 0.601). As expected, the EMG slope was 

found to be highly correlated with the duration of T2 (R = -0.61, p < 0.001). Therefore, we 

considered the possibility that the negative correlation between the EMG slope and change of 

PAC between T1 and T2 in patients might have arisen because patients with a steeper EMG 

slope had spent less time reaching the adjusted trigger point #2. This would lead to less 

modulation of PAC if the PAC change per unit of time were constant across the patients. To 

test this idea, we computed PAC while fixing the duration of T2 for all subjects to 250 ms 

(from the adjusted trigger point #1 to 250 ms after that point, as shown in Fig. 7.3D). Using a 

fixed duration of T2 (250 ms), patients lost the correlation between EMG slope and the PAC 

change between T1 and T2 (R = -0.33, p = 0.163). In addition, the two-way mixed ANOVA 

analysis on the dynPAC values of the first two periods (T1 and fixed T2) revealed a marginally 

significant interaction effect between Group and Time (F(1,37) = 4.01, p = 0.052), which still 

suggests that modulation of PAC is less pronounced in patients than in controls. 

7.3.4 Relationship between movement-related PAC dynamics and β power 

dynamics 

It is well established [98, 204, 205] that spectral power in the β frequency band decreases 

during the initiation and execution of a movement. In the present study, we also found β power 

to be reduced at movement onset and during movement in both patients and controls (Fig. 7.4 

A&B, left panels). Because the strength of β power affects the estimation of phases in the 

calculation of PAC, we aimed to investigate to which degree modulation of PAC by movement 

transitions was a consequence of associated changes in β frequency power. We assessed the 

modulation of β power in the 5 periods of a movement cycle in both the pressing and the slow 

tapping task (Fig. 7.4 A, B, right panels). A two-way mixed ANOVA with Group and Period 

factors was applied to the β power in pressing and in slow tapping tasks. The ANOVA in the 

pressing task revealed only a main effect of Period (F(4,148) = 13.18, p < 0.001), while the 

ANOVA in the slow tapping task revealed a significant interaction of Group and Period 

(F(4,148) = 3.98, p = 0.004). The modulation pattern of β power appeared to be similar to the 

modulation pattern of PAC in both tasks as reported above. Although there seems to be a 

difference between PAC change (Fig. 7.3C) and power change (Fig. 7.4A, left panel) in the 
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trend from P3 to P4, post-hoc tests did not reveal statistical significance in both PAC 

modulation and power modulation. This finding raises the question of whether the transient 

modulation of β power primarily drove PAC modulation during movement. We did not find a 

significant correlation between the absolute PAC and β power values in any of the periods in 

either the pressing task or the slow tapping task (p values > 0.3). Two examples of scatter plots 

between absolute power and PAC in P1 (T1) of pressing (slow tapping) are displayed in Fig. 

7.4C. Additionally, we performed a correlation analysis between the PAC differences and the 

β power differences of each two adjacent periods. At movement onset, the two parameters were 

not significantly correlated in the pressing task (R = 0.13, p = 0.429), whereas they were 

significantly correlated in the slow tapping task (R = 0.50, p = 0.003). The correlation results 

for differences between any two adjacent periods are presented in Table 7.3, which showed no 

consistent relationship between β power change and PAC change during the movement. The 

above findings suggest that the movement-related dynPAC modulation does not generally 

reflect movement-related power dynamics. However, the fact that derivatives of the two 

variables were correlated at slow tapping onset could still have pathophysiological significance. 

Table 7.3 Relationship between the change of PAC and β power 

Task P1-P2 // T1-T2 P2-P3 // T2-T3 P3-P4 // T3-T4 P4-P5 // T4-T5 

Pressing R=0.13, p=0.429 R=0.62, p=0.001 R=0.42, p=0.017 R=0.23, p=0.205 

Slow tapping R=0.50, p=0.003 R=0.42, p=0.017 R=-0.09, p=0.568 R=0.18, p=0.362 

PAC: Phase-amplitude coupling. p values were FDR corrected for each task, all significant values after correction 

are marked in bold 
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Figure 7.4 Relationship between movement-related dynPAC and β power. (A) Dynamics of β 

power in the pressing task. Left: time-frequency spectrogram. Right: dynamics of β power across the 5 

periods of the pressing movement cycle. (B) Dynamics of β power in the slow tapping task. Left: time-

frequency spectrogram. Right: dynamics of β power across the 5 periods of the slow tapping movement 

cycle. Significant modulations are marked by an asterisk. (C) Scatter plots of the relationship between 

the absolute strength of PAC and β power in the pre-onset phase of pressing task (left) and slow tapping 

task (right). (D) Scatter plots of the relationship between PAC change and power change from the first 

to the second period in the movement cycle of pressing task (left) and slow tapping task (right). 

7.4 Summary 

In this study, we investigated the characteristics of movement-related PAC corresponding to 

normal and abnormal behaviour of PD patients under different types of repetitive voluntary 

movements. We found PAC averaged over motor regions across the entire movement cycle 

was enhanced in PD patients in the pressing task, while the magnitude of PAC averaged across 

the whole movement was similar between patients and controls in all tapping tasks. These 

findings were not aligned with motor performance and EMG data (in Chapter 6), which showed 

abnormalities in patients for tapping but not for pressing, suggesting that the overall strength 
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of β-γ PAC during the movement does not directly relate to Parkinsonian bradykinesia. 

However, we provided evidence to suggest that β-γ PAC may have a physiological role in 

encoding motor processes during movement transitions. A strikingly similar motif of PAC rise 

and decay was observed around the onset and offset of pressing and around the onset of slow 

tapping, suggesting that transient PAC changes may be linked to a change between distinct 

movement states, and that the increase of PAC may have similarities with the “preparatory 

state” as defined in dynamical systems theory of motor control [206]. In patients, the dynamical 

pattern of PAC was similar in pressing (normally executed), where performance did not differ 

from controls. However, the PAC modulation of PD patients was flattened in slow tapping 

(abnormally executed) compared with the controls. All the above findings may associate the 

dynamics of PAC modulation during movements to the pathophysiology of bradykinesia in PD. 
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Chapter 8 

General summary and discussion 

 

8.1 General summary 

Exaggerated β-broadband γ phase-amplitude coupling (PAC) in the motor cortex has been 

proposed as a promising non-invasive biomarker for Parkinson’s disease (PD) [118, 137]. 

However, there is a lack of information on the characteristics of this abnormal 

electrophysiological signature, a fact that limits its use in the treatment of PD. This thesis aimed 

to investigate comprehensively the features of β-broadband γ cortical PAC in the 

pathophysiology of PD.  

We analysed non-invasive electroencephalography (EEG) signals recorded simultaneously at 

rest and during various motor activities in PD patients and healthy controls. EEG signals were 

projected onto the individual cortical surfaces using source reconstruction techniques and 

separated into spatiotemporal components using source-space independent component analysis 

(ICA). First, we investigated the spatial origin of enhanced β-broadband γ PAC at rest in the 

cortex of PD patients. Compared with healthy controls, PAC between the phase of β (13-30 Hz) 

activities and the amplitude of γ (50-150 Hz) activities was significantly enhanced in the 

dorsolateral prefrontal cortex (DLPFC), the premotor cortex (PMC), the primary motor cortex 

(M1), and the somatosensory cortex (SS, including the primary somatosensory cortex 

[Broadman area 3, BA3] and the primary somatosensory complex [Broadman area 1&2, 

BA1&2]) in the hemisphere contralateral to the clinically more affected side.  

Second, we investigated the potential mechanisms of the generation of exaggerated PAC by 

studying its spatiotemporal characteristics at the mesoscopic level. We found that β and γ 

signals involved in abnormal PAC were not strictly phase-phase coupled, ruling out that it 

merely reflects a non-sinusoidal activity of a single oscillator in a recurrent network. Moreover, 

we found that couplings between β and γ signals with different spatial distributions (inter-

component couplings) differ in important features from couplings where both β and γ 
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oscillations have the same spatial distribution (intra-component couplings). While both types 

of couplings were abnormally enhanced in patients, only the inter-component couplings were 

correlated with clinical motor severity indexed by part III of Movement Disorder Society 

Unified Parkinson’s Disease Rating Scale (MDS-UPDRS III) in motor control regions. 

Furthermore, the β-γ topographic similarities of inter-component PAC demonstrated profound 

differences in PD patients compared with healthy controls, which again highlight the 

pathophysiological significance of coupling between spatially distinct subnetworks. The above 

results demonstrate the critical role of abnormal coupling between spatially distinct neural 

circuits at rest in the pathophysiology of PD.  

In the subsequent study, we addressed what is the direct relationship between abnormal PAC 

and motor impairment in PD patients by investigating the characteristics of movement-related 

PAC during different types of repetitive movement tasks. We found that patients exhibited 

slowness of movement in the repetitive tapping tasks (reduced electromyographic [EMG] slope 

in slow tapping, reduced tapping rate in fast tapping), but not in the pressing task.  

We then looked further into movement-state related PAC. During the pressing task, the overall 

strength of PAC, averaged over the four motor regions (PMC, M1, BA3, and BA1&2) and the 

entire movement period, was enhanced in PD patients compared with healthy controls, while 

the performance was similar between the two groups. By contrast, in all tapping tasks, the 

overall strength of PAC was similar between patients and controls, although patients showed 

abnormal slowness of movements. This incongruency between the occurrences of abnormal 

PAC and abnormal movements in PD patients may indicate that the strength of state-related β-

broadband γ PAC during movements does not relate directly to impaired motor behaviour in 

PD patients.  

Next, we investigated the dynamic modulation of β-γ PAC during movements. Our results 

suggest that the modulation of PAC during a movement cycle is linked to transitions between 

distinct movement states. In patients, the modulation of PAC was similar to controls in pressing 

(which was normally executed), but flattened in slow tapping (which was abnormally executed). 

These deviations in PAC around motor action transients may indicate dysfunctional evolution 

of neuronal population dynamics from the preparatory state to movement generation in PD. 

These findings may indicate that cross-frequency coupling is involved in the pathophysiology 

of bradykinesia in PD through its abnormal dynamic modulation.   

The above findings help to construct a comprehensive picture of the characteristics of β-
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broadband γ PAC at rest and during movements of PD patients. In section 8.2, we discuss the 

significance of these findings in detail.  

8.2 Discussion 

8.2.1 Advantages of applying EEG source analysis to abnormal PAC 

Previous studies have applied either invasive electrocorticographic (ECoG) or non-invasive 

EEG recordings to identify enhanced β-broadband γ cortical PAC in PD [118, 137]. Although 

ECoG has superior spatial resolution and a better signal-to-noise ratio compared with EEG [77], 

its spatial coverage is limited by the small size of the electrode strips that can be placed through 

a burr hole. Moreover, it requires surgery, leading to enhanced risk and increased technical 

effort, and its use raises ethical issues. In particular, it is practically impossible to perform 

measurements in normal controls. Compared with the ECoG recording technique, EEG is a 

non-invasive, and therefore a more convenient, safer tool to investigate brain functions with 

high temporal resolution. However, it suffers from limited spatial resolution because signals 

are spatially blurred through the effect of volume conduction. In fact, each recording site 

captures a superposition of signals from multiple origins. While the spatial resolution cannot 

be improved fundamentally, the mixture problem can be ameliorated using source localization 

techniques. By taking into account the geometric locations of the electrodes, the anatomy of 

the head (from magnetic resonance imaging [MRI]), and electric volume conduction physics, 

it is possible to reconstruct approximately the origins and the distributions of the brain activities 

in a non-invasive manner. Based on these reconstructions, a finer segregation of spatially 

distinct networks in each brain region was achieved by applying source-space ICA in our study, 

an approach that had been suggested by Jonmohamadi et al. [173]. Application of this 

technique helped us to gain insight into the EEG oscillatory signals at a mesoscopic level. 

Importantly, we found abnormal cortical PAC of PD patients in source-localized EEG signals 

but not in EEG sensor signals. This finding is somewhat in contrast to some previous studies, 

in which researchers had identified significant PAC differences between PD patients and 

healthy controls from EEG sensor signals [137, 139]. As we applied commonly used 

procedures for recording, preprocessing, and PAC calculation, similarly to those employed in 

previous studies [137, 139], it seems unlikely that these differences would result from 

methodological details. Instead, we suggest that for PAC to be detectable in sensor signals 

[139], patients may need to be in more advanced stages of the disease. Our findings that PAC 

was statistically significantly enhanced only in the clinically more affected hemisphere, which 

agrees with previous reports [135], may support this suggestion. Besides, in animal models of 
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PD, PAC did not appear before advanced disease stages [124, 207]. In addition, previous ECoG 

studies demonstrating PAC [118] has been presented in patients undergoing deep brain 

stimulation (DBS), so that advanced stages of the disease might be implicated. Moreover, an 

EEG study demonstrated enhanced PAC at the sensor level excluded the recruitment of patients 

at early stage (MDS-UPDRS III < 15) [139]. By contrast, the majority of the patients in our 

present study were at relatively early stages of the disease. Therefore, the PAC effects may 

have been expressed more weakly in these patients and hence may have been too low to be 

detected reliably on the EEG sensor level due to the relatively low signal-to-noise ratio and the 

volume conduction problem. Our results emphasize that the transformation of EEG sensor 

signals to source signals may be essential to enhance the sensitivity of the biomarker, especially 

at early stages of the disease. Moreover, a more precise localization of abnormal PAC could 

help find a more effective neuromodulation target for specific symptoms. 

8.2.2 The spatial organization of exaggerated PAC in PD patients at rest 

In resting EEG data, we identified abnormal PAC localized in DLPFC, PMC, M1, and SS 

(including BA3, BA1&2). Such a widespread occurrence of abnormal PAC in PD has not been 

reported before. Direct ECoG recordings have revealed abnormal PAC in PD patients in signals 

from subdural electrodes overlying the precentral gyrus, thus probably reflecting activity in 

PMC/M1 [118]. Enhanced PAC in PD patients has also been observed in signals from EEG 

electrodes overlying the sensorimotor region [137, 139]. Our evidence that abnormal PAC 

might also occur in brain regions outside the core motor system like DLPFC and SS may open 

the door for new interpretations of the role of abnormal PAC in the pathophysiology of PD.  

The contribution of SS is noteworthy because recordings were done at rest, which may imply 

minimal activity of reafferent signals from contracting muscles. Furthermore, it has been 

hypothesized that the ‘hyperdirect’ cortico-subthalamic pathway is essential for generating 

PAC [118]. SS does not project monosynaptically to the subthalamic nucleus (STN), which 

receives its excitatory input mainly from neurons located in M1 and the supplementary motor 

area [26] or the prefrontal regions [208, 209]. Therefore, the presence of PAC in SS indicates 

that abnormal PAC at rest is unlikely to exclusively involve brain regions connected by the 

‘hyperdirect’ tract, but may also involve other basal-ganglia thalamocortical (BGTC) circuits 

or cortico-cortical connections. A similar conclusion has been reached previously based on 

recordings from globus pallidus internus (GPi) [124, 138]. Although the spatial resolution of 

scalp EEG is limited even with advanced source localization, our findings strongly suggest that 

abnormal PAC in PD is present not only in PMC and M1, but in various other cortical regions 
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involved in motor control even at rest. 

The abnormal PAC found in DLPFC of PD patients may suggest that abnormal brain 

synchronization may also have a role in behavioural domains outside of motor control [210]. 

It has been demonstrated that DLPFC is involved predominantly in associative BGTC circuits 

[211], a finding that suggests the abnormal PAC in DLPFC is implicated in executive and other 

cognitive dysfunctions [212, 213]. This would also explain our finding that the strength of PAC 

in DLPFC was not correlated with clinical scores indexed by the MDS-UPDRS III, because 

this instrument exclusively captures motor symptoms of PD. As DLPFC has direct connections 

to the basal ganglia network and the functional activity in DLPFC can be altered through STN 

DBS [212, 214], it will be interesting to see whether PAC is correlated with cognitive 

symptoms in PD and how responsive it is to different clinical interventions. 

Our study demonstrated that, at rest, abnormal PAC in the sensorimotor areas of PD patients 

was correlated with the MDS-UPDRS III hemi-body scores, highlighting the significance of 

abnormal PAC at rest in the deficits of BGTC motor circuits. Previous reports have already 

demonstrated correlations between enhanced PAC at rest and the clinical severity of 

Parkinsonian bradykinesia via invasive recordings, for example, in recordings of local field 

potentials (LFP) from the human STN [134, 136, 215], the GPi [216], and in ECoG from 

PMC/M1 [138]. While a previous EEG study also found a correlation between therapy-induced 

changes in PAC and therapy-induced changes in clinical severity [139], our study is the first to 

demonstrate a direct relationship between the strength of native PAC computed from scalp 

EEG and clinical severity scores in the off-medication state. This observation not only 

enhances the validity of our findings, but may additionally underline the pathophysiological 

significance of enhanced resting PAC in cortical sources. 

8.2.3 Possible mechanisms of abnormal β-γ PAC in PD patients at rest 

As the macroscopic distribution of exaggerated PAC in the cortex of PD patients points to 

BGTC circuits related to motor and non-motor functions, our analyses also provide insight into 

the potential mechanism of enhanced PAC of PD on a mesoscopic scale. Using waveform 

analysis, we showed that the PAC-related β and γ activities were not completely phase-phase 

coupled. This finding specifically renders the possibility unlikely that PAC arises because a 

recurrent (cortical) network that physiologically oscillates in the γ range [217] is strongly 

driven by the output of an enhanced (subcortical) β-oscillator [218]. Instead, our findings 

suggest that PAC arises to a significant extent through the activity of two relatively weakly 

linked and physiologically distinct oscillators that likely correspond to two spatially distinct 
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cortical substrates. This conclusion also excludes the possibility that the γ activities involved 

in the abnormal PAC merely reflect harmonic components in non-sinusoidal β activities as 

reported based on time-domain analysis of β oscillations in ECoG [141] or scalp EEG 

recordings [219]. According to this hypothesis, developed by Cole and colleagues, the non-

sinusoidal wave shape of the β oscillations is a consequence of over-synchronization of the 

local firing of action potentials in the cortex [140, 220]. However, they also concluded that the 

non-sinusoidal waveform of β activity could not wholly explain the enhanced PAC detected in 

the motor cortex [141]. In principle, PAC could result from excessively synchronized neural 

activity in the BGTC loop [141] and may still be correlated with clinical motor impairment. 

Nonetheless, our results suggest that attenuation of PAC by decorrelating excessive synchrony 

through DBS [220] might fail to break up PAC across spatially separated circuits, which might 

represent a more relevant pathophysiological target. 

Our conclusion, assuming the existence of spatially and physiologically distinct oscillators 

contributing to PAC, was substantiated by further investigation of ICA components of each of 

the 5 brain regions mentioned in section 8.2.2. We found enhanced PAC when phase-amplitude 

pairs were composed of β and γ signals from identical components, but also from distinct 

components. The coupling within identical components might represent strong coupling in a 

recurrent network. By contrast, pathological inter-component coupling implies coupling 

between different cortical columns, because ICA is not suited to distinguish between 

temporally independent components if they originate from exactly the same cortical patch. 

Notably, in the present study we found that the correlations between PAC and clinical motor 

severity were only statistically significant in inter-component couplings in motor control 

regions (PMC, M1, BA3 and BA1&2). These findings emphasize the importance of abnormal 

PAC generation by spatially distinct subnetworks. However, despite the fact that the electric 

activity was generated in the cortex, our findings do not contradict the notion that one or both 

cortical oscillators might be driven by activity from subcortical nuclei. The nature of the 

coupling could even be routed entirely in distinct subcortical projections driving independent 

cortical oscillations [45, 221, 222].  

The estimation of the contributions of components brought a deeper insight into the 

mechanisms of abnormal inter-subnetwork couplings. We applied the Gini coefficient to 

estimate the degree of equality among contributions of subnetworks in a local region to the 

abnormal enhanced PAC. We found that Gini coefficients were higher in patients than in 

controls; this finding indicates that the enhanced PAC in PD relies on a relatively small number 
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of components. This result provides additional support for the assertion that synchronization 

between the activities of spatially distinct neuronal circuits is of greater pathophysiological 

relevance than that between the activities of the same topographical origin. This conclusion 

was further corroborated when the spatial organization of the ICA components was tested 

explicitly. In M1 and BA1&2, where the spatial similarities between β and γ topographies of 

each individual were generally high, this similarity was reduced in patients. Moreover, we 

found that the higher the Gini coefficients, the greater the spatial discrepancy between the 

source distributions of β and γ activities involved in PAC. This implies that the abnormal 

enhancement of PAC in PD reflects the abnormal dominance of a relatively small number of 

coupled sub-networks. Animal experiments have shown that the loss of dopamine impairs the 

directionality and hierarchical organization of normal β and γ propagation through different 

BGTC pathways [223]. Against this background, we suggest that in the Parkinsonian state, 

dopamine depletion may disrupt the regular operation of the BGTC loops by reinforcing and 

altering the connectivity between sub-networks so that the physiological segregation of certain 

feedback loops in BGTC circuits is lost. This phenomenon may then lead to more widespread 

coupling between diverse circuits. Coupling of circuits with similar intrinsic frequencies will 

be evident as abnormal synchronization and reduction of dimensionality in the EEG signals, 

whereas coupling of circuits with different frequencies will manifest as enhanced PAC.  

However, PAC-weighted topographies in patients did not display a uniform Parkinsonian 

pattern; rather, they differed considerably among individuals. This finding indicates a 

pathophysiological heterogeneity that may reflect different clinical motor phenotypes and the 

variability of the disease stage. It further implies that pathophysiologically based future 

treatment of PD by non-invasive brain stimulation (NIBS) may need to be highly individualized 

and adjusted dynamically. For this purpose, advanced biomarkers such as the source localized 

and decomposed β-γ PAC described in this work might be of great help. 

8.2.4 The magnitude of movement-related PAC in multiple types of repetitive 

movement 

Our study on the exaggerated β-γ PAC in the resting state of PD patients extended the current 

knowledge of the characteristics of this electrophysiological biomarker and its relevance to the 

pathophysiology of PD. However, the possibility exists that PAC merely represents an 

epiphenomenon or a surrogate parameter of a remote pathophysiological mechanism and, 

hence, it is not causally linked to impaired performance. This question can be addressed by 

studying PAC at the time of the occurrence of motor impairment in PD patients. However, in 
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previous reports researchers have provided inconsistent findings of PAC differences during 

movement between PD patients and controls [136, 139, 140]. This may be due to the variations 

among sample cohorts and differences between the movement tasks designed by different 

research groups. Moreover, it remained unclear in these studies whether movement-related 

PAC was derived from signals recorded during the execution of kinematically normal or 

abnormal movements [136, 139, 140]. 

Our study contributed to clarifying this issue by comparing different types of movements in 

the same cohort of patients. Normal performance was found in patients when performing 

repetitive pressing and releasing actions (pressing task). In addition, during tapping at patients’ 

own comfortable rate (slow tapping task), important performance parameters, such as mean 

movement rate and tapping variability, appeared normal. However, during that task, we 

observed markedly reduced EMG slopes in patients, which correlated with their bradykinesia 

and rigidity scores, suggesting that PD patients recruited muscles needed for finger extension 

with impaired efficiency [224]. Moreover, in the fast tapping task in which the subjects were 

asked to tap as fast as possible, patients exhibited slower tapping rates, larger tapping 

variability, and a decrement of the tapping amplitude (also present during the longer duration 

of slow tapping task), findings that are consistent with previous reports [199, 225]. Therefore, 

the repetitive tapping movements conducted in our study reflected bradykinesia, the cardinal 

manifestations of motor impairment in PD patients [146]. These results demonstrate that 

different types of movements with distinct demands regarding movement vigor (such as 

movement rate, frequency, and amplitude) differ in their potential to manifest Parkinsonian 

motor impairment.  

While in the pressing task, there was no manifest motor impairment but significantly enhanced 

PAC in patients, the opposite occurred in the tapping tasks – no exaggerated PAC but clear 

signs of Parkinsonian motor impairment. Moreover, although the feedback on the tapping 

amplitude could improve the movements during tapping tasks, the movement-related PAC did 

not show differences between conditions with and without feedback. These findings 

demonstrate that the PAC difference between patients and controls varies among multiple types 

of repetitive movements, a phenomenon that may explain the controversial findings from 

previous studies [136, 139, 140]. It also suggests that the strength of state-related PAC during 

movements is not directly related to the motor impairment in PD. This eventuality implies that 

the general level of PAC during movements might not be a simple index for the severity of the 

disease. Hence, we subsequently investigated the PAC dynamics during movement transitions. 
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8.2.5 The dynamics of β-γ PAC during movements 

We found that β-broadband γ PAC decreased around movement onsets in both PD patients and 

healthy controls. This PAC reduction during movements is in line with studies where PAC was 

derived from oscillatory signals recorded from the STN, globus pallidus, and M1 of PD patients 

[136, 139, 140, 187]. Besides, previous studies have also demonstrated modulation of PAC 

during movement in patients with a non-movement disorder (epilepsy), suggesting an 

important role of PAC in the dynamics of motor control [133, 203]. We obtained further insight 

into the role of β-γ PAC in motor control from our detailed analysis of its dynamic modulation 

across a movement cycle (dynPAC). When controls performed the pressing task, PAC 

exhibited a brief peak followed by a decline during the initial pressing phase and a subsequent 

rebound while the index finger still maintained a constant press. Of note, during the initial 

releasing phase, dynPAC showed a similar pattern (decrease following a brief peak). Moreover, 

in the slow tapping task, a similar pattern with a brief peak followed by a decrease in PAC was 

present around the onset of the finger extension, followed by a rebound. These findings in 

healthy controls suggest that the PAC decrease is not merely associated with initiating a 

movement. Rather, there appears to be a characteristic PAC motif (brief peak – decrease – 

rebound) that signals a change in movement states. This phenomenon resembles the 

preparatory neuronal activity in the dynamical systems theory of motor control [206]. 

According to this theory, preparatory activity brings the dynamical state of the neuronal 

population through state-space rotations to an initial value. This process, characterized by brief 

cortical oscillatory activity [226], ensures that muscle activity can be generated efficiently for 

all types of movements [206, 226]. If dynPAC reflects normal preparatory activity, then it is 

perhaps not surprising that movement-related PAC was found to be similar in patients with PD 

and with essential tremor [187], especially in the absence of kinematic differences between 

both patient groups.  

In addition, it has long been known that voluntary motor activity is also accompanied by event-

related β-power desynchronization in the cortex [204, 227, 228]. However, we found that the 

magnitude of PAC was not related to the absolute β power in either the resting state or in the 

movement states of our study, a finding supported by previous studies [137, 140]. Likewise, 

during movement, the dynamics of PAC were not consistently associated with the β power 

change shown in our study and the previous literature [187]. Therefore, this finding excludes 

the possibility that the dynamic modulation of β-γ PAC during repetitive voluntary movements 

merely reflects general β-power dynamics. The couplings encode an essential component of 

the motor command that is different from the mechanism underlying event-related β-power 
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desynchronization. Because β activities in the motor cortex are considered to reflect 

intracortical inhibition [229, 230], the incomplete correlations between β activities and the 

couplings may also support the implication that β-γ dynPAC reflects a population dynamic 

characteristic rather than a defective single cellular physiological mechanism such as neuronal 

inhibition [231], as mentioned in the previous paragraph. 

8.2.6 Abnormal dynamics of cortical β-γ PAC in PD 

Interestingly, we found that dynPAC was abnormal in slow tapping in PD patients. While PAC 

values attained similar levels before initiating the tapping movements, the subsequent decrease 

was smaller, and the later rebound less marked than in controls. By contrast, during pressing, 

dynPAC modulation was similar in patients and controls. Our findings appear to be the first to 

report that abnormal PAC during movement is associated with concurrent abnormal motor 

performance in PD. If our hypothesis on dynPAC as a marker for a preparatory movement state 

is accepted (see section 8.2.5), PD patients may be subjected to a defective evolution of 

neuronal population dynamics from the preparatory state to overt movement generation. While 

PAC would be a necessary physiological phenomenon during movement preparation, its 

persistence into the unfolding movement would interfere with the proper execution of that 

movement. Although abnormal dynPAC modulation was associated with slowed muscle 

recruitment during the onset of slow tapping, the finding that PAC change did not correlate 

with the magnitude of the EMG slope suggests a complex and non-linear relationship between 

dynPAC and the build-up process of corticospinal neuronal activity. Interestingly, studies 

probing cortical physiology in the preparatory phase of voluntary movements have provided 

similar evidence to suggest that bradykinesia does not result from a single deficient 

physiological mechanism such as the ability to release from ongoing inhibition [232, 233], but 

rather reflects a more complex circuit abnormality [234]. Notably, preparatory activity in the 

dynamical systems theory of motor control is sensitive to timing events supporting motor 

transitions [235] but does not reflect specific movement features (e.g., direction, force, 

velocity), nor does it simply represent the release from inhibition of a motor program [236].  

We also showed that the PAC change was significantly correlated with spectral power change 

at the β frequency band around tapping movement onset, characterized by the abnormal EMG 

recruitment. Although this correlation was not specific to slow tapping onset, this finding 

suggests that β activity could at certain critical times have pathophysiological significance for 

dynPAC. One could speculate that higher frequency or duration of β bursts in STN [237] 

around the onset of bradykinetic movements allows more time to stabilize PAC abnormally. 
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However, as there was no relationship with the absolute β power, the significance of this 

finding is still uncertain. 

8.2.7 Functional role of abnormal PAC in the pathophysiology of PD 

Because the above-mentioned results showed the absence of a relationship between motor 

impairment of PD and state-related PAC during movement, but were associated with abnormal 

PAC dynamics during movement execution of slow tapping tasks, two following questions 

may arise. 1) What is the explanation of the exaggerated PAC at rest and its association with 

Parkinsonian motor impairment reported in previous literature [139, 140] and also 

demonstrated in our study? 2) What could be the possible mechanisms underlying the 

functional role of the two abnormal signatures? We provide two hypotheses in this thesis. One 

possibility would be that PAC at rest, or any state-related PAC, is not mechanistically related 

to the dynPAC abnormality found during slow tapping. It has been reported that levodopa 

treatment for PD patients suppressed the magnitude of abnormal PAC at rest and attenuated 

bradykinesia evaluated by MDS-UPDRS scores, suggesting that PAC at rest may reflect the 

background dopamine level [139]. The background dopamine level is often considered the sum 

of tonic and phasic dopamine activities. It is generally accepted that voluntary movements are 

controlled by both tonic dopamine that releases and activates relatively slowly from seconds to 

minutes as well as phasic dopamine modulation that varies on a sub-second time scale [238]. 

Therefore, it is possible that the state-related PAC modulation and PAC dynamics during 

movement transitions could map onto tonic and phasic dopamine activities [231, 239], 

respectively, a mechanism that may be tied to deficits in motivation and the invigoration of 

movements [94, 231]. This hypothesis linking dopamine activities and cortical PAC should be 

tested in future animal experiments.  

Although we cannot rule out the former hypothesis, we could think of an alternative hypothesis 

based on the findings from abnormal PAC dynamics. If both PAC phenomena are based on a 

common mechanism, they could reflect processes of movement preparation. In this scenario, 

on the one hand, the increase in dynPAC would indicate a preparatory state during movement 

dynamics, and its reduced attenuation at movement transitions would indicate a spillover of the 

preparatory state into the unfolding movement. On the other hand, enhancement of PAC at rest 

could reflect the abnormal generation of brief cortical states resembling preparatory population 

activity in the absence of an intention to move. Researchers have suggested that β activity is 

composed of physiologically short-lived phasic bursts in the brain [240], implying that β-γ 

PAC could be formed as spontaneous brief couplings in continuous recordings. Thus, the 
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abnormal preparatory activities could be related to an increased frequency of occurrence of 

spontaneous brief stretches of coupling. In this way, both the enhanced resting PAC and the 

reduced dynPAC modulation could be caused by the dysfunction of a single (subcortical) 

mechanism that controls or regulates the generation of cross-frequency couplings in cortical 

microcircuits. However, in the absence of direct evidence, the nature of the link between 

abnormally enhanced PAC at rest and abnormal modulation of dynPAC remains a topic for 

future investigations. 

8.3 Limitations and outlook 

This thesis reports the results of a detailed investigation on the characteristics of cortical PAC 

via non-invasive recording techniques, accumulating evidence on the role of β-γ PAC on the 

pathophysiology of PD. However, our investigation has also brought up several concerns and 

questions that need to be answered in future studies. 

First, the participants had to be able to complete multiple types of movements in this study. 

Therefore, recordings were done in patients with early to moderate stages of PD. Moreover, to 

avoid the interference of muscle activities in the resting state recordings, patients with marked 

resting tremor were excluded from recruitment. Therefore, it remains unclear how 

generalizable our findings are to tremulous or more severe PD phenotypes. Greater variability 

of clinical severity and a larger sample of PD patients may allow for even more robust 

assessments of the nature of the correlation between pathological synchronization and 

individual items of the clinical phenotype. Besides, while the current thesis has focused on the 

role of PAC in the motor symptoms of PD, we also found the enhancement of PAC in DLPFC 

of PD patients, suggesting that abnormal PAC may also be relevant to cognitive dysfunctions 

outside of the motor domain. In future experimental designs, data from clinical cognitive 

assessments will also need to be collected to allow for a more complete evaluation of the role 

of PAC in PD. 

Second, we still lack information regarding the effects of treatment interventions, such as 

dopamine replacement therapy and DBS, on the abnormal magnitude of PAC or the abnormal 

PAC modulation. This information is essential because a reliable biomarker should not only 

distinguish PD from the normal state and monitor the disease progression, but also measure the 

success of therapeutic intervention. Investigating the effects of different treatments on the 

symptoms of PD and the alteration of the abnormal oscillatory activities could, in turn, reveal 

the association between abnormal PAC with other diverse subcortical or cortical manifestations 
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of PD pathology. This information may lead to a more comprehensive understanding of the 

mechanism of PD pathophysiology. It has been reported that levodopa reduced exaggerated 

PAC at rest in PD patients, a finding that indicates the level of dopamine in the brain is 

associated with the magnitude of PAC at rest [139]. Similar results have also been obtained by 

applying STN DBS, suggesting that cortical PAC could be altered by changing activities in the 

STN through BGTC circuits [140]. Moreover, NIBS treatments could also be used to address 

the role of oscillatory activities in motor symptoms of PD by entraining or intervening the 

cortical rhythms directly [241]. However, it is still unknown whether the spatial organization 

of the abnormal PAC would also change due to different treatment strategies. In future studies, 

we will continue to investigate the spatiotemporal characteristics of PAC with different 

treatment therapies. 

Besides, there are some limitations in the experimental design. Although self-paced repetitive 

movements may be considered relatively elementary movements, and although they reflected 

the motor impairment of PD in our study, they represent only a small subset of the daily 

movement repertoire which also includes cued and goal-directed behaviour, proximal 

movements, and locomotion. Different mechanisms may underlie performance impairment in 

other types of movement. Therefore, future studies need to explore abnormal cross-frequency 

coupling more comprehensively during more variable motor behaviours. The resolution of the 

analysis of PAC dynamics across the movement cycle is constrained by the minimum number 

of oscillatory cycles required to compute PAC, a factor that, in turn, depends on the involved 

oscillation frequencies, especially on the phase frequencies. Therefore, the current methods 

computing the time-resolved PAC cannot address the dynamic modulation of PAC during fast 

repetitive movements, which needs further investigation by using the new algorithms for 

computing PAC. Moreover, although we compared the state-related PAC under different 

conditions, the settings of the movement tasks limited the possibility to investigate the 

continuous recordings from the resting state to the peri-movement state in each movement 

cycle, which is also an essential question because transitions between different active states are 

equally important parts of voluntary movement behaviour. In addition, separation of the 

movement cycles into discrete periods may not apply to everyday behaviour, which in many 

instances is more appropriately conceived of as a continuous action with no discrete transitions. 

It remains to be studied whether concepts derived from analysing movement periods translate 

into the control of continuous movements.  

Moreover, as also introduced in section 8.2.7, in future studies researchers could help to link 
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the abnormally enhanced PAC at rest and abnormal modulation of dynPAC by developing a 

method to estimate the frequency of occurrence of brief periods of cross-frequency coupling in 

a given period. This issue remains unresolved because the criteria for determining the presence 

of the brief couplings are unclear. One possible direction would be to set a magnitude threshold 

to decide whether the computed value should be considered a valid coupling, as introduced by 

estimating the frequencies of β bursts [106]. However, the validity of this method is 

compromised by the fact that the results are strongly dependent on the definition of the 

threshold; hence, changing the threshold may yield different occurrence frequency values. 

Therefore, future efforts should be made to develop a robust measurement method that allows 

the evaluation of brief coupled features. 

Last but not least, although PAC was derived from EEG signals that reflect cortical neural 

activities, the present findings do not allow us to distinguish between a cortical or a subcortical 

origin of abnormal cross-frequency coupling in cortical microcircuits. The issue is likely to be 

solved by conducting experiments with simultaneous recordings from scalp EEG and LFP in 

sub-cortical regions. For example, researchers could record simultaneously EEG signals and 

LFP activities in the STN of PD patients who have been implanted with an appropriate DBS 

device [118]. Besides, modelling work could also help provide in-depth evidence about the 

origin of cortical activities by simulating the characteristics and connectivity of neural 

populations of the BGTC network [242]. 

8.4 Conclusion 

In this thesis, we have investigated comprehensively the spatiotemporal characteristics of β-

broadband γ PAC derived from non-invasive EEG recordings. Source localization of PAC 

elucidated the spatial origins of exaggerated PAC of PD patients, which not only include PMC 

and M1, as previously known, but also DLPFC and SS. The existence of enhanced PAC in 

more extended areas suggests that the generation of abnormal coupling does not merely come 

about through the cortical-subthalamic ‘hyperdirect’ pathway, but might also include other 

BGTC circuits and cortical-cortical connections. The study of abnormal PAC at the mesoscopic 

level further revealed its potential generation mechanisms, suggesting that β and γ activities 

involved in the abnormal PAC originate from distinct oscillators. The results highlight the 

crucial role of abnormal PAC generated from spatially separated sub-networks in motor control 

regions, implying that breaking up the lateral coupling between neural circuits may be a more 

promising treatment target of PD than approaches that attenuate abnormally synchronized 

neuronal oscillations. Furthermore, the investigation of PAC during movement provides a 
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novel insight into the functional role of PAC in the pathophysiology of PD. The findings 

regarding the dynamics of PAC during movement transitions present evidence that PAC may 

serve a role in normal motor behaviour, where it appears to indicate a preparatory state of the 

motor system. The association of abnormal PAC dynamics with bradykinesia is compatible 

with the hypothesis that deficient regulation of PAC is involved causally in the 

pathophysiology of Parkinsonian motor impairment. Taken together, the findings from the 

work in this thesis have helped us understand the relationship between an EEG oscillatory 

signature and the pathophysiology of PD, indicating that β-broadband γ PAC in the cortex is 

not a simple phenotype of PD, but rather is involved in pathological alterations of the BGTC 

functional system. These results could support further the development of guidelines for 

selecting targets and parameters for brain stimulation through the utility of cortical PAC via 

non-invasive recording techniques, laying a foundation for future research on the treatment of 

PD.  
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Introduction 

Parkinson’s disease (PD) is a neurodegenerative disorder whose pathological hallmark is the 

loss of dopamine neurons in the substantia nigra pars compacta [1]. Physiologically, the loss 

of nigral dopaminergic neurons is associated with disrupted signals of the basal ganglia-

thalamocortical (BGTC) circuits [211]. To better understand the pathophysiology of PD and to 

develop more efficient brain state-dependent therapies of Parkinsonian symptoms by 

interfering with the BGTC circuits, researchers have undertaken considerable work to identify 

reliable electrophysiological biomarkers for PD. 

Exaggerated coupling between the phase of β (13-30 Hz) activities and the amplitude of γ (50-

150 Hz) activities is now widely recognized as a pathophysiological biomarker of PD. This 

abnormal phase-amplitude coupling (PAC) has been detected from recordings in the 

subthalamic nucleus (STN) and the motor cortex [118, 134]. It has also been shown that the 

enhanced PAC can be suppressed by deep brain stimulation of the STN or by dopamine 

replacement therapy, which ameliorates motor impairment of PD patients [139, 140]. 
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Importantly, enhanced cortical PAC in PD patients can even be detected via non-invasive 

electroencephalography (EEG) recordings [137, 139], suggesting that it might potentially be a 

non-invasive biomarker for diagnosing and treating PD.  

In order to establish β-γ PAC as a reliable surface biomarker of PD, we need to understand its 

role in the pathophysiology of PD and its relationship to motor symptoms. Therefore, in this 

thesis we aim to investigate comprehensively the spatiotemporal characteristics of β-γ cortical 

PAC in the resting state and its dynamics during voluntary movements associated with the 

motor symptoms of PD patients. 

Experiments and results 

To address the research questions, we conducted an experiment by using a high-resolution 64-

channel EEG system to record signals from 19 PD patients and 20 age- and sex-matched 

healthy subjects during a 5-min resting state and several types of repetitive voluntary finger 

movements. The motor tasks consisted of repetitive index finger pressing as well as repetitive 

index finger tapping performed at the participants’ comfortable pace (‘slow tapping’) or their 

fastest pace (‘fast tapping’). We then applied advanced source analysis to localize more 

precisely the signals in distinct regions of individual brains. To differentiate further the fine 

spatial structure of the involved oscillators within each region, we employed source-space 

independent component analysis (ICA) [173]. ICA provides a unique spatial signature for each 

separated sub-network. These techniques helped us investigate the spatiotemporal properties 

of regional PAC in the resting state and during movements. 

We found that β-γ PAC abnormalities of PD patients could be extracted from source-located 

EEG signals, although they were not detectable in EEG sensor signals in this study. More 

interestingly, the EEG source signals provided information about the spatial location of 

enhanced PAC in the cortex of patients, compared with healthy controls. We demonstrated that 

cortical PAC at rest of PD patients was enhanced in more regions than previously known [118], 

namely in the dorsolateral prefrontal cortex (DLPFC), the premotor cortex (PMC), the primary 

motor cortex (M1), the primary somatosensory cortex (Broadman area 3 [BA3]), and primary 

somatosensory complex (Broadman area 1&2 [BA1&2]). The PAC difference between 

patients and controls was more pronounced in the hemisphere contralateral to the clinically 

more affected side.  

Next, we were interested in the potential generation mechanisms of exaggerated cortical PAC 

at rest. We found that β and γ signals involved in generating abnormal PAC were not strictly 
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phase-phase coupled, ruling out that it merely reflects the abnormal activity of a single non-

sinusoidal oscillator in a recurrent network. The findings further demonstrated that the PAC 

differences between patients and controls were detected from couplings between β and γ 

activities from both identical ICA components and different ICA components (originating from 

distinct spatial locations). More importantly, only the latter were correlated with clinical motor 

severity as indexed by scores of the Movement Disorders Society Unified Parkinson’s Disease 

Rating Scale III (MDS-UPDRS III). We found correlations between clinical scores of 

Parkinsonian motor symptoms and such inter-component couplings in PMC, M1, and 

somatosensory areas (SS, including BA3 and BA1&2), but not in DLPFC, indicating the 

pathophysiological importance of inter-subnetwork coupling specifically in the motor domain. 

Furthermore, when looking more deeply into the inter-subnetwork couplings, we found more 

inequivalent contributions of ICA components to PAC in patients than in controls. Interestingly, 

this inequivalent contribution of components was associated with a reduced similarity between 

the spatial distribution of sources generating PAC-involved β activities and γ activities. Our 

findings suggest that PAC abnormalities in PD at rest may not only reflect hyper-synchronous 

activity; they may also be associated with the abnormal coupling between spatially separated 

neural networks. 

The findings from the resting-state data suggested that the enhanced β-γ cortical PAC at rest 

plays an essential role in the pathophysiology of PD. However, PAC abnormalities at rest 

cannot reveal direct relationships with motor impairment, because patients do not manifest 

movement-related symptoms at rest. Therefore, in the subsequent study, we investigated the 

characteristics of movement-related PAC during different types of repetitive movement tasks. 

Some of these tasks were chosen to specifically reflect the cardinal motor signs as revealed by 

clinical examination. 

Behaviourally, PD patients performed as healthy controls when performing repetitive pressing-

releasing actions, but they showed abnormal behaviour during repetitive tapping. Specifically, 

compared with healthy controls, the abnormal behaviour of PD patients was mainly reflected 

by deficits in recruiting the first dorsal interosseus muscle for finger extension (reduced 

electromyographic slope) during slow tapping, and by a slower tapping rate when subjects 

tapped at their fastest speed, reflecting the general slowing of movement (‘bradykinesia’) in 

PD patients. In addition, when tapping at their fastest speed, PD patients also presented a 

decrement in tapping amplitude. 

We then evaluated the movement-related PAC in the four motor regions (PMC, M1, BA3, and 
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BA1&2), all of which have shown enhanced PAC at rest. First, we compared the state-related 

PAC between patients and controls by averaging the PAC values across the time series. In 

addition to the enhancement of PAC at rest, we found that patients also showed enhanced PAC 

in the pressing task, in which patients performed normally compared to controls. On the other 

hand, during slow and fast tapping, when the patients did show performance deficits, there 

were no differences in state-related PAC between patients and controls. These findings suggest 

that the magnitude of state-related PAC during the movement has no direct relationship with 

the motor impairment severity of PD. Subsequently, we examined the transient dynamics of 

PAC during movement. In the movement cycle of repetitive pressing, dynamic PAC decreased 

during the pressing after a brief peak in the pre-onset period. A strikingly similar modulation 

pattern of PAC rise and decay was observed around the offset of pressing and around the onset 

of finger extension in the slow tapping task, suggesting that the modulation of PAC is 

associated with the transitions between different movement states. Moreover, statistical tests 

showed that patients presented a similar modulation pattern with controls in the pressing task, 

but a reduced PAC modulation across movement transients in the slow tapping task (abnormal 

movement execution).  

Discussion 

The findings presented in the thesis have revealed comprehensively the characteristics of PAC 

derived from source localized non-invasive EEG recordings in PD patients. The exaggerated 

PAC at rest was localized not only in the motor cortex, but also in DLPFC and SS, suggesting 

that abnormal PAC at rest is not exclusively generated by the ‘hyperdirect’ tract of the BGTC 

circuit, but also involves other BGTC or cortical-cortical connections. Besides, we have 

provided evidence that β and γ activities involved in the generation of exaggerated PAC 

originate from spatially distinct sub-networks. The correlation between enhanced inter-

subnetwork coupling and motor impairment severity implies that breaking up the lateral 

coupling between neural circuits may be a promising treatment target for PD. Furthermore, the 

findings of the dynamics of movement-related PAC suggest a physiological role in encoding 

motor commands, in that the increase in PAC might be related to preparatory activities before 

the change of movement states. With this hypothesis, which is inspired by the dynamical 

systems theory of motor control [206], we suggest that enhanced PAC at rest indicates 

abnormal preparatory activities in the absence of an intention to move. In addition, the flattened 

PAC modulation during abnormally executed repetitive slow tapping might indicate 

dysfunctional evolution of neuronal population dynamics from the preparatory state to 

movement generation in PD. In summary, in this thesis we have demonstrated 1) the spatial 
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origins of exaggerated β-broadband γ PAC in the cortex of PD patients at rest; 2) the possible 

mechanisms of the exaggerated PAC in the cortex of PD patients; 3) the physiological 

significance of movement-related PAC dynamics and its relationship with motor impairment 

of PD. This work has advanced our understanding of the functional relationship between this 

non-invasive electrophysiological marker and the pathophysiology of PD, and these findings 

could guide the development of future brain state-dependent neurostimulation therapies for PD. 
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Einführung 

Das idiopathische Parkinsonsyndrom (IPS, engl., Parkinson’s disease, PD) ist eine 

neurodegenerative Erkrankung, deren pathologisches Merkmal der Verlust von dopaminergen 

Neuronen in der substania nigra pars compacta ist [1]. Physiologisch gesehen ist der Verlust 

nigraler dopaminerger Neuronen mit einer Unterbrechung der gesamten Basalganglien-

thalamo-kortikalen (engl., basal ganglia-thalamocortical, BGTC) Schleifen verbunden [211]. 

Um die Pathophysiologie des IPS besser zu verstehen und wirksamere hirnzustandsabhängige 

Therapien für die Parkinson-Symptome durch Eingriffe in die BGTC-Schleifen zu entwickeln, 

haben Forscher erhebliche Anstrengungen unternommen, um zuverlässige 

elektrophysiologische Biomarker für das IPS zu identifizieren. 

Die gesteigerte Kopplung zwischen der Phase der β (13-30 Hz)-Aktivitäten und der Amplitude 

der γ (50-150 Hz)-Aktivitäten ist inzwischen als pathophysiologischer Biomarker für das IPS 

anerkannt. Diese pathologische Phasen-Amplituden Kopplung (engl., phase-amplitude 
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coupling, PAC) wurde bei Ableitungen der elektrischen Aktivität des Gehirns im Ncl. 

subthalamicus (STN) und im motorischen Kortex festgestellt [118, 134]. Eine erhöhte PAC 

kann durch eine tiefe Hirnstimulation des STN oder die Gabe von dopaminerger Medikation 

unterdrückt werden, was mit einer Verbesserung der motorischen Symptome bei 

Parkinsonpatienten einhergeht [139, 140]. Eine erhöhte kortikale PAC bei Parkinsonpatienten 

kann sogar durch nicht-invasive Elektroenzephalographie (EEG) nachgewiesen werden [137, 

139], was darauf hindeutet, dass man sie möglicherweise als einen nicht-invasiven Biomarker 

für die Diagnose und Behandlung des IPS betrachten könnte.  

Um die β-γ PAC als zuverlässigen nicht-invasiven Biomarker für das IPS zu etablieren, müssen 

wir ihre Rolle in der Pathophysiologie des IPS und ihren Bezug zu motorischen Symptomen 

verstehen. Daher zielt diese Arbeit darauf ab, die raum-zeitlichen Charakteristika der kortikalen 

β-γ PAC in Ruhe und ihre Dynamik während der Ausführung von willkürlichen Bewegungen 

in Verbindung mit motorischen Symptomen bei Parkinsonpatienten umfassend zu untersuchen.  

Experimente und Ergebnisse 

Wir führten ein Experiment durch, bei dem wir mit Hilfe von einem hochauflösenden 64-Kanal 

EEG-System die Signale von 19 Patienten mit IPS und 20 alters- und geschlechtsgleichen 

gesunden Probanden während eines 5-minütigen Ruhezustands und verschiedener Arten von 

Fingerbewegungen aufzeichneten. Die Bewegungsaufgaben bestanden aus wiederholtem 

Drücken mit dem Zeigefinger und wiederholtem Tippen mit dem Zeigefinger mit entweder 

einer für die Versuchsteilnehmer angenehmen Geschwindigkeit  (‚langsames Tippen‘) oder mit 

der jeweils schnellstmöglichen Geschwindigkeit (‚schnelles Tippen‘). Anschließend haben wir 

eine Quellenanalyse durchgeführt, um die Signale in den einzelnen Hirnregionen genauer zu 

lokalisieren. Um die feine räumliche Struktur der beteiligten Oszillatoren innerhalb jeder 

Region weiter zu differenzieren, verwendeten wir die unabhängige Komponentenanalyse 

(engl., independent component analysis, ICA) im Quellenabstand [173]. Die ICA ermöglicht 

eine eindeutige räumliche Signatur für jedes getrennte Subnetz zu ermitteln. Mit Hilfe dieser 

Techniken konnten wir die raum-zeitlichen Eigenschaften der regionalen PAC in Ruhe und bei 

Bewegungen untersuchen. 

Wir konnten zeigen, dass bei Parkinsonpatienten β-γ PAC Abweichungen aus 

quellenlokalisierten EEG-Signalen extrahiert werden konnten, wobei sie in dieser Studie nicht 

in EEG-Sensorsignalen nachweisbar waren. Die EEG-Quellensignale lieferten Informationen 

über die räumliche Lage der gesteigerten PAC im Kortex der Patienten im Vergleich zu den 

gesunden Kontrollpersonen. Die kortikale PAC war bei den Parkinsonpatienten in Ruhe in 
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mehr Hirnregionen erhöht als bisher bekannt war [118], nämlich im dorsolateralen  

präfrontalen Kortex (DLPFC), im prämotorischen Kortex (PMC), im primären motorischen 

Kortex (M1), im primären somatosensorischen Kortex (Broadman Area 3 [BA3]) und im 

primären somatosensorischen Komplex (Broadman Area 1&2 [BA1&2]). Der PAC-

Unterschied zwischen Patienten und Kontrollpersonen war in der zur klinisch stärker 

betroffenen Seite kontralateralen Hemisphäre stärker ausgeprägt. 

Als Nächstes interessierten wir uns für die möglichen Entstehungsmechanismen der 

gesteigerten kortikalen PAC in Ruhe. Wir fanden heraus, dass die β- und γ-Signale, die an der 

Erzeugung der abnormalen PAC beteiligt sind, nicht streng Phase-Phase-gekoppelt sind, was 

die Möglichkeit ausschließt, dass sie lediglich die pathologische Aktivität eines einzelnen 

nicht-sinusförmigen Oszillators in einem rekurrenten Netzwerk widerspiegeln. Die Ergebnisse 

zeigten auch, dass die PAC-Unterschiede zwischen Patienten und Kontrollen durch 

Kopplungen zwischen β- und γ-Aktivitäten sowohl von identischen ICA-Komponenten als 

auch von unterschiedlichen ICA-Komponenten (die von verschiedenen räumlichen Orten 

stammen) nachgewiesen werden konnten. Wichtig ist, dass nur die Letzteren mit dem 

klinischen motorischen Schweregrad korrelierten, der durch den Score der Movement 

Disorders Society Unified Parkinson’s Disease Rating Scale III (MDS-UPDRS III) festgestellt 

wurde. Wir fanden Korrelationen zwischen klinischen Scores von motorischen Parkinson-

Symptomen und solchen Inter-Komponenten-Kopplungen im PMC, im M1 und im 

somatosensorischen Regionen (SS, einschließlich BA3 und BA1&2), aber nicht im DLPFC, 

was auf die pathophysiologische Bedeutung der Kopplung zwischen Teil-Netzwerken speziell 

im motorischen Bereich hinweist. Bei einer genaueren Betrachtung der Kopplungen zwischen 

den Teil-Netzwerken fanden wir außerdem ungleichartige Beiträge der ICA-Komponenten zur 

PAC bei Patienten im Vergleich zu den Kontrollpersonen. Interessanterweise war die 

Ungleichartigkeit des Beitrags der ICA-Komponenten mit einer geringeren Ähnlichkeit 

zwischen der räumlichen Verteilung der Quellen verbunden, die die an der PAC beteiligten β-

Aktivitäten und γ-Aktivitäten erzeugen. Unsere Ergebnisse deuten darauf hin, dass die PAC-

Abweichungen beim IPS in Ruhe nicht nur eine hypersynchrone Aktivität widerspiegeln, 

sondern auch mit einer abnormalen Kopplung zwischen räumlich getrennten neuronalen 

Netzwerken verbunden sind.  

Die in Ruhe vorhandene Veränderung der PAC bei Parkinsonpatienten muss nicht 

notwendigerweise einen direkten Zusammenhang mit motorischen Beeinträchtigungen 

aufweisen, da in Ruhe definitionsgemäß keine bewegungsbezogenen Störungen vorliegen. 
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Daher untersuchten wir anschließend die Eigenschaften der bewegungsbezogenen PAC bei 

verschiedenen Arten von sich wiederholenden Bewegungsaufgaben. Einige dieser Aufgaben 

wurden so ausgewählt, dass sie speziell die motorischen Kardinalsymptome widerspiegeln, die 

bei der klinischen Untersuchung festgestellt wurden. 

Verhaltensmäßig zeigten Parkinsonpatienten die gleichen Leistungen wie gesunde 

Kontrollpersonen, wenn sie wiederholte Druck- und Loslass-Aktionen durchführten, aber sie 

zeigten ein anderes Verhalten beim wiederholten Tippen. Im Vergleich zu gesunden 

Kontrollpersonen zeigten die Parkinsonpatienten während des langsamen Tippens Defizite bei 

der Rekrutierung des M. interosseus dorsalis I für die Fingerextension (reduzierter 

elektromyografischer Anstieg), und eine langsamere Bewegungsgeschwindigkeit, die erreicht 

wurde, wenn die Parkinsonpatienten mit ihrer schnellsten Geschwindigkeit tippten, was für 

eine allgemeine Verlangsamung der Bewegung (‚Bradykinesie‘) bei Parkinsonpatienten 

charakteristisch ist. Darüber hinaus zeigten Parkinsonpatienten eine Abnahme der Amplitude 

der Fingerbewegung, wenn sie mit ihrer schnellsten Geschwindigkeit tippten. 

Anschließend untersuchten wir die bewegungsbezogene PAC in den vier motorische Regionen 

(PMC, M1, BA3, und BA1&2), die in Ruhe eine erhöhte PAC aufwiesen. Zunächst verglichen 

wir die PAC zwischen Patienten und Kontrollpersonen, indem wir die PAC-Werte über die 

Zeitreihen hinweg gemittelt haben. Zusätzlich zur Verstärkung der PAC in Ruhe zeigten die 

Patienten auch eine erhöhte PAC während der Pressaufgabe, in welcher keine 

Verhaltensunterschiede vorhanden waren. Andererseits gab es beim langsamen und schnellen 

Tippen, trotz vorhandener Leistungsunterschiede, keine Abweichungen in der 

zustandsbezogenen PAC zwischen Parkinsonpatienten und Kontrollpersonen. Diese 

Ergebnisse legen nahe, dass die Amplitude der zustandsbezogenen PAC während der 

Bewegung nicht direkt mit dem Schweregrad der motorischen Beeinträchtigung bei 

Parkinsonpatienten zusammenhängt. Anschließend untersuchten wir die Dynamik von PAC 

während der Bewegung. Im Bewegungszyklus des wiederholten Drückens nahm die 

dynamische PAC während des Drückens nach einem kurzen Anstieg in der pre-onset Periode 

ab. Ein auffallend ähnliches Modulationsmuster des PAC-Anstiegs und -Rückgangs wurde um 

das Offset des Drückens und um den Beginn der Fingerstreckung bei der langsamen 

Tippaufgabe beobachtet, was darauf hindeutet, dass die Modulation der PAC mit Übergängen 

zwischen verschiedenen Bewegungszuständen verbunden ist. Darüber hinaus zeigten die 

Parkinsonpatienten bei der Drückaufgabe ein ähnliches Modulationsmuster wie die 

Kontrollpersonen, aber eine reduzierte PAC Modulation über die Bewegungstransienten bei 
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der langsamen Tippaufgabe (pathologische Bewegungsausführung). 

Diskussion 

In dieser Arbeit werden die Eigenschaften von PAC, die aus dem nicht-invasiven EEG bei 

Patienten mit idiopathischen Parkinsonsyndrom abgeleitet wurden, umfassend dargestellt. Die 

erhöhte PAC in Ruhe war nicht nur im motorischen Kortex, sondern auch im DLPFC und SS 

lokalisiert, was darauf hindeutet, dass die veränderte PAC in Ruhe nicht ausschließlich durch 

den ‚hyperdirekten‘ Trakt der BGTC-Schleife erzeugt wird, sondern auch andere BGTC- oder 

kortikale Verbindungen involviert sind. Darüber hinaus haben wir gezeigt, dass die β- und γ-

Aktivitäten, die an der erhöhten PAC beteiligt sind, aus räumlich getrennten Teil-Netzen 

stammen. Die Korrelation zwischen der verstärkten Kopplung zwischen Teil-Netzen und dem 

Schweregrad der motorischen Störung legt nahe, dass die Unterbrechung der lateralen 

Kopplung zwischen neuronalen Schaltkreisen ein vielversprechendes Target für die 

Behandlung der Parkinsonerkrankung sein könnte. Darüber hinaus deuteten die Ergebnisse der 

bewegungsbezogenen PAC-Dynamik auf eine physiologische Rolle bei der Kodierung 

motorischer Befehle hin, da der Anstieg der PAC mit vorbereitenden Aktivitäten vor dem 

Wechsel der Bewegungszustände zusammenhängen könnte. Nach dieser Hypothese, die von 

der Theorie dynamischer Systeme der motorischen Kontrolle inspiriert ist [206], nehmen wir 

an, dass die erhöhte PAC in Ruhe auf die krankhafte Vorbereitung von Aktivitäten hinweisen 

könnte, wenn keine Absicht zur Bewegung besteht. Darüber hinaus könnte die abgeflachte 

PAC-Modulation während des langsamer ausgeführten repetitiven Tippens auf eine 

dysfunktionale Entwicklung der neuronalen Populationsdynamik vom Vorbereitungszustand 

zur Bewegungserzeugung bei Parkinsonpatienten hinweisen. Zusammenfassend zeigte diese 

Arbeit 1) die räumlichen Ursprünge der gesteigerten β-Breitband γ PAC im Kortex von 

Parkinsonpatienten in Ruhe; 2) die möglichen Mechanismen der gesteigerten PAC im Kortex 

von Parkinsonpatienten; 3) die physiologische Bedeutung der bewegungsbezogenen PAC-

Dynamik und ihre Beziehung zu motorischen Symptomen bei Patienten mit idiopathischen 

Parkinsonsyndrom. Diese Arbeit trägt zu unserem Verständnis der funktionellen Beziehung 

zwischen diesem nicht-invasiven elektrophysiologischen Marker und der Pathophysiologie 

von Parkinsonpatienten bei und könnte für die Entwicklung von künftigen 

hirnzustandsabhängigen Neurostimulationstherapien Bedeutung haben.   
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