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Synopsis
In vivo maps of R2* in human brain hold promise for neuroscienti�c investigations. We tested several R2* �tting routines (nonlinear least

squares [NLLS; silver standard], auto-regression on linear operations [ARLO], log-linear weighted least square [WLS], and log-linear

ordinary least squares [OLS]) for dual �ip angle multi-echo FLASH data in simulations and challenging 400 µm resolution in vivo 7T data.

Log-linear WLS was found to give a good trade-o� between accuracy, precision, and computational time. The method will be available in a

future version of the open source hMRI toolbox (hmri.info).

Introduction
In vivo maps of R2* in human brain hold promise for investigations of ageing , disease , and cytoarchitecture .

Multiparameter mapping (MPM) e�ciently estimates R2* along with R1 and proton density (PD) from dual �ip angle (FA; one PD-weighted [PDw]
and one T1-weighted [T1w]) multi-echo 3D FLASH data . Log-linear ordinary least squares (OLS), as implemented in the open-source hMRI
toolbox (hmri.info) , is used to robustly estimate R2*, even in the presence of motion artefacts, by assuming a common R2* between the two
FAs .

However, log-linear OLS is non-optimal, as log-transformation induces heteroskedasticity. The optimal log-linear solution requires weighted
least squares (WLS), where the weights are proportional to the squared noise-free signals . Iterative approaches improve weight estimation
using the last iteration's signal intensities .

OLS's non-optimality could give rise to spatial R2* precision di�erences when data quality is spatially varying. An example is whole-brain 7T
imaging, where large B0 inhomogeneities  can cause large variation in signal-to-noise-ratio (SNR).

Alternative R2* �tting approaches use the signals directly, rather than log-linearisation. While general nonlinear least squares (NLLS) �tting is
slow, auto-regression on linear operations (ARLO) promises similar accuracy in a fraction of the time . However, for optimal performance ARLO
requires knowledge of SNR, which is problematic to routinely obtain.

We evaluated these approaches (OLS, WLS, ARLO, and NLLS) in simulated and 7T in vivo data.

Methods
We modi�ed the hMRI toolbox R2* �tting routine to include NLLS (with OLS initial parameters), ARLO (without debiasing or truncation), and log-
linear WLS (WLS1 uses OLS for initial weights , and WLS3 has three iterations) in addition to the native OLS. The WLS and NLLS implementations
parallelise over voxels to reduce runtime.

In vivo data were recorded on a Magnetom 7T scanner (Siemens Healthineers, Erlangen). The participant gave written informed consent before
scanning. The protocol  was repeated in two separate sessions; fortuitously in one session the PDw data was strongly corrupted by motion
and signal loss, allowing motion, no-motion, and signal loss comparisons. Imaging parameters: 400 µm isotropic resolution, 6 equispaced TEs:
[3.3,...,16.3] ms, TR: 31.6 ms, GRAPPA: , FA(PDw): 5°, FA(T1w): 27°. We used the NLLS result as silver standard for visualisation.

For quanti�cation, (10 mm)  regions of interest (ROIs) were manually selected in the frontal lobe white matter (WM) based on the PDw
volumes . ROIs were selected based on their homogeneous appearance or because they su�ered from signal loss. Because even the
homogeneous appearing ROIs still contain some inhomogeneity, R2* maps were smoothed beforehand within a WM mask (Gaussian kernel, σ:
200 µm). Signi�cant di�erences to the NLLS result were evaluated using two-sample Kolmogorov–Smirnov tests ( ).

Simulations used in vivo TEs, R2*: 40 s , SNR (Rician noise) re�ecting a typical in vivo WM voxel, and 10  noise instances. Comparative
runtimes were obtained by running 11 simulations and taking the mean time over the last 10; WLS1, WLS3, and NLLS used 8 parallel
processors.

Results
Simulations (Fig. 1) showed combining PDw and T1w data improved R2* estimation over just using PDw data for all methods, though the OLS
distribution is notably wider than the other distributions. OLS was fastest (0.02 s), then ARLO (0.11 s), WLS1 (0.36 s), WLS3 (0.78 s), and �nally
NLLS (41.53 s).

In vivo R2* maps (Fig. 2) were in line with the simulations, with WLS1 and WLS3 appearing very similar to the NLLS results, whereas OLS showed
broad spatial di�erences, especially in the signal loss region.

Quantitative comparisons (Fig. 3) supported the visual assessment: the OLS R2* distribution signi�cantly di�ered from NLLS in all cases
(asterisk in Fig. 3), whereas WLS1 R2* did not signi�cantly di�er in any of the cases. WLS3 and ARLO R2* distributions were each signi�cantly
di�erent from the NLLS distribution in at least one case. OLS was particularly a�ected in the signal loss region, though all methods showed bias
in this case compared to the other cases, probably due to noise-�oor e�ects.
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Discussion
WLS1 results were consistent with NLLS but approximately  faster to compute. In contrast, OLS was fastest, but showed large di�erences
to NLLS in all cases.

ARLO improved on OLS, and took less time than WLS1, but still showed relatively large di�erences to NLLS. This relatively poor performance
could be because we did not perform debiasing and truncation based on SNR , which is challenging to estimate reliably.

In terms of motion-robustness, all methods improved upon OLS, itself already relatively motion robust .

The lack of improvement in vivo of iterative WLS3 over WLS1 may well re�ect inaccuracy in our NLSS silver standard, or that no �xed point
exists for outlier voxels (e.g. in Fig. 2, blood vessels are more prominent in the WLS3 di�erences).

Maximum likelihood/a posteriori methods  could improve accuracy and (at the expense of precision) account for Rician noise bias , but are
in general very slow.

Conclusion
Log-linear WLS estimation of a common R2* across multi-�ip angle multi-echo data o�ers a good trade-o� between accuracy, precision, and
computational time in challenging data. The method will be available in a future version of the hMRI toolbox (hmri.info).
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Figures

Fig. 1: Violin plots of simulation results for a typical voxel using the 7T protocol. The dot shows the median, the grey vertical bar the interquartile
range, and the shaded area the density. SNR values for PDw and T1w data were based on estimates from the in vivo data.

Fig. 2: R2* maps computed with each method. Top row: data with motion artefacts. Bottom row: data without clear motion artifacts. Left
column: PDw images (TE 8.5 ms) showing ROIs used in Fig. 3. Red boxes: homogeneous ROI. Green box: ROI with signal loss. Second column:
R2* map estimated with NLLS. Other columns: di�erence between NLLS R2* and other R2* estimates.

Fig. 3: Violin plots of R2* distributions in WM RoIs. The dot shows the median, the grey vertical bar the interquartile range, the shaded area the
density, and the black line the median NLLS R2*. Motion/no motion case: homogeneous ROI (red box in Fig. 2; motion: left; no motion: right).
Motion case: additional ROI strongly a�ected by signal loss (green box in Fig. 2; middle). Voxels outside the WM mask were excluded. *:
signi�cant di�erence to the NLLS result.
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