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Abstract
This paper is the second in a set of two investigating tilt-to-length (TTL) coupling. TTL
describes the cross-coupling of angular or translational jitter into an interferometric phase signal
and is an important noise source in precision interferometers, including space gravitational wave
detectors like LISA. We discussed in Hartig et al (2022 J. Opt. 24 065601) the TTL coupling
effects originating from optical path length changes, i.e. geometric TTL coupling. Within this
work, we focus on the wavefront and detector geometry dependent TTL coupling, called
non-geometric TTL coupling, in the case of two interfering fundamental Gaussian beams. We
characterise the coupling originating from the properties of the interfering beams, i.e. their
absolute and relative angle at the detector, their relative offset and the individual beam
parameters. Furthermore, we discuss the dependency of the TTL coupling on the geometry of
the detecting photodiode. Wherever possible, we provide analytical expressions for the expected
TTL coupling effects. We investigate the non-geometric coupling effects originating from beam
walk due to the angular or translational jitter of a mirror or a receiving system. These effects are
directly compared with the corresponding detected optical path length changes in Hartig et al
(2022 J. Opt. 24 065601). Both together provide the total interferometric readout. We discuss in
which cases the geometric and non-geometric TTL effects cancel one-another. Additionally, we
list linear TTL contributions that can be used to counteract other TTL effects. Altogether, our
results provide key knowledge to minimise the total TTL coupling noise in experiments by
design or realignment.

Keywords: tilt-to-length coupling, optical cross-talk, wavefront properties,
interferometric noise sources, laser interferometry, space interferometry, LISA

(Some figures may appear in colour only in the online journal)

∗
Authors to whom any correspondence should be addressed.

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

2040-8986/23/055601+22$33.00 Printed in the UK 1 © 2023 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2040-8986/acc3ac
https://orcid.org/0000-0002-1078-3497
https://orcid.org/0000-0002-5456-8852
https://orcid.org/0000-0003-1661-7868
https://orcid.org/0000-0001-5578-1471
mailto:marie-sophie.hartig@aei.mpg.de
mailto:gudrun.wanner@aei.mpg.de
http://crossmark.crossref.org/dialog/?doi=10.1088/2040-8986/acc3ac&domain=pdf&date_stamp=2023-4-6
https://creativecommons.org/licenses/by/4.0/


J. Opt. 25 (2023) 055601 M-S Hartig et al

1. Introduction

Tilt-to-length (TTL) coupling is a common type of noise
in precision laser interferometers. It describes the unwanted
coupling of angular or translational jitter into the phase
readout. The jittering object can, for example, be a reflective
component or a receiving system, i.e. an optical bench or a
satellite that is receiving the beam of interest.

In general, TTL coupling originates, on the one hand,
from the fact that the optical distance along the beam axis is
lengthened or shortened by the jitter. This results in changes of
the optical path length difference (OPD) of the beam axis and
has been discussed in detail in [1]. On the other hand, the jit-
ter changes the interference pattern. These changes depend on
the wavefront properties and originate from alterations in the
beam alignment with respect to the detector surface and with
respect to each other. Additionally, beam displacements on the
detector surface can result in beam clipping by the boundar-
ies of the detector surface. All these effects contribute to the
final interferometric output signal. After all, an interferometer
does not directly sense an OPD but rather a phase difference
between interfering beams on a detector surface. This is typ-
ically converted to a length readout signal, the longitudinal
path length sensing (LPS) signal, by dividing the phase by the
wavenumber k [2, 3]. We categorise these LPS changes due to
the interfering beams’ wavefront properties and the detector
geometry as non-geometric effects.

Although it is often sufficient to focus on the geometric
TTL effects, there are cases where the non-geometric TTL
effects become equal or even dominant noise contributors. One
example is given by setups in which the centre of rotation is
located in the beam’s point of incidence on the detector, which
results in the suppression of the geometric coupling effects.
This is implemented in the LISA mission [4, 5] by imaging
systems [2, 6] reducing the geometric jitter coupling of the
receiving spacecraft. Another important example of dominant
non-geometric coupling is the TTL coupling of the jitter of
a transmitting spacecraft in the LISA mission into the long
arm interferometer readout, computed, for instance, in [7–9],
which we do not consider in this work. More general examples
that are independent of a specificmission have been introduced
in [1, 3, 10], and are further discussed within this paper.

TTL coupling has been investigated for different missions
in various publications. It is discussed for the LISA long arm
interferometer in [2, 7–9], for the LISA test mass interfero-
meter in [11], and for the GRACE-FO mission in [12], and
for the LISA Pathfinder (LPF) mission in [13–16]. Here, we
provide a very general overview of non-geometric TTL effects
applicable to precision interferometers, including space inter-
ferometers. The work presented here is fundamental and not
limited to a dedicated mission or project.

The scope of this work is to present analytical descrip-
tions for a series of non-geometric TTL coupling effects and
to characterise these as first- or second-order coupling effects.
Therefore, our manuscript is in terms of content divided into
two parts. We start with defining the non-geometric TTL
coupling effects analytically for fundamental Gaussian beams

and local interferometric effects (section 2). In the follow-
ing sections, we then evaluate the analytical descriptions of
the non-geometric TTL coupling depending on the wave-
front properties (section 3) and detector geometry (section 4).
Thereby, we assume one of the beams to jitter either angularly
or translationally while the other one remains static.

In the second half, the results are interpreted for two com-
mon jittering objects in section 5: a receiving system and a
reflective component. The presented equations are comple-
mentary to the geometric coupling presented in [1]. Note that
TTL coupling from a jittering transmitter is not specifically
discussed here. If the transmitter is close to the receiver, e.g. in
a laboratory setup, this case is equivalent to the case of a jitter-
ing mirror with the point of reflection being the point of rota-
tion. If, otherwise, the transmitter is far from the receiver, the
beam diameter would have increased to a width that the receiv-
ing aperture cannot fully capture. Hence it would be clipped
and the Gaussian beam assumption, which forms the basis of
this paper, would be no longer applicable. In that case, other
simulation methods, such as those discussed in [7, 17, 18] are
needed to account for diffraction effects and also wavefront
errors.

We summarise all non-geometric effects in section 6 and
list them for a typical special case. In section 7, we extend this
summary to the full LPS signal. There, we combine the results
from [1] and this work to discuss the total signal. Finally, we
give a conclusion in section 8.

2. The definition of non-geometric TTL coupling

For the introduction into the topic, we explain in this section
how non-geometric TTL coupling is defined and how it relates
to geometric coupling contributions (section 2.1). Further-
more, we present how it can be derived analytically and in
numerical simulations (section 2.2).

2.1. Introduction: LPS and OPD

Throughout this paper, we assume the case of interfering
Gaussian beams, which can be described according to [3] by

E(rb,zb, t)∝
1

w(zb)
exp

(
−r2b
w2(zb)

)
· exp

(
iΩt− i

[
kr2b

2R(zb)
− ζ(zb)+ kOPLb

])
,

(1)

where all variable definitions are listed in table 1. The lower
index b of equation (1) stands for ‘beam’ and is, therefore, sub-
stituted in table 1 by either m or r referring to a measurement
or reference beam respectively. The measurement beam is the
beam of interest that is subject to the jitter. This beam inter-
feres with a second beam, the reference beam, on the detector.
This reference beam is assumed to be static with respect to the
detector surface.
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Table 1. List of physical parameters.

Parameter Description
Characterising
equation

k Wave number common for
both beams

k= 2π/λ

λ Wavelength
Ωm,r Angular frequency of

meas./ref. beam
Ω= ck= 2π f

∆Ω Angular heterodyne
frequency

∆Ω= |Ωm−Ωr|

zR,m,r Rayleigh range of meas./ref.
beam

zR = π w2
0/λ

w0,m,r Waist size of meas./ref. beam w0 =
√
zRλ/π

wm,r Laser spot size on detector w= w0

√
1+(z/zR)2

Rm,r Radius of curvature of
meas./ref. beam

R= z(1+(zR/z)2)

ζm,r Gouy phase of meas./ref.
beam

ζ = arctan(z/zR)

Pm,r Power of meas./ref. beam
zm,r Distance from waist in

direction of propagation for
meas./ref. beam

sm,r Propagation distance of
meas./ref. beam

rm,r Cylindrical coordinate of
meas./ref. beam

r=
√
x2 + y2

OPLm,r Optical path length of the
meas./ref. beam axis

For two interfering beams, the detected power can be
derived via the integral of the squared absolute sum of their
electric fields over the photodiode surface S:

P∝
ˆ
dS∥Em+Er∥2 (2)

=

ˆ
dS
(
∥Em∥2 + ∥Er∥2 +EmE

∗
r +E∗

mEr
)
. (3)

The first two summands describe the detected power of the
individual beams. The third and the fourth summand, evalu-
ated for t= 0, are often referred to as complex amplitudes a of
the beat note. The argument of this complex amplitude is then
the interferometric phase ϕ [3], e.g.

ϕ = arg(a) = arg

(ˆ
dS EmE

∗
r |t=0

)
, (4)

sensed by the corresponding interferometric readout system.
This description is equally valid for homodyne and heterodyne
interferometers.

The LPS signal is this phase converted to a length by a divi-
sion by the wavenumber k:

LPS=
1
k
ϕ . (5)

This derivation is valid if the entire interference pattern is
detected with homogenous sensitivity, so for single element
photodiodes (SEPDs), which are sufficiently large to detect the

complete incident wavefronts.Wewill extend this for quadrant
photodiodes (QPDs) in section 4.

The LPS represents the actual displacement measurement
of interferometers. While its geometric coupling contributor,
i.e. the OPD of the two beam axes,

OPD= OPDm−OPDr , (6)

can be derived from simple geometry [1], the LPS is more
complicated to compute both numerically and analytically.
Because each OPL is defined along the corresponding beam
axis, the OPD is (approximately) constant in the surface integ-
ral of equation (4). It can therefore be drawn out of this
integral:

ϕ= arg

[
exp(−i k(OPLm−OPLr))

·
(ˆ

dS(EmE
∗
r )|OPLm,r=t=0

)]
(7)

= arg

[
exp(i kOPD)

(ˆ
dS(EmE

∗
r )|OPLm,r=t=0

)]
(8)

= kOPD+ arg

[(ˆ
dS(EmE

∗
r )|OPLm,r=t=0

)]
. (9)

Strictly speaking, this derivation only holds for beams of nor-
mal incidence. In the case of tilted beams, an additional micro-
scopic phase needs to be considered when the OPD is taken
out of the integral [3]. Yet, the OPD can be separated in
either case from the non-geometric phase (second summand
in equation (9)). Thus, the LPS can be split into the OPD and
a non-geometric contribution LPSng:

LPS= OPD+LPSng . (10)

The non-geometric part LPSng contains then all contributions
related to the wavefront properties (i.e. the involved radii of
curvature Rb, Gouy phases ζb and spot sizes wb) and the beam
alignment at the detector described by the angles (φb,ηb) and
the point (xib,yib) of incidence at the detector. Additionally, it
contains clipping effects if the detector surface S is not large
enough to receive the full extent of the impinging wavefronts.
A more detailed description of the numerical implementation
of these equations and possibly needed coordinate transform-
ation is given in [3]. The LPS signal measured in a laboratory
experiment includes additional effects that are not included in
the presented equations, such as the non-uniformity of the pho-
todiode’s responsivity.

2.2. Derivation of LPSng in analytical and in numerical
simulations

In numerical simulations that allow both, a computation of
the LPS as well as the OPD (this is, for instance, the case in
IfoCAD [3, 19]), one can naturally derive the LPSng simply
from the difference

LPSng = LPS−OPD . (11)
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Figure 1. Coordinate system of a single element (black circle) or
quadrant (grey quarter circles) photodiode, respectively. The four
quadrants of the QPD are labelled A, B, C and D. A beam rotation
in the xz-plane is described by the angle φb. We do not show here
rotations in the yz-plane (ηb).

In analytical derivations, this process would be significantly
more complex than necessary. In the analytic and numeric
approach, the OPD can be derived as described in [1] via
the difference between the OPLs of the measurement beam
in the tilted and the nominal case. However, the computation
of the non-geometric TTL contributions can be simplified by
adapting the simulation to directly exclude OPL changes and
making them zero by design. In that case, the LPS signal in
equation (11) is fully non-geometric and can be derived ana-
lytically using the procedure described in [20] summarised in
the following:

To account for the tilt angle of each of the beams b and
the rotation axis defining a rotation matrix Mrot,b, as well as
the location of the centre of rotation ppivot,b, we first perform a
coordinate transformation in equation (1). The new coordin-
ates are defined with respect to the photodiode centre, i.e.
z= 0, and in the detector coordinate system (figure 1). xb

yb
∆OPLb

=Mrot,b


 x
y
0

− ppivot,b

+

ppivot,b−
xi,b
yi,b
0


 .

(12)

The beams are then superimposed on the photodiode, and the
overlap integral in equation (4) and the resulting LPS signals
are analytically evaluated. In the analytical evaluation of the
overlap integral, it is assumed that the beam parameters do
not vary for different detector points: Due to the typically dif-
ferent shapes of the wavefront and the detector surface, the
outer parts of the wavefront would hit the detector earlier or
later, yielding slightly different parameters. However, the dif-
ferences are small and scaled by a decreasing intensity. Hence,
we only consider their values in their point of incidence. This
simplifying assumption is not necessary for numerical compu-
tations using IfoCAD. Also, in our comparisons between the
analytical and the simulation results, we find no differences
exceeding the accuracy achievable with IfoCAD (∼10−15 m).

For the computation of the non-geometric signal contribu-
tion only, we substitute the pivot point ppivot,b by the measure-
ment beam’s point of incidence (xim,yim,0) on the photodiode

surface. By this replacement, all OPD contributions become
zero and, therefore, LPS= LPSng.

In general, we reduce the complexity of the analytic
equations by neglecting the jitter dependency of beam para-
meters as a higher-order contribution.

2.3. Taylor expansion of the equations

The evaluation of the non-geometric coupling equations, as
described above, yields very complex terms, which make it
hard to deduce the characteristics of the TTL coupling effects.
Therefore, we will show only the second-order series expan-
sions in the following section. The equations are Taylor-
expanded in all small parameters (α≪ 1rad and r≪ 1m),
which are the beam alignment angles (φm, ηm, φr, ηr), detector
alignments (φPD, ηPD) and shifts due to the translational jitter
(xm, ym).

3. Wavefront related TTL coupling effects: case of
ideal detectors

In this section, we investigate how the wavefront properties,
i.e. the beam parameters, affect the phase signal and show
how this wavefront-dependent TTL coupling depends on the
point of incidence at the detector. To differentiate between the
wavefront-related TTL effects and the detector-related TTL
effects (section 4), we assume in our analytic investigations
here that the detectors are ideal infinitely large SEPDs.

We start with analysing the TTL coupling in the most sim-
plified setup of two perfectly identical fundamental Gaussian
beams with the measurement beam rotating around its point
of incidence on the detector. We distinguish the case where
the beams overlap perfectly (section 3.1) and the case of a
shifted measurement beam section 3.2. Since identical Gaus-
sian beams are idealisations impossible to achieve in real-
ity, we further discuss TTL effects induced by beams having
unequal beam parameters in section 3.4. Since any other dis-
tortion of the wavefront or intensity shape will alter the bal-
ance between wavefronts, it also generates cross-coupling, see
section 3.6.

3.1. Identical Gaussian beams and rotation around the
common point of incidence

jitter type: φm

static parameters: φr, φPD, zRm = zRr, zm = zr, xim = xir
detector: SEPD

We assume the most simple case of two identical funda-
mental Gaussian beams with identical points of incidence and
a rotation of the measurement beam around their common
point of incidence. For a rotation angle of φm = 0 both beams
and beam paths are identical and they perfectly overlap each
other. If rotated around the beams’ shared incidence point on
the detector, the measurement beam’s geometric path length
does not change, giving here a pure non-geometric path length
readout. In the following, we will derive the TTL coupling in

4
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this particular case first qualitatively via a graphic and then
analytically.

The graphical derivation of TTL coupling is based on an
approximation of equation (4). Therefore, we first divide the
surface integral in equation (4) into n segments Si. The com-
plex amplitude a then equals the sum over the complex amp-
litudes ai of the segments Si

a=
n∑
i=1

ai (13)

ai ∝
ˆ
dSi (EmE

∗
r )|t=0 . (14)

The expected interferometric phaseϕ is then given by the argu-
ment of the sum of all complex amplitudes:

ϕ = arg(a) = arg

(
n∑
i=1

ai

)
. (15)

In a graphical approach, we examine a small number of
complex amplitudes ai visually from the differences of the
interfering wavefronts. This is illustrated in figure 2 showing
the wavefronts of two interfering beams in the nominal non-
tilted case and for an arbitrarily chosen tilt angle φm. Here,
the vector representations of the complex valued amplitudes ai
are given by the black arrows. Their directions define the local
phase differences ϕi. In the figure, these are graphically estim-
ated from the difference (averaged difference within a certain
segment) of the phase profiles, i.e. the blue and red wave-
fronts. Further, the lengths of the arrows are defined by the
Gaussian amplitude profile of the interference pattern, qual-
itatively described by the yellow area. In accordance with
equation (15), the full complex amplitude equals the sum of
the black arrows. The interferometric phase ϕ then equals the
angle of this vector sum.

Next, we evaluate the total phases for the case shown in
figure 2: While the local phase differences are all zero in the
non-tilted case, a tilt of the measurement beam (red wave-
front) changes the directions but not the lengths of the complex
amplitude vectors. Due to the given symmetry, the arrows on
the right- and left-hand sides are antisymmetric, which results
again in a total phase of zero, i.e. the same value as in the non-
tilted case, showing that no TTL coupling will occur.

We confirm this graphical derivation by deriving the LPS
signal analytically using the methods described in [3, 20].
Therefore, we evaluate equation (4) for the electrical fields of
identical Gaussian beams, i.e. beams with the same Rayleigh
ranges zRm = zRr, distances from waist zm = zr and incidence
points xim = xir at the detector. For small beam tilts φm we find

LPSSEPD,2Dng ≈− zm
4kzRm

(
φ2
m− 2φmφPD

)
, (16)

which corresponds to results from [10] but additionally
describes the contribution of a small tilt φPD of the detector
surface.

The term we find in the analytical derivation is assumed
to originate from the simplifying assumptions made in the

Figure 2. Simplified illustration for the vanishing TTL in case of
identical Gaussian beams rotating around their joint point of
incidence on the photodiode. Shown are the superposition of two
wavefronts in the nominal untilted case (upper sketch with
superimposing blue and red wavefronts) and the case when the
measurement wavefront is tilted around the centre of the reference
wavefront (lower sketch). The local phase differences between the
wavefronts are indicated by ϕi and are illustrated by the directions
of the black arrows (vector representations of the local complex
amplitudes). The phase information at different positions on the
detector is weighted with the amplitude of the total field (‘overlap’)
resulting from the superposition of the two interfering beams. The
phase sum ϕsum represents the integrated phase over the entire
detector. This ϕsum is indicated by the direction of the green arrows
on the right-hand side. Due to the given symmetry, ϕsum is
unaffected by the rotation, which shows that there is no
non-geometric TTL, i.e. LPSng = 0.

computation of the LPS signal (see section 2.2). For a small
photodiode tilt |φPD|≲ 200µrad and common parameters,
e.g. |φm|≲ 200µrad, λ= 1064nm, zm ∼ 1m, zRm ∼ 1m, it is
smaller than 10−14 m, and therefore few orders of magnitude
smaller than usually needed in space-based interferometers.
Also, the computation accuracy of our comparison tool Ifo-
CAD, while highly accurate in the case of beam tracing and
geometric effects, is in its current version confined by the
numerical limits of the integration algorithms (∼10−15m for
typical simulations). Thus, despite no coupling being visible
in our simulations, the existence of residual coupling terms in
the case of two identical Gaussian beams with one rotating
around the shared point of incidence cannot fully be ruled out.
In either case, we can conclude that the TTL coupling for this
scenario is negligible.

Note that we initially assumed that the reference beam is
not tilted. However, also for a static misalignment by a small
angle φr, equation (16) would still hold: The angular align-
ment of the reference beam does not couple with the measure-
ment beam jitter.

3.2. Identical Gaussian beams and rotation around a laterally
shifted point of incidence

jitter type: φm

static parameters: φr, φPD, zRm = zRr, zm = zr, xir, yir
variable parameters: xim, yim
detector: SEPD

5
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Figure 3. TTL coupling for a laterally shifted measurement beam
(red), which rotates around its incidence point on the photodiode
(red star). The phase information at different positions on the
detector is weighted with the overlap (product of the electric field
amplitudes) between the two interfering beams. For non-tilted
beams, the local phase differences cancel in the total phase (i.e. the
green arrow points upwards). For a tilted measurement beam, this is
no longer the case (i.e. the green arrow is rotated): the pairs of local
phase differences ϕi, i ∈ {1, . . . ,5} distributed around the symmetry
axis of the amplitude profile do not cancel each other. Consequently,
the total phase changes, i.e. the sum of the paired local phase
differences ϕi and the non-zero phase difference at the symmetry
point of the amplitude profile at the photodiode surface ϕ∗ is
different than in the non-tilted case. This is caused by a
displacement of the symmetry axis (dashed grey line) of the
differential wavefront with respect to the symmetry axis of the
amplitude profile of the total field. The differential wavefront
describes the phase distribution at the detector surface, not
considering the weighting by the amplitude. It is indicated by the
vertical lines between the blue and red wavefront.

By assuming a perfect overlap of both interfering beams
for φm = 0 as well as a centre of rotation positioned exactly
at the point of incidence, we considered a very special case
in section 3.1. We now relax these conditions step-wise.
Within this subsection, we investigate how the TTL coup-
ling changes if the two beams are laterally, i.e. along the x-
or y-axis (figure 1), shifted with respect to each other. Let
xim,xir describe the offset of the beams’ points of incidence
with respect to a hypothetical centre of the infinitely large
SEPD (see figure 1 for the coordinate system). The measure-
ment beam’s centre of rotation is now placed in this new point,
i.e. it jitters angularly around the point defined by xim.

While without beam offsets, the amplitude of the overlap is
symmetric with respect to the wavefronts, the symmetry axes
of the overlap and the interfering beams differ from each other
once offsets of the detection points are introduced. An offset
of one beam and the resulting imbalance of the overlap will
favour one side and thus generate cross-coupling, as demon-
strated in figure 3.

We compute this case again analytically as described in 3.1
for a statically tilted reference beam and photodiode and
find

LPSSEPD,2Dng ≈ 1
2
(xim− xir) [(φm−φPD)+ (φr−φPD)]

+

[
(xim− xir)

2 zm
8z2Rm

− zm
4kzRm

](
φ2
m− 2φmφPD

)
(17)

or in a three-dimensional case neglecting detector angles

LPSSEPD,3Dng ≈ 1
2
(xim− xir)(φm+φr)

− 1
2
(yim− yir)(ηm+ ηr)

+

[
(xim− xir)

2 zm
8z2Rm

− zm
4kzRm

]
φ2
m

+

[
(yim− yir)

2 zm
8z2Rm

− zm
4kzRm

]
η2m

− zm
z2Rm+ z2m

ximyimφmηm . (18)

Here, yim,yir denote the vertical displacement of the points of
incidence with respect to the hypothetical centre of the pho-
todiode, and ηm the measurement beam’s pitch angle. In both
equations, we neglected all constant second-order angles (e.g.
(φr−φPD)

2 and φ2
PD) but kept all linear constants in prepara-

tion for the following discussion.
We can simplify equations (17) and (18) further by dis-

carding the negligible terms: As shown in the discussion in
section 3.1, the quadratic terms which include a division by
the wavenumber k are negligibly small for common setup
parameters. Also, the offsets between the points of incid-
ence are small in typical interferometers (xim− xir < 10−4).
Therefore, we further neglect the terms with quadratic off-
sets multiplied with quadratic beam tilts as fourth-order terms.
Correspondingly, the equations (17) and (18) reduce to

LPSSEPD,2Dng ≈ 1
2
(xim− xir) [(φm−φPD)+ (φr−φPD)] , (19)

LPSSEPD,3Dng ≈ 1
2
(xim− xir)(φm+φr)−

1
2
(yim− yir)(ηm+ ηr) .

(20)

It follows from equation (19) that the TTL coupling would
be minimised if the measurement and the reference beam
are nominally tilted by inverse angles, i.e. φm =−φr, and
φPD = 0. The cancellation of the signal in the case of inverse
angles is illustrated in figure 4. This shows that not the differ-
ential but the average alignment angle of the beams couples
into the signal.

Finally, we distinguish between a static and a dynamic point
of incidence of the measurement beam. In cases where the
pivot is not actually on the detector, a beam walk occurs on the
photodiode. That means, the incidence point (xim,yim) varies
dynamically during the rotation, i.e. it is angle-dependent:

xim(φm)≈ xim,0 + x ′im(0)φm+ x ′ ′im(0)
φ2
m

2
. (21)
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Figure 4. For two beams that are shifted with respect to each other
and are rotated by the same angle but in opposite directions, i.e.
φm =−φr, the amplitude profile is symmetric and the local phase
differences cancel each other.

In our computations, we assume then a rotation of the meas-
urement around this point of incidence. We discuss the beam
walk for different applications in section 5.

In three-dimensional investigations, the point of incid-
ence would depend on both jittering angles: (xim,yim) =
(xim(φm,ηm),yim(φm,ηm)). However, in cases where the beam
walk can be linearised, no cross-plane dependencies appear.
This is the case for interfering beams with equal beam para-
meters and large single element diodes, as discussed in this
section. The point of incidence is then described by

xim(φm,ηm)≈ xim,0 + x ′im(0)φm , (22)

yim(φm,ηm)≈ yim,0 + y ′im(0)ηm . (23)

We insert for two-dimensional analyses equation (21)
into equation (19) and for three-dimensional computation
equations (22) and (23) into equation (20) (where we set the
photodiode alignment angle to zero).When discarding all con-
stant terms, we find

LPFSEPD,2Dng ≈ 1
2
(xim,0 − xir)φm

+
x ′im(0)
2

φm [(φm−φPD)+ (φr−φPD)] ,

(24)

LPFSEPD,3Dng ≈ 1
2
(xim,0 − xir)φm+

x ′im(0)
2

φm(φm+φr)

− 1
2
(yim,0 − yir)ηm−

y ′im(0)
2

ηm(ηm+ ηr) .

(25)

We see that the constant beam offsets induce significant linear
TTL coupling for angular jitter, while the dynamic beam walk
term is purely quadratic in this case.

If the point of incidence is static, i.e. do not change with the
jitter, the equations (24) and (25) further reduce to

LPFSEPD,2Dng ≈ 1
2
(xim− xir)φm , (26)

Figure 5. Simulated path length signal (IfoCAD: crosses,
analytical: line) in the scenario with two identical Gaussian beams
that only differ in their nominal points of incidence at the detector
xim. This describes a shift of the axis of the measurement beam by
xim, while having the centre of rotation at the same longitudinal
distance from the beam’s point of incidence. We find significant
linear TTL coupling. The simulation parameters were: waist radius
w0 = 1mm, nominal points of incidence xir = 0 and
xim = {−0.2 mm, −0.1 mm, 0 mm, 0.1 mm, 0.2 mm}, centre of
rotation at point of incidence, and detector radius 100 mm.

LPSSEPD,3Dng ≈ 1
2
(xim− xir)φm−

1
2
(yim− yir)ηm . (27)

This case is illustrated in figure 5.

3.3. Identical Gaussian beams and lateral jitter

jitter type: xm, ym
static parameters: φm, φr, φPD, zRm = zRr, zm = zr, xir, yir
variable parameters: xim, yim
detector: SEPD

Next, we investigate translational beam jitter along the x- or
y-axes (i.e. not the z-axis) of the detector (figure 1). We refer
to this jitter as lateral jitter. The lateral measurement beam jit-
ter is related to the TTL coupling by the lateral beam offsets
presented in the previous section. This jitter would make the
beam’s point of incidence shift along the detector surface with
respect to the reference beam’s incidence point. Meanwhile,
we assume its angular alignment (φm) to be constant. It fol-
lows that the equations (19) and (20) still hold but must be
interpreted for a variable point but constant angle of incidence
of the measurement beam.

LPSSEPD,2Dng ≈ 1
2
xm [(φm−φPD)+ (φr−φPD)] , (28)

LPSSEPD,3Dng ≈ 1
2
xm (φm+φr)−

1
2
ym (ηm+ ηr) . (29)

We see that lateral jitter would not couple if both beams are
inversely tilted (compare figure 4). However, for a differential
angle φm−φr ̸= 0, we find significant linear TTL coupling.

7
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3.4. Arbitrary Gaussian beams with arbitrary centre of
rotation

jitter type: φm

static parameters: φr, φPD, zRm, zRr, zm, zr, xir
variable parameters: xim
detector: SEPD

In the previous examples, the measurement and reference
beam initially had the same intensity and phase profile on the
detector. However, this is not representative for interferomet-
ers like LISA, GRACE-FO, or arbitrary instruments that use
heterodyne interferometers where identical beam parameters
are effectively not achievable. A beam parameter mismatch
has a strong influence on the cross-coupling. The main reason
for this is a discrepancy between the wavefront curvatures and
the diameter of the beams in the detector plane. A qualitative
analysis of this effect can be found in [21].

Here, we provide an analytic expression for the non-
geometric part of the path length measurement as we have
done for the previous simpler cases. We find

LPSSEPD,2Dng

≈ (xim− xir)

[
zRm(zRm+ zRr)+ zm(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

(φm−φPD)

+
zRr(zRm+ zRr)− zr(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

(φr−φPD)

]

−

{
zRrzm+ zRmzr

k((zRm+ zRr)2 +(zm− zr)2)
+

(xim− xir)
2

(zRm+ zRr)2 +(zm− zr)2

×
[
zm− 2(zRm+ zRr)(zRrzm+ zRmzr)

(zRm+ zRr)2 +(zm− zr)2

]}
·
(
φ2
m

2
−φmφPD

)
−
[
(z2Rr+ z2r )zm− (z2Rm+ z2m)zr
(zRm+ zRr)2 +(zm− zr)2

](
φ2
m

2
−φmφr

)
+(xim− xir)

2
[

(zm− zr)
2((zRm+ zRr)2 +(zm− zr)2)

]
, (30)

where xim can be either static or dynamic, as introduced in
the previous subsection. Similar to the case of equal beam
parameters, we can neglect some terms in equation (30) since
they are negligible in common interferometric setups. We neg-
lected the terms featuring a division by the wavenumber k, or a
product of a squared beam offset on the detector and a quadric
tilt dependency, and find

LPSSEPD,2Dng

≈ (xim− xir)

[
zRm(zRm+ zRr)+ zm(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

(φm−φPD)

+
zRr(zRm+ zRr)− zr(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

(φr−φPD)

]

−
[
(z2Rr+ z2r )zm− (z2Rm+ z2m)zr
(zRm+ zRr)2 +(zm− zr)2

](
φ2
m

2
−φmφr

)
+(xim− xir)

2
[

(zm− zr)
2((zRm+ zRr)2 +(zm− zr)2)

]
. (31)

Figure 6. Simulated path length signal (IfoCAD: crosses,
analytical: line) in the scenario with two Gaussian beams that only
differ in their waist location and interfere on an infinitely large
detector. All graphs go through the origin because we chose for each
setting the signal obtained at a beam angle of zero as a reference and
subtracted it from each curve. We find quadratic TTL coupling for
this case of varying the waist location. The simulation parameters
were: waist radius of both beams w0 = 1mm, nominal distances
from waist at detector zr = 100mm and zm = zr+ {−20 mm,
−10 mm, 0 mm, 10 mm, 20 mm}, pivot position at point of
incidence, and detector radius 100 mm.

By setting zRm = zRr and zm = zr, equation (31) reduces to the
case of equal beam parameters (compare equation (19)).

As we have done before, we evaluate equation (31)
for a beam walk of the measurement beam by inserting
equation (21), which yields

LPSSEPD,2Dng

≈ (xim,0 − xir)
zRm(zRm+ zRr)+ [zm+ x ′im(0)](zm− zr)

(zRm+ zRr)2 +(zm− zr)2
φm

+ x ′im(0)φm

[
zRm(zRm+ zRr)+ zm(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

(φm−φPD)

+
zRr(zRm+ zRr)− zr(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

(φr−φPD)

]

−
[
(z2Rr+ z2r )zm− (z2Rm+ z2m)zr
(zRm+ zRr)2 +(zm− zr)2

](
φ2
m

2
−φmφr

)
+
[
(x ′im(0))

2 + x ′ ′im(xim,0 − xir)
] (zm− zr)
(zRm+ zRr)2 +(zm−zr)2

φ2
m

2
.

(32)

For all static points of incidence, this expression reduces to

LPSSEPD,2Dng ≈ (xim,0 − xir)
zRm(zRm+ zRr)+ zm(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

φm

−
[
(z2Rr+ z2r )zm− (z2Rm+ z2m)zr
(zRm+ zRr)2 +(zm− zr)2

](
φ2
m

2
−φmφr

)
.

(33)

Though equations (31)–(33) are fairly complex, they give
valuable information, for instance, if only single parameter
changes are investigated at a time. Changing, for example, the
difference in the distance from waist of the measurement and
the reference beam gives a quadratic TTL coupling as shown
in figure 6. Changing the waist sizes of the beam instead, while
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Figure 7. Simulated path length signal (IfoCAD: crosses, analytical:
line) in the scenario with two Gaussian beams that only differ in
their waist size and interfere on an infinitely large detector. All
graphs go through the origin because we chose for each setting the
signal obtained at a beam angle of zero as reference and subtracted
it from each curve. We find quadratic TTL coupling for this case of
varying waist sizes. The simulation parameters were: waist radii
w0r = 1mm and w0m = w0r+ {−0.2 mm,−0.1 mm, 0 mm, 0.1 mm,
0.2 mm}, nominal distances from waist at detector
zm = zr = 100mm, xim = xir, pivot position at point of incidence,
and detector radius 100 mm.

keeping the other parameters identical, will likewise generate
second-order TTL coupling, see figure 7. This shows that the
TTL coupling is a mixture of linear and second-order terms
for arbitrary beam parameter mismatches.

3.5. Arbitrary Gaussian beams and lateral jitter

jitter type: xm
static parameters: φm, φr, φPD, zRm zRr, zm, zr, xir
variable parameters: xim
detector: SEPD

Analogously to the case with equal beam parameters, we
obtain the equations for lateral jitter and arbitrary beams by
interpreting the equations in the previous section for constant
beam alignments and variable points of incidence:

LPSSEPD,2Dng ≈ xm

[
zRm(zRm+ zRr)+ zm(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

(φm−φPD)

+
zRr(zRm+ zRr)− zr(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

(φr−φPD)

]

+ x2m

[
(zm− zr)

2((zRm+ zRr)2 +(zm− zr)2)

]
. (34)

Due to the different profiles of both beams, lateral jitter would
now also yield a small coupling for non-tilted beams.

3.6. Wavefront errors

We have so far generally assumed the idealised case of per-
fect fundamental Gaussian beams with axial symmetry. In

Figure 8. A fundamental mode is mixed with a HG30 mode, the
resulting amplitude and intensity profiles of the resulting beam are
asymmetric (previously shown in [21]). Adapted with permission
from [21] © The optical Society.

experimental reality, the interfering Gaussian wavefronts will
have small distortions that can, for instance, be described
by a superposition of higher-order modes with low amp-
litudes. These superimposing modes then affect the symmetry
of the Gaussian beams, as illustrated in figure 8. Consequently,
wavefront errors affect the TTL coupling behaviour. These
additional wavefront error dependent TTL effects cannot be
easily modelled for all the discussed cases. Instead, they pro-
duce very specific, non symmetric effects that must be evalu-
ated case-by-case. Thus we neglect them in the present discus-
sion. Some numerical simulation programs can handle these
wavefront errors and consider them in the final signal, e.g.
IfoCAD [3, 19].

4. TTL effects originating from detector properties

Not only do the wavefront properties of the beams affect the
LPS signal, but also the detector geometry itself contributes to
the cross-coupling. Mathematically, this can be seen from the
integral over the detector surface S in equation (4), which is
used for computing an LPS signal using equation (5). We will
therefore investigate below the various contributions to LPSng
originating from detector properties.

In section 4.1, we comment on the dependency of the LPS
signal on the photodiode angle.We argue that it can be directly
set to zero in simulations, independent of the corresponding
experimental value. In section 4.2, we then show that differ-
ent definitions of the LPS signal exist if quadrant diodes are
used. These different LPS signal types usually show different
amounts of TTL coupling. We then show in section 4.3 how
phase contributions for finite square QPDs can be computed
analytically. Finally, we briefly discuss the effect of diode
imperfections in section 4.4.

4.1. Tilt of the detector

jitter type: (φm or xm)
static parameters: (- or φm), φr, φPD, zRm zRr, zm zr, xir
variable parameters: xim
detector: SEPD

9
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Figure 9. Qualitative analysis of the TTL coupling for unequal beam parameters showing that the photodiode angle does not contribute to
the TTL coupling. The left-hand side shows the case of a non-tilted detector (φPD = 0), and the right-hand side the case of a tilted detector.
Upper left figure: neither the beams nor the detector is tilted. Lower left figure: non-tilted detector, but the measurement beam (red) got
tilted with respect to the reference beam (blue). The total phase changed in comparison to the non-tilted case, implying TTL coupling.
Upper and lower right figures: same as the corresponding left figures, but the detector surface was tilted. This tilt changes the direction along
which the complex amplitudes are being defined and read out (see connecting lines between the blue and red curves), such that all vector
representations of the complex amplitudes are slightly changed. However, no change in the total phases can be observed here compared to
the cases without detector tilt.

The equations shown in the previous sections depend on the
TTL coupling in the non-geometric LPS signal on the angular
alignment of the detector surface (φPD). While this is true for
purely non-geometric coupling and also the geometric coun-
terpart presented in [1], this does not necessarily also hold for
the full interferometric phase. For small tilts of the detector
surface, it would in a good approximation equally affect the
reference and measurement beam, and likewise their relative
phase in each detector point.

This is shown in figure 9. There, the TTL coupling for
unequal beam parameters is compared for the case of an un-
tilted photodiode (left part of the image) with the case of
a tilted photodiode (right part of the image). Even though
the complex amplitude vectors in each detector point slightly
change due to the detector tilt, we do not see an effect on the
total phase (green arrows). Hence, the detector angle is expec-
ted to cancel from the LPS signal.

We confirm this expectation by analysing the photodiode
angle dependent terms in LPS= OPD+LPSng. Therefore, we
subtract all terms not depending on φPD, i.e. LPS(φPD = 0),
and find

LPSSEPD,2D(φPD)−LPSSEPD,2D(φPD = 0)

≈ OPDSEPD,2D(φPD)−OPDSEPD,2D(φPD = 0)

− 2φPDφm x
′
im(0) (35)

for angular jitter coupling. We see that all considerable non-
geometric detector tilt dependent TTL terms, except for those
of the jitter dependent beam walk, cancel out in the full LPS
signal. Particularly, the detector alignment angle does not add
up to the TTL coupling for static offsets of the points of incid-
ence. We will further show in section 5 that the residual, beam
walk dependent terms in equation (35) cancel with their geo-
metric counterparts in different setups. This yields

LPSSEPD,2D(φPD)−LPSSEPD,2D(φPD = 0)≈ 0 . (36)

We have seen above that the equations for lateral jitter can
be obtained by a different interpretation of the terms evaluated
for angular jitter. If follows that the conclusions for angular
jitter coupling also hold for lateral jitter.

We conclude from this that in any derivation of LPS sig-
nals for large SEPDs, the photodiode angle φPD can be neg-
lected even if the diode is in the corresponding experiment
indeed tilted. Nonetheless, we show all equations with φPD

here because ray tracing tools computing the OPD will always
include this term. Since the results can yield misleading align-
ment optimisation strategies regarding the detector alignment,
it can be advisable to set φPD = 0 in simulations.

4.2. Dependence on the path length signal definition using
QPDs

So far, we have assumed infinitely large SEPDs as detect-
ors, which means that both wavefronts are fully sensed by the
detector and no clipping occurs. This assumption is not valid in
cases where a QPD is being used for angular sensing using dif-
ferential wavefront sensing [22]. QPDs further allow for mul-
tiple phase signal definitions [23], which contribute differently
to the overall cross-coupling. This originates from the fact that
every photodiode quadrant delivers an individual photocur-
rent and, therefore, an individual complex amplitude. Math-
ematically, this is described by evaluating the surface integral
in equation (14) over the corresponding quadrant i, resulting
in the complex amplitude ai. The four complex amplitudes
can then be combined in different ways to generate the total
phase readout ϕ and the corresponding LPS signal. We show
this here exemplary for two commonly used QPD path length
definitions, the arithmetic mean phase (AP) and the LPF LPS
signal.

The AP is literally derived from the arithmetic mean of the
phases of the four segments

10
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ϕAP =
arg(aA)+ arg(aB)+ arg(aC)+ arg(aD)

4
(37)

=
ϕA +ϕB +ϕC +ϕD

4
, (38)

where A,B,C,D denote the four quadrants of the photodiode.
The corresponding LPS signal is then defined like before (see
equation (5)):

LPSAP =
ϕAP

k
=

ϕA +ϕB +ϕC +ϕD

4k
. (39)

This is a kind of natural procedure when the signal is processed
by a digital phase-locked loop based phasemeter that produces
phases as primary output and not complex amplitudes [24].

The second signal definition we discuss here is called LPF
LPS signal definition because it was used in the LPF phase-
meter, which uses a single bin discrete Fourier transform [25].
The result of which is a complex amplitude. It is defined as
the argument of the sum of all complex amplitudes divided
by k:

LPSLPF =
1
k
arg(aA + aB + aC + aD) . (40)

For a QPD with slits of zero width, the sum of the complex
amplitudes of the single quadrants, corresponding to a sum of
the integrals of the single segments, is equal to the complex
amplitude of the entire diode. Therefore, for a slit width of zero
and a sufficiently large diameter of the diode, the LPF QPD
path length definition (LPSLPF) becomes equal to the SEPD
path length definition (LPSSEPD) [23].

Figures 10 and 11 illustrate the effect of different wave-
front curvatures on the cross-coupling if either the LPSLPF

or LPSAP signal is used. In the centre, two interfering wave-
fronts are shown, with equal curvatures in figure 10 and with
unequal curvatures in figure 11. Depending on the total phase
signal definition, the complex amplitude vectors are recom-
bined here in different ways. On the right, the LPF definition
sums up all shown complex amplitude vectors of the left- and
right-hand sides. On the left, the AP signal calculation is illus-
trated. Here, the complex amplitude vectors of the left and
right-hand sides are added separately, resulting in a phase of
the left- and right-hand sides (small grey arrows). These com-
plex amplitude vectors are then added and normalised again,
resulting in the green arrow, which illustrates the averaged
phase. In the case of equal wavefront curvatures, figure 10, the
overall phase (i.e. the angle of the green arrow) is independent
of the tilt angle for both phase definitions. That means that,
like in the case of an SEPD, we do not expect TTL coupling
for either of the LPS definitions if the interfering wavefronts
have matched beam parameters.

Contrary, in the case of unequal wavefront curvatures in
figure 11, the overall LPF phase changes if the wavefront tilts,
while the overall AP phase is less affected by tilts. Hence,
in the case of unmatched wavefront properties and a rotation
around the centre of the QPD, we expect that the AP signal
shows less TTL coupling than the LPF signal. We confirm this
using IfoCAD as shown in figure 12 for two aligned beams

Figure 10. The effect of different path length definitions on the
overall phase in the case of equal wavefront curvatures. On the
right, the LPF definition sums up all complex amplitude vectors. On
the left, the AP definition, i.e. equation (39), is used for two
segments, which computes an average phase per side (left and right)
and adds the averaged side complex amplitude vectors (grey
arrows). The overall phase (green arrow) is independent of the tilt
angle for both phase definitions.

Figure 11. The effect of different path length definitions on the
overall phase in case of unequal wavefront curvatures. On the right,
the LPF path length signal is shown, and on the left, the AP
definition. Both, the LPF and the AP phases, change with the
rotation. However, the AP phase is less affected by the tilts.

with identical parameters besides their waist size and a rota-
tion of the measurement beam around their shared point of
incidence. By figure 12, we demonstrate that the resulting AP
signal comprises less TTL coupling than the LPF signal. Fur-
thermore, the image shows that the LPF signal and the SEPD
signal have nearly identical TTL coupling. This is expected
from the definition of LPSLPF. Finally, this demonstrates that
using quadrant diodes and an AP signal can, in some cases,
reduce the TTL coupling noise in the system. This was previ-
ously also observed in [18, 26].

4.3. TTL contributions comparing infinite SEPDs with finite
square QPDs

We show in this section that the TTL estimates for large SEPDs
are still useful in cases where small square SEPDs or QPDs
and the LPF LPS signal are used. The derived signal contains
the large SEPD’s signal, though an additional TTL term ori-
ginating from the clipping needs to be considered.
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Figure 12. Longitudinal path length signals computed with IfoCAD
for a single element diode, and for a QPD with either the LPF or the
AP signal definition. Both beams are nominally equally aligned.
One of the beams got tilted around its point of incidence, ensuring a
pure non-geometric signal. The simulation parameters were: waist
radius w0r =1 mm and w0r =0.8 mm, distance from waist at
detector zm = zr = 100mm, pivot position dlong = dlat = 0mm,
detector radius 5 mm, and slit width 50µm.

To account for phase changes due to clipping on the
detector surface, we repeat the analytic derivation introduced
in section 2.1 but assume this time a square finite QPD shape.
This means we integrate the complex product of the elec-
trical fields over the detector surface, see equation (4) and
compare [3, 20]. Transforming the electrical fields into pho-
todiode coordinates x,y, we can rewrite equation (4) via

ϕ = arg

[ˆ
PD

dS exp
(
Cxxx

2 +Cxx+Cyyy
2 +Cyy+C0

)]
(41)

where Ci ∈ C. The integration over the detector surface gives

ϕ = arg


π exp

[
1
4

(
C2
x

Cxx
+

C2
y

Cyy
− 4C0

)]
√
Cxx
√
Cyy

×
[
1
4
erf

(
Cx+Cxx x

2
√
Cxx

)][
1
4
erf

(
Cy+Cyy y

2
√
Cyy

)]∣∣∣∣
PD


(42)

= arg


π exp

[
1
4

(
C2
x

Cxx
+

C2
y

Cyy
− 4C0

)]
√
Cxx
√
Cyy


+ arg

{[
1
4
erf

(
Cx+Cxx x
2
√
Cxx

)][
1
4
erf

(
Cy+Cyy y

2
√
Cyy

)]∣∣∣∣
PD

}
,

(43)

whereby the notation
´
dSf(x,y) = F(x,y)|PD describes the

evaluation of the antiderivative F(x,y) over the surface of

the photodiode. If the photodiode surface consists of several
segments, the notation describes the sum over these segments,
inserting the boundary values respectively.

It can easily be verified that the second argument in
equation (43) becomes zero for infinitely large SEPDs. Hence

ϕ = ϕSEPD + arg

{[
1
4
erf

(
Cx+Cxx x

2
√
Cxx

)]

×

[
1
4
erf

(
Cy+Cyy y

2
√
Cyy

)]∣∣∣∣
PD

}
. (44)

We conclude that the phase measured, for instance, by a QPD
is always the sum of the phase measured by an infinitely
large SEPD and a second phase contribution that depends on
the detector geometry. However, for large diodes with small
deviations from SEPDs, as for example QPDs with a narrow
insensitive slit, ϕSEPD will be the dominant summand. This
agrees exactly with the simulation results shown in figure 12,
where a QPD with a slit width of 50µm was assumed and the
LPSLPF signal deviates only slightly from the SEPD signal.

4.4. Arbitrary detector errors

As for arbitrary wavefront errors, also imperfections of the
detector affect the TTL coupling. The segments can have
different efficiencies or different shapes due to defects or
additional features like bonding wires. Such disturbances are
described and analysed for different detectors, for instance,
in [27]. In such a case, the equations described throughout
this paper would be disturbed by the imperfections and would,
therefore, need to be adapted to the given situation. This is not
possible for arbitrary and unknown detector imperfections.

5. Non-geometric TTL coupling in different systems

TTL coupling occurs in different types of precision interfero-
meters. We group these interferometers into two categories,
just as described in [1]. The first category covers systems,
where the TTL coupling originates from the jitter of a system
relative to a static beam. This occurs, for instance, if a space-
craft is jittering relative to the laser beam it is receiving from a
far spacecraft, like in the GRACE-FO mission [28, 29] and in
the LISA long-arm interferometers [4, 5]. The second category
of interferometers comprises systems where the TTL coup-
ling originates from an angularly or laterally jittering mirror.
Most laboratory systems, as well as the LPF interferometers
[13, 16, 30] and LISA test mass interferometer [4, 5] fall into
this category.

5.1. Receiver jitter

We first assume an angularly jittering receiving system. There,
a jittering optical bench receives a static beam which is then
incident on a photodiode that jitters together with the optical
bench and all other components, including the reference beam
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Figure 13. TTL coupling due to angular jitter of the system (grey
open box) with respect to the incoming beam (red trace). The
geometric TTL effect is visible by the distance change along the
beam axis when the photodiode (PD) moves into the received beam.
Non-geometric effects occur, for instance, due to the change of the
beam’s incidence point on the detector, which moves from the green
point in the centre of the diode, to a yellow point PPD,1 shifted from
this centre. The distances dlong and dlat define the longitudinal and
lateral distances between the nominal point of incidence PPD,0 and
the centre of rotation. Both are positive in this figure.

in the system. Thus, the detector surface moves into or out of
the received beam, which alters the optical path length and,
thereby, introduces geometric TTL coupling. Simultaneously
it changes the wavefront properties on the photodiode and
causes beam walk, which again results in non-geometric TTL
coupling. The beam walk is illustrated in figure 13, where
PPD,0 was the nominal point of incidence, while the beam
impinges in point PPD,1 if the system is rotated by φRS.

We define the lateral jitter of a receiver as the jitter along
the x- or y-axis of the receiver, see figure 13. Due to this jitter,
the measurement beam would get shifted along the detector
surface and, therefore, the offset xim of the point of detection
of the measurement beam with respect to the detector centre
becomes time-dependent.

5.1.1. Angularly jittering receiving system

jitter type: φRS, ηRS
static parameters: dlong, dlat, dvert

φr, ηr, φPD, zRm = zRr, zm = zr, xim,0, xir, yim,0, yir
detector: SEPD

We start with investigating the angular jitter of a receiv-
ing system. Here, the offset of the point of rotation from
the nominal point of incidence causes a beam walk on the
detector surface. Thereby, the centre of rotation considered
in the derivation of the non-geometric TTL signal becomes
angle-dependent.

In the case of an angularly jittering receiver, the pivot point
is shifted longitudinally by dlong, laterally by dlat, and vertic-
ally by dvert with respect to the point of incidence (xim,yim).
The beam’s horizontal and vertical offsets on the detector
can be computed geometrically. We find for two-dimensional
investigations

x2Dim,RS = xim,0 + {dlong sin(φRS)− dlat [sec(φRS)− 1]}
· cos(φRS)sec(φRS −φPD) (45)

≈ xim,0 + dlongφRS −
1
2
dlatφ

2
RS , (46)

where xim,0 is the measurement beam’s initial offset, i.e. its
offset at φRS = 0.

Extending our analysis to the three-dimensional case, we
find for the beam walk (linearised)

x3Dim,RS ≈ xim,0 + dlongφRS , (47)

y3Dim,RS ≈ yim,0 − dlong ηRS . (48)

We insert these beam walk equations into the non-
geometric TTL coupling equations introduced in section 3.2
for equal beam parameters, i.e. equations (24) and (25) (where
φPD = 0), respectively, and substitute φm →−φRS and ηm →
ηRS. Then, we get the non-geometric TTL contributions ori-
ginating from the pivot location of the receiving system

LPSSEPD,2Dng,RS ≈−1
2
(xim,0 − xir)φRS

+
1
2
dlongφRS [−φRS +φr− 2φPD] , (49)

LPSSEPD,3Dng,RS ≈−1
2
(xim,0 − xir)φRS +

1
2
(yim,0 − yir)ηRS

− 1
2
dlongφRS(φRS −φr)

− 1
2
dlong ηRS(ηRS − ηr) . (50)

Comparing equations (50) and (27) we see that a rotation
around a pivot, that is shifted longitudinally by dlong against
the incidence point (xim,yim) of the measurement beam on
the detector, results in additional first- and second-order non-
geometric TTL coupling in φRS compared to the case with
static offsets. The lateral displacement of the centre of rota-
tion dlat affects the beam walk only as a secondary effect
(equation (46)). Therefore, it does not notably affect the non-
geometric TTL coupling for small angles.

jitter type: φRS

static parameters : dlong, dlat
zRm zRr, zm zr, xim,0, xir

detector: SEPD

The description of non-geometric TTL coupling is more
complex for unequal beam parameters. Like above, we
substitute xim by its dynamic representation (equation (46))
and replace φm →−φRS in equation (32). Further, we assume
for simplicity a nominally impinging reference beam (φr = 0)
and no detector tilt (φPD = 0), yielding
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LPSSEPD,2Dng,RS

≈−(xim,0 − xir)
zRm(zRm+ zRr)+ zm(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

φRS

+ dlong (xim,0 − xir)

[
(zm− zr)

(zRm+ zRr)2 +(zm− zr)2

]
φRS

− dlong

[
zRm(zRm+ zRr)+ zm(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

]
φ2
RS

+(d2long−dlat (xim,0 − xir))

[
(zm− zr)

2((zRm+zRr)2+(zm−zr)2)

]
φ2
RS

−
[
(z2Rr+ z2r )zm− (z2Rm+ z2m)zr
(zRm+ zRr)2 +(zm− zr)2

]
φ2
RS

2
. (51)

Hence, the lateral displacement dlat couples for unequal beam
parameters to a small degree into the readout.

5.1.2. Laterally jittering receiving system

jitter type: xRS, yRS
system parameters: φRS, ηRS, dlong, dlat, dvert

φr, ηr, φPD, zRm = zRr, zm = zr
detector: SEPD

Next, we consider the case of a laterally jittering receiver
which is assumed to be angularly misaligned with respect
to the incoming beam. As explained above, the lateral jit-
ter changes the measurement beam’s point of incidence at
the detector. Since we consider here a receiving system jitter
(i.e. not measurement beam jitter), it relates to the lateral jitter
coupling introduced in section 3.5 via xm → xRS and ym → yRS
(compare coordinate system in figures 1 and 13 and the effect
of a positive receiver shift on the offset xim).

Thus, we find the non-geometric TTL coupling signal
by applying the angle and jitter parameter transformations
for the receiving system to the equations (28) and (29)
(setting φPD = 0):

LPSSEPD,2Dng,RS ≈ 1
2
xRS [−(φRS +φPD)+ (φr−φPD)] , (52)

LPSSEPD,3Dng ≈ 1
2
xRS(−φRS +φr)−

1
2
yRS(ηRS + ηr) . (53)

Equations (52) and (53) yield significant linear TTL coupling
in the lateral jitter parameters depending on the alignment of
the interfering beams with respect to the detector surface.

5.1.3. Full LPS signal as sum of geometric and non-geometric
effects

jitter type: (φRS or xRS)
static parameters: (- or φRS), dlong

zRm = zRr, zm = zr, xim,0 = xir
detector: SEPD

We now use the equations above to reanalyse a setup pre-
viously described in [1, see figure 9]. There, a system rotation
with an arbitrary longitudinal offset of the pivot point, but no
lateral offset was assumed. Both beams were in the nominal

case aligned to each other, i.e. xim,0 = xir and φr = 0, and we
assumed no photodiode tilt, i.e. φPD = 0. Inserting this into
equation (49), we get

LPSSEPD,2Dng,RS ≈− 1
2
dlongφ

2
RS . (54)

By comparing equation (54) with the corresponding OPD [1,
see equation (43)], we find that both are equal for a rotation of
the system around a longitudinally displaced pivot but have an
inverted sign. Thus, the angular jitter coupling for a longitud-
inally displaced centre of rotation cancels:

LPSSEPD,2DRS = OPD2D
RS +LPSSEPD,2Dng,RS (55)

≈ 0 . (56)

This confirms the observations found in numerical simulations
[1, 10].

Considering instead a laterally jittering receiving system
with a constant angular misalignment (φRS ̸= 0), we find
residual TTL coupling in the complete LPS signal. Let us,
for simplicity, assume a nominally aligned reference beam
and detector, i.e. φr = φPD = 0. Under these assumptions,
equation (52) reduces to

LPSSEPD,2Dng,RS ≈−1
2
xRSφRS . (57)

While seeing a significant non-geometric coupling for lateral
jitter, there is no geometric correspondence: If the receiver
jitters parallelly to its detector surface, the length of the
received beam does not change [1, see equation (38)]. Thus,
the lateral TTL coupling here is fully described by the non-
geometric coupling,

LPSSEPD,2DRS = LPSSEPD,2Dng,RS ≈−1
2
xRSφRS , (58)

which yields a strong linear coupling.

jitter type: φRS

static parameters: dlong = zm
zRm, zRr, zm = zr, xim,0 = xir

detector: SEPD

The equations above only hold for the case of equal
beam parameters. If the beam parameters for both interfer-
ing beams divert from each other, the cancellation fails (com-
pare equation (51)). However, we can construct a special case
in which we can relax the conditions on the beam paramet-
ers and still achieve a cancellation: The waist size becomes
irrelevant when considering a rotation around the waist pos-
ition. Let both beams be identical besides their waist size
and imping nominally at the non-tilted detector, i.e. zm = zr,
xim,0 = xir, φr = 0 and φPD = 0. The centre of rotation is lon-
gitudinally displaced from the detector surface and lies in the
beam waist, i.e. dlong = zm. In this case, the geometric and the
non-geometric TTL effects cancel each other.
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LPSSEPD,2DRS = OPD2D
RS +LPSSEPD,2Dng,RS (59)

≈
[
dlong

φ2
RS

2

]
− [dlongφRS]

[
zRm

zRm+ zRr

]
φRS

−
[
(zRr− zRm)dlong

zRm+ zRr

]
φ2
RS

2
(60)

= 0 . (61)

5.1.4. Cancellation of the photodiode angle dependent terms

jitter type: (φRS or xRS)
static parameters: (- or φRS), dlong, dlat

φPD, zRm, zRr, zm, zr
detector: SEPD

Wehave claimed in section 4.1 that the terms in the full TTL
coupling signal depending on the alignment of the detector
φPD would cancel. Namely, the φPD-dependent terms in the
non-geometric signal, which all depend on the system jitter
induced beam walk, cancel with their geometric counterparts
presented in [1]. The latter describe the path length change of
the measurement beam axis due to the receiver jitter. Since the
measurement beam walks along the detector surface, a tilt of
that surface would shorten or elongate the beam path depend-
ing on the sign of the beam tilt [1].

We can show this cancellation mathematically for angular
jitter coupling by substituting OPD2D

RST [1, see equation (31)]
and x2Dim,RS (equation (46)) into equation (35). The same holds
for lateral jitter coupling. Here, we find for the non-geometric
coupling contribution

LPSSEPD,2Dng,RS (φPD)−LPSSEPD,2Dng,RS (φPD = 0) =−xRSφPD .

(62)

Adding this to the geometric equation [1, see equation (21)]
(there, we need to substitute yRS → xRS due to a different con-
vention), the full signal cancels as well.

5.2. Mirror jitter

We now assume a mirror that is subject to angular jitter. As
one can see on the left-hand side of figure 14, the path along
which the reflected beam propagates to the photodiode is then
angle-dependent and deviates from the nominal path, i.e. the
path for φ= 0. This affects the OPL of the beam axis but
also the angle and point of incidence at the detector. Mean-
while, the second interfering beam is assumed not to be reflec-
ted at the mirror but to hold as a static reference. The meas-
urement beam rotation and beam walk depicted in figure 14
originate from two different mechanisms: the lever arm and
the piston mechanism. The changes of the beam axis length
due to these mechanisms have separately been discussed
in [1].

The lever arm mechanism (left-hand side of figure 14)
describes the angular jitter of a mirror surface around the beam

reflection point Prefl,0. The beam then follows the light red path
and hits the detector in an angle-dependent point PPD,1. The
distance xilever between the original point of incidence PPD,0

and PPD,1 describes the lever arm induced beam walk. The
change caused by this beam walk in the LPS signal is the non-
geometric lever arm effect.

The piston mechanism (right-hand side of figure 14)
describes all additional changes originating from the mirror
movement into or out of the beam path, hence changing the
beam’s point of reflection from Prefl,0 to Prefl. For angular jit-
ter coupling, this is caused by the displacement of the mirror’s
centre of rotation with respect to the reflection point. As a con-
sequence, also the beam’s point of incidence at the detector
shifts from PPD,1 to point PPD. The LPS signal change caused
by the beam walk on the photodiode is the non-geometric pis-
ton effect.

The piston mechanism also describes lateral jitter coupling.
Here, the mirror would jitter parallel to the x- (or y-) axis, also
yielding a translation of the point of reflection if the mirror
surface is tilted with respect to the axes.

The following subsections show that the equations for the
non-geometric lever arm effect are comparable to longitudinal
offset in the case of receiver jitter. However, the piston effect
does not only differ from the previous case since we have a
reflection (yields approximately twice the OPD) but also since
the offset of the centre of rotation from the point of reflection
has a much smaller effect on the beam walk. The same holds
for lateral mirror jitter.

5.2.1. Angularly jittering mirror

jitter type: φ, η
static parameters: dlever, dlong, dlat, dvert, β ≡ βy, βz

φr, ηr, φPD, zRm = zRr, zm = zr,
xim,0, xir, yim,0, yir

detector: SEPD

We consider the case of amirror with angular jitter as depic-
ted in figure 14 and an arbitrary pivot location. The beam walk
xim then depends on the mirror angle φ, the lever arm dlever as
well as the longitudinal and lateral displacements between the
reflection point and the centre of rotation dlong,dlat:

x2Dim,MR ≈ xim,0 − 2 [dlever + dlat sin(β)]φ

+ [2dlat cos(β)+ dlong sin(β)]φ
2 . (63)

For interfering beams with identical beam parameters we
substitute in equation (24) φm → 2φ and replace xim by
equation (63) and thus find

LPSSEPD,2Dng,MR ≈ (xim,0 − xir)φ

− [dlever + dlat sin(β)]φ (2φ +φr− 2φPD) .
(64)

We also expand this case for three-dimensional setups. The
beam’s angle of incidence at the mirror is there notated by the
propagation angles βy (equivalent to the two-dimensional β)
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Figure 14. Beam walk induced by two TTL mechanisms in the case of mirror rotations. Left figure: the lever arm mechanism. Shown is the
displacement xilever of the point of incidence from PPD,0 to PPD,1 due to a tilt φ of the mirror around the reflection point Prefl,0. The
displacement scales with the distance dlever of the photodiode (PD) from the mirror, which is defined along the nominal beam axis (case
φ= 0). Right figure: the piston mechanism. The beam’s reflection point is translated due to the motion of the mirror surface into the beam
path. It is here caused by a shift of the centre of rotation with respect to the reflection point (longitudinally by dlong and laterally by dlat, both
are positive here). This yields a beam walk xipiston from point PPD,1 to point PPD additionally to the lever arm beam walk. The dashed line
corresponds to the beam path due to the lever arm effect. In both figures, β marks the beam’s angle of incidence at the mirror in nominal
position and φPD denotes the rotation of normal to the PD surface with respect to the nominal beam axis. Arrows pointing clockwise
indicate negative angles.

and βz. For simplicity, we assume a measurement beam with
normal incidence (βy = βz = 0) on the mirror and no detector
tilt. Then, the linearised tilt-dependent beam walk becomes

x3Dim,MR ≈ xim,0 − 2dleverφ , (65)

y3Dim,MR ≈ yim,0 + 2dleverη . (66)

We can use again equation (25) with φm → 2φ and ηm → 2η,
substitute xim,yim by equation (66) and find

LPSSEPD,3Dng,MR ≈ (xim,0 − xir)φ− (yim,0 − yir)η

− dlever
(
2φ2 +φ φr+ 2η2 + ηηr

)
. (67)

As shown by equations (64) and (67), the mirror jitter
couples to first- as well as second-order into the readout. For
any given lever arm dlever or a lateral offset dlat, an additional
linear effect originates from an angular misalignment of the
reference beam or a photodiode tilt. If both are optimally
aligned, the beam walk would only yield second-order non-
geometric TTL coupling in φ (and η).

jitter type: φ
system parameters: dlever, dlong, dlat, β

zRm, zRr, zm, zr, xim,0, xir
detector: SEPD

Analogously we proceed for the case of beams with
unequal parameters. Here, we substitute in equation (32)

xim by equation (63) and φm → 2φ. Additionally, we set
φr = φPD = 0 for simplicity. Thus we find

LPSSEPD,2Dng,MR

≈ 2(xim,0 − xir)
zRm(zRm+ zRr)+ zm(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

φ

− 2 [dlever + dlat sin(β)] (xim,0 − xir)

×
[

(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

]
φ − 4 [dlever + dlat sin(β)]

×
[
zRm(zRm+ zRr)+ zm(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

]
φ2

+
{
2 [dlever + dlat sin(β)]

2
+ [2dlat cos(β)+ dlong sin(β)]

× (xim,0 − xir)} ·
[

(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

]
φ2

− 2

[
(z2Rr+ z2r )zm− (z2Rm+ z2m)zr
(zRm+ zRr)2 +(zm− zr)2

]
φ2 . (68)

5.2.2. Laterally jittering mirror

jitter type: dlat(t), dvert(t)
static parameters: φ, η, β ≡ βy, βz

φr, ηr, φPD, zRm, zRr, zm, zr,
xim,0, xir, yim,0, yir

detector: SEPD
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The equations (63)–(68) hold for angular jitter coupling
assuming time-dependent rotations φ(t) and η(t) as well as for
lateral jitter coupling assuming a time-dependency of dlat(t)
and dvert(t). We see in equation (67) that lateral jitter would
not couple into the non-geometric LPS signal if the measure-
ment beam has a normal incidence on the mirror, i.e. βy,βz =
0. Contrary, equation (64) shows that the lateral behaviour
enters the signal if β ̸= 0. However, this coupling is small for
small lateral jitter yielding in total a third-order effect. We
thus find

LPSSEPD,2Dng,MR ≈ 0 . (69)

5.2.3. Full LPSSignal as sum of geometric and non-geometric
effects

jitter type: (φ or dlat(t))
static parameters: (dlever, dlong, dlat or φ), β

zRm = zRr, zm = zr, xim,0 = xir
detector: SEPD

Now, we can combine the non-geometric and the geomet-
ric TTL contributions to see the total effect and do this here
for simplicity only for the two-dimensional case. Investigating
the case of ideal alignment, i.e. xim,0 = xir, φr = 0, and using
equation (10) from [1], we find a total LPS of

LPSSEPD,2DMR = OPD2D
MR +LPSSEPD,2Dng,MR (70)

≈−2dlat cos(β)φ + dlong cos(β)φ
2 . (71)

Thus, the geometric and non-geometric lever arm effects can-
cel in the total TTL equations. However, the non-geometric
piston effect does not fully cancel its geometric counterpart
leaving the residual given in equation (71). The same holds
for the more general case of arbitrarily aligned beams. In con-
clusion, we see that the total piston effect will be the dominant
noise source since the total lever arm effect is zero. A lateral
displacement dlat of the centre of rotation relative to the incid-
ence point on the mirror causes linear coupling and should be
avoided if possible. Contrary, a longitudinal displacement of
the centre of rotation adds only second-order coupling and is,
therefore, less critical.

Interpreting the equation for lateral jitter coupling (compare
section 5.2.2), we see by equation (71) that the uncancelled
geometric lateral jitter coupling dlat(t) induces significant TTL
coupling.

5.2.4. Cancellation of the photodiode angle dependent terms

jitter type: (φ or dlat(t))
static parameters: (dlever, dlong or dlat or φ), β

φPD, zRm, zRr, zm, zr, xim,0, xir
detector: SEPD

Analogously to the case of receiver jitter, we can prove
the cancellation of the φPD-dependent terms simply by

substitution of the presented equations into equation (35).
For angular mirror jitter, this means replacing OPD2D

MRT by
[1, see equation (30)] and xim by the representation x2Dim,MR
(equation (63)). For lateral jitter coupling, we find a priori
neither for geometric nor for non-geometric coupling non-
negligible detector tilt dependent terms.

5.3. Propagation of tilted beams trough transmissive
components

In addition to the two systems introduced above, transmissive
components can be deployed along the measurement beam
path. The beam refraction occurring due to the different
refractive indices of the surrounding medium and the compon-
ent’s material changes the beam path within the component.
Consequently, the beam is shifted laterally with respect to the
path the beam would propagate if the transmissive component
was not there.

This shift changes with the alignment of the beam before
the transmission and hence with angular jitter. This generates
a beamwalk and, by this, non-geometric TTL coupling. In this
section, we discuss this coupling analytically.

5.3.1. Transmissive components along the path of the angular
jittering beam

jitter type: φm

static parameters: tBS, nBS, φBS

φr, φPD, zRm, zRr, zm, zr, xim,0, xir
detector: SEPD

The effect of transmissive components on the measure-
ment beam path has previously been discussed in [1]. Ana-
logously to that case, we assume here a transmission of the
measurement beam through n components with thicknesses
tBS,i, refraction indices nBS,i and rotation of φBS,i of the sur-
face normal with respect to the nominal incoming beam path.
The resulting beam walk is

x2Dim,tc ≈−
∑
i

tBS,i

[
n2BS,i cos(φBS,i)

2

(n2BS,i− sin2(φBS,i))3/2

− sin2(φBS,i)√
n2BS,i− sin2(φBS,i)

− cos(φBS,i)

φm
−
∑
i

3
2

n2BS,itBS,i cos(φBS,i)sin(φBS,i)

((n2BS,i− sin2(φBS,i))5/2

×
(
n2BS,i− 1

)
φ2
m . (72)

This equation can be used both for the case of angular jitter
of a receiver (when the components jitter simultaneously to
the receiver, replace φm →−φRS) or of a mirror (for com-
ponents transmitted after the reflection φm → 2φ). The total
beam walk is then the sum of equation (72) and the offsets
derived for a rotation of the setup (equation (46)) or the mirror
(equation (63)):
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xim,RST = xim,RS + xim,tc . (73)

xim,MRT = xim,MR + xim,tc . (74)

In the given case of identical beam parameters, this sum of
beam walks also results in a full non-geometric LPS signal
which is a sum of the previously derived terms, and an addi-
tional LPS signal due to the transmissive component:

LPSng,RST = LPSng,RS +LPSSEPDng,tc , (75)

LPSng,MRT = LPSng,MR +LPSSEPDng,tc . (76)

In the two-dimensional case, the additive coupling term reads
for equal beam parameters

LPSSEPD,2Dng,tc ≈−
∑
i

tBS,i
2

[
n2BS,i cos(φBS,i)

2

(n2BS,i− sin2(φBS,i))3/2

− sin2(φBS,i)√
n2BS,i− sin2(φBS,i)

− cos(φBS,i)


×φm [φm+φr− 2φPD] (77)

and otherwise

LPSSEPD,2Dng,tc

≈ (xim,0 − xir)
zRm(zRm+ zRr)+ zm(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

φm

−
∑
i

tBS,i

 n2BS,i cos(φBS,i)
2

(n2BS,i− sin2(φBS,i))3/2
− sin2(φBS,i)√

n2BS,i− sin2(φBS,i)
− cos(φBS,i)


· (xim,0 − xir)

[
(zm− zr)

(zRm+ zRr)2 +(zm− zr)2

]
φm

−
∑
i

tBS,i

 n2BS,i cos(φBS,i)
2

(n2BS,i− sin2(φBS,i))3/2
− sin2(φBS,i)√

n2BS,i− sin2(φBS,i)
− cos(φBS,i)


·
[
zRm(zRm+ zRr)+ zm(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

]
φ2
m

+

{(∑
i

tBS,i

[
n2BS,i cos(φBS,i)

2

(n2BS,i− sin2(φBS,i))3/2
− sin2(φBS,i)√

n2BS,i− sin2(φBS,i)
− cos(φBS,i)

])2

−
∑
i

3
2

n2BS,itBS,i cos(φBS,i)sin(φBS,i)

((n2BS,i− sin2(φBS,i))5/2

(
n2BS,i− 1

)
(xim,0 − xir)

}

·
[

(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

]
φ2
m

−
[
(z2Rr+ z2r )zm− (z2Rm+ z2m)zr
(zRm+ zRr)2 +(zm− zr)2

]
φ2
m

2
. (78)

5.3.2. LPS signal as sum of geometric and non-geometric
effects

jitter type: φm

system parameters: tBS, nBS, φBS

static parameters: zRm = zRr, zm = zr, xim,0 = xir
detector: SEPD

For equal beam parameters, transmissive components
equally affect the geometric TTL coupling [1, see

equation (26)]. It can then be shown that the transmissive com-
ponent dependent geometric and non-geometric TTL terms
cancel in the full TTL signal

LPSSEPD,2Dtc = OPD2D
tc +LPSSEPD,2Dng,tc (79)

≈ 0 , (80)

provided that the reference beam is nominally aligned, i.e.
φr = 0.

In summary, transmissive components do not contribute to
angular jitter TTL coupling if both beams feature the same
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beam parameters and the reference beam impinges with a nor-
mal incidence at the detector. However, for unequal beam
parameters, this cancellation is imperfect.

5.3.3. Cancellation of the detector angle dependent terms

jitter type: φm

static parameters: tBS, nBS, φBS

φPD, zRm, zRr, zm, zr, xim,0, xir
detector: SEPD

The cancellation of the detector tilt dependent terms also
holds if transmissive components are placed along the meas-
urement beam path. Therefore, we compare in the case of a
mirror rotation substituting OPD2D

MRT [1, see equation (30)]
for the geometric and LPSSEPD,2Dng (equation (31)) for the
non-geometric contribution with x2Dim,MRT (equation (74)). In
the case of a rotation of the receiving system we substitute
OPD2D

RST [1, see equation (31)] and LPS
SEPD,2D
ng (equation (31))

with x2Dim,RST (equation (73)).

6. Summary non-geometric TTL coupling

In this section, we summarise the non-geometric TTL effects
providing an estimate of the polynomial degree of the
added TTL coupling. Throughout this paper, we have mostly
assumed SEPDs, and therefore also assume this detector type
here. However, we have shown in section 4.3 that these results
are relevant also when QPDs are used, and that the deviation
for QPDs and the LPSLPF signal from the given equations is
particularly small. For simplicity, we assume here a nominally
aligned measurement and reference beam, i.e. β = 0, φr = 0.
Furthermore, we assume no detector tilt, i.e.φPD = 0, since we
have shown in section 4.1 that the detector tilt angle cancels in
either case from the total LPS signal.

6.1. Angular jitter coupling

Given two beams that are nominally aligned and always share
the same point of incidence, the non-geometric coupling sig-
nal for equal beam parameters becomes negligible. However,
we face TTL coupling if both beams feature different beam
parameters (compare equation (31)), i.e.

LPSSEPD,2Dng =−
[
(z2Rr+ z2r )zm− (z2Rm+ z2m)zr
(zRm+ zRr)2 +(zm− zr)2

]
φ2
m

2
. (81)

For equal and for unequal beam parameters, a static offset
between the measurement and the reference beam (xim− xir =
const.) makes the jitter couple linearly into the signal. This
holds for the case of a rotating receiver as well as for a rotating
mirror (compare equation (19)). Under our assumptions, we
get for equal beam parameters

LPSSEPD,2Dng ≈(xim− xir)
φm
2

(82)

and for unequal beam parameters (compare equation (31))

LPSSEPD,2Dng

≈ (xim− xir)

[
zRm(zRm+ zRr)+ zm(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

]
φm

−
[
(z2Rr+ z2r )zm− (z2Rm+ z2m)zr
(zRm+ zRr)2 +(zm− zr)2

]
φ2
m

2
. (83)

Furthermore, the TTL coupling in the case of a setup depend-
ent beam walk, i.e. if the centre of rotation is not located on
the photodiode surface, adds second-order TTL coupling both
for the case of angular jitter of the receiving system (RS, cf
equation (49)) or a reflecting mirror (MR, cf equation (64)).
We find for beams with equal beam parameters:

LPSSEPD,2Dng,RS (φRS(t)) ≈−1
2
dlongφ

2
RS , (84)

LPSSEPD,2Dng,MR (φ(t)) ≈ −2dleverφ
2 . (85)

Transmissive components also contribute as second-order
TTL coupling, no matter whether angular jitter of a mirror or
a receiving system is considered. For equal beam parameters
we find (cf equation (77)):

LPSSEPD,2Dng,tc ≈
∑
i

tBS,i

[
n2BS,i cos(φBS,i)

2

(n2BS,i− sin2(φBS,i))3/2

− sin2(φBS,i)√
n2BS,i− sin2(φBS,i)

− cos(φBS,i)

 φ2
m

2
.

(86)

For non-equal beam parameters, we find not only second-order
but also linear coupling since we get terms that depend on
the static beam offsets and the dynamic beam walk. However,
assuming a negligible static beam offsets, equations (51), (68)
and (78) reduce to second-order coupling equations.

LPSSEPD,2Dng,RS (φRS(t))

≈ −dlong
[
zRm(zRm+ zRr)+ zm(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

]
φ2
RS

+ d2long

[
(zm− zr)

2((zRm+ zRr)2 +(zm− zr)2)

]
φ2
RS

−
[
(z2Rr+ z2r )zm− (z2Rm+ z2m)zr
(zRm+ zRr)2 +(zm− zr)2

]
φ2
RS

2
, (87)

LPSSEPD,2Dng,MR (φ(t))

≈−4dlever

[
zRm(zRm+ zRr)+ zm(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

]
φ2

+ 2d2lever

[
(zm− zr)

(zRm+ zRr)2 +(zm− zr)2

]
φ2

− 2

[
(z2Rr+ z2r )zm− (z2Rm+ z2m)zr
(zRm+ zRr)2 +(zm− zr)2

]
φ2 , (88)
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LPSSEPD,2Dng,tc

≈−
∑
i

tBS,i

[
n2BS,i cos(φBS,i)

2

(n2BS,i− sin2(φBS,i))3/2

− sin2(φBS,i)√
n2BS,i− sin2(φBS,i)

− cos(φBS,i)


·
[
zRm(zRm+ zRr)+ zm(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

]
φ2
m

+

(∑
i

tBS,i

[
n2BS,i cos(φBS,i)

2

(n2BS,i− sin2(φBS,i))3/2

− sin2(φBS,i)√
n2BS,i− sin2(φBS,i)

− cos(φBS,i)

2

·
[

(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

]
φ2
m

−
[
(z2Rr+ z2r )zm− (z2Rm+ z2m)zr
(zRm+ zRr)2 +(zm− zr)2

]
φ2
m

2
. (89)

6.2. Lateral jitter coupling

Lateral jitter does not cause any first- or second-order non-
geometric TTL coupling in the case of a jittering mirror and
under the given assumptions:

LPSSEPD,2Dng,MR (dlat(t))≈ 0 . (90)

However, this is different for a lateral jittering receiving sys-
tem. A laterally jittering receiving system changes the point of
incidence of the measurement beam (xim) with respect to the
reference beam. Therefore, assuming a constant misalignment
of the receiver with respect to the received beam and a vary-
ing point of incidence xim(t) of the latter, yields a strong linear
TTL coupling for equal beam parameters by equation (57)

LPSSEPD,2Dng,RS (xRS)≈−1
2
xRSφRS (91)

as well as for unequal beam parameters

LPSSEPD,2Dng,RS (xRS(t))

≈−xRS(t)
[
zRm(zRm+ zRr)+ zm(zm− zr)
(zRm+ zRr)2 +(zm− zr)2

]
φRS . (92)

For the given assumptions, all presented non-geometric
TTL effects are summarised in table 2. This table is the coun-
terpart to the geometric TTL effects summarised in [1, see
table 1].

7. Key findings on total TTL coupling

After summarising the non-geometric TTL effects in the pre-
vious section, we now discuss our findings on the total TTL
effect, i.e. the sum of geometric and non-geometric TTL
effects.

We have demonstrated in sections 5.1.3 and 5.2.3 that the
total TTL coupling fully cancels if the centre of rotation lies
on the beam’s propagation axis, and the Gaussian beams have
identical beam parameters. This holds also if transmissive
components exist along the beam path (section 5.3.2). In either
case, the beam walk induced non-geometric TTL coupling
cancels the geometric TTL effects. However, if the centre of
rotation is laterally shifted against the beam axis, the cancella-
tion fails. Then, a significant geometric TTL coupling exists,
that has no non-geometric counterpart.

We find an incomplete TTL cancellation in the case of
unequal parameters. However, we can construct particular
scenarios in which the cancellations holds again. If the inter-
fering beams have an identical waist position and a pivot in
the centre of the waist, the geometric and the non-geometric
signal cancel despite a possible arbitrary waist size mismatch,
see section 5.1.3.

With a dedicated lens system, one can image the centre of
rotation of the beam onto its point of incidence at the detector
[11, 18]. In this case, we find no geometric TTL coupling but
non-geometric coupling terms due to the wavefront inequal-
ities of the two beams. If imaging the point of rotation not
exactly onto the detector surface or shifting the photodiode
longitudinally, a small geometric coupling remains, which
can for a suitable alignment counteract the non-geometric
coupling [2]. Therefore, such imaging systems can signific-
antly suppress the observed TTL coupling and will be used
for this purpose in the LISA mission (e.g. [2]).

Another case of non-geometric TTL coupling without a
geometric counterpart can be found if the points of incidence
of the two beams do not coincide but have a static offset. We
show in section 3.2 that this offset breaks the wavefront sym-
metry even for equal beam parameters and generates linear
non-geometric TTL coupling. Thus, an intentional offset of
one of the beams can counteract other linear TTL coupling
effects without simultaneously changing the geometric TTL
coupling.

Analogously, lateral jitter of the receiving system effect-
ively changes the offset between the two beams at the detector
without changing their geometric path length. The result-
ing total lateral jitter coupling originates from non-geometric
effects only, and is linear (section 5.1.2).

This is different for the lateral jitter of a mirror, that moves
into or out of the beam path. This shortens or elongates the
beams’ optical path length. On the other hand, the lateral jitter
induces only negligible non-geometric TTL coupling effects
since the reflected beam neither tilts nor significantly shifts in
a lateral direction (section 5.2.2).

For both considered systems, a lateral offset between the
centre of rotation and the point of reflection (angular mirror jit-
ter) or point of detection (angular receiver jitter), respectively,
induces linear TTL coupling [1]. This coupling is fully geo-
metric since any non-geometric signal contributions are neg-
ligible, see sections 5.1.1 and 5.2.1. Therefore, applying a lat-
eral shift of the respective centre of rotation can be used to
counteract other linear angular TTL coupling effects.

In summary, these presented TTL mechanisms can be used
to counteract the overall TTL coupling even if the single
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Table 2. Overview of the different non-geometric cross-coupling mechanisms for a beam with normal incidence and no photodiode tilt
(except where explicitly stated otherwise), i.e. β = φPD = 0. We further assume normal incidence of the reference beam, i.e. φr = 0, and
equal beam parameters, unless explicitly stated otherwise. For each effect we give a short description and the general behaviour
(approximated), like linear, quadratic or mixed with respect to the tilt angle. Cross-coupling due to wavefront errors and detector geometry
have in general an arbitrary form and are reported here only for completeness. The non-geometric effects apply both for mirror rotation
(MR) or receiving system rotation (RS), unless explicitly mentioned otherwise.

Jitter type
Cross-coupling
mechanism Name

General
behaviour Equation Section Description

Wavefront
dependent
TTL

Lateral

Receiver jiter LPSSEPDng,RS Linear (91), (92) 5.1.2 Lateral jitter yields a beam walk of the
measurement beam.

Mirror jitter LPSSEPDng,MR Negligible (90) 5.2.2 Lateral jitter coupling affects the
non-geometric LPS only at higher orders.

Angular

Beam offset LPSSEPDng Mixed (82), (83) 3.2 Initial misalignment on the detector
generates asymmetric disparity.

Beam walk
− receiver LPSSEPDng,RS Quadratic (84), (87) 5.1.1 Offsets between rotation point and detector

lead to angle dependent beam walk.
− mirror LPSSEPDng,MR Quadratic (85), (88) 5.2.1 Same as for RS beam walk.

− transmissive
components

LPSSEPDng,tc Quadratic (86), (89) 5.3.1 Transmissive optical components lead to an
additional angle dependent beam walk.

Beam parameters LPSSEPDng Quadratic (81) 3.4 Tilting wavefronts with a curvature
mismatch generates coupling.

Both

Reference beam
tilt

Linear 3 Reference beam tilts add in all cases linear
coupling.

Wavefront errors Arbitrary 3.6 Aberrations in the wavefronts disturb the
balance between different detector sides.

Detector
TTL

Both

Detector
geometry

Arbitrary 4.4 Errors and additional detector features alter
the measured results.

Tilt of detector Negligible (35) 4.1 Tilting the detector effects the geometric
and non-geometric cross-coupling
inversely. Hence its contribution to the full
signal cancels.

underlying effects are unknown. This has been proven efficient
in experiments (e.g. [2, 11, 31]).

8. Conclusion

Throughout this work, we have described TTL coupling as the
angular and translational motion of a mirror reflecting one of
the interfered beams, or the jitter of a receiving system with
respect to a received beam, coupling into the phase readout.
This coupling adds unwanted noise to the phase signal. The
TTL coupling noise is an important noise source in precision
interferometers, particularly in space interferometers, such
as future space-based gravitational wave observatories like
LISA, or the geodesy mission GRACE-FO and its successors.
In this work we categorised the different non-geometric TTL
coupling mechanisms for the interference of two Gaussian
beams. We distinguish between the effects originating from
the characteristics of the wavefronts, and the detector geo-
metry including different path length signal definitions.

Wherever possible, we computed these non-geometric
effects analytically from the overlap integral over the beams’
electrical fields. The results agree with the numeric computa-
tions done by the simulation tool IfoCAD.

We summarised our key findings of the various non-
geometric TTL coupling effects in section 6 and table 2. Addi-
tionally, we combined these key findings with the geometric
TTL results presented in [1] to estimate the total TTL coup-
ling. In section 7, we discussed in which cases the geometric
and non-geometric TTL mechanisms cancel each other, or can
intentionally be used to counteract other TTL effects for min-
imising the total TTL coupling.

Our findings can be a valuable tool for the suppression of
TTL coupling noise either by design or realignment in an exist-
ing system. Such a suppression is essential for a reduction of
the TTL noise to a magnitude that can finally be removed by
subtraction in post-processing [13, 32].
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