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Abstract

In this paper we consider the Cauchy problem for neo-Hookean incompressible
elasticity in spatial dimension d ≥ 2. The Cauchy problem can be formulated in terms
of maps x(t, ·) : R

d
ξ → R

d
x with domain a reference space R

d
ξ , and with values in space

R
d
x. Initial data consists of initial deformation φ(ξ) = x(0, ξ) and velocity ψ(ξ) =
∂x(t, ξ)/∂t|t=0, which we assume are in Sobolev spaces (φ,ψ) ∈ Hs+1(Rd)×Hs(Rd). If
s > scrit = d/2 + 1, well-posedness is well-known. We are here interested primarily in
the low regularity case, s ≤ scrit. For d = 2, 3, we prove existence and uniqueness for
s0 < s ≤ scrit, and we can prove well-posedness, but for a smaller range, s1 < s ≤ scrit,

if d = 2, s0 =
7

4
, s1 =

7
4 +

√
65−7
8

if d = 3, s0 = 2, s1 = 1 +
√

3
2

We consider the initial deformations of the form x(0, ξ) = Aξ + ϕ(ξ), where A is a
constant SL(d,R) matrix. For the full range (in s) results, as indicated above, we
need additional Hölder regularity assumptions on certain combinations of second order
derivatives of ϕ. A key observation in the proof is that the equations of evolution for
the vorticities decomposes into a first-order hyperbolic system, for which a Strichartz
estimate holds, and a coupled transport system. This allows one to set up a bootstrap
argument to prove local existence and uniqueness. Continuous dependence on initial
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data is proved using an argument inspired by Bona and Smith, and Kato and Lai, with
a modification based on new estimates for Riesz potentials. The results of this paper
should be compared to what is known for the ideal fluid equations, where, as shown
by Bourgain and Li, the requirement s > scrit is necessary.
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1 Introduction

We are concerned here with the motion of the incompressible neo-Hookean medium (ma-
terial). We assume that the medium occupies the whole space R

d with coordinates ξ. A
generic point ξ ∈ R

d will find itself at the location x(t, ξ) at time t. Incompressibility means
that

det
∂x(t, ξ)

∂ξ
= 1 . (1.1)

The action functional

∫ ∫

1

2

∣

∣

∣

∣

∂x(t, ξ)

∂t

∣

∣

∣

∣

2

+ p(t, ξ)

(

det
∂x(t, ξ)

∂ξ
− 1

)

dξ dt ,

with the Lagrange multiplier p, gives rise to the Euler-Lagrange equations

∂2x(t, ξ)

∂t2
+∇xp(t, ξ) = 0 (1.2)

describing the ideal (incompressible and inviscid) fluid, cf. [20]. An ideal fluid has only
kinetic energy. If there are internal forces controlling the deformation x(t, ξ), one has to add
the potential energy. If this potential energy depends on the deformation gradient ∂x/∂ξ
only, the material is hyperelastic and the action takes form

∫ ∫

1

2

∣

∣

∣

∣

∂x(t, ξ)

∂t

∣

∣

∣

∣

2

−W

(

∂x(t, ξ)

∂ξ

)

+ p(t, ξ)

(

det
∂x(t, ξ)

∂ξ
− 1

)

dξ dt .

(Of course, there are conditions on the meaningful stored energy functions W , cf. [23].) The
corresponding Euler-Lagrange equations are

∂2xi

∂t2
−Dj

bD
i
aW

(

∂x

∂ξ

)

∂2xj

∂ξa∂ξb
+
∂p

∂xi
= 0 , i = 1, . . . , d, (1.3)
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where Di
a stands for the derivative ∂/∂(∂xi/∂ξa). The summation over the repeated indices

is assumed1. The simplest choice

W

(

∂x

∂ξ

)

=
1

2

∣

∣

∣

∣

∂x

∂ξ

∣

∣

∣

∣

2

=
1

2

d
∑

i,a=1

∣

∣

∣

∣

∂xi

∂ξa

∣

∣

∣

∣

2

corresponds to the neo-Hookean material, or solid, as it is sometimes called. The field
equations (1.3) then simplify to

∂2xi

∂t2
− ∂2xi

∂ξa∂ξa
+
∂p

∂xi
= 0 , i = 1, . . . , d. (1.4)

Equations (1.4) complemented by the constraint (1.1) describe the motion of the incompress-
ible neo-Hookean material in the Lagrange coordinates (t, ξ).

Remark 1.1 (Initial conditions). We shall consider the Cauchy problem for (1.2) and (1.4).
Therefore, we prescribe the initial deformation φ(ξ) and the initial velocity ψ(ξ) by

φ(ξ) = x(0, ξ) ,

ψ(ξ) =
∂x(t, ξ)

∂t

∣

∣

∣

∣

t=0

.

Of course, φ should define a volume preserving (and orientation preserving) diffeomorphism
of R

d. In addition, there is a compatibility condition for φ and ψ originating in (1.1). Indeed,
if (1.1) holds,

0 =
∂

∂t

(

det
∂x(t, ξ)

∂ξ

)

= Di
a

(

det
∂x(t, ξ)

∂ξ

)

∂

∂t

∂xi(t, ξ)

∂ξa

= trace







[

(

∂x(t, ξ)

∂ξ

)−1
]T

∂

∂t

∂x(t, ξ)

∂ξ







Thus, if y = φ(ξ) and ξ = φ−1(y), we must have

∂ψi(ξ)

∂ξa
∂ξa

∂yi
= 0 (1.5)

for all ξ ∈ R
d. In the case of the ideal fluid, one can change variables from ξ to η = φ(ξ),

set x(0, η) = η, and recalculate ψ(ξ(η)) = ∂x(t, η)/∂t
∣

∣

t=0
. Such a change does not affect

equation (1.2) but simplifies the initial conditions. In the case of equation (1.4), such a
change of variables, in general, changes the form of the equation and will not be done.

1We use lower case latin indices a, b, c for Lagrangian coordinates, and i, j, k, . . . for Eulerian coordinates.
In the summation the repeated indices run from 1 to d.
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In the Euler picture, the independent variables are (t, x), and equation (1.2) for the ideal
incompressible fluid takes the form

∂tv
i + vj ∂jv

i + ∂ip = 0 , i = 1, . . . , d, (1.6)

where

v(t, x) =
∂x

∂t
(1.7)

is the vector of velocity in the Eulerian coordinates. The incompressibility condition (1.1)
translates into

div v ≡ ∂iv
i = 0 . (1.8)

To describe the Eulerian form of equation (1.4) for the incompressible neo-Hookean material,
in addition to the true velocity v(t, x) we introduce d “fake” velocities (vi1), . . . , (v

i
d) which

represent the deformation gradient,

via(t, x) =
∂xi

∂ξa
, a = 1, . . . , d . (1.9)

To distinguish between the derivatives in the two pictures, we denote by ∂t and ∂k the partial
derivatives in the Euler picture and by ∂/∂t, ∂/∂ξa the derivatives in the Lagrange picture.
The dynamic equations are

∂tv
i + vj ∂jv

i − vkb ∂kv
i
b + ∂ip = 0 , (1.10)

∂tv
i
a + vk ∂kv

i
a − vka ∂kv

i = 0 , a = 1, . . . , d , (1.11)

for each i = 1, . . . , d. The first equation, (1.10), is the Eulerian form of (1.4), while (1.11)
expresses the fact that the partial derivatives ∂/∂t and ∂/∂ξa commute. In addition, we
must have

div v = 0, div va ≡ ∂iv
i
a = 0, a = 1, . . . , d , (1.12)

where the equation for va’s is the Piola identity (in the incompressible case), cf. [23, §1.7].
There are additional compatibility conditions

vka ∂kv
i
b = vkb ∂kv

i
a , a, b = 1, . . . , d, (1.13)

which represent the fact that the Lagrangian derivatives ∂/∂ξa and ∂/∂ξb commute.
If x(t, ξ) and p(t, ξ) is a solution of (1.4), (1.1), then

vi =
∂xi(t, ξ)

∂t
, via =

∂xi(t, ξ)

∂ξa
, (1.14)

and the pressure p, expressed as functions of t and x, solve equations (1.10), (1.11), (1.12),
and (1.13). Conversely, if v, va, and p solve (1.10), (1.11), (1.12), and (1.13), then the
solution x(t, ξ) of the ODE system

dx

dt
= v(t, x) , x(0, ξ) = φ(ξ) , (1.15)

5



(and p with the corresponding coordinate change (t, x) → (t, ξ)) solves the Lagrange equa-
tions (1.4); see also section 4.2.

In the mechanics/engineering literature, the array (∂xi(t, ξ)/∂ξa) (in Lagrangian coordi-
nates t, ξ) is denoted F = (F i

a) and is called the deformation gradient. We use the notation
via in the Euler coordinates instead to emphasize the similarity of the subsequent treatment
of the vectors va and the velocity v.

In this paper we study the Cauchy problem for the equations of motion of the neo-
Hookean material, in Eulerian form (1.10), (1.11), (1.12), and (1.13). At the same time, we
obtain corresponding results for the equations in the Lagrangean picture. Energy estimates
for equations (1.10) and (1.11) are essential for our study. Thus we use the Sobolev spaces
Hs(Rd) to measure regularity and integrability of v and va. In particular, we will have the
gradients ∇xva(t, x), changing continuously with t, in L2(Rd, dx). In dimensions d ≥ 3, this
alone imposes a restriction on the behavior at infinity of the initial diffeomorphism φ(ξ): as
|ξ| → ∞, φ(ξ) → Aξ, where A is a (any) matrix in SL(d,R). In the two dimensional case we
impose this condition on φ(ξ). Once the matrix A is fixed, we split the deformation gradient
via(t, x) as

via(t, x) = Ai
a + uia(t, x) (1.16)

and work with the vectorfields ua instead of va.

Remark 1.2. It appears that in the existing literature, cf. e.g. [30, 9, 31], only the case
Ai

a = δia has been considered. Writing the deformation gradient tensor as the identity matrix
plus the displacement gradient tensor is a tradition in elasticity theory.

Denote by V the collection of all the components of v and u1, . . . , ud. We work in the
scale of Sobolev spaces Hs(Rd) and compare with the existing results for the fluid equations
(1.6), (1.8). The regularity Hs now refers to the Hs norm of V in the neo-Hookean case
and the norm of v in the fluid case. We are interested in local well-posedness in Hs, by
which we mean local in time existence, uniqueness, and continuous dependence on the initial
conditions (in Hs). In the subcritical case s > d/2 + 1, the well-posedness for the fluid
equations is known, cf. [18, 19]. According to the recent results of Bourgain and Li [5, 6],
well-posedness fails to hold for s ≤ d/2 + 1.

There are results on local well-posedness in the case s > d/2+1 for a class of hyperelastic
systems which includes the neo-Hookean case, cf. [9]. Here we consider specifically the neo-
Hookean case and show that then the system has smoothing properties that allow us to lower
the regularity requirements for well-posedness compared to the fluid case. In particular, we
can prove well-posedness below the critical regularity scrit = d/2 + 1. We believe that an
analogous result holds for more general hyperelastic systems.

The outline of the paper is as follows. We work with equations (1.10), (1.11), and (1.12),
with initial data satisfying v(0, ·) ∈ Hs and uia(0, x) = via(0, x) − Ai

a. The compatibility
condition (1.13) is satisfied for the initial data and will be propagated by the flow. The basic

6



a priori energy estimates are

‖V (t)‖Hs . ‖V (0)‖Hs exp

(

c

∫ t

0

‖∇V (t′)‖L∞ dt′
)

(1.17)

which are valid for any s ≥ 0. Here and below, we write ∇V for ∇xV , when there is no
room for confusion. If s = 0, the energy is conserved:

‖V (t)‖L2 = ‖V (0)‖L2 . (1.18)

As in the fluid case, it is clear that the solution exists as long as the integral

∫ t

0

‖∇V (t′)‖L∞ dt′ (1.19)

is finite. If s > d/2+ 1, the Sobolev embedding bounds ‖∇V (t′)‖L∞ by ‖V (t′)‖Hs, and then
the differential inequality resulting from (1.17) provides a bound on the norm ‖V (t)‖Hs for
a short time interval depending on ‖V (0)‖Hs. To prove well-posedness, we use a modified
Kato-Lai approach, cf. [18].

Recall that in the fluid case it has proved profitable to move from velocity to vortic-
ity. With the help of the Beale-Kato-Majda (BKM) estimate [1], it is possible to replace
∫ t

0
‖∇v(t′)‖∞ dt′ by the integral

∫ t

0
‖ω(t′)‖∞ dt′. Note that the application of the BKM es-

timate uses the fact that s > d/2 + 1. In the two-dimensional case, since the vorticity is
transported by the flow, the solutions exist for all time. In the neo-Hookean case, the vortic-
ity equations are not so nice, but they have some redeeming features. We do not obtain the
global existence in the two-dimensional case,2 but we can lower the regularity requirements
to a certain range of s ≤ d/2+ 1. Instead of the BKM estimate we use a different approach.

In our case we have two types of vorticities: the true vorticity, and d “fake” vorticities

ωmn = ∂mv
n − ∂nv

m, ωmn
a = ∂mv

n
a − ∂nv

m
a , a = 1, . . . , d . (1.20)

We combine them into an aggregate Ω. In dealing with the integral (1.19), the following
estimate will play an important role:

‖∇V ‖∞ . ‖V ‖γ1L2 ‖Ω‖1−γ1
Ḃr

p,p

, (1.21)

where Ḃr
p,p is the homogeneous Besov space, and γ1 is function of d, r, and p, for a certain

range of those parameters, see Lemma E.2. Thanks to (1.18), we may replace (1.19) with

∫ t

0

‖Ω(t′)‖1−γ1
Ḃr

p,p

dt′ . (1.22)

2There is a huge literature on global existence for small initial data, but here we concentrate on low
regularity.
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It turns out that the equations for ωmn and ωmn
a in the Lagrangean coordinates have the

form (the superscript L refers to the Lagrangean coordinates)

∂ωL

∂t
− ∂ωL

a

∂ξa
=FL[∇V ] (1.23a)

∂ωL
b

∂t
− ∂ωL

∂ξb
=FL

b [∇V ] (1.23b)

where the right hand sides are quadratic in ∇V . Via the Fourier transform (in Lagrangean
coordinates) this system splits into a pair of wave equations with the principal linear parts
∂
∂t

± i
√

−∆ξ and a simple transport equation driven by the wave system. We use the

Strichartz estimates involving the Ḃr
p,p-norms for the solutions of the wave equations (see

[16]), and the transport equations allow us to estimate the remaining components. In addi-
tion, we need to estimate the corresponding Sobolev norms of ΩL. The interplay between
the various norms in the Lagrangean and the Eulerian coordinates is quite subtle, bringing
in further powers of various norms. However, we are able to close the argument by using
nonlinear Gronwall-type inequalities. As a result, we show a stronger estimate of the form

∫ T

0

‖∇V (t)‖1+δ
∞ dt ≤ C , (1.24)

where C > 0 and T > 0 are determined by the Hs norms of the initial conditions, and δ is
a dimension dependent positive constant. The estimates close for the range of s larger than
some s0 < d/2 + 1, thus lowering the classical regularity. Continuous dependence brings
additional restrictions s > s1, where s1 > s0, but s1 < d/2 + 1. We follow the general plan
suggested by Bona and Smith [3] and, in the case of ideal fluid, by Kato and Lai [18]. The
key step is to show that the family of solutions V ǫ(t) corresponding to the mollified initial
condition V ǫ(0) is Cauchy, as ǫ → 0, in C([0, T ] → Hs) uniformly for V (0) in a compact
subset of Hs. The main difference from [18] is that we use estimate (1.21) and a similar
estimate

‖V ‖∞ . ‖V ‖γ2L2 ‖Ω‖1−γ2
Ḃr

p,p

, (1.25)

to control the difference V ǫ(t)−V δ(t), where ǫ > δ ց 0. The restriction on regularity comes,
in the end, through the parameter r, whose range is dictated by the Strichartz estimates.

We state and prove the main theorem in the physical cases d = 2 and d = 3. The state-
ment is easiest to present when the curl of the displacement gradient at t = 0, curl ua(0, x),
is Hölder continuous with an appropriate Hölder index κ > 0. Denote

s0 =

{

7
4

if d = 2

2 if d = 3
, s1 =

{

7
4
+

√
65−7
8

if d = 2

1 +
√

3
2

if d = 3
, κ =

{

√
65−7
8

if d = 2
√

3
2
− 1 if d = 3

. (1.26)

Theorem 1.3. Assume the initial conditions V (0) = (v(0), u(0)) are such that v(0) ∈
Hs(Rd) and curl ua(0) ∈ Cκ(Rd). If s > s0, then there exists a unique solution V ∈

8



C([0, T ] → Hs(Rd)) of the system (1.10), (1.11), and (1.12), for some T > 0 depending
continuously on ‖v(0)‖Hs.

If s > s1 (if d = 2 then s = s1 is allowed), then the solution depends continuously in
C([0, T ′] → Hs(Rd)) on the initial data: if vn(0) → v(0) in Hs then Vn → V in C([0, T ′] →
Hs(Rd)), where [0, T ′] is the common interval of existence, T ′ > 0.

When the initial value of the displacement gradient is less smooth, the regularity of the
“vorticities” curl ua(0) = ωa(0) will control the values of s0 and s1 (they will increase). A
careful analysis of this situation is done in Sections 5.6 and 5.9. The proofs in the cases
d = 2 and d = 3 are somewhat different. We believe that the proof in the case d = 3 can be
generalized to d > 3.

2 Above the critical regularity: s > d
2 + 1

2.1 Cauchy problem in Euler coordinates

2.1.1 Preliminary notes

A few words on function spaces (for more see Appendix A). The notation ‖f‖p is used for the
Lp(Rd) norm, 1 ≤ p ≤ ∞. Also, ‖f‖ is the L2 norm. We work in the scale of standard Sobolev
spaces Hs = Hs(Rd), s ∈ R. These are Hilbert spaces with the norms ‖f‖Hs = ‖Jsf‖, where
Js = (1 − ∆)s/2 = F

−1(1 + |k|2)s/2 F for real s are the Bessel potentials. We use the
same notation Hs for the spaces of R-valued, R

d-valued, or matrix-valued functions. In the
case of R

d-valued functions, Hs splits into an orthogonal sum (the Hodge decomposition)
Hs = Hs

σ ⊕Hs
∇, where H

s
σ is the space of divergence-free vector fields and Hs

∇ is the space
of gradients of Hs+1 scalar functions.

We are going to work with the dynamic equations (1.10) and (1.11) (and (1.12)) ignoring
for the most part the compatibility condition (1.13). However, at some point we will have to
justify (1.13). Also, we will have to explain why via is the deformation gradient. The proof
of these facts makes use of the estimate

∫ T

0

‖∇v(t)‖∞ dt <∞ (2.1)

for the solutions on the interval [0, T ]. This will be shown to hold for the solutions that we
consider. Assuming (2.1), consider first the quantities qiab = vka ∂kv

i
b − vkb ∂kv

i
a. According to

equations (1.11), these quantities satisfy the following equations:

(∂t + vℓ∂ℓ)q
i
ab = qrab ∂rv

i . (2.2)

Multiply each equation by qiab, sum over i, a, and b, and integrate in x over R
d. This yields

the inequality
1

2

d

dt

∫

∑

|qiab|2 dx ≤ ‖∇v(t)‖∞
∫

∑

|qiab|2 dx .
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Therefore, if all qiab = 0 at t = 0, then qiab will vanish for all t ∈ [0, T ].
Similarly, if v(t), va(t) is a solution of (1.10), (1.11), and (1.12), for which (2.1) is true,

consider the solution of the ODE system ẋ = v(t, x) with the initial condition x(0, ξ) =
Aξ + ϕ(ξ). Consider the quantity qia = via − ∂xi/∂ξa and compute its full time derivative:

(∂t + vℓ∂ℓ)q
i
a = (∂t + vℓ∂ℓ)v

i
a −

∂2xi

∂t∂ξa
.

The first term on the right equals vka∂kv
i by equation (1.11), while

∂2xi

∂t∂ξa
=
∂vi

∂ξa
=
∂xk

∂ξa
∂kv

i .

Thus,
(∂t + vℓ∂ℓ)q

i
a = qka∂kv

i .

As with the quantity qiab, we obtain the inequality

1

2

d

dt

∫

∑

|qia|2 dx ≤ ‖∇v(t)‖∞
∫

∑

|qia|2 dx .

Thus, if all qia are 0 at t = 0, they remain 0 for t ∈ [0, T ].

We emphasize that the results in this subsection do not require s > d/2 + 1.

2.2 The Cauchy problem

In the Euler picture, we assume that the deformation gradient (via) is split as in (1.16). Thus,
we fix an SL(d,R) matrix A = (Ai

a) and define d vectorfields u1, . . . , ud with the components
uia(t, x) = via(t, x)−Ai

a, i = 1, . . . , d. Equations (1.10), (1.11), and (1.12) now look as follows:

∂tv
i + vj ∂jv

i − ukb ∂ku
i
b −Ak

b ∂ku
i
b +∇ip = 0 , (2.3a)

∂tu
i
a + vk ∂ku

i
a − uka ∂kv

i −Ak
a ∂kv

i = 0 , (2.3b)

div v = 0, div ua = 0 . (2.3c)

What we do next in this paper does not depend on the particular choice of matrix A. The
important thing is that the terms containing the elements of A disappear in the derivation
of energy estimates. Here is a typical calculation showing this:

∫

−Ak
b ∂ku

i
b v

i −Ak
a ∂kv

i uia dx = 0 ,

Because of that, we choose the simplest A = I, the identity matrix, and work with the
resulting equations:

∂tv
i + vj ∂jv

i − ukb ∂ku
i
b − ∂bu

i
b +∇ip = 0 , (2.4a)

∂tu
i
a + vk ∂ku

i
a − uka ∂kv

i − ∂av
i = 0 , (2.4b)

div v = 0, divua = 0 . (2.4c)
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We shall use u to denote the whole collection u1, . . . , ud, and any norm of u will be understood
as the maximum over a of the norm of ua. We abbreviate v(t) for v(t, ·) etc. Recall that
V (t) = (v(t), u(t)).

Theorem 2.1. Assume d ≥ 2. Let s be a real number greater than 1+d/2. Assume that the
initial conditions v(0), u(0) for equations (2.4a), (2.4b), and (2.4c) all belong to Hs

σ. Then
there exists a local in time solution of those equations such that

v, u ∈ C([0, T ] → Hs
σ) . (2.5)

The solution is unique and depends continuously on the initial conditions. The lifespan, T ,
of the solution is determined by the Hs

σ-norms of the initial conditions and is characterized
by the condition

∫ t

0

‖∇V (τ)‖∞ dτ <∞ , ∀t < T . (2.6)

The general plan of the proof will be the same as in the proof of the corresponding result
for the Euler equations (describing an ideal fluid) by Kato and Lai, [18], complemented by
some nice observations from [10]. We will sketch it anyway to emphasize certain points that
will be used later. Denote the orthogonal projection Hs → Hs

σ by P. In the Fourier space,

̂(Pw)i(k) =

(

δij − kikj

|k|2
)

ŵj(k) .

Since Leray’s work [21], projection of the equations onto the space of divergence-free vectors
is standard in hydrodynamics, and we use it as well to get rid of the pressure term. Thus,
we deal with the following equations:

∂tv
i + P

{

vj ∂jv
i − ukb ∂ku

i
b − ∂bu

i
b

}

= 0 , (2.7)

∂tu
i
a + vk ∂ku

i
a − uka ∂kv

i − ∂av
i = 0 . (2.8)

We shall not need equations (2.4c) since ∂tdiv v = 0 follows from equation (2.7) and, from
(2.8),

∂tdiv ua + vk ∂kdiv ua = uka∂kdiv v + ∂adiv v .

This shows that if equations (2.4c) are satisfied at t = 0, they will be satisfied for all times
t > 0.

Let v(0) ∈ Hs
σ and ua(0) ∈ Hs

σ be given. The solution of (2.7), (2.8) with these initial
conditions will be obtained as a limit of approximate solutions vǫ, uǫa whose Fourier transforms
are supported in the ball {|k| ≤ ǫ−1}, cf. [10].

Denote by ρǫ the Friedrichs’ mollifiers ρǫ(x) = ǫ−dρ(x/ǫ), where ρ(x) is the inverse Fourier
transform of the characteristic function of the unit ball {|k| ≤ 1}. In other words,

ρ̂ǫ ∗ f(k) = χ{|k|≤1/ǫ}(k) f̂(k) .
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To save space, we write ρǫ[f ] instead of ρǫ ∗ f ,

ρǫ[f ](x) =

∫

ρǫ(x− y)f(y) dy .

The mollifiers ρǫ have the usual properties:

Lemma 2.2. For any φ ∈ Hs,

1. ρǫ[φ] → φ in Hs as ǫ→ 0;

2. for any m ≥ 0, ‖ρǫ[φ]‖Hs+m ≤
(

1 + 1
ǫ2

)m/2 ‖φ‖Hs. In particular, if ǫ ∈ (0, 1),

‖ρǫ[φ]‖Hs+1 ≤
√
2

ǫ
‖φ‖Hs , (2.9)

3. for m ≥ 0 and ǫ ∈ (0, 1),

‖ρǫ[φ]− φ‖Hs−m ≤ 2−m/2 ǫm ‖φ‖Hs . (2.10)

4. If C is a compact subset of Hs, then, for all m ≥ 0,

‖ρǫ[φ]− φ‖Hs−m = ǫm o(ǫ) (2.11)

uniformly in φ ∈ C.

Proof. The first claim is well-known. The second one follows from

‖ρǫ[φ]‖2Hs+m =

∫

k≤1/ǫ

(1 + |k|2)s+m |φ̂(k)|2 d̄k

≤
(

1 + ǫ2

ǫ2

)m ∫

k≤1/ǫ

(1 + |k|2)s |φ̂(k)|2 d̄k ,

where d̄k = (2π)−ddk. To prove the third and the fourth claims, observe that

‖ρǫ[φ]− φ‖2Hs−m =

∫

k>1/ǫ

(1 + |k|2)s−m |φ̂(k)|2 d̄k

=

∫

k>1/ǫ

1

(1 + |k|2)m (1 + |k|2)s |φ̂(k)|2 d̄k

≤ 2−m ǫ2m
∫

k>1/ǫ

(1 + |k|2)s |φ̂(k)|2 d̄k .

By the Kolmogorov-Riesz compactness criterion, cf. [13],
∫

k>1/ǫ
(1 + |k|2)s |φ̂(k)|2 d̄k → 0 as

ǫ→ 0, uniformly in φ ∈ C, a compact subset of Hs.
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To solve (2.7),(2.8) we construct approximate solutions vǫ, uǫa by considering the following
truncated system (cf. [10])

∂tv
i + P ρǫ

[

vj ∂jv
i − ukb ∂ku

i
b − ∂bu

i
b

]

= 0, (2.12)

∂tu
i
a + ρǫ

[

vk ∂ku
i
a − uka ∂kv

i − ∂av
i
]

= 0. (2.13)

We let vǫ and uǫa solve this system with the initial conditions

vǫ(0) = ρǫ [v(0)] , uǫa(0) = ρǫ [ua(0)] . (2.14)

The solutions of (2.12) and (2.13) will automatically have their Fourier transforms supported
in the ball {|k| ≤ 1/ǫ}. That local in time and unique solutions exist follows from the fact
that equations (2.12), (2.13) can be viewed as an ODE in the Hilbert space ρǫ[H

s
σ],

dV

dt
= F (V ) , (2.15)

with locally Lipschitz right hand side. The Lipschitz property of F (V ) in our case is not hard
to verify. To avoid clutter, we shall drop the index on ua when convenient. For example, the
Hs norm of u ∂u− u ∂u, where u, u ∈ ρǫ[H

s
σ], is estimated as follows:

‖u ∂u − u ∂u‖Hs ≤ ‖u− u‖Hs‖∂u‖Hs + ‖u‖Hs‖∂(u − u)‖Hs ≤ 1

ǫ
(‖u‖Hs + ‖u‖Hs) ‖u− u‖Hs .

We have used that Hs is an algebra when s > d/2 and that

‖∇w‖Hs ≤ 1

ǫ
‖w‖Hs

for any w ∈ ρǫ[H
s].

By the Cauchy-Picard theorem, cf. e.g., [22, Theorem 3.1], for every initial condition
(vǫ(0), uǫ(0)) ∈ ρǫ[H

s
σ], there exists a T∗(‖(vǫ(0), uǫ(0))‖ρǫ[Hs

σ], ǫ) > 0 and a unique solution
(vǫ(t), uǫ(t)) of the problem (2.12), (2.13), (2.14) on the time interval (−T∗, T∗), such that
(vǫ, uǫ) ∈ C([−T, T ] → ρǫ[H

s
σ]) for every 0 < T < T∗. The energy estimates discussed in the

next section will show that T∗ can be chosen the same for all ǫ > 0.

2.3 Energy estimates

For the basic L2 estimate, let (vǫ, uǫ) be a solution of (2.12), (2.13). Multiply (2.12) by vǫ,
multiply (2.13) by uǫa, sum over a and integrate over R

d to obtain (after integration by parts
and cancellations due to the divergence-free nature of vǫ and uǫa):

d

dt

∫

|vǫ(t)|2 + |uǫ(t)|2 dx = 0

(unless otherwise specified, the expressions such as |u|2 are understood as
∑

a ua ·ua). Thus,
∫

|vǫ(t)|2 + |uǫ(t)|2 dx =

∫

|vǫ(0)|2 + |uǫ(0)|2 dx ≤
∫

|v(0)|2 + |u(0)|2 dx . (2.16)
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The higher energy estimates are standard. We present them in a schematic form. Schemat-
ically, the system (2.12), (2.13) is

∂tV + Pρǫ[V · ∇V ] = 0 . (2.17)

Let r be any positive real number and note that Jr = (1 − ∆)r/2 commutes with P, with
ρǫ∗, and with all partial derivatives. Act with Jr on (2.17) and write the result in the form:

∂tJ
rV + P ρǫ [V · ∇JrV ] = −P ρǫ [J

r(V · ∇V )− V · ∇JrV ] . (2.18)

It follows that

1

2

d

dt
‖JrV (t)‖2 ≤ ‖Jr(V · ∇V )− V · ∇JrV ‖ ‖JrV (t)‖ . (2.19)

By the Kato-Ponce commutator estimate [19],

‖Jr(V · ∇V )− V · ∇JrV ‖ . ‖∇V (t)‖∞ ‖JrV (t)‖ . (2.20)

Then it follows from (2.19) that

d

dt
‖V ǫ(t)‖2Hr . ‖∇V ǫ(t)‖∞ ‖V ǫ(t)‖2Hr . (2.21)

This implies (with t > 0)

‖V ǫ(t)‖2Hr ≤ ‖V (0)‖2Hr exp

(

c(r, d)

∫ t

0

‖∇V ǫ(τ)‖∞ dτ

)

, (2.22)

with the constant c(r, d) independent of ǫ.

If we take r = s > d/2 + 1, then, by Sobolev embedding, ‖∇V ǫ(τ)‖∞ . ‖V ǫ(τ)‖Hs, and
inequality (2.21) implies

dyǫ(t)

dt
≤ C(s, d) yǫ(t)3/2 ,

for yǫ(t) = ‖V ǫ(τ)‖2Hs . The ǫ-independent estimate

yǫ(t) ≤ y(0)

(

1− 1

2
C(s, d) y(0)1/2 t

)−2

follows. Here we made use of the fact that with our choice of the mollifier, we have
‖ρǫ[f ]

∣

∣ Hs‖ ≤ ‖f
∣

∣ Hs‖, and hence yǫ(0) ≤ y(0). If we take the initial conditions from
the ball BR = {‖V (0)

∣

∣ Hs‖2 ≤ R2}, then we can choose the common life-span

T∗ =
2

C(s, d)R
. (2.23)

14



2.4 Passage to the limit

When ǫ → 0, the approximate solutions vǫ, uǫ converge to the true solutions v, u of (2.7),
(2.8). Pick a T < T∗. All approximate solutions V ǫ(t) exist on the interval [−T, T ] and by
(2.22) have uniformly bounded Hs norms. Then there is a sequence ǫn ց 0 such that V ǫn

converge weak-∗ in L∞([−T, T ] → Hs
σ) to some V = (v, u) in that space. From the equations

(2.12) and (2.13) we see that (∂tv
ǫ(t), ∂tu

ǫ(t)) are uniformly bounded in Hs−1
σ . Therefore,

we can arrange that ∂tV
ǫn converge weak-∗ in L∞([−T, T ] → Hs−1

σ ) to ∂tV = (∂tv, ∂tu). In
addition, taking into consideration Rellich’s compact embedding theorem and the fact that
s is sufficiently large, we can assume that V ǫn converges strongly to V and each first partial
derivative ∂V ǫn converges strongly to ∂V in every L2([−T, T ]×BN (0)) (where BN (0) = {x ∈
R
d : |x| ≤ N}) and V ǫn and ∂V ǫn converge almost everywhere in the slab [−T, T ]× R

d. We
also note that V ǫ(t, x) and ∂V ǫ(t, x) are uniformly bounded on [−T, T ]× R

d.
The just mentioned facts are sufficient to conclude that (v, u) solves equations (2.7),

(2.8) in the sense of distributions and assume the prescribed values at t = 0. To see this, let
η(t, x) be any smooth divergence free vector with compact support in [−T, T ]×R

d. Multiply
equations (2.12) and (2.13) by η and integrate over [0, T ]× R

d. After a few rearrangements,
we get

∫ T

0

∫

−vǫ ∂tη +
(

vǫj∂jv
ǫi − uǫka ∂ku

ǫi
b − ∂au

ǫi
b

)

ρǫ
[

ηi
]

dt dx =

∫

vǫ(0) η(0) dx (2.24)

and

∫ T

0

∫

−uǫa ∂tη +
[

vǫk∂ku
ǫi
a − uǫka ∂kv

ǫi − ∂av
ǫi
]

ρǫ[η
i] dt dx =

∫

uǫa(0) η(0) dx (2.25)

Since the terms such as vǫj∂jv
ǫi and uǫka ∂ku

ǫi
a are uniformly in ǫ bounded in L2([−T, T ]×R

d),
expressions such as

∫ T

0

∫

uǫka ∂ku
ǫi
b

(

ρǫ[η
i]− ηi

)

dt dx

go to zero as ǫ = ǫn → 0. At the same time,

∫ T

0

∫

uǫka ∂ku
ǫi
b η

i dt dx→
∫ T

0

∫

uka ∂ku
i
b η

i dt dx.

Thus, the limit functions v and u satisfy the integral identities

∫ T

0

∫

−v ∂tη +
(

vj∂jv
i − uka ∂ku

i
b − ∂au

i
b

)

ηi dt dx =

∫

v(0) η(0) dx (2.26)

and, for a = 1, . . . , d,

∫ T

0

∫

−ua ∂tη +
[

vk∂ku
i
a − uka∂kv

i − ∂av
i
]

ηi dt dx =

∫

ua(0) η(0) dx (2.27)

15



with any divergence free smooth η with compact support in (−T, T ) × R
d. This shows, in

particular, that (v, u) solve equations (2.7), (2.8) in the sense of distributions.
So far we have a solution V with V ∈ L∞([−T, T ] → Hs

σ) and ∂tV ∈ L∞([−T, T ] →
Hs−1

σ ). This already implies that V : [−T, T ] → Hs
σ is weakly continuous. Let us now

prove the uniqueness of the obtained solution. Assume there is another solution, V =
(v, u) ∈ L∞([−T, T ] → Hs

σ) with the time derivative in L∞([−T, T ] → Hs−1
σ ), as seen from

(2.7),(2.8) . The equation satisfied by the difference, Ṽ = V − V , is schematically

∂tṼ + PV · ∇Ṽ = −PṼ · ∇V

The same argument as for the energy estimate gives

1

2

d

dt
‖Ṽ (t)‖2 . ‖∇V (t)‖∞ ‖Ṽ (t)‖2 .

As long as
∫ t

0
‖∇V (τ)‖∞ dτ is finite on [0, T ], and since Ṽ (0) = 0, it follows that Ṽ (t) = 0

on [0, T ].

Now we shall prove that the solution (v(t), u(t)) is strongly continuous in t. Recall the
inequality (2.22). We need it with r = s. When s > d/2 + 1, we have

∫ t

0

‖∇V ǫ(t′)‖∞ dt′ .M · t ,

where M is a uniform in ǫ bound on the L∞([−T∗, T∗] → Hs) norms of V . Thus, it follows
from (2.22) that for all ǫ = ǫn, and t > 0

‖vǫ(t)‖2Hs + ‖uǫ(t)‖2Hs ≤
(

‖v(0)‖2Hs + ‖u(0)‖2Hs

)

exp (CM · t) .

Use the lower semi-continuity of the norms on the left to obtain

‖v(t)‖2Hs + ‖u(t)‖2Hs ≤
(

‖v(0)‖2Hs + ‖u(0)‖2Hs

)

exp (CM · t) .

Since the solution (v(t), u(t)) is weakly continuous in Hs, it follows that it is strongly
continuous from the right at t = 0. For any t0 ∈ [−T, T ], if we solve (2.7), (2.8) with
the initial condition (v(t0), u(t0)) at t = t0, we obtain the same solution (v(t), u(t)) due
to uniqueness. Consequently, (v(t), u(t)) is strongly continuous in Hs from the right at
every t ∈ [−T, T ]. The equations are invariant under the time reversal transformation
(t, v(t), u(t)) 7→ (−t,−v(−t),−u(−t)). Again, due to uniqueness, this implies strong conti-
nuity of t 7→ (v(t), u(t)) ∈ Hs from the left. This proves the strong continuity in time of
V (t) ∈ Hs

σ, i.e., V ∈ C([0, T ] → Hs).

2.5 Revisiting energy estimates

The limit case of the inequality (2.22) is true, viz. for any solution satisfying the conditions
of Theorem 2.1,

‖v(t)‖2Hr + ‖u(t)‖2Hr ≤
(

‖v(t0)‖2Hr + ‖u(t0)‖2Hr

)

exp

(

c(r, d)

∫ t

t0

‖∇V (τ)‖∞ dτ

)

(2.28)
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for all −T ≤ t0 < t ≤ T and for any 0 < r ≤ s. This is not proved by passing to the limit
ǫ → 0 in (2.22) but rather by appealing to the fact (cf. [1, p. 64]) that (Jrv, Jru) is the
unique C([−T, T ] → L2) solution of the linear non-homogeneous hyperbolic system

∂tv+ P
[

vj ∂jv− ukb ∂kub − ∂bub
]

= F r ,

∂tua +
[

vk ∂kua − uka ∂kv− ∂av
]

= F r
a ,

(2.29)

where
F r = P

[(

vj ∂jJ
rv − Jr(vj ∂jv)

)

−
(

ukb ∂kJ
rub − Jr(ukb ∂kub)

)]

F r
a = P

[(

vj ∂jJ
rua − Jr(vj ∂jua)

)

−
(

uka ∂kJ
rv − Jr(uka ∂kv)

)]

,
(2.30)

and
v(0) = Jrv(0), ub(0) = Jrub(0) .

The energy estimate for the solution can be written in the form (we take t0 = 0 for simplicity)

(

‖v(t)‖2 + ‖ua(t)‖2
)1/2 ≤

(

‖v(0)‖2 + ‖ua(0)‖2
)1/2

+

∫ t

0

(

‖F r(τ)‖2 + ‖F r
a (τ)‖2

)1/2
dτ .

Substitute the true values v = Jrv and ua = Jrua, apply estimates (2.20) to the norms in
the integrand, and use Gronwall’s inequality to arrive at (2.28).

2.6 Continuous dependence

The proof of continuous dependence of solutions on the initial conditions will follow the
strategy of Bona and Smith [3] as has been done by Kato and Lai [18] for the Euler equations.
Take a sequence of initial conditions Vn(0) ∈ Hs

σ converging (in Hs) to V (0). Let Vn(t)
and V (t) be the corresponding solutions of system (2.7), (2.8). We can choose the same
interval [0, T ] for all Vn(0). The goal is to show that the solutions Vn(t) converge to V (t) in
C([0, T ] → Hs

σ.
Mollify the initial conditions, V ǫ

n (0) = ρǫ[Vn(0)] and V ǫ(0) = ρǫ[V (0)], using the same
mollifier as in Lemma 2.2. Let V ǫ

n and V ǫ be the corresponding solutions of (2.7), (2.8) lying
in the space C([0, T ] → Hs+1

σ ). As the energy estimates show, we can adjust T so that the
solutions exist on the same time interval, [0, T ] for all ǫ > 0. We have

sup
[0,T ]

‖Vn(t)− V (t)‖Hs ≤ sup
[0,T ]

‖Vn(t)− V ǫ
n(t)‖Hs + sup

[0,T ]

‖V (t)− V ǫ(t)‖Hs

+ sup
[0,T ]

‖V ǫ
n(t)− V ǫ(t)‖Hs .

(2.31)

As will be shown, the first two norms on the right will be small by the choice of ǫ, while the
last norm, for a fixed ǫ, will be small for large n.

We start with the first two norms on the right side of (2.31) and prove a slightly more
general result. Consider the system (2.7), (2.8) with initial conditions V (0) = (v(0), u(0))
from a compact subset C of Hs

σ, where s > d/2 + 1. Mollify the initial conditions, V ǫ(0) =
(ρǫ[v(0)], ρǫ[u(0)]), and let V ǫ(t) be the corresponding solutions on [0, T ]. The interval can be
chosen uniformly for V (0) ∈ C and ǫ ∈ (0, 1) as follows from the existence part of Theorem
2.1.
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Proposition 2.3. For V (0) ∈ C and ǫ→ 0, the family V ǫ is uniformly Cauchy in C([0, T ] →
Hs

σ).

Proof. Consider the difference Ṽ = V δ − V ǫ, where 0 < δ < ǫ. At t = 0, the Hs norm of
Ṽ (0) goes to 0 as ǫց 0. The difference Ṽ (t) satisfies, schematically, the equation

∂tṼ + P V δ∇Ṽ = −P Ṽ∇V ǫ . (2.32)

First get the L2 estimate. We have

1

2
‖Ṽ (t)‖2 ≤ ‖∇V ǫ(t)‖∞ ‖Ṽ (t)‖2 ,

and therefore,

‖Ṽ (t)‖2 ≤ ‖Ṽ (0)‖2 exp

∫ t

0

‖∇V ǫ(τ)‖∞ dτ . (2.33)

This implies
sup
[0,T ]

‖Ṽ (t)‖ . ǫs o(ǫ) (2.34)

since the integral of ‖∇V ǫ(τ)‖∞ is bounded and, since V (0) ∈ Hs, and therefore,

‖Ṽ (0)‖2 = ‖V δ(0)− V ǫ(0)‖2

=

∫

1/ǫ<|κ|<1/δ

|V̂ (0, κ)|2 d̄κ

=

∫

1/ǫ<|κ|<1/δ

|ĴsV (0)(κ)|2
(1 + |κ|2)s d̄κ

≤
(

ǫ2

1 + ǫ2

)s ∫

1/ǫ<|κ|<1/δ

|ĴsV (0)(κ)|2 d̄κ .

Now, turn to the Hs estimates. Act with Js on equation (2.32):

∂tJ
sṼ + P V δ∇JsṼ = P

(

V δ∇JsṼ − Js(V δ∇Ṽ )
)

− P

(

Js
(

Ṽ∇V ǫ
)

− Ṽ∇JsV ǫ
)

− P Ṽ∇JsV ǫ .

As in the derivation of energy estimates, we obtain

d

dt
‖JsṼ (t)‖ ≤ ‖V δ∇JsṼ − Js(V δ∇Ṽ )‖

+ ‖Js
(

Ṽ∇V ǫ
)

− Ṽ∇JsV ǫ‖+ ‖Ṽ ‖∞ ‖∇JsV ǫ‖
(2.35)

By the Kato-Ponce inequality (2.20),

‖V δ∇JsṼ − Js(V δ∇Ṽ )‖ . ‖∇V δ(t)‖∞ ‖Ṽ (t)‖Hs + ‖∇Ṽ (t)‖∞ ‖V δ(t)‖Hs , (2.36)
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and

‖Js
(

Ṽ∇V ǫ
)

− Ṽ∇JsV ǫ‖ . ‖∇Ṽ (t)‖∞ ‖V ǫ(t)‖Hs + ‖∇V ǫ(t)‖∞ ‖Ṽ (t)‖Hs . (2.37)

Thus,

d

dt
‖Ṽ (t)‖Hs . (‖∇V δ(t)‖∞ + ‖∇V ǫ(t)‖∞) ‖Ṽ (t)‖Hs

+ (‖V δ(t)‖Hs + ‖V ǫ(t)‖Hs) ‖∇Ṽ (t)‖∞ + ‖Ṽ (t)‖∞ ‖V ǫ(t)‖Hs+1 .
(2.38)

The L∞
t H

s norms of V ǫ and V δ are uniformly bounded. Since s > d/2 + 1, the functions
‖∇V ǫ(t)‖∞ and ‖∇V δ(t)‖∞ are (uniformly) bounded on [0, T ], and, also, ‖∇Ṽ (t)‖∞ .

‖Ṽ (t)‖Hs . The energy estimate (2.28) with r = s+ 1 tells us that

‖V ǫ(t)‖Hs+1 ≤ C ‖ρǫ[V (0)]‖Hs+1 ≤ C
1

ǫ
‖V (0)‖Hs .

By the Gagliardo-Nirenberg inequality,

‖Ṽ (t)‖∞ . ‖Ṽ (t)‖1− d
2s ‖Ṽ ‖

d
2s
Hs .

Taking into account (2.34), we obtain

‖Ṽ (t)‖∞ . ǫs−
d
2 o(ǫ) ‖Ṽ ‖

d
2s
Hs .

Hence,

‖Ṽ (t)‖∞ ‖V ǫ(t)‖Hs+1 . ǫs−1− d
2 o(ǫ) ‖Ṽ ‖

d
2s
Hs ‖V (0)‖Hs . ǫs−1− d

2 .

Combining all this,
d

dt
‖Ṽ (t)‖Hs . ‖Ṽ (t)‖Hs + ǫs−1− d

2 .

Integrating this inequality and using the fact that ‖Ṽ (0)‖Hs → 0 uniformly for V (0) ∈ C, we
see that (again, uniformly for V (0) ∈ C) the supremum of ‖Ṽ (t)‖Hs goes to 0 as ǫց 0.

Remark 2.4. In the proof above, the term ‖Ṽ (t)‖∞ ‖V ǫ(t)‖Hs+1 occurring in equation (2.38)
is treated differently from [18]. In the lower regularity case, where the argument of [18] does
not apply, this term will be treated by a generalization of the Gagliardo-Nirenberg inequality.

Proposition 2.3 takes care of the first two terms of the right hand side of (2.31). To
handle the last term, supt ‖V ǫ

n(t) − V ǫ(t)‖Hs , for a fixed small ǫ, we treat the difference
Ṽ = V ǫ

n − V ǫ as in the proof of the proposition and arrive at the inequality

d

dt
‖Ṽ (t)‖Hs . (‖∇V ǫ

n(t)‖∞ + ‖∇V ǫ(t)‖∞) ‖Ṽ (t)‖Hs

+ (‖V ǫ
n(t)‖Hs + ‖V ǫ(t)‖Hs) ‖∇Ṽ (t)‖∞ + ‖Ṽ (t)‖∞ ‖V ǫ(t)‖Hs+1 .

(2.39)

Now ‖∇Ṽ (t)‖∞, ‖Ṽ (t)‖∞ . ‖Ṽ (t)‖Hs and the remaining factors are uniformly bounded in
t. Hence, supt ‖Ṽ (t)‖Hs . ‖Ṽ (0)‖Hs → 0 as n→ ∞.

This completes the proof of Theorem 2.1.
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Remark 2.5. It is standard that once the solution (v, u) of the “projected” system (2.7),
(2.8) is obtained, with (v, u) ∈ C([0, T ] → Hs

σ) and (∂tv, ∂tu) ∈ C([0, T ] → Hs−1
σ ), we can

recover the pressure p(t, x). From equations (2.4a), it follows that ∇p ∈ C([0, T ] → Hs−1).
Also, −∆p = ∂kv

i · ∂ivk − ∂ku
i
a · ∂iuka, from (2.4a). Using the Riesz transforms Rj, we can

solve for p = RiRk

(

vi vk − uia u
k
a

)

. As long as s > d/2, we see that p ∈ C([0, T ] → Hs).
From the identities (2.26), (2.27) we can now deduce the following identities

∫ T

0

∫

−vi
(

∂tη
i + vj∂jη

i
)

+ via v
k
a∂kη

i − p ∂iη
i dt dx =

∫

v(0) η(0) dx (2.40)

and, for a = 1, . . . , d,

∫ T

0

∫

−via
(

∂tη
i + vk∂kη

i
)

+ vi vka∂kη
i dt dx =

∫

va(0) η(0) dx (2.41)

valid for any smooth vector function η with compact support in (−T, T ) × R
d. We have

rearranged the terms (compared to (2.26), (2.27)) for future use.

3 Lagrangean picture

This section is located between the sections on high regularity and lower regularity Cauchy
problem in the Euler setting. We treat the Lagrange equations by switching to the Euler
form, applying the results for the Euler setting, and switching back to Lagrange. Thus, in
this section, our results will be conditioned on the available results for the Eulerian system.
At the moment, we have results only in the case s > d/2 + 1, and we can apply them right
away. After we show, in the next section, how to work with s < d/2+1, we shall immediately
translate that into the Lagrangean setting by applying the results of the current section.

3.1 A volume preserving diffeomorphism lemma

We start with a useful lemma.

Lemma 3.1. Let A be a d× d matrix with real (constant) entries and detA = 1. Consider
the map Φ : ξ ∈ R

d
ξ → x = Aξ + ϕ(ξ) ∈ R

d
x such that

1. ϕ ∈ Hs+1(Rd
ξ) with s >

d
2
;

2. det
(

A+ ∂ϕ(ξ)
∂ξ

)

= 1 .

Then Φ is a C1 diffeomorphism and its inverse, Φ−1, can be written as ξ = A−1x − g(x)
where g ∈ Hs+1(Rd

x).

Remark 3.2. Notice that the regularity restriction in this lemma corresponds to V ∈ Hs

with s > d/2.
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Proof. By the Sobolev embedding, the entries of the matrix ∂ϕ(ξ)/∂ξ are bounded, and
so Φ ∈ C1. Since det (∂Φ/∂ξ) = 1, Φ is a local diffeomorphism. It is a global volume
preserving C1-diffeomorphism of R

d by Hadamard’s global inverse function theorem (see [11]
for references and proofs). In particular,

∫

Rd

f(ξ) dξ =

∫

Rd

f(Φ−1(x)) dx

for any reasonable f . Since Φ is volume preserving,
(

A+
∂ϕ(ξ)

∂ξ

)−1

= A−1 + FA(
∂ϕ(ξ)

∂ξ
) ,

where the entries of FA are polynomials in ∂ϕ/∂ξ of degree d − 1 without constant terms.
It follows (Moser’s Lemma B.3) that FA(∂ϕ/∂ξ) is in H

s(Rd
ξ). Denote by ψ(ξ) the matrix-

function FA(∂ϕ/∂ξ) viewed as a function of ξ. We have

∂

∂x
=

(

A +
∂ϕ(ξ)

∂ξ

)−1
∂

∂ξ
=

(

A−1 + FA(
∂ϕ(ξ)

∂ξ
)

)

∂

∂ξ
= (A−1 + ψ(ξ))

∂

∂ξ
.

Define g(x) = A−1x− ξ. Then

∂g(x)

∂x
= A−1 − ∂ξ

∂x
= −ψ(ξ) .

Note that ψ(ξ) is a bounded function. Calculating the higher x-derivatives of g using that
∂/∂x = (A−1+ψ(ξ)) ∂/∂ξ, we see that, for any integer r, the derivatives ∂r+1g(x)/∂xr+1 are
sums of constant multiples of the terms of the form

(ψ)α0 (
∂ψ

∂ξ
)α1 (

∂2ψ

∂ξ2
)α2 · · · (∂

mψ

∂ξm
)αm , (3.1)

where the α’s are non-negative integers and

α1 + 2α2 + · · ·+mαm = r . (3.2)

Let r be the largest integer less than or equal to s. The L2(Rd, dξ) norm of each product
(3.1) is bounded by the Hr(Rd

ξ) norm of ψ as follows from Moser’s argument. Hence, all
x-derivatives of g(x) of order r + 1 are in L2(dx). Assume now s = r + γ, where γ ∈ (0, 1).
The Hs norm of a function is equivalent to the Hr norm plus the sum of the Hγ norms of all
partial derivatives of order r. This means we have to estimate the Hγ norm of the product
(3.1). Note that, in general, if f(x) and f̃(ξ) are related by the equation f̃(ξ) = f(x(ξ)) and
the transformation x → ξ is bi-Lipschitz (as in our case), the Hγ(Rd

ξ) norm of f̃ and the

Hγ(Rd
x) norm of f are equivalent if 0 ≤ γ ≤ 1. Thus, we will estimate the Hθ(Rd

ξ) norms
of the expressions (3.1). But this is done in a slightly more general case in the proof of
Lemma B.3. This completes the proof of the regularity of g(x) claimed in the statement of
the theorem.
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3.2 Cauchy problem in the Lagrange setting

Recall that the basic equations in Lagrangean form are

∂2xi

∂t2
− ∂2xj

∂ξa∂ξa
+
∂p

∂xi
= 0 , i = 1, . . . , d, (3.3)

det
∂x

∂ξ
= 1 (3.4)

Given a constant matrix A ∈ SL(d,R), consider the Cauchy problem for this system with
the initial conditions

x(0, ξ) = Aξ + ϕL(ξ) ,
∂x(0, ξ)

∂t
= vL0 (ξ) . (3.5)

We assume that x(0, ξ) satisfies (3.4) and that vL0 is divergence free in the x variables,

∂(vL0 )
i(ξ)

∂xi
=
∂(vL)i(ξ)

∂ξa
∂ξa

∂xi
= Tr

(

∂vL0 (ξ)

∂ξ
(A+

∂ϕL

∂ξ
)−1

)

= 0 . (3.6)

Define the quantities

uia(0, x) =
∂(ϕL)i(ξ)

∂ξa
∣

∣

ξ=ξ(0,x)
. (3.7)

Then by Piola’s identities,

divua(0, x) =
∂uia(0, x)

∂xi
= 0 for each a = 1, . . . , d .

Define v(0, x) = vL0 (ξ).

We assume that ϕL ∈ Hs+1
ξ and vL0 ∈ Hs

ξ for some s > d/2. By Lemma 3.1, ua(0, ·)
belongs to Hs(Rd

x). Also, v(0, ·) ∈ Hs(Rd
x).

Assumption I. Assume that the system (2.3a), (2.3b), (2.3c), with the initial conditions
(v(0), u(0)), has a unique solution (v, u) ∈ C([0, T ] → Hs

σ(R
d
x)) with (∂tv, ∂tu) ∈ C([0, T ] →

Hs−1
σ (Rd

x)). Also, assume that for v and va = Aa+ua, the integral identities (2.40) and (2.41)
are valid. In addition, assume that

∫ T

0

‖∇v(t)‖∞ dt <∞ . (3.8)

Theorem 3.3. Under Assumption I, the problem (3.3), (3.4), (3.5) has a unique solution
x(t, ξ), pL(t, ξ) on the same time interval [0, T ], such that

x− Aξ ∈ C([0, T ] → Hs+1(Rd
ξ)),

∂x

∂t
∈ C([0, T ] → Hs(Rd

ξ)) ,
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and
pL ∈ C([0, T ] → Hs(Rd

ξ)) .

The family of maps ξ 7→ x(t, ξ) is a family of volume preserving Hs+1-diffeomorphisms. The
inverse maps, x 7→ ξ(t, x), have the following regularity:

ξ − A−1x ∈ C([0, T ] → Hs+1(Rd
x)),

∂ξ

∂t
∈ C([0, T ] → Hs(Rd

x)) .

If the solutions (v, u) of the Eulerian system (2.3a), (2.3b), (2.3c) depend continuously in
C([0, T ] → Hs(Rd

x)) on the initial conditions, then the solutions x(t, ξ), pL(t, ξ) of (3.3),
(3.4), (3.5) depend continuously on the initial conditions ϕL ∈ Hs+1 and vL0 ∈ Hs.

Proof. Create the Eulerian initial data (v(0), u(0)) as described above and solve the problem
(2.7), (2.8). Thanks to Assumption I there is a solution (v, u) ∈ C([0, T ] → Hs

σ(R
d
x)) with

(∂tv, ∂tu) ∈ C([0, T ] → Hs−1
σ (Rd

x)). Note that for s > d/2

v, u ∈ C([0, T ]× R
d) ; (3.9)

in particular, v and u are bounded in the slab [0, T ]× R
d
x. Solve the ODE

ẋ = v(t, x) , x(0) = Aξ + ϕL(ξ) . (3.10)

Thanks to (3.8), there exists a unique solution x(t, ξ) on [0, T ] such that, as functions of
t with the values in R

d, x ∈ C([0, T ] → C1(Rd
ξ)) and ẋ ∈ C([0, T ] → C(Rd

ξ)). Clearly,
det ∂x/∂ξ = 1. Thus, ξ → x(t, ξ) is a local C1-diffeomorphism. Since

x(t, ξ) = Aξ + ϕL(ξ) +

∫ t

0

v(s, x(s, ξ)) ds (3.11)

and v is bounded, |x(t, ξ)| → ∞ as |ξ| → ∞. By Hadamard’s global inverse function theorem,
x(t, ·) : R

d → R
d is a global C1 diffeomorphism. The derivatives ∂x/∂ξ are solutions of the

following system of ODEs
∂

∂t

∂xi

∂ξa
= ∂kv

i(t, x)
∂xk

∂ξa
(3.12)

with
∂xi(0, ξ)

∂ξa
= Ai

a +
∂(ϕL)i(ξ)

∂ξa
.

It follows that

|∂x(t, ξ)
∂ξ

| ≤ C exp

∫ t

0

‖∇v(τ)‖∞ dτ (3.13)

and

|x(t, ξ)− x(t, η)| ≤ C |ξ − η| exp
∫ t

0

‖∇v(τ)‖∞ dτ . (3.14)
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The inverse map, ξ(t, x) satisfies the equation

∂ξ(t, x)

∂t
= −∂ξ(t, x)

∂xi
vi(t, x) . (3.15)

Also
∂

∂t

∂ξa

∂xi
= −∂ξ

a

∂xj
∂2xj

∂t∂ξb
∂ξb

∂xi

or
∂

∂t

∂ξa

∂xi
= −∂ξ

a

∂xj
∂vj

∂xi
(3.16)

In particular,

|∂ξ
a(t, x)

∂xk
| ≤ C exp

∫ t

0

‖∇v(τ)‖∞ dτ .

Then

|ξ(t, x)− ξ(t, y)| ≤ C |x− y| exp
∫ t

0

‖∇v(τ)‖∞ dτ . (3.17)

Thanks to the assumption (3.8), the transformation ξ → x(t, ξ) is bi-lipschitz uniformly on
any fixed finite time interval. As a consequence, the Sobolev H1 norms in Eulerian and
Lagrangian coordinates are equivalent:

‖f(t, ·)‖H1(Rd
x)
≃ ‖f̃(t, ·)‖H1(Rd

ξ
) ,

where f̃(t, ξ) = f(t, x(t, ξ)).
As seen from (2.8) and (2.41), the functions via(t, x) = Ai

a + uia(t, x) satisfy the equation

∂tv
i
a + vk ∂kv

i
a = vka ∂kv

i

with the initial condition via(0, x) = Ai
a + uia(0, x). In the Lagrangian coordinates,

∂via
∂t

= ∂kv
i vka .

This means the matrix via is the solution of the same system (3.12) as ∂xi/∂ξa and with the
same initial condition. This proves that

∂xi(t, ξ)

∂ξa
= via(t, x(t, ξ)) . (3.18)

Now go to the integral identities (2.40) and (2.41). Substitute via = ∂xi/∂ξa and v = ∂x/∂t
and change variables to (t, ξ). This results in

∫ T

0

∫

−∂x
i

∂t

∂ηi

∂t
+
∂xi

∂ξa
∂ηi

∂ξa
− p

∂ξa

∂xi
∂ηi

∂ξa
dξdt =

∫

vL0 η(0) dξ (3.19)
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and, for all a = 1, . . . , d,

∫ T

0

∫

−∂x
i

∂ξa
∂ηi

∂t
+
∂xi

∂t

∂ηi

∂ξa
dξdt =

∫
(

Ai
a +

∂ϕi

∂ξa

)

η(0) dξ (3.20)

for any smooth η with compact support in (−T, T )×R
d. In this sense x and p solve equations

(3.3) and (3.4) with the appropriate initial conditions.

This solution is unique in the following sense: any family of diffeomorphisms x(t, ξ)
satisfying (3.5) and such that the quantities ∂xi/∂t and ∂xi/∂ξa − Ai

a, when expressed
as functions of t and x, belong to the space C([0, T ] → Hs

σ(R
d
x)), must coincide with the

solution obtained by means of Theorem 2.1 (simply by the uniqueness of solutions in the
Euler setting).

It is easy to show that the functions ξ(t, x)−A−1x viewed as functions of t and x belong
to the space C([0, T ] → Hs+1(Rd

x)). Indeed,

∂ξa

∂xi
=

[

(

∂x

∂ξ

)−1
]a

i

=
1

(d− 1)!
ǫii2...id ǫ

aa2...advi2a2 . . . v
id
ad
.

Hence,
∂ξa

∂xi
− (A−1)ai =

1

(d− 1)!
ǫii2...id ǫ

aa2...ad
∑

B

Bi2
a2
. . . Bid

ad
,

where the summation is over all matrices B such that each Bik
ak

is either Aik
ak

or uikak , but not

all are Aik
ak
. Hence ∂ξa

∂xi − (A−1)ai ∈ C([0, T ] → Hs(Rd
x)) (H

s is an algebra). Also, (see (3.15))

ξa(t, x)−(A−1x)a = −(ϕL)a(ξ(0, x))+

∫ t

0

−vi(τ, x)
[

∂ξa(τ, x)

∂xi
− (A−1)ai

]

−
(

A−1
)a

i
vi(τ, x) dτ

and it is clear that this function is in C([0, T ] → L2). It follows that ξ(t, x) = A−1x+h(t, x)
for some h(t, ·) ∈ Hs+1(Rd

x) depending continuously on t. By Lemma 3.1, the inverse map,
x = Aξ − AhL(t, ξ) is such that hL(t) ∈ Hs+1(Rd

ξ).

4 Intermezzo

In section 5 we shall transition to lower regularity solutions of equations (2.7), (2.8). Given
the initial conditions V (0) = (v(0), u(0)) ∈ Hs

σ with s ≤ d
2
+ 1, we will mollify them to get

V ǫ(0) = ρǫ[V (0)], and use Theorem 2.1 to obtain the corresponding solution V ǫ(t) on some
interval [0, Tǫ]. We would like to be able to pass to the limit as ǫ → 0 to obtain V (t), and
to be sure that Tǫ can be bounded from below by some T > 0. We’ll have to modify the
corresponding arguments in section 2. When s ≤ d

2
+ 1, the norm ‖∇V (t)‖∞ is no longer

controlled by ‖V (t)‖Hs. However, we still need to show that the integral
∫ t

0
‖∇V ǫ(t′)‖∞ dt′ is
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finite over some time interval (independent of ǫ). In addition, we have to deal with ‖∇Ṽ (t)‖∞
in the proof of continuous dependence, and we cannot use there the argument we had for
‖Ṽ (t)‖∞. Thus, we need new tools. The first observation is that for any sufficiently smooth
divergence-free vectorfield v with curl v = ω, we have inequalities of the form

‖∇v‖∞ . ‖v‖γ12 ‖ω
∣

∣ Ḃr
p,p‖1−γ1 (4.1)

and
‖v‖∞ . ‖v‖γ22 ‖ω

∣

∣ Ḃr
p,p‖1−γ2 , (4.2)

each with its own allowed range for parameters r > 0 and p, and each with the powers γ1 and
γ2 expressed in terms of r, p, and d. The space Ḃr

p,p(R
d) is the homogeneous Besov space. In

dimension d = 2 we use p = ∞ in which case Ḃr
∞,∞(R2) is the (homogeneous) Hölder space

Ċr(R2). When d > 2, we must have 1 ≤ p < ∞, and then Ḃr
p,p(R

d) is the (homogeneous)

Sobolev-Slobodetsky space Ẇ r,p. The precise form of inequalities (4.1) and (4.2) is given
in Lemma 5.3 and Lemma 5.11 below, and we prove a more general result, Lemma C.1, in
Appendix C.

Since the L2 norm of velocities is bounded from the basic energy conservation, we can
use (4.1) to obtain

∫ T

0

‖∇v(t)‖∞ dt .

∫ T

0

‖ω(t)
∣

∣ Ḃr
p,p‖1−γ1 dt

and show that the integral on the right is a priori bounded. In fact, we will do better. We
have room to work with

∫ T

0

‖∇v(t)‖m∞ dt .

∫ T

0

‖ω(t)
∣

∣ Ḃr
p,p‖m(1−γ1) dt (4.3)

for some m > 1. To prove that the integral on the right is bounded we should look at the
equations satisfied by vorticities.

4.1 Derivation of the equations for vorticities

In the case of the general dimension d ≥ 2, define the vorticities ωmn = ∂mv
n − ∂nv

m and
ωmn
a = ∂mv

n
a − ∂nv

m
a = ∂mu

n
a − ∂nu

m
a . Equations (2.4a) and (2.4b) imply the following

equations for the vorticities:

∂tω
mn + vj ∂jω

mn − vja ∂jω
mn
a = fmn (4.4)

and
∂tω

mn
b + vj∂jω

mn
b − vjb ∂jω

mn = fmn
b , (4.5)

where
fmn = −ωmj ∂jv

n + ωnj ∂jv
m + ωmj

a ∂jv
n
a − ωnj

a ∂jv
m
a , (4.6)

and
fmn
b = −

[

∂mv
j ∂jv

n
b − ∂nv

j ∂jv
m
b

]

+
[

∂mv
j
b ∂jv

n − ∂nv
j
b ∂jv

m
]

. (4.7)
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We combine fmn and fmn
b into an array, F = (Fmn) = (fmn, fmn

b ).
In terms of the Fourier transform, ω̂mn = i (κmv̂n − κnv̂m) and the zero divergence

condition provides κnv̂n = 0. Thus,

v̂n = −i κ
m

|κ|2 ω̂
mn .

In our notation,
vn = −iD−1

Rm ω
mn and ∂kv

n = Rk Rm ω
mn , (4.8)

where Rm = F−1κm/|κ|F are the Riesz transforms. Thus, the right sides, fmn and fmn
b , of

equations (4.4) and (4.5), are sums of products of Riesz transforms of vorticities. Here and
in what follows Ω is a combined notation for ω and all ωa. We will omit the superscripts mn

where possible.

4.2 Vorticities in the Lagrangean setting

In Lagrangean coordinates equations (4.4) and (4.5) simplify as follows:

∂ωL

∂t
− ∂ωL

a

∂ξa
= fL[Ω] , (4.9)

and
∂ωL

b

∂t
− ∂ωL

∂ξb
= fL

b [Ω] (4.10)

If the right sides are known functions, this is a linear system with constant coefficients for
the vector [ωL, ωL

1 , . . . , ω
L
d ]

T . Apply the Fourier transform Fξ→k to (4.9) and (4.10). We
emphasize that here the Fourier transform is applied in Lagrangian coordinates. The result
is a system of ODEs:

d

dt
Ω̂L − iM Ω̂L = F̂L , (4.11)

where
Ω̂L = [ω̂L, ω̂L

1 , . . . , ω̂
L
d ]

T ,

with ω̂L(t, k) = Fξ→kω
L(t, ξ), and M =M(k) is a symmetric (d+ 1)× (d+ 1) matrix whose

first row is
[0, k1, . . . , kd] ,

whose first column is the transpose of the first row, and all other entries are zeros. The
eigenvalues of M are ±|k| and the multiplicity (d − 1) eigenvalue 0. The corresponding
eigenvectors are e1 = [1, k̂1, . . . , k̂d]T , e2 = [1,−k̂1, . . . ,−k̂d]T , for |k|, −|k|, respectively,
and for the zero eigenvalues, e3 = [0, k̂2,−k̂1, 0, . . . , 0]T , e4 = [0, k̂3, 0,−k̂1, 0, . . . , 0]T , . . . ,
ed+1 = [0, 0, . . . , k̂d,−k̂d−1]T , where k̂j = kj/|k|. Introduce the quantities

π̂L
+ = ω̂L + k̂aω̂L

a , π̂L
− = ω̂L − k̂aω̂L

a , π̂L
ab = k̂aω̂L

b − k̂bω̂L
a . (4.12)
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Then

ωL = F
−11

2
(π̂L

+ + π̂L
−) , ωL

a = F
−1

(

1

2
(π̂L

+ − π̂L
−) k̂

a − k̂b π̂L
ab

)

. (4.13)

When written in terms of π̂L, equation (4.11) split into three groups:

dπ̂L
+

dt
= i|k| πL

+ + f̂L + k̂af̂L
a

dπ̂L
−

dt
= −i|k| πL

− + f̂L − k̂af̂L
a

dπ̂L
ab

dt
= k̂af̂L

b − k̂bf̂L
a

(4.14)

Denote
F̂L
± = f̂L ± k̂af̂L

a , F̂L
ab = k̂af̂L

b − k̂bf̂L
a . (4.15)

With this notation equations (4.14) read

dπ̂L
+

dt
= i|k| π̂L

+ + F̂L
+

dπ̂L
−

dt
= −i|k| π̂L

− + F̂L
−

dπ̂L
ab

dt
= F̂L

ab

(4.16)

The solution to (4.16) can be written as follows

π̂L
±(t) = eit|k| π̂L

±(0) +

∫ t

0

ei(t−t′)|k| F̂L
±(t

′) dt′

π̂L
ab(t) = π̂L

ab(0) +

∫ t

0

F̂L
ab(t

′) dt′ .

(4.17)

We will use the notation πL
± and πL

ab for the inverse Fourier transforms of the hatted
quantities. As seen from (4.16), the quantities πL

± satisfy the first order hyperbolic equations
of the form

∂π±
∂t

= ± i
√
−∆ π± + F± .

There is a useful version of the Strichartz inequality from [17, Theorem 2]: if w is a solution
of ∂w

∂t
+ i

√
−∆w = f , then

(
∫ T

0

‖w(t)
∣

∣ Ḃr
p,p‖q dt

)

1
q

≤ C

(

‖w(0)
∣

∣ Ḣθ‖+
∫ T

0

‖f(t)
∣

∣ Ḣθ‖ dt
)

(4.18)

with the parameters r, p, q, and θ in certain admissible ranges depending on the dimension
d ≥ 2. The constant C depends on d, r, p, and q, but not on T and not on w(0) and f
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(see Lemma D.1 in Appendix D for a precise statement). It is important that we use the
homogeneous spaces both in the inequalities (4.1), (4.2) and in (4.18): the ubiquitous Riesz
transforms (see e.g. (4.8), (4.12)) are bounded in those homogeneous spaces.

Now, the estimate (4.18), when applied to the quantities π, will lead to the estimates for the
quantities

(
∫ T

0

‖ΩL(t)
∣

∣ Ḃr
p,p‖q dt

)

1
q

for vorticities ΩL in the Lagrangean coordinates. We would like to translate those as bounds
for the right hand side of (4.3). But the norm of vorticites in (4.3) is in the Eulerian
coordinates. Thus, we need to establish correspondences (inequalities) between the like
norms in the Lagrange and the Euler pictures. This we do in Appendix E. Not surprisingly,
the L∞ norms of the Jacobian matrices ∂x/∂ξ and ∂ξ/∂x show up as factors. They are
expressed in terms of ‖u(t)‖∞, which in turn is bounded via (4.2). The f(t) in (4.18) is
FL
+ or FL

− from equations (4.16). After discarding the Riesz transforms and transitioning to
the Euler coordinates (more of the factors ‖u(t)‖∞), we end up working with the quadratic
expressions (4.6) and (4.7). Their Ḣθ norms are essentially ‖∇V ‖∞ · ‖ΩE(t)

∣

∣ Ḣθ‖, and we
use (4.1) again with appropriate values of the parameters.

5 Below the critical regularity: s ≤ d
2 + 1

We shall use the following notation:

u = (u11, . . . , u
d
1, . . . , u

1
d, . . . , u

d
d), (5.1a)

V = (v1, . . . , vd, u11, . . . , u
d
1, . . . , u

1
d, . . . , u

d
d), (5.1b)

Ω = (ωmn, ωmn
a ), (5.1c)

F = (fmn, fmn
a ), (5.1d)

and use superscripts L or E to indicate the corresponding quantities are viewed in the La-
grangean, (t, ξ), or the Eulerian, (t, x), coordinates. Note that the Lp(Rd, dx) and Lp(Rd, dξ),
1 ≤ p ≤ ∞, norms are the same for L and E . When the setting is clear we omit L and E . As
always, ‖ · ‖ is the notation for the L2 norm and (·, ·) is the corresponding inner product.

The meaning of . is standard by now. We write A ≃ B when A . B and B . A. We
shall use the symbol .e0 to indicate that the hidden constants in the inequality depend on the
initial energy e0. When integrating differential inequalities of the form dy(t)/dt . a(t) y(t),
we write the solution of the latter inequality as y(t) ≤ y(0) exp{c

∫ t

0
a(t′) dt′}. If the constant

depends on the initial energy, we write c(e0).

5.1 A priori L2 estimates

The basic conservation of energy follows from equations (2.7), (2.8):
∫

1

2
|v(t)|2 + 1

2
|u(t)|2 dx =

∫

1

2
|v(0)|2 + 1

2
|u(0)|2 dx . (5.2)
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In what follows, e0 is the square root of the initial energy:

e20 =

∫

1

2
|v(0)|2 + 1

2
|u(0)|2 dx . (5.3)

Note that since the velocities V E are divergence free,

‖∇V E‖ ≃ ‖ΩE‖.

From equations for vorticities, we derive an L2 estimate in the Euler coordinates. Multiplying
(4.4) by ωmn and (4.5) by ωmn

b , summing, and integrating over R
d yields, using the notation

(5.1)
1

2

d

dt
‖Ω(t)‖2 = (F,Ω),

and hence

d

dt
‖Ω(t)‖ . ‖F (t)‖, (5.4)

As formulas (4.6) and (4.7) show, we have

‖F‖ . ‖∇xV
E‖∞ ‖∇xV

E‖ . ‖∇xV
E‖∞ ‖ΩE‖

Taking this into account, integrate (5.4) to obtain

‖Ω(t)E‖ ≤ ‖Ω(0)E‖ ec
∫ t

0
‖∇V E(t′)‖∞ dt′ . (5.5)

5.2 A priori Ḣθ estimates for vorticities

We shall need the following Kato-Ponce commutator estimate:

Lemma 5.1. Let v = (v1, . . . , vd) be a sufficiently smooth vectorfield in R
d, and let g be a

sufficiently smooth scalar function. Then, for any s > 0,

‖Js(vk ∂kg)− vk ∂kJ
sg‖2 . ‖∇v‖∞ ‖Jsg‖2 + ‖Js+1v‖2 ‖g‖∞ (5.6)

and, for any θ > 0,

‖Dθ(vk ∂kg)− vk ∂kD
θg‖2 . ‖∇v‖∞ ‖Dθg‖2 + ‖Dθ+1v‖2 ‖g‖∞ (5.7)

The proof of (5.6) is in the original paper [19]. The homogeneous version of the Kato-
Ponce inequality, (5.7), can be obtained from (5.6) via scaling.

Lemma 5.2.

‖ΩE(t)
∣

∣ Ḣθ‖ ≤ ‖ΩE(0)
∣

∣ Ḣθ‖ exp

{

c

∫ t

0

(‖∇V (t′)‖∞ + ‖Ω(t′)‖∞) dt′
}

(5.8)
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Proof. Act with Dθ, θ > 0, on equations (4.4) and (4.5) and write the result in the form

∂tD
θωmn + vj ∂jD

θωmn − vja ∂jD
θωmn

a = Dθfmn[Ω] + Θ1

∂tD
θωmn

b + vj∂jD
θωmn

b − vjb ∂jD
θωmn = Dθfmn

b [Ω] + Θ2 ,
(5.9)

where Θ1,2 are the commutator error terms:

Θ1 = −
[

Dθ
(

vj ∂jω
mn
)

− vj ∂jD
θωmn

]

+
[

Dθ
(

vja ∂jω
mn
a

)

− vja ∂jD
θωmn

a

]

Θ2 = −
[

Dθ
(

vj ∂jω
mn
b

)

− vj ∂jD
θωmn

b

]

+
[

Dθ
(

vjb ∂jω
mn
)

− vjb ∂jD
θωmn

] (5.10)

By the homogeneous Kato-Ponce commutator estimate (5.7),

‖Θ1‖, ‖Θ2‖ . ‖∇V ‖∞ ‖ΩE‖Ḣθ + ‖V E
∣

∣ Ḣθ+1‖ · ‖ΩE‖∞

Note that
‖V E

∣

∣ Ḣθ+1‖ ≃ ‖ΩE‖Ḣθ .

Then
‖Θ1‖, ‖Θ2‖ . (‖∇V ‖∞ + ‖Ω‖∞) ‖ΩE‖Ḣθ (5.11)

Applying the fractional product rule, cf. Lemma B.1 to the terms Dθf,Dθfa and, taking
into account (4.8), we obtain

‖DθF‖ . ‖∇V ‖∞ ‖ΩE‖Ḣθ . (5.12)

Thus, equations (5.9) lead to this estimate

d

dt
‖ΩE(t)‖2

Ḣθ . (‖∇V ‖∞ + ‖Ω‖∞) ‖ΩE(t)‖2
Ḣθ , (5.13)

and (5.8) follows.

5.3 Tropical “norms” and homogeneous norms

It shall be convenient to use the following notation:

〈g〉p = max(1, ‖g‖p) .

These are not norms, but they are “tropical” norms in the following sense. For a real number
a, denote 〈a〉 = max(1, |a|). Let a, b, and c be real numbers. Then

1. If 0 ≤ a ≤ b, then 〈a〉 ≤ 〈b〉 .

2. If |a| ≤ 1 + |b|, then 〈a〉 ≤ 2 〈b〉. Also, 1 + |b| ≤ 2 〈b〉.

3. If λ ≥ 0, then 〈λ a〉 ≤ 〈λ〉 〈a〉.

4. If λ ≥ 0, then 〈|a|λ〉 = 〈a〉λ .
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5. 〈〈a〉〉 = 〈a〉 .

6. If 〈a〉 ≤ 〈b〉 and 〈b〉 ≤ 〈c〉, then 〈a〉 ≤ 〈c〉.

7. The triangle inequality: 〈a+ b〉 ≤ 〈a〉+ 〈b〉.

8.
∫ t

0
〈f(t′)〉 dt′ ≤ t +

∫ t

0
|f(t′)| dt′ .

The tropical norms absorb additive constants, which simplifies formulas.
Recall that

∂xi

∂ξa
= via = Ai

a + uia

and, therefore,

‖va‖∞ . 〈ua〉∞ , ‖ua‖∞ . 〈va〉∞ , 〈va〉∞ ≃ 〈ua〉∞ . (5.14)

The hidden constants depend on the matrix A.

Throughout, we shall be using the following abbreviation for the homogeneous Sobolev,
Besov, and Hölder norms:

{g}r = ‖g
∣

∣ Ḃr
∞,∞(Rd)‖ , {g}r,p = ‖g

∣

∣ Ḃr
p,p(R

d)‖ , [g]θ = ‖g
∣

∣ Ḣθ(Rd)‖ .

5.4 Technical inequalities when d = 2

Throughout Section 5 the regularity parameter s is less than d
2
+1 and we are trying to make

it as small as possible. When d = 2, we use auxiliary parameters θ and r such that

s = 1 + θ , θ = r +
3

4
, (5.15)

and
0 ≤ θ ≤ 1, 0 < r < 1 , (5.16)

and the goal is to show that r can be arbitrarily small.

There are two technical lemmas, Lemma 5.3 and Lemma 5.6, that we rely upon. The
first one offers the Gagliardo-Nirenberg type multiplicative inequalities à la Y. Meyer, cf.
e.g. [24].

Lemma 5.3. Let v be any vectorfield in R
2 with div v = 0, and let ω = curl v. Assuming

the parameters r and θ satisfy (5.16), we have

‖∇v‖∞ , ‖ω‖∞ . ‖v‖r/(r+2)
2 ‖ω

∣

∣Ċr‖2/(r+2) , (5.17)

and
‖v‖∞ . ‖v‖(r+1)/(r+2)

2 ‖ω
∣

∣Ċr‖1/(r+2) , (5.18)

and
‖v‖∞ . ‖v‖θ/(θ+1)

2 ‖ω
∣

∣Ḣθ‖1/(θ+1) , (5.19)

when v ∈ L2(R2) and ω ∈ Ċr(R2) or ω ∈ Ḣθ(R2), respectively.
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Proof. In the Euler coordinates, as follows from formulas (4.8), v and ω are related, schemat-
ically, as v = D−1RRω. It follows immediately that

‖v‖ ≃ ‖ω
∣

∣ Ḣ−1‖ .

Keeping this in mind, we turn to Lemma C.1 and apply it to f = ω. To prove inequality
(5.17) for ‖ω‖∞, take the symbol a(κ) ≡ 1 in the second inequality of Lemma C.1. For
estimates (5.18) and (5.19), use Lemma C.1 with the operator a being the product of two
Riesz transforms. Applying Lemma C.1 with the operator a = RR, obtain the inequality for
∇v. In particular, (C.3) with p = ∞ implies (5.17) and (C.4) with p = ∞ implies (5.18),
while, (C.4) with p = 2 and r = θ implies (5.19).

The following corollary is a combination of Lemma 5.3 and Lemma E.1.

Corollary 5.4. Assume x : R
2
ξ → R

2
x is a volume preserving diffeomorphism. Let uia =

∂xi/∂ξa−Ai
a, i, a = 1, 2, be the components of the deformation gradient tensor and let ωa be

the corresponding vorticities. If 0 < r < 1, and if 0 ≤ θ ≤ 1, then (with the tropical norms)

〈ua〉∞ . 〈ua〉(r+1)/(r+2)
2 〈{ωE

a }r〉1/(r+2) (5.20)

and
〈ua〉∞ . 〈ua〉(r+1)/2

2 〈{ωL
a }r〉1/2 (5.21)

and
〈ua〉∞ . 〈ua〉θ/(θ+1)

2 〈[ωE
a ]θ〉1/(θ+1) (5.22)

and
〈ua〉∞ . 〈ua〉θ2 〈[ωL

a ]θ〉 . (5.23)

Lemma 5.5. When d = 2 we have

〈{ΩE}r〉2/(r+2) .e0 〈{ΩL}r〉 (5.24)

and
〈[ΩE ]θ〉 .e0 〈[ΩL]θ〉1+θ . (5.25)

Proof. This follows from (5.14), Lemma 5.3, and Corollary 5.4.

The second technical lemma presents the Strichartz inequalities.

Lemma 5.6. Let w be a solution of the Cauchy problem

wt + i
√
−∆ w = f , w(0) = w0 ,

on the time interval [0, T ]. Let w0 ∈ Ḣθ(R2) and f ∈ L1([0, T ] → Ḣθ(R2)). If the parameters
r and θ satisfy θ = r + 3/4, then

(
∫ T

0

{w(t)}4r dt
)1/4

. [w0]θ +

∫ T

0

[f(t)]θ dt . (5.26)
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[The constant in . does not depend on T .] Written with tropical norms, inequalities (5.26)
lead to

(
∫ T

0

〈{w(t)}r〉4 dt
)1/4

. T 1/4 + [w0]θ +

∫ T

0

[f(t)]θ dt . (5.27)

Proof. The proof of a more general statement than (5.26) is given in Appendix D. To obtain
the second inequality from the first one, use

∫ T

0

〈f(t)〉 dt = | [0, T ] ∩ {t : |f(t)| ≤ 1} |+
∫ T

0

χ{t:|f(t)|>1} |f(t)| dt ≤ T +

∫ T

0

|f(t)| dt .

5.5 A priori estimates, d = 2

The conservation of energy (5.2) tells us that the L2 norm of V (t) is bounded, ‖V (t)‖ ≤
‖V (0)‖ = e0. It follows from (5.24) that

∫ t

0

{ΩE(t′)}8/(r+2)
r dt′ .e0

∫ t

0

〈{ΩL(t′)}r〉4 dt , (5.28)

and then from (5.17) we obtain

∫ t

0

‖∇V E(t′)‖∞ + ‖ΩE(t′)‖∞ dt′ .e0

∫ t

0

{ΩE(t′)}2/(r+2)
r dt′

.e0 t
3/4

(
∫ t

0

{ΩE(t′)}8/(r+2)
r dt′

)1/4

.e0 t3/4
(
∫ t

0

〈{ΩL(t′)}r〉4 dt′
)1/4 (5.29)

Now, estimate (5.8) proved in Lemma 5.2 can be extended as follows:

[ΩE(t)]θ ≤ [ΩE(0)]θ exp

{

c(e0) t
3/4

(
∫ t

0

{ΩE(t′)}8/(r+2)
r dt′

)1/4
}

(5.30)

Proposition 5.7. Let V (t) be a solution of (2.7), (2.8) in C([0, T1] → Hs2
σ (R2)) in the sense

of Theorem 2.1, where s2 >
d
2
+ 1 = 2. Assume that for some r > 0 the following norms of

the vorticities Ω(t) at t = 0 are bounded:

[ΩE(0)]θ ≤ C0 , {ωE
a (0)}r ≤ C1 , (5.31)

where θ = r + 3
4
. Then there exists time T0 > 0, depending only on ‖V (0)‖ (basic energy)

and the values of C0 and C1, such that

(
∫ t

0

{ΩE(t′)}8/(r+2)
r dt′

)1/4

≤ C2 (5.32)
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and
∫ t

0

‖∇V (t′)‖4∞ + ‖Ω(t′)‖4∞ dt′ ≤ C3 (5.33)

for all t in the interval [0, T0], where the bounds, C2 and C3, depend only on e0 and the values
of C0 and C1.

Proof. It is convenient to use

y(t) =

(
∫ t

0

〈{ΩE(t′)}r〉8/(r+2) dt′
)1/4

(5.34)

as the quantity for which we obtain the a priori estimates. In view of (5.28),

y(t) .e0

(
∫ t

0

〈{ΩL(t′)}r〉4 dt′
)1/4

.

Due to the representations (4.13), and due to the boundedness of the Riesz transforms in
Ċr, we have

(
∫ t

0

〈{ΩL(t′)}r〉4 dt′
)1/4

.e0

∑

±

(
∫ t

0

〈{πL
±(t

′)}r〉4 dt′
)1/4

+

(
∫ t

0

〈{πL
12(t

′)}r〉4 dt′
)1/4

(5.35)
The integrals with πL

± are controlled by the Strichartz estimates of Lemma 5.6:

(
∫ t

0

〈{πL
±(t

′)}r〉4 dt′
)1/4

. t1/4 + [πL
±(0)]θ +

∫ t

0

[FL
±(t

′)]θ dt
′

Note that

[πL
±(0)]θ . [ΩL(0)]θ .

(E.2)

〈ua〉θ∞ [ΩE(0)]θ .e0
(5.22)

〈[ΩE(0)]θ〉(θ+2)/(θ+1) (5.36)

Also, by (4.15),
[FL

± ]θ . [fL]θ + [fL
a ]θ .

In the two dimensional case fL = 0. By Lemma E.1, [fL
a ]θ . 〈ua〉θ∞ [fE

a ]θ. By (4.7), each fE
a

is a sum of products of the form ∂vE ∂vEa . Each factor, ∂v and ∂va, is a linear combination
of the Riesz transforms of the vorticities. Applying the fractional product rule, we obtain

[∂v ∂va]θ . [∂v]θ ‖∂va‖∞ + ‖∂v‖∞ [∂va]θ .

Since [∂V E ]θ . [ΩE ]θ, we have

[FL
± ]θ . 〈ua〉θ∞ 〈ua〉∞ [ΩE ]θ = 〈ua〉1+θ

∞ [ΩE ]θ .

Invoking (5.22), we get
[FL

± ]θ .e0 〈[ΩE]θ〉2 . (5.37)
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Thus,

(
∫ t

0

〈{πL
±(t

′)}r〉4 dt′
)1/4

.e0 t
1/4 + 〈[ΩE(0)]θ〉(θ+2)/(θ+1) +

∫ t

0

〈[ΩE(t′)]θ〉2 dt′ (5.38)

Use (5.30) for [ΩE ]θ followed by (5.35):

(
∫ t

0

〈{πL
±(t

′)}r〉4 dt′
)1/4

.e0 t
1/4 + 〈[ΩE(0)]θ〉(θ+2)/(θ+1)

+ t 〈[ΩE(0)]θ〉2 exp
{

c(e0)t
3/4 y(t)

}

(5.39)

To estimate the L4
t Ċ

r
x norm of πL

12 we go directly to the equation, see (4.17),

πL
12(t) = πL

12(0) +

∫ t

0

FL
12(t

′) dt′ .

Then

〈{πL
12(t)}r〉 ≤ 〈{πL

12(0)}r〉+ 〈
∫ t

0

{FL
12(τ)}r dτ〉 .

Observe that

∫ t

0

〈
∫ t′

0

{FL
12(τ)}r dτ〉4 dt′ ≤ t+

∫ t

0

(

∫ t′

0

{FL
12(τ)}r dτ

)4

dt′ ≤ t+ t

(
∫ t

0

{FL
12(τ)}r dτ

)4

.

Therefore,

(

∫ t

0

〈
∫ t′

0

{FL
12(τ)}r dτ〉4 dt′

)1/4

≤ t1/4 + t1/4
∫ t

0

{FL
12(τ)}r dτ dt ,

and hence,

(
∫ t

0

〈{πL
12(τ)}r〉4 dτ

)1/4

. t1/4
(

〈{πL
12(0)}r〉+

∫ t

0

{FL
12(τ)}r dτ

)

. (5.40)

In view of (4.15), and the continuity of the Riesz transform on Holder spaces,

{FL
12}r . {fL

1 }r + {fL
2 }r .

By Lemma E.1,
{fL

a }r . 〈ua〉r∞ {fE
a }r . (5.41)

Again, since each fE
a is a sum of products of the form ∂vE ∂vEa , we have

{fE
a }r . ‖∇V ‖∞ {ΩE}r .e0

(5.17)

〈{ΩE}r〉(r+4)/(r+2) .
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Combine this with (5.20) and derive from (5.41)

{fL
a }r .e0 〈{ΩE}r〉2 . (5.42)

Also,

{πL
12(0)}r . {ωL

a (0)}r .
(E.1)

〈ua(0)〉r∞ {ωE
a (0)}r .e0

(5.20)

〈{ωE
a (0)}r〉(r+3)/(r+2) (5.43)

Use this and (5.42) in (5.40) to obtain

(
∫ t

0

〈{πL
12(τ)}r〉4 dτ

)1/4

. t1/4
(

〈{ωE
a (0)}r〉(r+3)/(r+2) + t4/(2−r) y(t)r+2

)

(5.44)

It follows from (5.35), (5.39), and (5.44) that

y(t) .e0t
1/4 + 〈[ΩE(0)]θ〉(θ+2)/(θ+1) + t [ΩE(0)]2θ exp

{

c(e0)t
3/4 y(t)

}

+ t1/4
(

〈{ωE
a (0)}r〉(r+3)/(r+2) + t4/(2−r) y(t)r+2

) (5.45)

The continuity argument now shows that, for a continuous nonnegative y(t), if y(0) .

[ΩE(0)]
(θ+2)/(θ+1)
θ , then there exists a T0 > 0 (T0 depends only on the initial data: the energy

‖V (0)‖2, and the norms [ΩE(0)]θ and {ωE
a (0)}r) such that y(t) stays bounded for t ∈ [0, T0].

It is easy to verify (using (5.17) and (5.24)) that

∫ t

0

‖∇V (t′)‖4∞ + ‖ΩE(t′)‖4∞ dt′ .e0

∫ t

0

〈{ΩE(t′)}r〉8/(r+2) dt′

which stays finite for t ∈ [0, T0].

Corollary 5.8. In the setting of Proposition 5.7,

∫ T0

0

‖ΩE(t)
∣

∣ Cr(R2)‖8/(r+2) dt <∞ . (5.46)

Proof. This follows from (5.32) and (5.33) due to the fact that the norm in Cr is equivalent
to the sum of the L∞ and the Ċr norms.

5.6 Low regularity well-posedness in the case d = 2

In this section we obtain the existence and uniqueness results for Hs-solutions with s ≤ 2.
To achieve this, we impose an additional regularity restriction on the initial deformation.
This restriction is satisfied automatically if ua(0) = 0. After existence and uniqueness are
settled, we show the continuous dependence of solutions in C([0, T0] → Hs

σ) on the initial
conditions. See Theorem 5.10.
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Theorem 5.9. In R
2 consider the system (2.7), (2.8). Let s be any number greater than

7/4. If the initial velocities v(0) and ua(0) belong to Hs
σ, and if the vorticities ωa(0) belong

to the homogeneous Hölder space Ċr with some 0 < r ≤ s− 7
4
, then there is T0 > 0 depending

only on the Hs
σ norms of the initial data and on ‖ωa(0)

∣

∣ Ċr‖, and a unique solution (v, ua)
such that

v, ua ∈ C([0, T0] → Hs
σ) , (5.47)

∫ T0

0

‖∇V (t′)‖4∞ + ‖ΩE(t′)‖4∞ dt′ <∞ , (5.48)

and
∫ T0

0

‖ΩE(t)
∣

∣ Cr(R2)‖8/(r+2) dt <∞ . (5.49)

Proof. Recall that s = 2 is the critical regularity in R
2 and we have already settled the case

s > 2. Assume now that 7/4 < s ≤ 2 and v(0), ua(0) ∈ Hs
σ and that ωa(0) ∈ Ċr with

0 < r ≤ s − 7
4
. Mollify the initial conditions, V ǫ(0) = ρǫ ∗ V (0), and obtain the solution

V ǫ(t) by Theorem 2.1. Let Ωǫ(t) be the corresponding vorticities. Set θ = r + 3/4 (note
that then θ + 1 ≤ s). Since, as ǫ → 0, V ǫ(0) → V (0) in Hs and Ωǫ(0) → Ω(0) in Ḣθ, by
Proposition 5.7, there exist T0 > 0 and C > 0 such that for all sufficiently small ǫ

∫ T0

0

‖∇V ǫ(t)‖4∞ + ‖Ωǫ(t)‖4∞ dt ≤ C , (5.50)

and, in addition, by Corollary 5.8,
∫ T0

0

‖Ωǫ(t)
∣

∣ Cr(R2)‖8/(r+2) dt ≤ C . (5.51)

As in the high regularity case, cf. section 2, the estimate

‖V ǫ(t)‖2Hs ≤ ‖V ǫ(0)‖2Hs · exp
{

c

∫ T0

0

‖∇V ǫ(t′)‖∞ dt′
}

(5.52)

is true for all t ∈ [0, T0]. Taking all this into account, we can pass to the limit along
some sequence ǫn → 0 as in Section 2.4, and obtain a solution V (t) of equations (2.7),
(2.8). Of course, V ǫ → V in the sense of distributions on (−T0, T0) × R

2. Due to the fact
that the space L4([0, T0] → L∞(R2)) is the dual of L4/3([0, T0] → L1(R2)) and the space
L8/(r+2)([0, T0] → Br

∞,∞(R2)) is the dual of L8/(6−r)([0, T0] → B−r
1,1(R

2)), the functionals in
(5.50) and (5.51) are weak-∗ lower semicontinuous, and we obtain

∫ T0

0

‖∇V (t)‖4∞ + ‖Ω(t)‖4∞ dt ≤ C , (5.53)

and
∫ T0

0

‖Ω(t)
∣

∣ Cr(R2)‖8/(r+2) dt ≤ C . (5.54)

This allows one to prove uniqueness of such solutions, and to show that V ∈ C([0, T0] →
Hs(R2)), as in Section 2.4.
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We remark that in Theorem 5.9, the Hölder parameter r ∈ (0, s− 7/4] can be arbitrarily
small, and we still get a unique solution in Hs as long as s > 7/4. We shall refer to
the solutions described in Theorem 5.9 as (s, r)-solutions. Once again, for the existence and
uniqueness of local in time solutions in Hs with 7

4
< s ≤ 2, it is sufficient that {ωE

a (0)}r <∞
for some r > 0.

Theorem 5.10. Consider the set of (s, r)-solutions corresponding to the appropriate initial
conditions. Assume that √

65 + 7

8
≤ s ≤ 2 , (5.55)

and that r > 0 and
2− s

s− 1
≤ r ≤ s− 7

4
. (5.56)

Then the (s, r)-solutions depend continuously on the initial conditions: If Vn(0) → V (0) in
Hs

σ and (ωn)a(0) → ωa(0) in Ċr, then Vn converges to V in C([0, T1] → Hs
σ(R

2)), for some
T1 ∈ (0, T0].

If r ≥
√
65−7
8

, then continuous dependence takes place for any s in the interval (5.55).

Proof. The proof of continuous dependence follows the same steps as the proof of Proposi-
tion 2.3 in Section 2.6 until the inequality

d

dt
‖Ṽ (t)‖Hs .

(

‖∇V δ(t)‖∞ + ‖∇V ǫ(t)‖∞
)

‖Ṽ (t)‖Hs

+
(

‖V δ(t)‖Hs + ‖V ǫ(t)‖Hs

)

‖∇Ṽ (t)‖∞
+ ‖Ṽ (t)‖∞ ‖V ǫ(t)‖Hs+1 .

(5.57)

Recall that here Ṽ is composed of the differences vδ − vǫ and uδa − uǫa with 0 < δ < ǫ < 1,
where V ǫ is a solution corresponding to the mollified initial condition ρǫ ∗ V (0) (and similar
for δ). The time-span [0, T1] is determined according to Proposition 5.7 and accommodates
the solutions Vn for all sufficiently large n, and V , and all V ǫ

n , and V
ǫ for all sufficiently small

ǫ. Uniformly in (sufficiently small) ǫ, we have estimates (5.50) and (5.51) with T1 instead of
T0. Also, uniformly in ǫ,

sup
0≤t≤T1

‖V ǫ(t)‖Hs ≤M

for some constant M > 0.
Let us deal with the third term on the right side of (5.57). As in Section 2.6,

‖V ǫ(t)‖Hs+1 .
C

ǫ
.

At the same time, by Lemma 5.3, inequality (5.18),

‖Ṽ (t)‖∞ . ‖V δ(t)− V ǫ(t)‖γ2 ‖Ωδ(t)− Ωǫ(t)
∣

∣ Ḃr
∞,∞‖1−γ2
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where

γ2 =
r + 1

r + 2
.

For the L2 norms we have (2.34), i.e.,

sup
[0,T1]

‖Ṽ (t)‖ . ǫs o(ǫ)

Thus,

‖Ṽ (t)‖∞ ‖V ǫ(t)‖Hs+1 . ǫs(r+1)/(r+2)−1 o(ǫ) ‖Ωδ(t)− Ωǫ(t)
∣

∣ Ḃr
∞,∞‖1/(r+2) (5.58)

For (s, r)-solutions, s ≥ 7
4
+r. This is the first restriction. In order that s(r+1)/(r+2)−1 ≥ 0,

we must have s ≥ 1+ 1
r+1

. This is the second restriction. Both restrictions must be satisfied,
which leads to (5.56). Note that for the inequality

2− s

s− 1
≤ s− 7

4

to be valid, we must have s ≥ 7
8
+

√
65
8
.

Now consider the second term on the right side of (5.57). It is less than 2M ‖∇Ṽ (t)‖∞.
By inequality (5.17) of Lemma 5.3,

‖∇Ṽ (t)‖∞ . ‖Ṽ (t)‖r/(r+2) ‖Ωδ(t)− Ωǫ(t)
∣

∣ Ḃr
∞,∞‖2/(r+2)

and hence,
‖∇Ṽ (t)‖∞ . ǫsr/(r+2) o(ǫ) ‖Ωδ(t)− Ωǫ(t)

∣

∣ Ḃr
∞,∞‖2/(r+2) (5.59)

Now we see that (5.57) implies the inequality

d

dt
‖Ṽ (t)‖Hs .

(

‖∇V δ(t)‖∞ + ‖∇V ǫ(t)‖∞
)

‖Ṽ (t)‖Hs

+ 2M ǫsr/(r+2) o(ǫ) ‖Ωδ(t)− Ωǫ(t)
∣

∣ Ḃr
∞,∞‖2/(r+2)

+ ǫs(r+1)/(r+2)−1 o(ǫ) ‖Ωδ(t)− Ωǫ(t)
∣

∣ Ḃr
∞,∞‖1/(r+2) .

(5.60)

which can be integrated:

‖Ṽ (t)‖Hs . ‖Ṽ (0)‖Hs e
∫ t
0 (‖∇V δ(t′)‖∞+‖∇V ǫ(t′)‖∞) dt′

+ 2M ǫsr/(r+2) o(ǫ)

∫ t

0

e
∫ t

τ (‖∇V δ(t′)‖∞+‖∇V ǫ(t′)‖∞) dt′ ‖Ωδ(τ)− Ωǫ(τ)
∣

∣ Ḃr
∞,∞‖2/(r+2) dτ

+ ǫs(r+1)/(r+2)−1 o(ǫ)

∫ t

0

e
∫ t
τ (‖∇V δ(t′)‖∞+‖∇V ǫ(t′)‖∞) dt′ ‖Ωδ(τ)− Ωǫ(τ)

∣

∣ Ḃr
∞,∞‖1/(r+2) dτ

Using estimates (5.50) and (5.51), uniformly on [0, T1] we have

‖Ṽ (t)‖Hs . ‖Ṽ (0)‖Hs + ǫsr/(r+2) o(ǫ) + ǫs(r+1)/(r+2)−1 o(ǫ) → 0
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as ǫ → 0 (as ‖Ṽ (0)‖Hs = ‖V δ(0) − V ǫ(0)‖Hs → 0). This proves continuous dependence as
explained in Section 2.6.

In the case r ≥ (
√
65− 7)/8, the space L2 ∩ Ḃr

∞,∞ is a subspace of any space L2 ∩ Ḃr′

∞,∞
with smaller r′ (see Lemma A.1), in particular, with 0 < r′ < (

√
65− 7)/8. Such r′ can be

chosen to satisfy inequality (5.56) provided s satisfies (5.55). This justifies the last claim of
the proposition.

5.7 Technical inequalities when d = 3

In the three dimensional case, the general scheme of proving low regularity well-posedness is
the same as in the two dimensional case. The differences are in details. Lemma D.1 suggests
that in 3D instead of the Hölder space Ḃr

∞,∞ we should use the homogeneous Slobodetsky

spaces Ḃr
p,p with p <∞. In addition, the θ in the homogeneous Sobolev spaces Ḣθ will have

to be greater than 1. This complicates the transition from Lagrangian to Eulerian settings.
In what follows, 2 ≤ p <∞ and θ = r+(p−2)/p, as needed for the Strichartz inequalities.

Lemma 5.11 will require r > 3/p. Denote

h = r − 3

p
.

Note that this is the three dimensional example of the quantity r − d
p
, which is the scaling

(regularity) parameter for the space Ḃr
p,p(R

d). Using h, we can write

θ = 1 +
1

p
+ h .

We would like to have θ as small as possible (because then we would get s = θ + 1 small),
and we are going to show that h and 1/p can be chosen arbitrarily small positive.

We shall use the notation

[g]θ = ‖g
∣

∣ Ḣθ(R3)‖ , {g}r,p = ‖g
∣

∣ Ḃr
p,p(R

3)‖

for the relevant homogeneous spaces.
As in the two dimensional case, we have the following inequalities that follow from

Lemma C.1.

Lemma 5.11. Let v be a vectorfield in R
3 such that div v = 0 and let ω = curl v. Assuming

the parameters r, h, and θ satisfy the conditions

0 < r < 1, h > 0, θ >
1

2
, (5.61)

we have
‖∇v‖∞, ‖ω‖∞ . ‖v‖h/(h+

5
2
)

2 {ω}
5
2
/(h+ 5

2
)

r,p (5.62)
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and
‖v‖∞ . ‖v‖(h+1)/(h+ 5

2
)

2 {ω}
3
2
/(h+ 5

2
)

r,p (5.63)

and
‖v‖∞ . ‖v‖(θ−

1
2
)/(θ+1)

2 [ω]
3
2
/(θ+1)

θ (5.64)

We need to know how these norms change under transition from the Lagrange to Euler
coordinates.

Lemma 5.12. Assume d = 3, 0 < r < 1, 0 ≤ θ ≤ 1, and 2 ≤ p <∞. Then, for sufficiently
smooth g,

{gL}r,p . 〈ua〉r∞ {gE}r,p , {gE}r,p . 〈ua〉2r∞ {gL}r,p , [gL]θ . 〈ua〉θ∞ [gE]θ . (5.65)

If 1 < θ < 2, then

[gL]θ . 〈ua〉θ−1
∞

(

〈ua〉∞ + 〈uEa 〉
(θ− 1

2
)/(θ+1)

2 · [ωE
a ]

3
2
/(θ+1)

θ

)

[gE]θ . (5.66)

Proof. The first group of inequalities comes from Lemma E.1. In the case 1 < θ < 2, we
start with inequality (E.3), i.e.,

[gL]θ . ‖va‖θ−1
∞

(

‖va‖∞ + ‖ua‖2−θ
∞ ‖uEa

∣

∣ Ḟ 1
d,2(R

d)‖θ−1
)

[gE]θ . (5.67)

Now,
‖ua

∣

∣ Ḟ 1
d,2(R

d)‖ ≃ ‖D−1
RRωa

∣

∣ Ḟ 1
d,2(R

d)‖ . ‖ωa

∣

∣ Ḟ 0
d,2(R

d)‖
When d = 3, Ḟ

1/2
2,2 (R

3) ⊂ Ḟ 0
3,2(R

3). Hence

‖ωa

∣

∣ Ḟ 0
3,2(R

3)‖ . [ωa] 1
2
.

Now, −1 < 1/2 < θ, and therefore,

‖ωE
a

∣

∣ Ḣ1/2‖ ≤ ‖ωE
a

∣

∣ Ḣ−1‖(θ− 1
2
)/(θ+1) · ‖ωE

a

∣

∣ Ḣθ‖ 3
2
/(θ+1) .

Recall that (regardless of the dimension) ‖ωE
a

∣

∣ Ḣ−1‖ . ‖uEa ‖. Thus, when d = 3,

‖ua
∣

∣ Ḟ 1
d,2(R

d)‖ . ‖ua‖(θ−
1
2
)/(θ+1) · ‖ωa

∣

∣ Ḣθ‖ 3
2
/(θ+1) .

On the other hand, ‖ua‖∞ . ‖ua‖
(θ− 1

2
)/(θ+1)

2 [ωa]
3
2
/(θ+1)

θ by (5.64). Computing the exponents,
we arrive at (5.66).

Corollary 5.13. Assume x : R
3
ξ → R

3
x is a volume preserving diffeomorphism. Let uia =

∂xi/∂ξa −Ai
a, i, a = 1, 2, 3, be the components of the deformation gradient tensor and let ωa

be the corresponding vorticities.

〈ua〉∞ . 〈ua〉
(h+1)/(h+ 5

2
)

2 〈{ωE
a }r,p〉

3
2
/(h+ 5

2
) (5.68)

and
〈ua〉∞ . 〈ua〉(θ−1/2)/(θ+1)

2 〈[ωE
a ]θ〉

3
2
/(θ+1) (5.69)
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Proof. These inequalities follow from (5.63) and (5.64).

A three dimensional analogue of Lemma 5.5 is as follows.

Lemma 5.14. When d = 3,

〈{ΩE}r,p〉 . 〈ua〉2r(θ−1/2)/(θ+1)
2 〈[ΩE ]θ〉3r/(θ+1) 〈{ΩL}r,p〉 . (5.70)

Proof. From (5.65), when d = 3 we have

〈{ΩE}r,p〉 . 〈ua〉2r∞ 〈{ΩL}r,p〉 .

Now use (5.69) for the L∞ norm. This leads to (5.70).

In the three dimensional case, the Strichartz inequality we use is given by

Lemma 5.15. Let w be a solution of the Cauchy problem

wt + i
√
−∆ w = f , w(0) = w0 ,

on the time interval [0, T ]. Let w0 ∈ Ḣθ(R3) and f ∈ L1([0, T ] → Ḣθ(R3)). If 2 ≤ p < ∞
and θ and r are related as follows,

θ = r +
p− 2

p
= 1 + h +

1

p
, (5.71)

then
(
∫ T

0

{w(t)}
2p
p−2
r,p dt

)

p−2
2p

. [w0]θ +

∫ T

0

[f(t)]θ dt . (5.72)

The proof of a more general statement is in Appendix D.

5.8 A priori estimates, d = 3

As always ‖V (t)‖ = ‖V (0)‖ = e0. As in the two dimensional case, we would like to have

sup
0≤t≤T0

∫ t

0

‖∇V E(t′)‖q∞ + ‖ΩE(t′)‖q∞ dt′ <∞

for some q > 1. Thanks to (5.62) we have

∫ t

0

‖∇V E(t′)‖q∞ + ‖ΩE(t′)‖q∞ dt′ .e0

∫ t

0

〈{ΩE(t′)}r,p〉
5
2
q/(h+ 5

2
) dt′

We will use the Strichartz estimates in the Lagrange setting. So, we will transform ΩE in
the integral on the right to ΩL using Lemma 5.14:

〈{ΩE(t′)}r,p〉
5
2
q/(h+ 5

2
) . 〈ua〉

θ−1
2

θ+1
· 5rq

h+5
2

2 〈[ωE
a ]θ〉

3
2

θ+1
· 5rq

h+5
2 〈{ΩL(t′)}r,p〉

5
2
q/(h+ 5

2
)
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Thus, absorbing the L2 norm of V , we have

∫ t

0

〈{ΩE(t′)}r,p〉
5
2
q/(h+ 5

2
) dt′ .e0 sup

0≤t′≤t
〈[ωE

a ]θ〉
3
2

θ+1
· 5rq

h+5
2

∫ t

0

〈{ΩL(t′)}r,p〉
5
2
q/(h+ 5

2
) dt′ (5.73)

Since
1

2
− 1

p
< 1 +

2h

5

when h > 0 and p ≥ 2, we define q > 1 by the equality

5
2
q

5
2
+ h

=
2p

p− 2
. (5.74)

Thus, with q as in (5.74), we have

∫ t

0

‖∇V E(t′)‖q∞ + ‖ΩE(t′)‖q∞ dt′ . sup
0≤τ≤t

[ΩE(τ)]
2p
p−2

3r
θ+1

θ

∫ t

0

〈{ΩL(t′)}r,p〉
2p
p−2 dt′ . (5.75)

Proposition 5.16. Let V (t) be a solution of (2.7), (2.8) in C([0, T1] → Hs2
σ (R3)) in the

sense of Theorem 2.1, where s2 >
d
2
+ 1 = 5

2
. Assume that for some r > 0 and p ∈ [2,+∞)

such that r − 3/p > 0, the following norms of the vorticities ΩE(t) at t = 0 are bounded:

[ΩE(0)]θ ≤ C0, {ωE
a (0)}r,p ≤ C1 ,

where θ = 1+ r− 2/p. Then there exists a time T0 > 0, depending only on ‖V (0)‖, C0, and
C1, such that

(
∫ t

0

{ΩE(t′)}
2p
p−2
r,p dt′

)

p−2
2p

≤ C2 (5.76)

and
∫ t

0

‖∇V E(t′)‖q∞ + ‖ΩE(t′)‖q∞ dt′ ≤ C3 (5.77)

where

q =
2p

p− 2
·

5
2
+ r − 3

p
5
2

, (5.78)

and
‖V (t)‖Hθ+1 ≤ C4 , (5.79)

for all t in the interval [0, T0], where C2, C3, and C4 depend only on e0, C0, and C1.

Proof. Keep in mind (5.74). Denote

y(t) =

(
∫ t

0

〈{ΩE(τ)}r,p〉
2p
p−2 dτ

)

p−2
2p

and z(t) = sup
0≤t′≤t

〈[ΩE(t′)]θ〉 . (5.80)
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It follows from (5.62) that

∫ t

0

‖∇V E(t′)‖∞ + ‖ΩE(t′)‖∞ dt′ .e0

∫ t

0

〈{ΩE(t′)}r,p〉
5
2
/(h+ 5

2
) dt′

and, therefore,

∫ t

0

‖∇V E(t′)‖∞ + ‖ΩE(t′)‖∞ dt′ .e0 t1/q
′

y(t)
5
2
/(h+ 5

2
) . (5.81)

Incorporate this into estimate (5.8) and obtain

z(t) ≤ 〈[ΩE(0)]θ〉 exp{c(e0) t1/q
′

y(t)
5
2
/(h+ 5

2
)} . (5.82)

Now proceed to estimate y(t). Applying estimate (5.70), we obtain

y(t) .e0 z(t)
3r
θ+1

(
∫ t

0

〈{ΩL(τ)}r,p〉
2p
p−2 dτ

)

p−2
2p

. (5.83)

As formulas (4.13) show, the vorticities ΩL are linear combinations of the Riesz transforms
of the quantities πL

± and πL
ab. Then,

(
∫ t

0

〈{ΩL(τ)}r,p〉
2p
p−2 dτ

)

p−2
2p

.

(
∫ t

0

〈{πL
±(τ)}r,p〉

2p
p−2 dτ

)

p−2
2p

+

(
∫ t

0

〈{πL
ab(τ)}r,p〉

2p
p−2 dτ

)

p−2
2p

(summation over ± and ab = 12, 23, 31). Use Strichartz inequalities (5.72) to estimate the
norms ‖πL

±
∣

∣ L2p/(p−2)([0, t] → Ḃr
p,p)‖ whereas ‖πL

ab

∣

∣ L2p/(p−2)([0, t] → Ḃr
p,p)‖ can be estimated

directly from the representation of πL
ab(t) in (4.17). Thus we have

(
∫ t

0

〈{πL
±(τ)}r,p〉2p/(p−2) dτ

)

p−2
2p

. t
p−2
2p + [πL

±(0)]θ +

∫ t

0

[FL
±(τ)]θ dτ (5.84)

and

(
∫ t

0

〈{πL
ab(τ)}r,p〉

2p
p−2 dτ

)

p−2
2p

. t
p−2
2p

[

〈{πL
ab(0)}r,p〉+

∫ t

0

{FL
ab(t

′)}r,p dt′
]

. (5.85)

We see from (4.12) that
[πL

±(0)]θ . [ΩL(0)]θ .

Now use (5.66) to transition to the Euler setting:

[ΩL(0)]θ . 〈ua(0)〉θ−1
∞

(

〈ua(0)〉∞ + 〈uEa (0)〉
(θ− 1

2
)/(θ+1)

2 · [ωE
a (0)]

3
2
/(θ+1)

θ

)

[ΩE(0)]θ
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use (5.69)

.e0 [ω
E
a (0)]

3
2 θ

θ+1

θ [ΩE(0)]θ .

Thus,

[πL
±(0)]θ .e0 [Ω

E(0)]
( 52 θ+1)

θ+1

θ . (5.86)

Also,

{πL
ab(0)}r,p .

(4.12)

{ωL
a (0)}r,p .

(5.65)

〈ua(0)〉r∞ {ωE
a (0)}r,p

.
(5.68)

〈uEa (0)〉
r(h+1)/(h+ 5

2
)

2 {ωE
a (0)}

1+ 3
2
r/(h+ 5

2
)

r,p

and therefore,

{πL
ab(0)}r,p .e0 {ωE

a (0)}
1+ 3

2
r/(h+ 5

2
)

r,p . (5.87)

Consider now the terms [FL
± ]θ. Of course,

[FL
± ]θ . [fL]θ + [fL

a ]θ .

Then, by (5.66) with (5.69),

〈[fL(t)]θ〉〉 . 〈[ωE
a (t)]θ〉

3
2
θ/(θ+1) 〈[fE(t)]θ〉 ,

〈[fL
a (t)]θ〉 . [ωE

a (t)]θ〉
3
2
θ/(θ+1) 〈[fE

a (t)]θ〉
(5.88)

Each of fE and fE
a is a linear combination of quadratic terms of the form ∂V E ∂V E . Thus,

consider the Ḣθ norm of ∂V E ∂V E . Using the fractional product rule (cf. Lemma B.1),

[∂V E ∂V E ]θ ≃ ‖Dθ(∂V E ∂V E)‖ . ‖Dθ∂V E‖ ‖∂V E‖∞

Thus,
[∂V E(t) ∂V E(t)]θ .e0 [Ω

E(t)]θ 〈{ΩE(t)}r,p〉
5
2
/(h+ 5

2
) (5.89)

Combine this with (5.88):

[fL(t)]θ , [f
L
a (t)]θ .e0 〈[ΩE(t)]θ〉(

5
2
θ+1)/(θ+1) 〈{ΩE(t)}r,p〉

5
2
/(h+ 5

2
) (5.90)

Then
∫ t

0

[FL(t′)]θ dt
′ . z(t)(

5
2
θ+1)/(θ+1) t1/q

′

y(t)
5
2
/(h+ 5

2
) . (5.91)

Consider next the norms {FL
ab(t

′)}r,p that appear in (5.85). Undoing the Riesz transforms,

{FL
ab(t)}r,p . {fL

a (t)}r,p .
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By (5.65) followed by (5.69) we have

{fL
a (t)}r,p . 〈ua(t)〉r(θ−1/2)/(θ+1)

2 [ωa(t)]
3
2
r/(θ+1)

θ {fE
a (t)}r,p . (5.92)

Since each fE
a is a sum of the products ∂V E ∂V E, we look at the Ḃr

p,p norm of the product:

{∂V E ∂V E}r,p . 〈∂V E〉∞ {∂V E}r,p . 〈∇V E〉∞ 〈{ΩE}r,p〉 .
Use (5.62) to continue:

{fE
a (t)}r,p . 〈{ΩE(t)}r,p〉1+

5
2
/(h+ 5

2
) .

Thus,
{fL

a (t)}r,p . 〈[ωa(t)]θ〉
3
2
r/(θ+1) 〈{ΩE(t)}r,p〉1+

5
2
/(h+ 5

2
) . (5.93)

It turns out that

1 +
5
2

5
2
+ h

<
2p

p− 2
=

5
2
q

5
2
+ h

. (5.94)

Indeed,
5
2
+ h

5 + h
>

1

2
− 1

p
⇔ 5

2
+ h >

5

2
+
h

2
− 5 + h

p
⇔ h

2
> −5 + h

p
.

With ℓ > 1 defined by the formula

ℓ =
2p

p− 2

(

1 +
5
2

5
2
+ h

)−1

, (5.95)

we obtain
∫ t

0

{FL
ab(t

′)}r,p dt′ . z(t)
3
2
r/(θ+1) t1/ℓ

′

y(t)1+
5
2
/(h+ 5

2
) (5.96)

Tying the ends:

(
∫ t

0

〈{ΩL(t′)}r,p〉
2p
p−2 dt′

)

p−2
2p

.e0 〈[ωE
a (0)]θ〉

3
2 θ

θ+1 〈[ΩE(0)]θ〉+ t
p−2
2p 〈{ωE

a (0)}r,p〉1+
3
2
r/(h+ 5

2
)

+ t
p−2
2p + z(t)(

5
2
θ+1)/(θ+1) t1/q

′

y(t)
5
2
/(h+ 5

2
) + t

p−2
2p z(t)

3
2
r/(θ+1) t1/ℓ

′

y(t)1+
5
2
/(h+ 5

2
)

and

y(t) .e0 z(t)
3r
θ+1

[

〈[ωE
a (0)]θ〉

3
2 θ

θ+1 〈[ΩE(0)]θ〉+ t
p−2
2p 〈{ωE

a (0)}r,p〉1+
3
2
r/(h+ 5

2
)

+t
p−2
2p + t1/q

′

z(t)(
5
2
θ+1)/(θ+1) y(t)

5
2
/(h+ 5

2
) + t

p−2
2p

+ 1
ℓ′ z(t)

3
2
r/(θ+1) y(t)1+

5
2
/(h+ 5

2
)
]

(5.97)

After we substitute z(t) with the right hand side of (5.82), we obtain from (5.97) an inequality
of the form

y(t) ≤ F(t, y(t)) ,

where the function F(t, y) is non-negative, continuous, and has the property that there is
a constant C > 0 such that, for every fixed y > 0, F(t, y) → C as t ց 0. The continuity
argument then works and yields T0 > 0 such that y(t) remains bounded on [0, T0].
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5.9 Low regularity well-posedness in the case d = 3

Theorem 5.17. In R
3 consider the system (2.7), (2.8). Let s be any number greater than 2.

If the initial velocities v(0) and ua(0) belong to Hs
σ, and if the voriticities ωa(0) belong to the

homogeneous Slobodetski space Ḃr
p,p with r >

3
p
and p ∈ [2,+∞) such that s ≥ 2+ r− 2

p
, then

there is T0 > 0 depending only on the Hs
σ norms of the initial data and on ‖ωa(0)

∣

∣ Ḃr
p,p‖,

and a unique solution (v, ua) such that

v, ua ∈ C([0, T0] → Hs
σ) , (5.98)

and
∫ T0

0

‖∇V (t′)‖∞ + ‖ΩE(t′)‖∞ dt′ <∞ . (5.99)

The solution will satisfy

∫ T0

0

‖∇V (t′)‖q∞ + ‖ΩE(t′)‖q∞ dt′ <∞ , (5.100)

where

q =
2p

p− 2
·

5
2
+ r − 3

p
5
2

,

and
∫ T0

0

‖ΩE(t)
∣

∣ Ḃr
p,p(R

3)‖
2p
p−2 dt <∞ . (5.101)

Proof. The proof is analogous to the proof of Theorem 5.9, with necessary modifications
(e.g. L4

t norms of ‖∇V ‖∞ and ‖Ω‖∞ are replaced by their Lq
t norms) .

Solutions whose existence and uniqueness are proved in Theorem 5.17 will be called the
(s, r, p)-solutions.

Theorem 5.18. Let V be an (s, r, p)-solution, where 1+
√

3
2
< s ≤ 5/2, h = r− 3

p
> 0, and

5
2
− s

s− 1
≤ h ≤ s− 2− 1

p
. (5.102)

Then the (s, r, p)-solution V depends continuously on the initial conditions: If Vn(0) → V (0)
in Hs

σ and (ωn)a(0) → ωa(0) in Ḃr
p,p, then Vn converges to V in C([0, T1] → Hs

σ(R
3)), for

some T1 ∈ (0, T0].

Proof. The restrictions r > 0, 2 ≤ p < +∞, and

h = r − 3

p
> 0 (5.103)
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come from Lemma 5.11. That

θ = 1 + h+
1

p

is the requirement of the Strichartz inequality for the vorticities. This shows that we ought
to have

s ≥ θ + 1 = 2 + h +
1

p
(5.104)

for V (t) ∈ Hs
σ. We start with s satisfying (5.104).

The general scheme of the proof is the same as in the two dimensional case. The main
step is the analysis of the inequality

d

dt
‖Ṽ (t)‖Hs .

(

‖∇V δ(t)‖∞ + ‖∇V ǫ(t)‖∞
)

‖Ṽ (t)‖Hs

+
(

‖V δ(t)‖Hs + ‖V ǫ(t)‖Hs

)

‖∇Ṽ (t)‖∞
+ ‖Ṽ (t)‖∞ ‖V ǫ(t)‖Hs+1 .

(5.105)

We have the bounds (with some constants M and C)

sup
0≤t≤T1

‖V ǫ(t)‖Hs ≤M , (5.106)

and
sup

0≤t≤T1

‖Ṽ (t)‖ . ǫs o(ǫ) , (5.107)

and

sup
0≤t≤T1

‖V ǫ(t)‖Hs+1 .
C

ǫ
, (5.108)

and
∫ T1

0

‖∇V ǫ(t)‖∞ + ‖∇V δ(t)‖∞ dt .M . (5.109)

Also, in R
3 we have, from (5.63),

‖Ṽ (t)‖∞ . ‖Ṽ (t)‖γ2 ‖Ωδ(t)− Ωǫ(t)
∣

∣ Ḃr
p,p‖1−γ2 (5.110)

where

γ2 =
1 + h
5
2
+ h

.

Using these bounds we get

‖Ṽ (t)‖∞ ‖V ǫ(t)‖Hs+1 . ǫsγ2−1 o(ǫ) ‖Ωδ(t)− Ωǫ(t)
∣

∣ Ḃr
p,p‖1−γ2

We require that sγ2 − 1 ≥ 0. This is equivalent to the inequality

s ≥ 2 +
1
2
− h

1 + h
. (5.111)
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The second term on the right in inequality (5.105) is bounded as follows (using (5.106),
(5.62), and (5.107)):

(

‖V δ(t)‖Hs + ‖V ǫ(t)‖Hs

)

‖∇Ṽ (t)‖∞ . 2M ‖Ṽ (t)‖h/(h+ 5
2
) ‖Ωδ(t)− Ωǫ(t)

∣

∣ Ḃr
p,p‖

5
2
/(h+ 5

2
)

. 2M ǫsh/(h+
5
2
) o(ǫ) ‖Ωδ(t)− Ωǫ(t)

∣

∣ Ḃr
p,p‖

5
2
/(h+ 5

2
) .

Thus, integration of (5.105) leads to

sup
0≤t≤T1

‖Ṽ (t)‖Hs . ‖Ṽ (0)‖Hs eM + 2MeM ǫsh/(h+
5
2
) o(ǫ)

∫ T1

0

‖Ωδ(t)− Ωǫ(t)
∣

∣ Ḃr
p,p‖

5
2
/(h+ 5

2
) dt

+ o(ǫ)

∫ T1

0

‖Ωδ(t)− Ωǫ(t)
∣

∣ Ḃr
p,p‖

3
2
/(h+ 5

2
) dt .

The integrals of the vorticity norms are uniformly in ǫ bounded thanks to Proposition 5.16,
so the right hand side goes to 0 as ǫց 0.

It remains to observe that (5.102) is equivalent to (5.104) and (5.111) combined. By the

way, condition s > 1 +
√

3
2
comes from the inequality

5
2
− s

s− 1
< s− 2 (5.112)

that must be satisfied for (5.102) to be possible.

Corollary 5.19. In dimension d = 3, if 5
2
≥ s > 1 +

√

3
2
, then for every initial condition

V (0) = (v(0), ua(0)) ∈ Hs
σ such that curl ua(0) ∈ Bκ

∞,∞(R3), where

κ =

√

3

2
− 1 , (5.113)

there exists a unique local in time solution v ∈ C([0, T0] → Hs
σ) which depends continuously

on V (0).

Proof. If s = 5
2
, then one can find r and p so that h = r − 3

p
satisfy (see (5.102))

0 < h <
1

2
− 1

p

and, in addition,
h < κ . (5.114)

Now assume 5
2
> s > 1 +

√

3
2
. On this interval,

5
2
− s

s− 1
< κ .
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Hence, one can find r and p so that

5
2
− s

s− 1
≤ h < κ − 1

p
≤ s− 2− 1

p
.

Again, h < κ. Thus, in every case, there are r and p such that conditions (5.102) and (5.114)
are satisfied. Since L2(R3) ∩ Ḃκ

∞,∞(R3) ⊂ L2(R3) ∩ Ḃr
p,p(R

3) by Lemma A.1, we can apply
Theorem 5.18 to conclude that the solutions depend continuously on the initial data.
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A Function spaces

For the convenience of the reader, we include some background on the function spaces used
in this paper. All spaces we use belong to the scales of Besov spaces Bs

p,q(R
d) and Lizorkin-

Triebel spaces F s
p,q(R

d). Also, we use the homogenous versions of these spaces. For their
definition and basic properties we rely on [34].

The Lp(Rd) norm of a function, f , is denoted ‖f‖p or, if it is convenient, in one of the
following forms:

‖f
∣

∣ Lp‖ = ‖f(x)
∣

∣ Lp(dx)‖ .
Similar forms are used for the norms in other function spaces. The integral

∫

is the Lebesgue
integral over R

d. S = S(Rd) is the Schwartz space of rapidly decreasing test functions, and
S
′ = S

′(Rd) is its dual, the space of tempered distributions. The pairing between S
′ and S is

denoted 〈f, g〉 and, for a regular distribution f ∈ L1 ⊂ S′, 〈f, g〉 =
∫

f(x) g(x) dx.

• The Fourier transform F is defined as

Fx→κf = f̂(κ) =

∫

e−ixκf(x) dx ,

with the inverse

f(x) = F
−1
κ→xf̂ =

∫

eixκf̂(κ)d̄κ ,

where d̄κ = (2π)−d dκ.

• Notation for the Riesz and Bessel potentials: Ds = (−∆)s/2 = F−1
κ→·|κ|sFx→κ and

Js = (1−∆)s/2 = F−1
κ→· (1 + |κ|2)s/2 Fx→κ, with s ∈ R.

• In this paper, all function spaces are subspaces of S′. If A1 and A2 are such Banach
spaces, their intersection, A1∩A2, is viewed as a Banach space with the norm ‖f

∣

∣A1∩
A2‖ = max

(

‖f
∣

∣A1‖, ‖f
∣

∣A2‖
)

.
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A.1 Littlewood-Paley decomposition

Pick a smooth function ψ0 : [0,+∞) → [0, 1] such that ψ0(s) = 1 if s ≤ 1, ψ0(s) = 0 if s ≥ 2,
and 0 < ψ0(s) < 1 if 1 < s < 2. Set ϕ0(s) = ψ0(s) − ψ0(2s). Then suppϕ0 = [2−1, 2]. For
n ∈ Z, define ψn(t) = ψ0(2

−nt) and ϕn(t) = ϕ0(2
−nt). Then, for all integer n,

ϕn−1(t) + ϕm(t) + ϕn+1(t) = 1 when t ∈ supp ϕn = {2n−1 ≤ s ≤ 2n+1}

and
+∞
∑

n=−∞
ϕn(t) = 1 , ∀t > 0 .

Also, for all N ∈ Z and for all t ≥ 0, we have

ψN (t) +
∞
∑

n=N+1

ϕn(t) = 1 ,

ψ0(t) +
N
∑

n=1

ϕn(t) = ψN (t) .

(A.1)

Abusing the notation we write ϕn(κ) instead of ϕn(|κ|), where κ ∈ R
d, and similarly under-

stood are ψn(κ). Also, we write ϕn(D), ψn(D), etc. for the corresponding pseudodifferential
operators, i.e.,

ϕn(D) f =

∫

eixκ ϕn(κ) f̂(κ)d̄κ = F
−1ϕnFf .

Thanks to the first identity in (A.1), any tempered distribution f ∈ S′ can be expanded as
(the Littlewood-Paley decomposition)

f = F
−1ψNFf +

∞
∑

n=N+1

F
−1ϕnFf = ψN (D)f +

∞
∑

n=N+1

ϕn(D)f , (A.2)

where the series converges in S′. We will abbreviate sometimes fn = ϕn(D)f .

A.2 Homogeneous Besov and Lizorkin-Triebel spaces

Following Triebel [34], define Z = Z(Rd) as the subspace of S consisting of those test functions
η which satisfy the condition

∫

xα η(x) dx = 0 for all multiindices α = (α1, . . . , αd) ∈ Z
d with

all αj ≥ 0. Equivalently, η ∈ Z iff (η ∈ S and) ∂αη̂(0) = 0 for all nonnegative multiindices
α. With the topology inherited from S, Z is a complete locally convex space. Polynomials
when viewed as elements of S′, annihilate Z: If P is a polynomial, P (x) =

∑

cαx
α, and if

η ∈ Z, then

〈P, η〉 = 〈P̂ , η̂〉 =
∑

α

cα 〈(i∂)α δ, η̂〉 =
∑

α

cα (−i)α 〈δ, ∂αη̂〉 = 0 .
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Conversely, any tempered distribution f that annihilates Z is a polynomial. Indeed, if
〈f, η〉 = 0 for all η ∈ Z, then, in particular, 〈f̂ , η̂〉 = 0 for every η with 0 /∈ supp η̂. Hence,
supp f̂ = {0}. Therefore, f is a polynomial. Denote by Z′ the topological dual of Z. If ℓ is
a linear continuous functional on Z, then there exist constants C ≥ 0 and K ∈ Z, K ≥ 0,
such that

|ℓ(η)| ≤ C
∑

|α|≤K,|β|≤K

sup
x

|xα ∂βη(x)| .

By the Hahn-Banach theorem, there exists a linear extension of ℓ from Z to S with the same
inequality valid for all η in S. As elements of S′, any two such extensions must differ by a
polynomial. This leads to identification of Z′ with the quotient space of S′ by the subspace
P ⊂ S′ of all polynomials: Z′ ≃ S′/P . The following Littlewood-Paley decomposition applies
to distributions in Z′:

f =
∞
∑

n=−∞
ϕn(D) f , (A.3)

which really means that for every f ∈ S′ there exist an integer K ≥ 0, a sequence of
polynomials pN (x) of degree not greater than K, and a polynomial p∞(x) such that

∞
∑

n=−N

ϕn(D) f + pN −→
N→+∞

f + p∞ in S
′ (A.4)

(see [27]).

• The homogeneous Besov space Ḃs
p,q = Ḃs

p,q(R
d) with the parameters s ∈ R, 1 ≤ p ≤ ∞,

and 1 ≤ q <∞, is the subspace of Z′ composed of those f ∈ S′ for which the norm

‖f
∣

∣ Ḃs
p,q‖ =

( ∞
∑

n=−∞
2snq‖ϕn(D)f‖qp

)1/q

(A.5)

is finite. If q = ∞, then

‖f
∣

∣ Ḃs
p,∞‖ = sup

n∈Z

2sn‖ϕn(D)f‖p (A.6)

• For s ∈ R, 1 ≤ p < ∞, and 1 ≤ q < ∞, the homogeneous Lizorkin-Triebel space
Ḟ s
p,q = Ḟ s

p,q(R
d) is the subspace of Z′ composed of those f ∈ S

′ for which the norm

‖f
∣

∣ Ḟ s
p,q‖ = ‖

( ∞
∑

n=0

2snq |ϕn(D)f |q
)1/q

∣

∣ Lp‖

is finite. A modification as above is needed in the case q = ∞. (The case p = ∞
requires a special treatment, see [34].)
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• The homogeneous Sobolev space Ḣs
p = Ḣs

p(R
d) is the space of all f ∈ Z

′ such that the
norm

‖f
∣

∣ Ḣs
p‖ = ‖

∞
∑

n=−∞
Dsϕn(D)f

∣

∣ Lp‖ (A.7)

is finite (the range of parameters is −∞ < s < +∞, 1 ≤ p ≤ ∞). When p = 2, we
write Ḣs instead of Ḣs

2 .

• Basic embeddings.

Ḃs
p,q1

⊂ Ḃs
p,q2

, Ḟ s
p,q1

⊂ Ḟ s
p,q2

, if 1 ≤ q1 ≤ q2 ≤ ∞
Ḃs

p,min(p,q) ⊂ Ḟ s
p,q ⊂ Ḃs

p,max(p,q) ,

Ḃs1
p1,q1

⊂ Ḃs2
p2,q2

if 1 ≤ p1 ≤ p2 ≤ ∞, 1 ≤ q1 ≤ q2 ≤ ∞, s2 −
d

p2
= s1 −

d

p1

Ḟ s1
p1,q1 ⊂ Ḟ s2

p2,q2 if 1 ≤ p1 < p2 <∞, 1 ≤ q1, q2 ≤ ∞, s2 −
d

p2
= s1 −

d

p1

(A.8)

• For all s, r ∈ R, the operatorDr = (−∆)r/2 = F−1
κ→·|κ|rFx→κ is an isomorphism between

Ḃs+r
p,q and Ḃs

p,q if p, q ∈ [1,∞], and between Ḟ s+r
p,q and Ḟ s

p,q, when 1 ≤ p <∞, 1 ≤ q ≤ ∞,
see Theorem 5.2.3.1 in [34].

• The topological dual of Ḃs
p,q is Ḃ−s

p′,q′ and the topological dual of Ḟ s
p,q is Ḟ−s

p′,q′, where
s ∈ R, 1 ≤ q <∞, and 1 ≤ p <∞. (As usual, 1/p+ 1/p′ = 1/q + 1/q′ = 1.)

• Interpolation inequalities. If 0 < θ < 1, s = (1− θ)s0 + θs1, and if

1

p
=

1− θ

p0
+

θ

p1
,

1

q
=

1− θ

q0
+
θ

q1
,

where 1 ≤ p0, p1 ≤ ∞ and 1 ≤ q0, q1 ≤ ∞, then

‖f
∣

∣ Ḃs
p,q‖ . ‖f

∣

∣ Ḃs0
p0,q0

‖1−θ ‖f
∣

∣ Ḃs1
p1,q1

‖θ .

This is due to the fact that Ḃs
p,q =

[

Ḃs0
p0,q0

, Ḃs1
p1,q1

]

θ
, the complex interpolation. The

analogous result is true for the Lizorkin-Triebel spaces:

‖f
∣

∣ Ḟ s
p,q‖ . ‖f

∣

∣ Ḟ s0
p0,q0‖

1−θ ‖f
∣

∣ Ḟ s1
p1,q1‖

θ .

• Isomorphisms between spaces.

Ḟ 0
p,2 ≃ Lp , Ḟ s

p,2 ≃ Ḣs
p , 1 < p <∞, s ∈ R

Ḟ s
p,p ≃ Ḃs

p,p

(A.9)
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It is known ([34]) that, for r ∈ (0, 1), the Ḃr
∞,∞-seminorm is equivalent to the homo-

geneous Hölder Ċr seminorm:

sup
n∈Z

2rn ‖F−1ϕnFf‖∞ ≃ {f}r = sup
x 6=y

|f(x)− f(y)|
|x− y|r ,

and, for 1 ≤ p <∞, the Ḃr
p,p-seminorm is equivalent to the Gagliardo seminorm

[

f
∣

∣ Ḃr
p,p

]

∗
=

(
∫ ∫ |f(x)− f(y)|p

|x− y|rp+d

)1/p

An equivalent seminorm in Ḣs is

[f ]s =

(
∫

|κ|2 s |f̂(κ)|2 d̄κ
)1/2

• The nonhomogeneous Besov and Lizorkin-Triebel spaces are made of tempered distri-
butions with the norms

‖f
∣

∣ Bs
p,q‖ = ‖ψ0(D) f‖p +

( ∞
∑

n=0

2snq‖ϕn(D)f‖qp

)1/q

and

‖f
∣

∣ F s
p,q‖ = ‖ψ0(D) f‖p + ‖

( ∞
∑

n=0

2snq |ϕn(D)f |q
)1/q

∣

∣ Lp‖ ,

respectively. Equivalent norms are obtained when the part ‖ψ0(D) f‖p is replaced with
‖f‖p. For all s, r ∈ R, the operator Jr = (1 − ∆)r/2 = F−1

κ→·(1 + |κ|2)r/2Fx→κ is an
isomorphism between the nonhomogeneous spaces Bs+r

p,q and Bs
p,q if p, q ∈ [1,∞], and

between F s+r
p,q and F s

p,q, when 1 ≤ p < ∞, 1 ≤ q ≤ ∞. The nonhomogeneous spaces
are monotone with respect to the parameter S:

Bs1
p,q ⊂ Bs2

p,q and F s1
p,q ⊂ F s2

p,q

when s1 ≥ s2. The corresponding homogeneous spaces are not monotone with respect
to s. However, the following result is easy to prove.

Lemma A.1. Let s > 0, 1 ≤ m ≤ p ≤ ∞, and 1 ≤ q ≤ ∞. Then Lm ∩ Ḃs
p,q = Lm ∩Bs

p,q. If

s1 > s2 > 0, then Lm ∩ Ḃs1
p,q ⊂ Lm ∩ Ḃs2

p,q. Moreover, if s1 ≥ s2 > 0, 1 ≤ m ≤ p2 ≤ p1 ≤ ∞,
and

s1 −
d

p1
≥ s2 −

d

p2
,

then Lm ∩ Ḃs1
p1,q ⊂ Lm ∩ Ḃs2

p2,q (for any 1 ≤ q ≤ ∞).
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Proof. Assume f ∈ Lm ∩ Ḃs
p,q. Then, for any g ∈ Lp′,

〈g, ψ0(D)f〉 =
∫

h(x− y) f(y) g(x) dx dy ,

where

h(x) =

∫

eixκ ψ0(κ)d̄κ .

By Young’s convolution inequality,

|〈g, ψ0(D)f〉| ≤ ‖h‖ℓ ‖f‖m ‖g‖p′ ,

if
1

ℓ
= 1 +

1

p
− 1

m
.

Since m ≤ p, this equality defines ℓ so that 1 ≤ ℓ < ∞. Clearly, h ∈ Lℓ, since ψ0 is smooth
and has compact support. Thus,

‖ψ0(D)f‖p . ‖f‖m .

This proves that f ∈ Lm ∩ Bs
p,q and Lm ∩ Ḃs

p,q ⊂ Lm ∩ Bs
p,q. If s > 0, then Bs

p,q ⊂ Ḃs
p,q.

Together, these observations prove the isomorphism of spaces: Lm ∩ Ḃs
p,q = Lm ∩ Bs

p,q. The
remaining statements follow from the corresponding statements for non-homogeneous Besov
spaces.

A.3 Gagliardo-Nirenberg inequality and Runst’s lemma

Recall the classical Gagliardo-Nirenberg inequality:

‖Djg‖p . ‖Dmg‖αp1 ‖g‖1−α
p2 , (A.10)

where j and m are integers such that 0 < j < m, 1 ≤ p1 <∞, 1 ≤ p2 ≤ ∞, and

α =
j

m
,

1

p
=

α

p1
+

1− α

p2
.

For more general forms/versions of this inequality see [32, 7].
Runst’s inequality is a type of a Gagliardo-Nirenberg inequality stated in terms of the

Lizorkin-Triebel spaces. Its interesting feature is that there is no restriction on the parame-
ters q1 and q within the range (0,+∞] (though the constants depend on their choice).

Lemma A.2. Let α ∈ (0, 1) and 0 < p < ∞, and 0 < q1, q ≤ ∞, r > 0. Then, for any
g ∈ L∞ ∩ F s

p,q1,

‖g
∣

∣ F αr
p/θ,q‖ . ‖g

∣

∣ F r
p,q1

‖α ‖g‖1−α
∞ . (A.11)

Also, for any g ∈ L∞ ∩ Ḟ r
p,q1

,

‖g
∣

∣ Ḟ αr
p/θ,q‖ . ‖g

∣

∣ Ḟ r
p,q1

‖α ‖g‖1−α
∞ . (A.12)
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Proof. The proof in the nonhomogeneous case, (A.11), is given by Runst, see Lemma 1,
Section 5.2 of [28], and also Lemma 1, Section 5.3.7 [29]). It relies on Oru’s lemma, [7,
Lemma 3.7]. For the homogeneous spaces one needs a slight generalization of Oru’s lemma,
namely,

Lemma A.3. If −∞ < s1 < s2 < +∞, 0 < q < ∞, 0 < α < 1, and s = αs1 + (1 − α)s2,
then

‖2sjaj‖ℓq . ‖2s1jaj‖αℓ∞ ‖2s2jaj‖1−α
ℓ∞ (A.13)

for any sequence {aj}∞j=−∞.

We leave its proof to the reader and continue with the proof of (A.12).
Denote gn = F−1ϕnFg. With s = αr, s1 = r, and s2 = 0, it follows from Lemma A.3

that

(

∑

n

2snq|gn|q
)1/q

.

(

sup
n

2s1n|gn|
)α (

sup
n

2s2n|gn|
)1−α

=

(

sup
n

2rn|gn|
)α (

sup
n

|gn|
)1−α

and, consequently,

(

∑

n

2αrnq|gn|q
)1/q

.

(

sup
n

2rn|gn|
)α

‖ sup
n

|gn|‖1−α
∞ .

Since supn 2
rn|gn| ≤

(
∑

n∈Z
2rnq1|gn|q1

)1/q1 for any q1 > 0, and since ‖ supn |gn|‖∞ . ‖g‖∞,
we have

(

∑

n

2αrnq|gn|q
)1/q

.

(

∑

n∈Z

2rnq1|gn|q
)α/q1

‖g‖1−α
∞ .

Take the Lp/α norm of both sides to obtain (A.12).

B Norms of products and compositions of functions

B.1 Norms of products

There are several results (sometimes called the fractional Leibniz rule) on the Sobolev/Lizorkin-
Triebel norms of products of functions.

Lemma B.1. If s > 0 and 1 < p <∞, then

‖Ds(f1 · f2)‖p . ‖Dsf1‖q1 ‖f2‖q2 + ‖f1‖q3 ‖Dsf2‖q4 (B.1)

provided

1 < q1, q2, q3, q4 ≤ ∞,
1

q1
+

1

q2
=

1

q3
+

1

q4
=

1

p
.
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The same inequality is true with Ds replaced by the operator Js = (1−∆)s/2, with the same
restrictions on the parameters:

‖f1 · f2
∣

∣ F s
p,2‖ . ‖f1

∣

∣ F s
p q1,2‖ ‖f2‖pq2 + ‖f1‖pq3 ‖f2

∣

∣ F s
p q4,2‖ . (B.2)

As a corollary, if s > 0 and 1 < p <∞, then

‖f1 · · · · · fN
∣

∣ F s
p,2‖ ≤ C

N
∑

j=1

‖fj
∣

∣ F s
p pj ,2

‖ ·
∏

i 6=j

‖fi‖p pi (B.3)

provided
N
∑

1

1

pj
= 1 .

For the proofs of (B.1) and (B.2) see [12, Theorem 1] and [4, Theorem1.1]. Some more
general inequalities are established in [29]. For earlier results see the Christ and Weinstein
paper [8, Prop. 3.3] and [33, Prop. 2.1.1].

B.2 Norms of compositions

Lemma B.1 is used, in particular, to estimate the Hs norms of compositions f(u), where f
is a sufficiently smooth functions and u ∈ Hs ∩ L∞. The simplest result deals with the case
0 < s ≤ 1.

Lemma B.2. Suppose f : R → R is a locally Lipschitz function such that f(0) = 0. Then,
if 0 < s ≤ 1 and 1 < p <∞,

‖f(u(·))
∣

∣ F s
p,2(R

d)‖ ≤ Cf(‖u‖∞) ‖u
∣

∣ F s
p,2(R

d)‖

for any function u ∈ F s
p,2(R

d) (recall that F s
p,2(R

d) = Hs,p(Rd)). Here

Cf(‖u‖∞) = inf{C : |f(z1)− f(z2)| ≤ C |z1 − z2| , ∀z1, z2 : |z1,2| ≤ ‖u‖∞}

The proof of Lemma B.2 relies on the fact that |f(u(x))− f(u(y))| ≤ Cf(‖u‖∞) |u(x)−
u(y)|, see [33, Prop. 2.4.1]. Next, consider larger s. In the main body of the paper we need
only the case of the Sobolev scale Hs.

Lemma B.3. Let s > 0. Let f : R → R be r = ⌊s⌋ times continuously differentiable function
such that its r th derivative is locally Lipschitz, and f(0) = 0. Then there is a continuous,
nondecreasing function Cf,s,d : R+ → R+ such that

‖f(u(·))
∣

∣ Hs(Rd)‖ ≤ Cf,s,d(‖u‖∞) ‖u‖Hs(Rd) (B.4)

for any function u ∈ Hs(Rd) ∩ L∞(Rd).
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Proof. For infinitely differential functions f , there is an elegant and short proof of (B.4) in
Hörmander’s book [14, Theorem 8.5.1]. However, having in mind finitely differentiable f , we
present a different argument. It can be used for other purposes as well (we use it to prove
regularity of the inverse map in Lemma 3.1).

For s an integer, to prove (B.4) we follow Moser’s argument on p. 273 of paper [26].
Let s = r be an integer greater than 1. Observe that |f(u)| ≤ Cf(|u|) |u|, and hence
‖f(u)‖ ≤ Cf(‖u‖∞) ‖u‖. Now it suffices to consider the derivatives of the order r of f(u(x)).
Schematically,

∂rf(u) =
∑

k≤r

f (k)(u)
∑

|α|=k

Ckα(∂u)
α1(∂2u)α2 . . . (∂ru)αr (B.5)

where α1 + 2α2 + · · ·+ rαr = r and Ckα are non-negative constants. We have

‖∂rf(u)‖ ≤
∑

k≤r

‖f (k)(u)‖∞
∑

|α|=k

Ckα

r
∏

m=1

‖(∂mu)αm‖2pm ,

where 1 ≤ pm ≤ ∞ and
∑

m 1/pm = 1. The right choice of pm is

pm =
r

mαm
,

because then
‖(∂mu)αm‖2pm = ‖∂mu‖αm

2αmpm

and
‖∂mu‖2αmpm = ‖∂mu‖2r/m . ‖u‖m/r

Hr ‖u‖1−m/r
∞ ,

by the Gagliardo-Nirenberg inequality. Collecting all the terms we obtain

‖∂rf(u)‖2 . ‖u‖Hr

∑

k≤r

Cf(k)(‖u‖∞) ‖u‖k−1
∞

∑

|α|=k

Ckα .

Now consider the case of fractional s. Assume s = r + γ, r ≥ 1 is an integer and 0 < γ < 1.
Since we have the Hr norm of f(u) already bounded, it remains to show that the Hγ norm
of each term of the form

g(u) (∂u)α1(∂2u)α2 . . . (∂ru)αr (B.6)

is bounded (see (B.5)). First, consider the case g(u) is not a constant. Use the product
estimate (B.2) to obtain

‖g(u)
r
∏

k=1

(∂ku)αk‖Hγ . ‖g(u)‖∞ ‖
r
∏

k=1

(∂ku)αk‖Hγ + ‖
r
∏

k=1

(∂ku)αk‖2q ‖g(u)
∣

∣ F γ
2q′,2‖ (B.7)

where
q =

s

r
, q′ =

s

s− r
. (B.8)
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Since ‖g(u)‖∞ . Cg(‖u‖∞) ‖u‖∞, the first term on the right will be treated later (with
the case g(·) = const). Thus, look at the second term. The choice of q is dictated by the
following computation. First, use Hölder’s inequality,

‖
r
∏

m=1

(∂mu)αm‖2q ≤
r
∏

m=1

‖∂mu‖αm

2qαmpm .

Then,
‖∂mu‖2qαmpm ≤ ‖u

∣

∣ Fm
2qαmpm,2‖

The norm ‖u
∣

∣ Fm
2qαmpm,2‖ will be bounded using (A.11) as follows:

‖u
∣

∣ Fm
2qαmpm,2‖ ≤ ‖u

∣

∣ F s
2,2‖θm ‖u‖1−θm

∞ .

This means the indices should satisfy

m = s θm, 2q αmpm =
2

θm

and 1 ≤ pm ≤ ∞,
∑

m

1

pm
= 1 .

Consequently, we must have

θm =
m

s

Then

2qαmpm =
2s

m
⇔ mαm =

2s

2q

1

pm

Since
∑

mαm = r and we want
∑

1/pm = 1, we must have q = s/r.

To estimate the norm ‖g(u)
∣

∣ F γ
2q′,2‖ apply Lemma B.2:

‖g(u)
∣

∣ F γ
2q′,2‖ . C(‖u‖∞) ‖u

∣

∣ F γ
2q′,2‖

By Runst’s Lemma A.2,

‖u
∣

∣ F γ
2q′,2‖ . ‖u

∣

∣ F s
2,2‖1−

r
s ‖u‖

r
s∞ .

Collecting the estimates, we get

‖
r
∏

m=1

(∂mu)αm‖2q ‖g(u)
∣

∣ F γ
2q′,2‖ .

C(‖u‖∞) ‖u
∣

∣ Hs‖1− r
s ‖u‖

r
s∞

r
∏

m=1

‖u
∣

∣ Hs‖αmθm ‖u‖αm(1−θm)
∞ =

C(‖u‖∞) ‖u‖
∑

αm
∞ ‖u‖Hs ,
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where we have used that, by construction,

r
∑

m=1

αm θm =
r

s
.

Finally, consider the case g(u) ≡ const. To estimate ‖
∏

m(∂
mu)αm

∣

∣ Hγ‖ use (B.3):

‖
∏

m

(∂mu)αm‖Hγ .
∑

m

‖(∂mu)αm
∣

∣ F γ
2qm,2‖

∏

j 6=m

‖(∂ju)αj
∣

∣ L2qj‖ ,

where q1, . . . , qr will be chosen later (and will satisfy
∑

j 1/qj = 1). The factors in the
product are bounded first as follows:

‖(∂ju)αj
∣

∣ L2qj‖ . ‖u
∣

∣ F j
2αjqj ,2

‖αj ,

and then Runst’s lemma is applied:

‖u
∣

∣ F j
2αjqj ,2

‖ . ‖u
∣

∣ F s
2,2‖βj ‖u‖1−βj

∞ .

Lemma A.2 imposes the following restrictions

j = βj s , 2βj αj qj = 2 ,

i.e.,

βj =
j

s
,

1

qj
= αj

j

s
.

Thus,
‖(∂ju)αj

∣

∣ L2qj‖ . ‖u
∣

∣ Hs‖j αj/s ‖u‖αj(1−j/s)
∞ ,

for j 6= m.
Next, consider ‖(∂mu)αm

∣

∣ F γ
2qm,2‖. Assuming αm > 0, first use (B.3) with equal expo-

nents:

‖(∂mu)αm
∣

∣ F γ
2qm,2‖ .

αm
∑

k=1

‖(∂mu)
∣

∣ F γ
2αmqm,2‖

αm−1
∏

j=1

‖(∂mu)
∣

∣ L2αmqm‖

= αm ‖(∂mu)
∣

∣ F γ
2αmqm,2‖ ‖(∂mu)

∣

∣ L2αmqm‖αm−1

and continue as follows:
. ‖u

∣

∣ Fm+γ
2αmqm,2‖ ‖u

∣

∣ Fm
2αmqm‖αm−1

Now each norm is bounded using (A.11). We have

‖u
∣

∣ Fm+γ
2αmqm,2‖ . ‖u

∣

∣ Hs‖λ ‖u‖1−λ
∞ ,

where

λ =
m+ γ

s
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and qm must be chosen so that
1

qm
= αm

m+ γ

s
.

Similarly,
‖u
∣

∣ Fm
2αmqm‖ . ‖u

∣

∣ Hs‖λm ‖u‖1−λm

∞ ,

where qm is as above and

λm =
m

s
.

Bringing the estimates together, we obtain

‖
∏

m

(∂mu)αm
∣

∣ Hγ‖ . C̃(‖u‖∞) ‖u‖Hs ,

as claimed.

C Estimates on Riesz transforms

The Riesz transform operators Rj , j = 1, . . . , d, will be defined by the formula

Rjf = F
−1 κ

j

|κ|Ff .

It is well known (see [25, Theorem 10.2.1]) that Rj is bounded in Ḃs
∞,∞, when s > 0, but not

in Bs
∞,∞. The Riesz transform is a special case of a more general class of pseudo-differential

operators which we shall now discuss.
Denote by S0

ph the space of all smooth functions a : R
d \ {0} → R which are positively

homogeneous of degree 0 and satisfy

|∂ακ a(κ)| ≤ Cα |κ|−|α|

for any multiindex α. Each symbol a ∈ S0
ph gives rise to a pseudodifferential operator

a : f 7→ a[f ], where

a[f ](x) = F
−1
κ→xaFf =

∫

eixκa(κ) f̂(κ)d̄κ .

Any finite composition of the Riesz transforms has its symbol in S0
ph. An observation: if, as

usual, q and q′ are conjugate exponents, and 1 ≤ q′ ≤ 2 ≤ q ≤ ∞, then (change of variables)

‖
∫

eiyκϕ(2−nκ) a(κ)d̄κ
∣

∣ Lq′(dy)‖ = 2n
d
q ‖F−1 (ϕ · a)

∣

∣ Lq′‖ . (C.1)

In particular, the integrals
∫

eikyϕn(k) a(k)d̄k represent smooth functions with uniformly in
n bounded L1 norms.
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Lemma C.1. Let the symbol a ∈ S0
ph be given.

1. For any r ∈ R and any p ∈ [2,+∞],

‖a[f ]
∣

∣ Ḃr
p,p‖ . ‖f

∣

∣ Ḃr
p,p‖ . (C.2)

2. Assume the parameters r, p, and q satisfy the conditions 1 ≤ p, q ≤ ∞ and r > d
p
.

Then there exists a constant C1 such that

‖a[f ]‖∞ ≤ C1 [f ]
γ1
−1 ‖f

∣

∣ Ḃr
p,q‖1−γ1 (C.3)

for every f ∈ Ḣ−1 ∩ Ḃr
p,q, where

γ1 = γ1(d, r, p) =
r − d

p

r + 1 + d p−2
2p

. (C.4)

3. Assume the parameters r, p, and q satisfy the conditions 1 ≤ p, q ≤ ∞ and r > d
p
− 1.

Then there exists a constant C2 > 0 such that

‖D−1
a[f ]‖∞ ≤ C2 [f ]

γ2
−1 ‖f

∣

∣ Ḃr
p,q‖1−γ2 (C.5)

for every f ∈ Ḣ−1 ∩ Ḃr
p,q, where

γ2 = γ2(d, r, p) =
r + 1− d

p

r + 1 + d p−2
2p

(C.6)

Proof. To prove the first claim we need to show that

∑

n∈Z

2rnp ‖ϕn(D)a[f ]‖pp .
∑

m∈Z

2rmp ‖fm‖pp ,

where fm = ϕm(D)f . This follows from the estimate

‖ϕn(D)a[f ]‖p . ‖fn‖p , (C.7)

which is easy to prove. Indeed,

(ϕn(D)a[f ]) (x) =

1
∑

ℓ=−1

(ϕn+ℓ(D)a[ϕn(D)f ]) (x)

and

(ϕn+ℓ(D)a[ϕn(D)f ]) (x) =

∫ ∫

eik(x−y)ϕn+ℓ(k) a(k)d̄k fn(y) dy .
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Then (see (C.1))

‖ϕn+ℓ(D)a[ϕn(D)f ] ‖p ≤ ‖
∫

eikyϕn+ℓ(k) a(k)d̄k
∣

∣ L1(dy)‖ ‖fn‖p . ‖fn‖p .

Thus we have (C.7), and this implies (C.2).
To prove the remaining two claims, consider the expansion (A.2) for f , f = gN + hN ,

where

gN = F
−1ψN (κ) f̂(κ) and hN = F

−1

∞
∑

n=N+1

ϕn(κ) f̂(κ) .

the integer N will be chosen later. We have

‖a[gN ]‖∞ . ‖ψ(2−Nκ) a(κ) f̂(κ)‖L1(dκ) ≤ [f ]−1 ‖ψ(2−Nκ) a(κ) |κ|‖L2(dκ)

and
‖ψ(2−Nκ) a(κ) |κ|‖L2(dκ) = 2N(1+ d

2
) ‖ψ(κ) a(κ) |κ|‖L2(dκ) .

Therefore,

‖a[gN ]‖∞ . 2N(1+ d
2
) [f ]−1 . (C.8)

Next,

a[hN ] = F
−1

∞
∑

n=N+1

ϕn(κ) a(κ) f̂(κ) = F
−1

∞
∑

n=N+1

1
∑

ℓ=−1

ϕn+ℓ(κ) a(κ)ϕn(κ) f̂(κ)

=

1
∑

ℓ=−1

∞
∑

n=N+1

F
−1
[

ϕn+ℓ(κ) a(κ) f̂n(κ)
]

=

1
∑

ℓ=−1

∞
∑

n=N+1

F
−1ϕn+ℓaFfn ,

and hence,

‖a[hN ]‖∞ ≤
1
∑

ℓ=−1

∞
∑

n=N+1

‖F−1ϕn+ℓ aFfn‖∞ .

Pick a p ≥ 1 and observe that

| [F−1ϕj aFfn](x) | = |
∫
(
∫

ei(x−y)κϕ(2−jκ) a(κ)d̄κ

)

fn(y) dy| ≤

‖
∫

ei(x−y)κϕ(2−jκ) a(κ)d̄κ‖Lp′ (dy) ‖fn‖p .

Applying (C.1), we obtain

‖a[hN ]‖∞ .p

∞
∑

n=N

2n
d
p ‖fn‖p . (C.9)
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If r > d
p
, then, for any q ≥ 1,

∞
∑

n=N

2n
d
p ‖fn‖p =

∞
∑

n=N

2n(
d
p
−r) 2nr‖fn‖p ≤

( ∞
∑

n=N

2n(
d
p
−r)q′

)1/q′ ( ∞
∑

m=N

2nrq‖fn‖qp

)1/q

= 2N(d
p
−r)
(

1− 2(
d
p
−r)q′

)1/q′

‖f
∣

∣ Ḃr
p,q‖

Thus,

‖a[hN ]‖∞ .p,q,d,r 2N(d
p
−r) ‖f

∣

∣ Ḃr
p,q‖ (C.10)

Combine this with (C.8) to obtain

‖a[f ]‖∞ . 2N(1+ d
2
) [f ]−1 + 2N(d

p
−r) ‖f

∣

∣ Ḃr
p,q‖ . (C.11)

Now choose N so that the two terms have (almost) the same magnitudes:

N = ⌊ log2

(

‖f
∣

∣ Ḃr
p,q‖

[f ]−1

)1/(1+r+d p−2
2p

)

⌋

( ⌊·⌋ is the floor function). The resulting inequality is

‖ρ[f ]‖∞ . [f ]
γ1(d,p,r)
−1 · ‖f

∣

∣ Ḃr
p,q‖1−γ1(d,p,r) (C.12)

with

γ1(d, p, r) =
r − d

p

r + 1 + d p−2
2p

.

The second part is proved similarly. First we have

‖D−1a[gN ]‖∞ . ‖ψ(2−Nκ) a(κ)
1

|κ| f̂(κ)‖L1(dκ) ≤ [f ]−1 ‖ψ(2−Nκ) a(κ)‖L2(dκ) . 2N
d
2 [f ]−1 .

After that, consider ‖D−1a[hN ]‖∞. We have

‖D−1a[hN ]‖∞ ≤
1
∑

ℓ=−1

∞
∑

n=N+1

‖D−1
F

−1ϕn+ℓ aFfn‖∞ .

Now,

| [D−1
F

−1ϕj aFfn](x) | = |
∫
(
∫

ei(x−y)κϕ(2−jκ) a(κ)
1

|κ| d̄κ
)

fn(y) dy| ≤

‖
∫

ei(x−y)κϕ(2−jκ) a(κ)
1

|κ| d̄κ‖Lp′ (dy) ‖fn‖p ,
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and

‖
∫

ei(x−y)κϕ(2−jκ) a(κ)
1

|κ| d̄κ‖Lp′ (dy) = 2j(
d
p
−1) ‖D−1

F
−1 (ϕ · a) ‖p′ = C 2j(

d
p
−1).

This leads to

‖D−1ρ[hN ]‖∞ .

∞
∑

n=N

2n(
d
p
−1) ‖fn‖p

and we proceed as in the first part. Now the restriction on r will be r > d
p
− 1 and then

∞
∑

n=N

2n(
d
p
−1) ‖fn‖p ≤

( ∞
∑

n=N

2n(
d
p
−1−r)q′

)1/q′ ( ∞
∑

m=N

2nrq ‖fn‖qp

)1/q

= 2N(d
p
−1−r)

(

1− 2(
d
p
−1−r)q′

)1/q′

‖f
∣

∣ Ḃr
p,q‖

This time we obtain

‖D−1a[f ]‖∞ . 2N
d
2 [f ]−1 + 2N(d

p
−1−r) ‖f

∣

∣ Ḃr
p,q‖ .

Again, choose N so that

2N(1+r+d p−2
2p

) ≈
‖f
∣

∣ Ḃr
p,q‖

[f ]−1
.

i.e.,

N = ⌊ log2
(

‖f
∣

∣ Ḃr
p,q‖/[f ]−1

)1/(1+r+d p−2
2p

)

⌋ .

Plugging this value into the inequality above we obtain

‖D−1ρ[f ] ‖∞ . [f ]γ2−1 ‖f
∣

∣ Ḃr
p,q‖1−γ2

with

γ2 = γ2(d, p, r) =
1 + r − d

p

1 + r + d p−2
2p

.

D Strichartz estimates

In this section we derive the homogeneous R
d version of the Strichartz estimates in Theorem

2 [17]. We work with functions of x ∈ R
d and the Fourier variables are κ. Note, that the

estimates are applied in Section 5 to functions of ξ with the dual Fourier variables k.
Consider the Cauchy problem

∂tw = iDw + f , w(0) = w0 , (D.1)
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where D =
√
−∆ in R

d. Given w0 ∈ Ḣθ and f ∈ L1
loc(R → Ḣθ), there exists a unique

solution w of equation (D.1) such that w(t) is a continuous functions of t with values in Ḣθ,
and

sup
[0,T ]

‖w(t)
∣

∣ Ḣθ‖ ≤ Cθ

(

‖w0

∣

∣ Ḣθ‖+
∫ T

0

‖f(t)
∣

∣ Ḣθ‖ dt
)

(D.2)

with the positive constant Cθ independent of the particular choice of w0 and f .

Theorem D.1. Let 2 ≤ q ≤ ∞ and let p be such that if d = 2, then 2 ≤ p ≤ +∞, and if
d ≥ 3, then 2 ≤ p < 2(d−1)

d−3
. Assume the parameters r and θ satisfy the conditions

r ∈ R, θ = r +
d+ 1

4

p− 2

p
. (D.3)

There exists a constant C > 0 (dependent on d, r, and p) such that, for any T > 0, the
following estimate is true for the solutions of (D.1):

(
∫ T

0

‖w(t)
∣

∣ Ḃr
p,q‖

4p
(d−1)(p−2) dt

)

(d−1)(p−2)
4p

≤ C

(

‖w0

∣

∣ Ḣθ‖+
∫ T

0

‖f(t)
∣

∣ Ḣθ‖ dt
)

(D.4)

Corollary D.2. Two special cases: If d = 2, then take p = q = ∞, 0 < r < 1, and θ = r+ 3
4
,

and obtain
(
∫ T

0

‖w(t)
∣

∣ Ḃr
∞,∞‖4 dt

)1/4

≤ C

(

‖w0

∣

∣ Ḣθ‖+
∫ T

0

‖f(t)
∣

∣ Ḣθ‖ dt
)

. (D.5)

If d = 3, take 2 ≤ p = q <∞, and θ = r + p−2
p
, and obtain

(
∫ T

0

‖w(t)
∣

∣ Ḃr
p,p‖

2p
p−2 dt

)

p−2
2p

≤ C

(

‖w0

∣

∣ Ḣθ‖+
∫ T

0

‖f(t)
∣

∣ Ḣθ‖ dt
)

(D.6)

Proof of Theorem D.1. For fixed w0 and f , the solution of the problem (D.1) is given by the
formula

w(t) = eit Dw0 +

∫ t

0

ei(t−τ)Df(τ) dτ .

Each term on the right can be analyzed separately. Take a g ∈ S and consider eit Dg. In
fact, we need to look at the dyadic pieces ϕn(D)eitDg = eit Dgn, where gn = ϕn(D)g. Since

eitDgn =
n+1
∑

j=n−1

ϕj(D) eitDgn ,

we examine the terms ϕj(D) eitDgn. The first important observation in the Strichartz anal-
ysis is the following bound on the operator ϕj(D) eitD as an operator from Lp′ to Lp,
2 ≤ p ≤ ∞:

‖ϕj(D) eitD‖Lp′(Rd)→Lp(Rd) .
1

|t|(d−1) p−2
2p

2j(d+1) p−2
2p . (D.7)
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As a corollary,

‖eitDgn‖p .
1

|t|(d−1) p−2
2p

2n(d+1) p−2
2p ‖gn‖p′ , (D.8)

for any p ∈ [2,+∞]. This estimate implies the following estimates in the homogeneous Besov
spaces:

‖eitDg
∣

∣ Ḃr
p,q‖ .

1

|t|(d−1) p−2
2p

‖g
∣

∣ Ḃ
r+(d+1) p−2

2p

p′,q ‖ , (D.9)

r ∈ R and 1 ≤ q ≤ ∞. The second important observation is the space-time estimate for the
homogeneous term eitDg. The argument uses duality. Let h(t, x) be a sufficiently smooth
function. Then
∫ T

0

〈eitDg , h(t)〉 dt =
∫ T

0

〈eit Dg , h(t)〉 dt =
∫ T

0

〈g , e−it Dh(t)〉 dt = 〈g ,
∫ T

0

e−itDh(t) dt〉

≤ ‖g
∣

∣ Ḣθ‖ ‖D−θ

∫ T

0

e−itDh(t) dt‖2

Now,

‖D−θ

∫ T

0

e−it Dh(t) dt‖22 =
∫ T

0

∫ T

0

〈e−itDD−θh(t), e−it′ DD−θh(t′)〉 dt′ dt =
∫ T

0

∫ T

0

〈e−i(t′−t)DD−2θh(t), h(t′)〉 dt′ dt

≤
∫ T

0

∫ T

0

‖ei(t−t′)DD−2θh(t)
∣

∣ Ḃr
p,q‖ · ‖h(t′)

∣

∣ Ḃ−r
p′,q′‖ dt′ dt (use (D.9))

.

∫ T

0

∫ T

0

1

|t− t′|(d−1) p−2
2p

‖h(t)
∣

∣ Ḃ
r+(d+1) p−2

2p
−2θ

p′,q ‖ · ‖h(t′)
∣

∣ Ḃ−r
p′,q′‖ dt′ dt

Choose θ so that

r + (d+ 1)
p− 2

2p
− 2θ = −r

i.e.,

θ = r +
d+ 1

4

p− 2

p
(D.10)

and assume that
q ≥ 2

(then q′ ≤ 2 ≤ q and Ḃ−r
p′,q′ ⊂ Ḃ−r

p′,q). Then

‖D−θ

∫ T

0

e−itDh(t) dt‖22 .
∫ T

0

∫ T

0

‖h(t)
∣

∣ Ḃ−r
p′,q′‖ · ‖h(t′)

∣

∣ Ḃ−r
p′,q′‖

|t− t′|(d−1) p−2
2p

dt′ dt

.

(
∫ T

0

‖h(t)
∣

∣ Ḃ−r
p′,q′‖m

)1/m
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with

m =
1

1− d−1
4

p−2
p

.

The last inequality is a consequence of the Hardy-Littlewood-Sobolev inequality (see [15,
Theorem 4.5.3]). It requires the following restrictions on p:

0 ≤ d− 1

2

p− 2

p
< 1 , (D.11)

i.e., if d = 2, then 2 ≤ p ≤ +∞, and if d ≥ 3, then 2 ≤ p < 2(d−1)
d−3

. In any case,

|
∫ T

0

〈eitDg , h(t)〉 dt| . ‖g
∣

∣ Ḣθ‖ ·
(
∫ T

0

‖h(t)
∣

∣ Ḃ−r
p′,q′‖m

)1/m

(D.12)

Hence, by duality,

(
∫ T

0

‖eitDg
∣

∣ Ḃr
p,q‖

4p
(d−1)(p−2)

)

(d−1)(p−2)
4p

. ‖g
∣

∣ Ḣθ‖ , (D.13)

where the exponent 4p
(d−1)(p−2)

is the conjugate of m. This proves estimate (D.4) for the

homogeneous equation (D.1). The estimate on
∫ t

0
ei(t−τ)Df(τ) dτ is obtained as in the second

part of the proof of Theorem 2 in [17] (with necessary slight modifications).

E Norms in Euler and Lagrange coordinates

In this section ξ → x(ξ) is a C1 volume preserving diffeomorphism of the form x(ξ) = Aξ +
ϕ(ξ) satisfying the assumptions of Lemma 3.1. In particular, A is a constant SL(d,R) matrix
and ϕ ∈ Hs+1(Rd

ξ) with s > d/2. This transformation from the Lagrangian coordinates, ξ, to

the Eulerian coordinates, x, pushes back the functions f(x) to the functions f̃(ξ) = f(x(ξ)).
This is a linear isometry from Lp(Rd, dx) to Lp(Rd, dξ), 1 ≤ p ≤ ∞. To analyze other norms,
we use the superscripts L and E on functions to indicate the coordinate system used. Denote
by via(x) the entries of the Jacobian matrix, ∂x/∂ξ, expressed in Eulerian coordinates, i.e.,
as functions of x. We have via(x) = Ai

a + uia(x), where u
i
a ∈ Hs(Rd

x). Notation va or ua is
used to represent a generic va or ua, or when in a norm, the maximal over a norm, e.g.,
‖va‖∞ = maxa ‖va‖∞. For the norms in Lp we skip the superscripts E and L.

E.1 Homogenous Besov and Sobolev spaces

The following proposition contains inequalities between the homogeneous Besov norms {g}r,p
and between the homogeneous L2 Sobolev norms [g]θ in the Euler and Lagrange coordinates.
The range of r, p, and θ is restricted to the demands of the main body of the paper. All the
spaces are over R

d, d ≥ 2.
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Lemma E.1.

a) Assume 0 < r < 1, 0 ≤ θ ≤ 1, and 2 ≤ p ≤ ∞. Then, for all g ∈ S(Rd),

{gL}r,p . ‖va‖r∞ {gE}r,p , {gE}r,p . ‖va‖(d−1)r
∞ {gL}r,p , (E.1)

[gL]θ . ‖va‖θ∞ [gE]θ , [gE]θ . ‖va‖(d−1)θ
∞ [gL]θ (E.2)

b) Assume 1 < θ < 2, then

[gL]θ . ‖va‖θ−1
∞

(

‖va‖∞ + ‖ua‖2−θ
∞ ‖ua

∣

∣ Ḟ 1
d,2(R

d)‖θ−1
)

[gE]θ . (E.3)

Proof. We first prove the inequalities for Sobolev norms in part a). Compare the norms
‖gL

∣

∣ Ḣ1(Rd
ξ)‖ and ‖gE

∣

∣ Ḣ1(Rd
x)‖. We have

‖gL
∣

∣ Ḣ1(Rd
ξ)‖2 =

∫

|∇ξg̃(ξ)|2 dξ

≤
∫

|∂f(t, x(ξ))
∂xj

∂xj(ξ)

∂ξ
|2 dξ

≤ ‖va(t)‖2∞
∫

|∂g(x(ξ))
∂xj

|2 dξ

= ‖va(t)‖2∞
∫

|∂g(x)
∂xj

|2 dx

= ‖va(t)‖2∞ ‖gE
∣

∣ Ḣ1(Rd
x)‖2 .

If 0 < θ < 1, then Ḣθ is an interpolation space between L2 and Ḣ1, Ḣθ = (L2, Ḣ1)θ,2 (see [2,

Theorem 6.3.1]). This explains why [gL]θ . ‖va‖θ∞ [gE]θ. Similarly, [gE]θ . ‖va‖(d−1)θ
∞ [gL]θ,

where (d− 1) appears because of the L∞ bound on ∂ξa/∂xi in terms of ‖va‖∞.
The Besov norm inequalities in part a) can be obtained by interpolation between the

inequalities for Ḃr
2,2 ≃ Ḣr, which we already have, and the inequalities for Ḃr

∞,∞ ≃ Ċr, the
homogeneous Hölder spaces. For the Hölder seminorms we have

{gL}r = sup
ξ,ξ′

|gL(ξ)− gL(ξ′)|
|ξ − ξ′|r

= sup
ξ,ξ′

|gE(x(ξ))− gE(x(ξ′))|
|ξ − ξ′|r

= sup
ξ,ξ′

|gE(x(ξ))− gE(x(ξ′))|
|x(ξ)− x(ξ′)|r

|x(ξ)− x(ξ′)|r
|ξ − ξ′|r

. sup
x,x′

|gE(x)− gE(x′)|
|x− x′|r ‖va‖r∞ .

Thus, {gL}r ≤ ‖va‖r∞ {gE}r. The norm {gE}r is bounded similarly.
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Now turn to part b). Assume 1 < θ < 2 and proceed with

[gL]θ ≃ [
∂gL

∂ξ
]θ−1

.
(E.1)

‖va‖θ−1
∞ [

(

∂gL

∂ξ

)E

]θ−1

≃ ‖va‖θ−1
∞ [

∂gE

∂x
· ∂x
∂ξ

]θ−1

. ‖va‖θ−1
∞ [

∂gE

∂x
· va]θ−1 . (E.4)

Apply the fractional product rule (B.1):

[
∂gE

∂x
· vEa ]θ−1 . [

∂gE

∂x
]θ−1 ‖va‖∞ + ‖∂g

E

∂x
‖q1 ‖vEa

∣

∣ Ḟ θ−1
q2,2

‖ .

Note that the homogeneous Lizorkin-Triebel norms of va and ua are the same. So, we have

[
∂gE

∂x
· vEa ]θ−1 . [

∂gE

∂x
]θ−1 ‖va‖∞ + ‖∂g

E

∂x
‖q1 ‖uEa

∣

∣ Ḟ θ−1
q2,2 ‖ . (E.5)

The parameters q1 and q2 must satisfy 2 ≤ q1, q2 ≤ ∞ and

1

q1
+

1

q2
=

1

2
.

We choose q1 and q2 as follows

1

q1
=

1

2
− θ − 1

d
,

1

q2
=
θ − 1

d
. (E.6)

Then Ḣθ−1(Rd) ⊂ Lq1(Rd), and so

‖∂g
E

∂x
‖q1 . [

∂gE

∂x
]θ−1 . [gE]θ .

As for the other factor, use (A.12):

‖uEa
∣

∣ Ḟ θ−1
q2,2

(Rd)‖ . ‖ua‖2−θ
∞ ‖uEa

∣

∣ Ḟ 1
d,2(R

d)‖θ−1 .

Collecting the pieces we arrive at (E.3).
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E.2 Vorticities

Let v be a vectorfield on R
d such that div v = 0. Denote ωmn = ∂mv

n − ∂nv
m. In terms of

Fourier transform,
ω̂mn = i (κmv̂n − κnv̂m) and κnv̂n = 0 .

From ωmn one recovers v as follows:

v̂n = −i κ
m

|κ|2 ω̂
mn .

In our notation,
vn = −iD−1

Rm ω
mn .

In dimension d = 2, ω = ∂1v
2 − ∂2v

1 and

v̂1 = i
κ2

|κ|2 ω̂ , v̂2 = −i κ
1

|κ|2 ω̂ .

We also have pseudovelocities va with the components via = uia +Ai
a, and the corresponding

pseudovorticities ωa = ∂1v
2
a − ∂2v

1
a = ∂1u

2
a − ∂2u

1
a.

Lemma E.2.

1. In the case d = 2, assume that u ∈ L2 and ω = curl u ∈ Ċr for some r ∈ (0, 1). Then
u ∈ L∞ and ∇u ∈ L∞, and the following inequalities are true:

‖u‖∞ . ‖u‖(r+1)/(r+2) {ω}1/(r+2)
r (E.7)

and
‖∇u‖∞ . ‖u‖r/(r+2) {ω}2/(r+2)

r . (E.8)

2. In the case d = 2, assume that u ∈ L2 and ω = curl u ∈ Ḣθ for some θ ∈ (0, 1). Then
u ∈ L∞ and the following inequality is true:

‖u‖∞ . ‖u‖θ/(θ+1)) [ω]
1/(θ+1)
θ . (E.9)

If ω ∈ Ḣθ with θ > 1, then ∇u ∈ L∞ and

‖∇u‖∞ . ‖u‖(θ−1)/(θ+1) [ω]
2/(θ+1)
θ . (E.10)

3. In the case d ≥ 3, assume that u ∈ L2 and ω ∈ Ḃr
p,p, where

r ∈ (0, 1), r >
d

p
, 1 ≤ p ≤ ∞.

Then u ∈ L∞, ∇u ∈ L∞, and

‖u‖∞ . ‖u‖(r+1−d/p)/(r+1−d/p+d/2) ‖ω
∣

∣ Ḃr
p,p‖(d/2)/(r+1−d/p+d/2) (E.11)

and
‖∇u‖∞ . ‖u‖(r−d/p)/(r+1−d/p+d/2) ‖ω

∣

∣ Ḃr
p,p‖(1+d/2)/(r+1−d/p+d/2) . (E.12)
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4. In the case d ≥ 3 assume that u ∈ L2 and ω = curl u ∈ Ḣθ. If θ > d
2
− 1, then u ∈ L∞

and
‖u‖∞ . ‖u‖(θ+1−d/2)/(θ+1) [ω]

d/2/(θ+1)
θ . (E.13)

If θ > d
2
, then ∇u ∈ L∞ and

‖∇u‖∞ . ‖u‖(θ−d/2)/(θ+1) [ω]
(d/2+1)/(θ+1)
θ . (E.14)

The inequalities follow immediately from Lemma C.1 part 2 and the observation that
[ω]−1 ≃ ‖u‖ and ∇u ≃ Rω.

References

[1] J. T. Beale, T. Kato, and A. Majda. Remarks on the breakdown of smooth solutions
for the 3-D Euler equations. Comm. Math. Phys., 94(1):61–66, 1984.
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