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Supplementary Note 1: Geoclimatic gradients in δ15Nsoil and in N2O
emission factors

Gradients in δ15Nsoil

δ15Nsoil data from >7000 samples from natural (non-agricultural) sites was compiled as described in
the Methods, however ancillary data for these measurements (e.g. MAT, MAP, pH) was incomplete.
Ancillary data reported for the point measurements was therefore compared to the global gridded
datasets (see Methods). Mean annual temperature (R2=0.96, slope=0.98), precipitation (R2=0.87,
slope=0.67) and pH (R2=0.60, slope=0.62) agreed well between the point and gridded datasets.
Soil carbon showed moderate agreement (R2=0.3, slope=0.35), while soil N and C:N ratio showed
no correlation between the point and gridded datasets. The relatively poor agreement for soil
C and N can be attributed to the high spatial variability of these parameters; additionally, the
gridded datasets refer to organic C and N while the point data does not always report whether
organic or total C and N were measured. A complete ancillary dataset was compiled by gapfilling
missing point values of MAP, MAT and pH with gridded dataset values. For C, N and C:N only
gridded values were used, as point and gridded datasets were inconsistent and point values are
likely less comparable between sites. Other relevant parameters, such as bulk density, which were
not reported or very sparsely reported in the point measurements were taken from the gridded
datasets.

An overview of the relationships between ancillary data and δ15Nsoil was gained using single
linear correlation analyses and a multivariate principal components analysis (Supplementary
Fig. 1). The strongest positive linear correlations were found between δ15Nsoil and MAT, N and
bulk density, and the strongest negative correlations between δ15Nsoil and C, C:N, elevation and
aridity index. Only parameters with <1000 missing values were used for the principal components
analysis, therefore elevation and soil texture were not included. PC1 was dominated by the broad
geoclimatic gradient between wetter and drier areas (based on MAP), which did not relate strongly
to δ15Nsoil, in contrast to previous expectations [1]. PC2 (24.6% of variability) showed a relationship
between MAT, N, C, C:N and δ15Nsoil evident from the single linear correlations, thus reflecting
the impact of temperature on soil chemistry and N cycling. PC3 (12.4% of variability) showed
a relationship between δ15Nsoil, C, N, C:N and bulk density and aridity, and therefore a weaker
relationship between water availability and soil chemistry. Similar to the results of [19] describing
the spatial variability of soil organic carbon, climate was key in driving variability in δ15Nsoil of
near-surface layers, and physicochemical properties were secondary but nonetheless important.

The δ15Nsoil data is not globally representative and many large regions have very sparse data
coverage, thus interpolation of the data to a global grid is not possible. An artificial neural network
(ANN) was therefore used to predict δ15Nsoil based on geoclimate parameters and thus estimate
a global grid of δ15Nsoil values using the ‘Keras’ package [6] in Python. A sequential ANN was
compiled with:

1. 9 input nodes;

2. A dense layer with 16 nodes using the rectified linear unit (ReLU) activation function;

3. A dense layer with 16 nodes using a hyperbolic tangent (tanh) activation function, and L2
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regularization with a regularization parameter of 0.01;

4. Identical to layer 3. but using a linear activation function;

5. A batch normalization layer;

6. A dense output layer with one node using a ReLU activation function.

Weights were initialised with Xavier initialization using a uniform distribution (default initialization
in Keras). The Adam optimizer was used with a learning rate of 0.0005 and root mean squared
error (RMSE) as a loss function. During training, a validation split of 25% was used to minimise
overfitting, and early stopping was implemented based on the minimum loss function for validation
data with a patience level of 30 epochs. A model checkpoint was used to save the model that
achieved the lowest RMSE for the validation data during the training period. Training was carried
out over a maximum of 80 epochs with a batch size of 200, and data shuffling was activated.
As samples were not distributed evenly across different regions, sample weighting to reduce
the relative importance of samples from highly represented regions such as Europe was needed.
Samples were grouped into 30 clusters according to latitude and longitude using the KMeans
function from the ‘sklearn’ package. A sample weight vector was calculated as 1√

n where n is the
number of members in a cluster. The sample weights were used to weight the loss function during
the ANN training.
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Supplementary Figure 1: Relationships between δ15Nsoil and ancillary data. a) Color map showing
linear correlation coefficients (P = Pearson, S = Spearman) indicated with the color bar between
δ15Nsoil and the specified parameter. b) Principal components analysis of the combined δ15Nsoil
and ancillary data; soil parameters are shown in blue and climate parameters in orange.

A bootstrapping approach was used to find the ANN model best able to predict the observation
data and to estimate the uncertainty in predicted δ15Nsoil. First, the relevant uncertainty in the
δ15Nsoil measurements was determined; this relates primarily to the degree to which a single
measurement is representative of soils in a grid cell, and is much higher than the measurement
uncertainty (usually <0.2‰ for IRMS measurements). The representation uncertainty was
estimated to be 1.2‰, based on the mean of the standard deviation of all measurements placed
within each grid cell for the 461 grid cells with more than 2 measurements. 250 bootstrap iterations
were run, and within each iteration, data for δ15Nsoil was perturbed according to the representation
uncertainty multiplied by normally distributed random numbers. δ15Nsoil and the chosen input
parameters (latitude, absolute longitude, MAP, MAT, soil N, soil C, soil C:N, pH, bulk density,
and aridity index) were randomly split into training (2

3 of data) and testing subsets. Data was
normalised to a range of 0-1 for each parameter, and all rows containing NAs were removed.

4



6000 rows of data were used for training and 3000 for testing the ANN in each iteration. The
trained ANN was used to predict the test dataset values of δ15Nsoil. The predicted and observed
test δ15Nsoil were compared using the weighted root mean square error (wRMSE) and the R2 of a
weighted linear fit within each bootstrap iteration, using 1√

n where n is the number of members
in the k-means cluster size as the weight for each point. The ANN achieving the best fit (lowest
wRMSE and highest R2) on the test data was used for the final prediction of δ15Nsoil, and the
standard deviation of the predicted δ15Nsoil from all bootstrap iterations was used to estimate the
uncertainty.

The final ANN was able to reproduce the observations with a slope of 1.04, R2 of 0.41 and
wRMSE of 2.6‰, thus exhibiting significantly more explanatory power than a multiple linear
regression, which was only able to reproduce data with R2 of 0.27 and RMSE of 3.1‰. The role of
specific parameters in the ANN was examined using two methods: i) using the ANN to predict
δ15Nsoil with all inputs set to their mean values, except for the parameter of interest, to understand
how much of the variability in δ15Nsoil is contributed by the parameter, and ii) shuffling all data
for the parameter of interest before predicting δ15Nsoil, to measure the reduction in goodness-of-fit.
MAT was the most important parameter in the ANN, accounting for 30% of variability in δ15N
and an RMSE reduction of 0.8‰, followed by absolute longitude (14.5%, 0.3‰), latitude (9.5%,
0.2‰), pH (9.8%, 0.07‰) and bulk density (8.7%, 0.16‰). The importance of MAT as well as soil
composition agrees with previous studies by [1] and [8].
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Supplementary Figure 2: a) Global gridded (0.5◦ × 0.5◦ grid) δ15Nsoil estimated using an artificial
neural network. Note the colour scale is non-linear to better show the narrow range of most values.
b) Estimated uncertainty in gridded δ15Nsoil. Maps generated with Cartopy (Met Office, 2015, [20]).
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Gradients in N2O emission factors

2 793 measurements of N2O fluxes and 3 629 EFs from 336 locations were taken from the
‘Global N2O Database’ [11], and used to examine variability in fluxes and EFs along geoclimatic
gradients. Ancillary data was not provided for all measurement points, therefore as described
in Supplementary Sect. for δ15Nsoil data, incomplete ancillary data was filled in with the global
gridded datasets for the same geographical locations. As described in the previous subsection,
agreement was very good for well-defined parameters like MAT and MAP, and relatively poor
for heterogeneous or variable parameters like soil N content. Linear correlations and PCA for the
combined flux and EF dataset revealed the parameters linked most strongly to N2O emissions -
particularly aridity, pH, soil C, MAT and MAP (Supplementary Fig. 3).
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Supplementary Figure 3: Relationships between N2O fluxes and emission factors (EFs) and
ancillary data. a) Color map showing linear correlation coefficients (P = Pearson, S = Spearman)
for fluxes and EFs indicated with the color bar. b) Principal components analysis of the combined
soil flux, EF and ancillary data; soil parameters are shown in blue, climate parameters in orange,
and N-cycle parameters in red.

N2O EFs are predicted to be highest at low pH, consistent with the observations from the
‘Global N2O Database’ [15, 17]. Both water availability and bulk density impact O2 availability,
which is known to be key in determining nitrification and denitrification rates and thus N gas
emissions [21, 15]. The observations are inconclusive regarding the impact of soil N availability
on EF. The correlation analysis shows a relationship between fertilisation and EF only for the
Pearson correlation coefficient, which is potentially more affected by outliers, but no relationship
between EF and soil N availability. Soil N and fertilisation do not plot strongly against PC1
or PC2; fertilisation shows a strong positive relationship and soil N availability shows a weak
negative relationship to EF along PC3. The lack of a strong relationship between soil N inputs
and availability and EF may also be due to sub-grid cell processes and strong heterogeneity in
soil nitrogen, which cannot be captured on the coarse spatial scale currently used in the IsoTONE
framework. Our results are consistent with numerous studies, which show that although more N
availability clearly leads to more N gas production, the relationship between N availability and
N gas EFs is unclear [4, 17, 31, 9]. [32] report increasing EF for direct soil emissions over recent
decades that is attributed to climate change feedbacks and interactions as well as spatiotemporal
variability of climate, rather than a direct increase in EF due to increasing fertiliser application.

In order to compare modelled EFs to the EF dataset, which came from a range of agricultural
ecosystem types with varying management practices, measurement methods and time periods,
it was necessary to estimate mean EFs for different ’climate zones’. Although aridity index (AI)
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Supplementary Figure 4: Mean emission factors for different climate zones based on measured
EF data binned according to MAT and MAP. a) Mean EFs for the different climate zones; MAT
(mid-point of bin) is plotted on the x-axis and line colours refer to the MAP bin. The standard
deviation of values in each bin is shown with the shaded region and the number of values in each
bin is annotated. b) Global map showing the spatial coverage of the 16 bins: MAT increases with
bin number, and MAP increases sequentially through bins 1-4, 5-8, 9-12 and 13-16. Maps generated
with Cartopy (Met Office, 2015, [20]).

and soil C content correlated strongly with EF, there was strong non-linearity in these parameters,
as well as limited variability within the dataset because the sites with EF data are strongly biased
towards northern hemisphere temperate regions. Therefore, MAT and MAP were selected as the
optimal parameters to define climate zones to bin EFs, based on both correlations with fluxes and
EFs as well as good coverage ranges for available data within each bin. The quartile ranges for
MAT and MAP were used to define 16 climate zones for which mean EFs could be calculated
(Supplementary Fig. 4). Standard deviation within each climate zone bin was high (Supplementary
Fig. 4), reflecting the high spatial and temporal variability of N2O fluxes as well as the lack of
robust annual flux monitoring in many locations. Due to the high uncertainty, no clear relationship
between EFs and MAT or EFs and MAP was seen - except for sites with MAP >1074 mm a−1,
which had signficantly higher EF at both low and high MAT. Hot spots and moments mean that
N2O annual fluxes and EFs are challenging to measure and highly uncertain, often depending
on methodological factors such as the number of replicates, spatial replication, and temporal
frequency [39, 14, 13, 28]. The uncertain EF data will therefore place little constraint on the model,
however the estimates of posterior EFs for the different climate zones will be useful to evaluate the
accuracy of the measurement data and reduce uncertainty in estimates of EF in different regions.

Supplementary Note 2: Parameterisation of N gas production pathways

Production of N2O, NO and N2 as a proportion of total N gas production as well as the proportion
of N2O contributed by the nitrification and denitrification pathways were parameterised as a
function of WFPS using experimental data (including all data used by [3] as well as additional data
from [40, 16, 38, 35, 12]). Experimental data was only available for N2O/(N2O + N2) and N2O/(N2O
+ NO) and not for all three gases simultaneously, therefore each dataset was fit separately with
a sigmoid curve using the curve fit function from the scipy package (Supplementary Fig. 5).
Data covered a range of ecosystem types including forest, native and managed grassland, tropical
forest, pasture and rice paddy (data used by [3] and additional data from [40, 16, 38, 35, 12]). The
proportion of each gas of the total N gas production (N2O + N2 + NO) was found by combining
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the two sigmoid fits:
N2O

N2O + NO
= a =

1.2
1 + e−0.04×(WFPS−66.5)

(1)

N2O
N2O + N2

= b =
0.76

1 + e0.07×(WFPS−38.7)
+ 0.32 (2)

N2O
N2O + N2 + NO

=
1

1−a
a + 1−b

b + 1
(3)

Two model parameters (fitN2 and fitNO) represented in the MCMC were used to optimize the
parameterisation of N2O, NO and N2 as a fraction of total N gas emissions, by varying the most
sensitive parameter in each sigmoid fit to cover the spread of the experimental data (parameter
highlighted in red bold in the above equations; fits shown in Supplementary Fig. 5). The optimized
fit shows that NO dominates emissions at low WFPS and N2 at high WFPS, while N2O is emitted
across the whole WFPS range. The contribution of N2O steadily increases from ∼1% at 0% WFPS
to ∼32% for WFPS >60%. Compared to the empirical fit made in [3], N2O remains higher and N2

lower in very wet soils for both the prior and posterior. The posterior parameterisation is described
by:

N2O
N2O + NO

= a =
1.2

1 + e−0.04×(WFPS−81.3)
(4)

N2O
N2O + N2

= b =
0.76

1 + e0.07×(WFPS−36.5)
+ 0.32 (5)
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Supplementary Figure 5: Parameterisation of N2O/NO/N2 as a fraction of total N gas emissions
based on water-filled pore space. The upper panels show experimental data; prior estimates of
the parameterisation using sigmoid fits to the data are shown as dotted lines, with the prior 1σ
uncertainty range shown with pale shading. Posterior fits following the MCMC optimization are
shown as solid lines with the posterior 1σ uncertainty range in darker shading. Eqs. 1, 2 and 3
describe the prior and Eqs. 3, 5 and 4 the final fits. The bottom panel shows the proportion of total
N gas contributed by NO, N2O and NO according to the parameterisation used by Bai et al. 2012
(dashed line), the prior fits (dotted line) and the posterior fits (solid line with uncertainty range
shaded).
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Experimental data to constrain the relative contributions of nitrification and denitrification to
N2O emissions is sparse; only 45 measurements were available, from grassland [16, 38, 12] and
rice paddy [35] systems. Although the data was not representative of global ecosystem types, a
wide range of WFPS was covered. A sigmoid curve fit the data well (Supplementary Fig. 6):

N2Odenit

N2O
=

0.2
1 + e−1.5×(WFPS−59.7)

+ 0.23 (6)

Unexpectedly, denitrification makes a slightly lower contribution to N2O emissions at higher WFPS,
because a significant amount of N2O is reduced to N2 before emission at high WFPS. However, the
scarcity of data means that this parameterisation is highly uncertain, and further laboratory and
field measurements of the partitioning between pathways are needed to better constrain the roles
of nitrification and denitrification. Furthermore, the denitrification to nitrification ratio is likely also
dependent on agricultural management and fertiliser application, estimation of which is currently
beyond the scope of this model. Recent developments in spectroscopic isotope measurements
offer a promising method for online, in situ quantification of nitrification and denitrification N2O
emissions [41, 12], which offers the potential for improvements to the parameterisation as new
data from a wider range of sites becomes available.
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Supplementary Figure 6: Parameterisation of denitrification and nitrification contribution to
N2O emissions based on water-filled pore space. The upper panel shows experimental data for
denitrification N2O as a proportion of total N2O emissions with a sigmoid fit to the data. The lower
panel shows N2O, N2Odenit (dotted line) and N2Onit (dashed line) as a proportion of total N gas
emissions using the posterior fit described in Eqs. 3, 4, 5 and 6.

Supplementary Note 3: Model optimization

120 000 iterations of the MCMC framework were run and 1 667 solutions were found. 40 000
iterations were run for each step size 0.25, 0.5 and 0.75, with 1 760 (4.4%), 76 (0.2%) and 34 (0.1%)
solutions accepted respectively (Supplementary Fig. 7 and Supplementary Table 1). There were
no significant differences in the means of accepted values for the different stepsizes, and no
change in the final values if only a subset of the accepted values randomly sampled, showing that
the posterior parameters were robust. The posterior parameters showed a strong reduction in
uncertainty compared to the prior for most parameters (Supplementary Fig. 7 and Supplementary
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Table 1), although τPI/τPD, τPD and temp sens - which are all primarily constrained by N2O mixing
ratio increase - cannot be easily separated during model-data assimilation. Focean, τPD and T to S
showed the strongest correlations between accepted solutions and dominated PC1 in the PCA
(Supplementary Fig. 8), again reflecting their role in regulating N2O mixing ratio increase in
the atmosphere submodule. Addition of an independent tracer of T to S, or very high precision
measurements from multiple sites in separate hemispheres, may help constrain these parameters
in future model studies. PC2 reflected the role of temperature increase, while PC3 was dominated
the chosen fractionation factors, which drive loss partitioning in the soil submodule through
the parameter frac ex. Both the correlation and PCA analysis show that most of the optimized
parameters - particularly those related to isotopic composition - can be sufficiently discriminated by
the model-data assimilation. Parameters only constrained by mixing ratio cannot be distinguished
easily, reflecting the importance of isotopic data for constraining the global N cycle.
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Supplementary Figure 7: Tested and accepted model solutions from the MCMC optimization
of a coupled soil-atmosphere model of N2O emissions and isotopic composition. Parameter
descriptions and references for prior estimates are given in Supplementary Table 1.

The MCMC approach led to a strong improvement in model-observation agreement, with
RMSE decreasing from 14.1 to 1.7 nmol mol−1 for N2O mixing ratio, 1.5 to 0.5‰ for δ15N, 1.5 to
1.1‰ for δ15NSP, and 5.4 to 1.8% for climate-zone emission factor (Supplementary Fig. 9). The
improvement in δ15NSP is lower than for δ15N because measurements are more uncertain relative
to the trend, and the timeseries is much shorter. Prior observation EFs were highly uncertain,
and therefore EFs were the only observation parameter showing a significant difference between
the prior and the posterior. Posterior observation EFs were higher than prior observations EFs,
which is likely due to the highly dynamic nature of N2O emissions, whereby emission peaks
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Supplementary Table 1: Prior and posterior values and uncertainty ranges for model input
parameters optimized using the MCMC approach. All parameters are defined in the Methods.
‘Abb.’ is the abbreviation for the parameter used throughout this paper. ‘Ref’ is the citation for the
prior estimate. ‘PDF’ is the probability density function: G = Gaussian, U = uniform. References:
References: 1. [30], 2. [23], 3. [33], 4. [22], 5. [29], 6. [34], 7. [32], 8. [26].

Abb. Description Unit Prior Ref. Posterior PDF

MRPI

N2O mixing ratio for
the preindustrial (PI)
troposphere

nmol mol−1 265±7.5 1,2 276±2.2 G

frac ex
Fractionation
expression factor

Unitless 0.4 (0.3-1.0) NA 0.55±0.05 U

fert EF red
EF reduction for
fertiliser emissions

Unitless 0.4 (0-1.0) NA 0.30±0.07 U

temp sens

Temperature
sensitivity of N2O
emissions (as a
fraction of
preindustrial
emissions)

fPI
◦C−1 1.1±0.04 3 1.10±0.03 G

τPI/τPD

Ratio of N2O
lifetime (τ) in the
pre-industrial and
the present day (PD)

Unitless 1.06±0.02 4 1.06±0.02 G

τPD N2O τ in the PD years 116±9 4 131±6 G

δ15Nocean
Mean δ15N bulk for
the ocean source

‰ 5.1±1.9 5 5.3±1.6 G

δ15NPI
Mean δ15N bulk for
the PI troposphere

‰ 8.9±2.0 6 11.2±0.3 G

δ15NSP
ocean

Mean δ15NSP for the
ocean source

‰ 15.8±7.1 5 14.2±9.6 G

δ15NSP
PI

Mean δ15NSP for the
PI troposphere

‰ 19.1±2.0 6 19.8±0.3 G

fitN2

Scaling factor for the
parameterisation of
N2 as a fraction of
total N gas
emissions

Unitless 1 (0.7-2) NA 0.9±0.2 U

fitNO

Scaling factor for the
parameterisation of
NO as a fraction of
total N gas
emissions

Unitless 1 (0.7-1.3) NA 1.2±0.1 U

Focean
Total marine N2O
flux

Tg N2O-N a−1 5.1±1.8 7 5.0±0.9 G

T to S

Exchange rate
between the
troposphere and
stratosphere

×1017 kg a−1 5.4 (4.1-6.6) 8 4.1±1.1 U
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Supplementary Figure 8: Relationships between accepted solutions of parameters optimized with
MCMC. a) Color map showing Pearson correlation coefficients between the specified parameters
as indicated with the color bar. Only correlations significant at p < 0.01 are shown. b) Principal
components analysis of all accepted solutions; soil and emissions module parameters are shown in
orange, atmospheric parameters in blue, and isotopic parameters in red.

are not captured by most annual estimates which sample only weekly or biweekly [4, 36, 7].
Moreover, measured EFs are often based only on growing season emissions, which leads to a
strong underestimation of emissions in cold regions [37, 5, 10]. Model and observation posterior
EFs agreed well for most climate zones, although in the wetter climate zones agreement was worse,
with modelled EFs were higher than observations. Emissions are highly variable and dynamic in
the wetland and tropical regions [18, 24, 2], thus it is very challenging for observational studies to
accurately capture annual emissions, which may account for this mismatch in these regions.
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Supplementary Figure 9: Modelled N2O mixing ratio, isotopic composition, and emission factors
using prior and posterior estimates of the parameters shown in Supplementary Table 1. Left-hand
panels shown model results and observations plotted against time or climate zone, and right-
hand panels show a 1:1 comparison of model results and observations. The 1σ uncertainty in
observations is shown as the blue shaded area for the upper three panels. The dotted grey line
shows a 1:1 relationship. For EFs (bottom panel) both the prior and posterior estimates are shown
with 1σ error bars, as the posterior estimates following the MCMC are significantly different to the
prior estimates.
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Supplementary Note 4: Partitioning N2O emissions as nitrification and
denitrification

Total N losses to nitrification were estimated as the sum of NO emissions and nitrification N2O
emissions per grid cell, and denitrification total N losses were similarly estimated as the sum of N2

emissions and denitrification N2O emissions [3] (Supplementary Fig. 10). Summing across all grid
cells therefore allowed calculation of total nitrification and denitrification N losses over time, as
well as estimation of the proportion of total N losses from each pathway, and the contribution of
each pathway to N2O emissions. The proportion of total N inputs lost to both pathways began
decreasing around 1945, when fertilisation began to increase, as a significant amount of fertiliser N
is removed and relocated via harvest. Since 1990, nitrification and denitrification loss fractions
have slightly increased, as N inputs move from temperate to tropical regions which favour N gas
production (Supplementary Fig. 10).

Total N losses to nitrification were somewhat lower than to denitrification, totalling 25.2±1.8
and 21.2±1.7 Tg-N a−1 in 2020 respectively. These are lower than suggested by a recent studies
[27, 25], which estimated total terrestrial denitrification N losses of 90-135 Tg-N a−1. Our estimate
of the mean terrestrial denitrification product ratio (RN2O = N2Odenit

N2Odenit+N2
) of 27±4% in 2020 (26±3%

in 1850) agrees very well with the estimate of 23% based on a meta-analysis of experimental
studies by [27]. Wetland and estuarine soils are not represented in the δ15N database used as
the basis for modelling in this study, suggesting these regions may be hotspots for complete
denitrification and N2 production, accounting for the discrepancy in modelled total denitrification.
Total denitrification N losses are highly uncertain due to the technical challenge of making accurate
annual measurements of N2 fluxes, thus model validation is very difficult (e.g. Supplementary
Fig. 6). An improved quantitative understanding of the drivers of denitrification, as well as
measurements of soil δ15N in wetland and estuarine environments, will be key to achieving robust
model estimates of total global denitrification.

14



0°-90° 90°

0°

-45°

45°

0°-90° 90°

0°

-45°

45°

N lost to nitri�cation (g-N m-2 a-1)

N lost to denitri�cation (g-N m-2 a-1)

N
 lo

ss
es

 (T
g-

N
 a

-1
)

Pr
op

or
ti

on
 o

f
to

ta
l N

 lo
ss

es
 (%

)

N
 inputs (Tg-N

 a
-1)

300

200

100

d)

c)a)
30

20

10

10

6

1

10-3

10-6

10-9

1

10-3

10-6

10-9

Pr
op

or
ti

on
 o

f
N

2O
 e

m
is

si
on

s 
(%

)e)

40

60

1800 20001900

12

8

Nitri�cation

Total N inputs
Denitri�cation

b)

Supplementary Figure 10: N losses to nitrification and denitrification. a, b) Global map of N losses
in 2020 on a 0.5× 0.5◦ degree grid via denitrification (a) and nitrification (b). c) Total N losses to
nitrification and denitrification per year from 1800 to 2020 (left axis) compared to total terrestrial N
inputs (right axis). d) Proportion of total terrestrial N inputs lost to nitrification and denitrification
from 1800 to 2020. e) Proportion of terrestrial N2O emissions contributed by nitrification and
denitrification from 1800 to 2020 (remaining N2O emissions are from EDGAR categories 1A1, 1A3b,
2B and 6, see Methods). In all panels the shaded area indicates the 1σ uncertainty. Maps generated
with Cartopy (Met Office, 2015, [20]).

Supplementary Note 5: Estimation of anthropogenic N2O flux and isotopic
composition

The anthropogenic N2O flux was calculated by assuming that all emission increases since 1850
are anthropogenic (Supplementary Fig. 11). Most of the input datasets did not include data
before 1850, so it was not possible to calculate a mean pre-anthropogenic baseline for either
mixing ratio or isotopic composition over several decades prior to 1850, or to account for possible
anthropogenic influences before 1850. Although natural emissions would show some variability
due to natural climate fluctuations, natural emission variability is expected to be much lower than
the key anthropogenic influences of climate change and agriculture [32]. This method of estimating
the total anthropogenic N2O flux includes both direct and indirect emissions, as well as increased
emissions from natural ecosystems due to anthropogenic climate change feedbacks, and is thus
not directly comparable with many other studies that report only the flux directly accounted for by
anthropogenic N inputs.

The isotopic composition of the anthropogenic source was found using:

δtotal = fa × δa + (1− fa)× δn (7)

where δ represents either δ15N or δ15NSP of N2O, ‘total’ designates the total source isotopic
composition (directly modelled as the sum of fluxes across all gridcells), subscripts ‘a’ and ‘n’ refer
to anthropogenic and natural sources respectively, and fa is the fraction of N2O from anthropogenic
sources. Anthropogenic source isotopic composition was found for years where anthropogenic
emissions contribute at least 10% of the total flux.
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composition. The top panel shows the anthropogenic flux broken down into N input categories of
fertilisation, deposition and fixation, estimated by assuming that all increases in N2O emissions
for all input categories (fixation, fertilisation, deposition) after 1850 are due to anthropogenic
influences. Total N2O emissions, including non-soil N2O emissions, are also shown (blue line). The
bars at the left indicate the breakdown of natural emissions driven by deposition and fixation. The
bottom panels show the δ15N and δ15NSP for natural and anthropogenic emissions and for total
terrestrial emissions. N inputs with time as well as growth rate of N2O emissions for each input
category are shown in Figure 2 of the main article. The shaded areas indicate the 1σ uncertainty.
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Supplementary figures 12-14
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Supplementary Figure 12: Modelled terrestrial (natural + anthropogenic) N2O soil emissions from
different input types. The left panels show total emissions for inputs from biological N fixation, N
deposition, and N fertilisation for the year 2020; all three subpanels have the same colour scale. The
right panels show anthropogenic emissions for each input type in 2020, estimated by subtracting
total emissions for the year 1850 from total 2020 emissions. All subpanels have the same colour
scale. Maps generated with Cartopy (Met Office, 2015, [20]).
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