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Rising ecosystem water demand exacerbates the
lengthening of tropical dry seasons

Hao Xu', Xu Lian® "2, Ingrid J. Slette® 3%>, Hui Yang®, Yuan Zhang’, Anping Chen® 34 & Shilong Piao® 8%

Precipitation-based assessments show a lengthening of tropical dry seasons under climate
change, without considering simultaneous changes in ecosystem water demand. Here, we
compare changes in tropical dry season length and timing when dry season is defined as the
period when precipitation is less than: its climatological average, potential evapotranspiration,
or actual evapotranspiration. While all definitions show more widespread tropical drying than
wetting for 1983-2016, we find the largest fraction (48.7%) of tropical land probably
experiencing longer dry seasons when dry season is defined as the period when precipitation
cannot meet the need of actual evapotranspiration. Southern Amazonia (due to delayed end)
and central Africa (due to earlier onset and delayed end) are hotspots of dry season
lengthening, with greater certainty when accounting for water demand changes. Therefore, it
is necessary to account for changing water demand when characterizing changes in tropical
dry periods and ecosystem water deficits.
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ropical ecosystems, especially rainforests, serve a pivotal

role as a natural buffer against global climate change by

storing one-half of Earth’s carbon (C) and capturing
1.6 £ 0.5 Pg of C per year!-3. The vegetation dynamics and eco-
system functions of tropical systems are sensitive to seasonal
rainfall4-6, with a distinct temporal transition between the dry
and wet seasons. As the dry season progresses, declining soil
moisture levels caused by precipitation deficit and strong eva-
porative water loss could shift tropical ecosystems from radiation-
limited to moisture-limited” and suppress photosynthesis’-8.
Hence, in a warmer climate, longer and more intense dry seasons,
and the associated enhanced risk of short-term droughts® and
fires!®11 could reduce tropical ecosystem productivity!2.
Reduced primary productivity and elevated forest mortality due
to extended dry seasons could exacerbate forest fragmentation
and savannization, which are already of particular concern for
tropical rainforests®!3, and could exacerbate global warming via
biogeochemical and biophysical feedbacks.

The tropical “dry season” is often defined as the period when
precipitation (P) is persistently lower than the multi-year average
precipitation (P)!10:14-16_ Using this definition, previous studies
have consistently suggested a lengthening of dry seasons over the
tropics, for example, by ~6.5 d decade™! in southern Amazonia!?
and by 6.4-10.4 d decade™! in the Congo Basin!®. However, the
long-term dynamics and seasonality of surface water availability
are highly complex!7:18. Land surface dryness depends not only
on the supply of precipitation, governed primarily by large-scale
atmospheric circulation patterns!®20, but also on the rate at
which the atmosphere is recycling moisture from the land, which
can be measured as potential evapotranspiration (Ep) or actual
evapotranspiration (E)!721. As the global climate changes, the
increasing evaporative demand of the warmer atmosphere (i.e.,
increasing Ep) may drive faster soil moisture depletion and cause
land surface drying?223. On the other hand, the actual evapora-
tive water loss (E) does not necessarily follow the increasing
atmospheric demand?4-2%, since it is highly responsive to
alterations of ecosystem biophysical properties such as soil
moisture, vegetation cover, and stomatal conductance?”-28.

Recent studies have increasingly accounted for the balance
between water supply (P) and demand (e.g., Ep or E) in analyzing
the climatology of dry seasons*7-12. However, this balance has
rarely been considered when assessing temporal changes in dry
seasons. These three metrics (P, Ep and E) consider different
land- or near-surface processes and emphasize different aspects of
water balance?®. Hence, changes in dry season length, timing, and
intensity are likely to vary spatially and temporally, depending on
which definition of “dry season” is used. Inconsistent definitions
can limit synthesis and inhibit understanding of the impacts of
common ecological phenomena3’. Thus, understanding how the
extent of dry season lengthening varies among definitions is
necessary for more accurate assessments of the spatiotemporal
variations in tropical seasonal water deficit, and for taking
effective management measures to mitigate water shortages and
associated ecosystem impacts in seasonally dry regions.

In this study, we characterized variations in dry season length
(DSL), dry season arrival (DSA) date, and dry season end (DSE)
date, as well as the severity of water deficit (WD) over the global
tropics (23.5°S-23.5°N) during the period of 1983-2016, among
different definitions of the dry season, using multiple combina-
tions of observational and reanalysis datasets (see Methods). In
particular, we considered three widely used definitions of “dry
season”: (i) P < Ep, a comparison of water supply vs. atmospheric
water demand, (ii) P < E, a comparison of water supply vs. actual
ecosystem water consumption, and (iii) P <P, a comparison of
water supply vs. the long-term mean water supply. Our objective
was to understand how the length and timing of the dry season

have been changing over the tropics and whether definitions of
the dry season that account for atmospheric water demand or
actual ecosystem water loss indicate similar or different changes
in the length and timing of the tropical dry season, compared to
definitions based merely on precipitation.

Results

Mean dry season length and timing over tropics. Given the
complicated seasonality of dry-wet transition over different tro-
pical lands, we first applied a harmonic analysis to precipitation
to determine if one or two dry seasons are experienced per year
for each grid point (see Methods). We found that the majority
(87.4%) of tropical lands have one distinct dry season per year
(i.e., a ratio of amplitudes of harmonics < 0.75, see Methods,
Fig. 1a), though the timing differs between the northern and
southern tropics (Fig. 2b, c). December, January, and February
were the driest months in the northern tropics, whereas June,
July, and August were the driest months in the southern tropics
(Supplementary Fig. la-d, Fig. 2). A small proportion of the
tropics might experience two dry seasons per year (ratio > 0.75;
Fig. la), predominantly located near the equator such as the
Congo Basin, East Africa, the southern coastal region of West
Africa, the northwestern Amazon Basin and the southeastern
Asia. Peak precipitation in these bimodal regions usually occurs
during the transitional periods March-May and September—
November (Fig. 1c), resulting in two main dry seasons during
December-February and June-August (Fig. 2). This pattern was
mainly shaped by the seasonal progression of the Inter-Tropical
Convergence Zone!4 and tropical monsoon systems!>31:32,
Analyses using P < Ep and P < E produced similar results (Sup-
plementary Fig. 2), indicating that all three definitions were
generally sensitive to seasonal transitions between dry and wet
periods, which was a premise for comparing changes in dry
season length and timing among different definitions.

DSL varied among the three different definitions (see Methods,
Fig. 2a). DSL defined as P < Ep or P <E ranged from 0 (i.e, no
“dry season”) in Amazonia and southeastern Asia rainforests, to
longer than 200 days (i.e., “dry season” lasting most of the year)
in areas with very low precipitation such as sub-Saharan Africa,
the Arabian Peninsula and Australia (Fig. 2a), generally following
a latitudinal gradient similar to that of precipitation decrease
from the tropical lows to subtropical highs. The longer dry season
at higher latitudes was a result of both earlier DSA and delayed
DSE (Fig. 2b, c). By contrast, analysis using P<P showed
relatively homogeneous spatial patterns of DSL, with over 86% of
tropical areas falling within the range of 150-240 days (Fig. 2a).
In particular, for humid regions, such as rainforests, where the
other two definitions indicated a short or nonexistent dry season,
P <P indicated a dry season lasting >150 days, comparable to
regions with relatively dry climates. These patterns were
consistent for areas that experience both one and two dry
seasons per year (Fig. 2d, e). Further analyses revealed that the
discrepancy of DSL among different precipitation datasets is
much smaller than that among definitions (Fig. 2). DSL defined
by P< P was the least sensitive to precipitation inputs, as the P
self-adjusted for different precipitation datasets.

We found that the inter-metric DSL difference varied
according to regional mean annual precipitation (MAP), due to
the relationship between Ep and E (Supplementary Fig. 6). Under
arid conditions (that is, when P is much smaller than Ep), actual
water consumption, E, is mainly limited by the available supply of
surface water, which is much smaller than the Ep and converges
toward the multi-year average rainfall P. Therefore, DSL was
similar when defined as either P < P or P < E but was longer when
defined as P<Ep (Fig. 3). This difference increased from
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Fig. 1 Precipitation seasonality and dry season defined as P < P. a The mean ratio of P amplitudes of the harmonics at frequencies of two and one cycle
per year via Fourier Analysis of whole daily time series (1983-2016) for each grid box based on the eight precipitation datasets. The blue line marks the
boundaries with the ratio of 0.75, inside which grid boxes have two wet seasons and two dry seasons per year. b, ¢ Daily mean rainfall (light blue) for each
day of the year, smoothed using a 30-day running window (blue), the multi-year average daily mean precipitation (red horizontal line), and cumulative P
anomaly value (green) for the grid box centered at 11.125°S, 57.875°W (left, point 1in a) and 1.375°N, 12.875°E (right, point 2 in a) according to the daily
CHIRPS precipitation dataset for the period 1983-2016 (see Eq. 3). Red dots mark the arrival of dry seasons (DSA), while blue dots mark the end of dry
seasons (DSE). The solid black shaded area represents the water deficit, calculated as the cumulative difference between P and P during the dry season.
The two longest seasons are assumed to be the two seasons of interest for the biannual region (c). Similar patterns and definitions for P<Ep and P<E are

shown in Supplementary Figs. 2, 3.

30-40 days with MAP ~1000 mmyr—! to 170-190 days with
MAP ~200 mm yr~!. Alternatively, under humid conditions (i.e.,
when P is much greater than Ep), E is mainly limited by
atmospheric water demand and converges toward Ep. DSL was
similar when defined as either P<E or P <Ep but was longer
when defined as P < P (Fig. 3). This difference increased from 60
to 120 days in areas with MAP of 2000-2500 mm yr—!, to
>120 days with MAP > 2500 mm yr—1. Meanwhile, ~39.2% of the
tropical grids, with MAP between 1000 and 1500 mmyr—l,
showed little difference in DSL between any two definitions.

Extent of dry season lengthening and water deficit increase. We
next assessed long-term trends in dry season length and timing
(DSL, DSA, and DSE) as well as the water deficit (WD, defined as
the cumulative difference between P vs. Ep, E, or P) during the
dry season using each of the three definitions. All the three
definitions indicated more widespread drying than wetting over
the tropics (Fig. 4). However, the extent of land area experiencing
a drying trend varied considerably among these different defini-
tions. The overall fraction of tropical land area with lengthening
dry seasons (at least one significant drying trend, and no sig-
nificant wetting trend, among different datasets) was largest when
dry season was defined as P<E (48.7%), followed by P<Ep
(43.1%), and was smallest for P<P (33.7%). Accordingly, a
smaller fraction of regions was probably experiencing shorter dry
seasons (thus longer wet seasons), accounting for ~20.4%, 17.1%,
and 19.8% of tropical lands when dry season was defined as
P < Ep, P<E, and P < P, respectively (Fig. 4a). We also found that
the extension of the dry season was accompanied by an increase
in the cumulative WD during the dry season (Fig. 4b). The
percent of tropical land area experiencing increasing dry season

water deficit (~55.7%, 51.7%, and 38.0% for P<Ep, P<E, and
P < P, respectively) was larger than that experiencing decreasing
water deficit (~16.8%, 17.5%, 19.2% for P< Ep, P<E, and P<P,
respectively). Analyses using other two independent Ep products
detected similar fraction of lengthening dry seasons (MERRA-2:
41.5%; GLDASv2.0: 42.9%) and increasing water deficit
(MERRA-2: 49.9%; GLDASv2.0: 52.0%), indicating a robust
drying trend among different Ep datasets (Supplementary Fig. 8).

The three dry season definitions consistently identified some
regions with robust dry season lengthening (more than four out
of eight datasets agree), including southern Amazonia and central
Africa (red rectangles in Fig. 4). The increased DSL in southern
Amazonia (4.81-10.84, 3.65-11.96, and 5.95-10.53 d decade™!
when defined as P<Ep, P<E, and P< P, respectively, Supple-
mentary Table 2) was mainly attributed to a delayed DSE
(Supplementary Fig. 7). In the Congo Basin and southern central
Africa, the length of the June-August dry season increased by
7.62-11.61, 6.62-11.65, and 8.19-11.93 d decade~! when defined
as P<Ep, P<E, and P<P, respectively (Fig. 4, Supplementary
Table 2). This dry season extension in central Africa was due to
both a delayed DSE and an earlier DSA (Supplementary Fig. 7).
For both southern Amazonia and central Africa, the dry season
lengthening and associated increased water deficit were most
robust under the definition of P < Ep, followed by P < E (Fig. 4,
Supplementary Table 2).

In southern Africa and Sahel, different definitions suggested
different trends (purple rectangles in Fig. 4). In southwestern
Africa, for example, all eight datasets indicated dry season
lengthening (5.30-16.51 d decade™!) due to delayed DSE, when
defined as P < E (Fig. 4, Supplementary Table 2, Supplementary
Fig. 7). By contrast, we found a shortening of DSL (—5.66 to
—9.24 d decades™!) when dry season was defined as P < Ep, and
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Fig. 2 Spatial patterns of tropical dry season length and timing under three definitions. The dry season timing (arrival date and end date) is shown for
northern tropics (b, ¢) and for southern tropics (d, e), respectively. In a green lines indicate the boundary of bimodal precipitation regimes inside which grid
boxes have two dry seasons per year, typically with one in boreal winter (December-February, b, €) and the other in boreal summer (June-August, d, e).
The hatched area in a-e indicates that the standard deviation of DSL is longer than 30 days (in a and b) or the standard deviation of DSA or DSE is longer

than 15 days (in d and e).

no robust change in DSL when it was defined as P< P (Fig. 4,
Supplementary Table 2). This contradictory result was primarily
due to the inconsistent trends of ecosystem E (significant
increases by ~0.14mmd~! decade™!) and Ep (decreases by
~0.17 mm d~! decade™!), while P showed little changes (Fig. 5).

Compared to the widespread drying trend, the wetting trend
was mainly scattered in central America, India, and northwestern
Australia (blue rectangle in Fig. 4). The shortening of the dry
season (~5-15d decade™!) over these regions was generally
caused by a delayed DSA as well as an advanced DSE
(Supplementary Fig. 7). It is worth noting that a large proportion
of tropical land area (35.8%, 33.4%, 40.5%, respectively) was not
decisively experiencing a longer or shorter dry seasons (labeled as
“No change” or “Uncertain” in Fig. 4), indicating that not

everywhere was experiencing a significant trend in DSL. This
could also be due to inter-data discrepancy of precipitation
changes, primarily due to the paucity of rainfall observation
gauges or biases of the models for reanalyzing (see Methods).
Our observational finding of the exacerbated lengthening of
tropical dry seasons by rising water demand was also supported
by climate model simulations from the Coupled Model
Intercomparison Project Phase 6 (CMIP6) (see Methods), which
in general showed more widespread and robust drying trends
based on P<Ep than the other definitions (Supplementary
Fig. 11). However, significant observation-model discrepancies
also existed for the extent and locales of tropical DSL changes. For
instance, model-derived areas experiencing lengthening dry
seasons were the smallest when inferred from P<E (13.4%,
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Fig. 3 Inter-metric differences in dry season length by mean annual climate. a-c The differences in dry season length (DSL) were calculated among the
three definitions (P < Ep, P<E, and P< P), and averaged within each mean annual temperature (MAT) and mean annual precipitation (MAP) interval from
ERA-5. Pixel number for each MAT and MAP interval in a-c is shown in Supplementary Fig. 5.

compared to 48.7% with observational data under the same
definition), while they were smallest when inferred from P < P for
observation-derived results (Fig. 4). Furthermore, the robust dry
season lengthening detected over southern Africa and Sahel based
on observed P < E is not present in CMIP6 model results (Fig. 4,
Supplementary Fig. 11). This model-observation discrepancy is
likely attributable to plant physiological responses to rising
atmospheric CO,. Plants partially close their leaf stomata under
rising atmospheric CO,, which reduces plant water loss and
reduces the increase of evapotranspiration33-3%. Fully coupled
Earth system models explicitly consider the hydrological
consequences of plant physiological responses to rising CO,.
For example, modeling studies identify this CO,-related mechan-
ism as a critical factor of tropical E changes and seasonality of
tropical hydrology3>3*. However, this physiological factor is
currently absent in calculating terrestrial E from observed climate
and surface data, based on empirically- or physically-models,
which may lead to an overestimation of inferred drying trends in
observational analyses. On the other hand, CO, fertilization may
enhance leaf area, which could cancel the water-saving from
increased water use efficiency’®37. Although the leaf- to
ecosystem-level increases of water-use efficiency and leaf area
under higher CO, have been well-studied with laboratory and
field experiments38, it still remains largely unknown how these
processes may affect surface water availability at broader spatial
scales’”.

Decoupled trends of dry-season Ep and E. To better illustrate
how water demand or actual water loss affects the length of the
dry season, we further analyzed the potential drivers of changes in
dry-season Ep and E in regions with robust drying trends
(See Methods, Fig. 5). During the dry season, precipitation
decline was often accompanied by rising atmospheric water
demand, primarily due to humidity decrease especially in the late
dry season (Fig. 5). For instance, in southern Amazonia, the
prolonged dry season was initialized by the precipitation decline
during the late dry season (Fig. 5a), followed by a prominent
increase in Ep mainly (>50%) due to decreasing air humidity
from insufficient water supply of rainfall. Rising temperature and
increasing wind speed also partially exacerbated the atmospheric
drying, while the effect of radiation changes was negligible
(Fig. 5b). The rising atmospheric water demand that driven by
decreasing air humidity and rising temperature were also iden-
tified in the other two Ep datasets (Supplementary Fig. 12).
Hence, compared with the P-only trend in DSL, the enhanced
atmospheric water demand exacerbated the drying trend (Fig. 4).

Towards the end of dry season when rainfall started to increase,
Ep decreased simultaneously (Fig. 5a-d).

However, the thermodynamically-driven increase in water
demand (i.e., Ep) does not translate into similar growth in actual
water loss (i.e., E) during the dry season, which additionally
depends on available water for evaporation. The persistent rainfall
deficit and warming-induced depletion of soil moisture caused an
ongoing decline in soil moisture (Fig. 5c). Less available soil
moisture and higher atmospheric water demand typically drove
plants to partially close their stomata to reduce water loss and
avoid critical xylem embolism, evidenced by a decrease in
vegetation water content (measured by Vegetation Optical Depth
in Fig. 5¢). Thus, the evaporative stress of both soil evaporation
and plant transpiration was intensified (i.e., decreasing stress
factor), leading to a slower increase of actual E than potential E
(Ep). This mechanism underlies the more moderate drying trend
based on P < E (compared with that based on P < Ep) in regions
such as southern Amazonia and Congo Basin. In southern
Amazonia, E even showed an opposite decreasing trend in dry
season with strong constraints by limited water supply (Fig. 5a).

Still, anomalous E increase during the dry season has been
observed in regions such as southern Africa, due to the buffering
effect of surface water storage. We found that precipitation has
increased during the rainy and transitional seasons (Fig. 5d),
resulting in more water storage in soil and plants, which can
persist into the following dry season and supplement water use
under stressed conditions (Fig. 5f). Although there was no extra
water supply from precipitation during the dry season, actual E
increased continuously from the rainy season to the dry season
(Fig. 5¢) and caused a drying trend based on P < E. This result
indicates that to some extent water stress for vegetation and
evaporation during the dry season is also influenced by water
supply and storage from the preceding wet season.

Discussion

The changes in dry season, including its length and timing, has
been an increasingly important issue for tropical ecosystem
dynamics under climate change. We showed that the extent of
dry season lengthening over the global tropics varied depending
on the definition of “dry season”. The most commonly employed
definition of dry season as P < P, which has extensively used in
studies assessing tropical dry season changes and associated
ecosystem responses!%14-16 only requires precipitation as input
and thus measures seasonal deficits of atmospheric water supply.
Dry seasons identified by this metric were reported consistent
with local agricultural definitions'# and can serve as an important
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Fig. 4 Consistency of trends in dry season length and water deficit for each definition, from eight datasets (1983-2016). The consistency of trends in
dry season length (a) and water deficit (b) under each of the three definitions of "dry season” was assessed as the variation among the eight precipitation
datasets. “Very likely”, ‘Likely” and “Probably” indicate that the sign of the trend was the same and significant in 6-8, 4-5, and 1-3 precipitation datasets,
respectively, while the other datasets showed no significant change. “Uncertain” indicates conflicting trends among datasets, with some showing a
significant increase and some showing a significant decrease. “No Change"” indicates that all eight datasets showed no significant change. The histograms
in the right column of a and b show the percent area with consistent increase or decrease trends. Arid and humid regions (solid gray shaded area) were
excluded when calculating the percent area, since there was no climatologically wet or dry season, thus no trends calculated under definitions of P< Ep or
P <E. This analysis combined both dry seasons for regions with two dry seasons (individual trends for each distinctive season are shown in Supplementary
Fig. 9). Consistency of trends in dry season length and water deficit for the other two Ep products (MERRA-2 and GLDAS-v2.0) based on P < Ep definition
were shown in Supplementary Fig. 8.
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were calculated with the zonally averaged and 30-day smoothed daily values over southern Amazonia (48-65°W, 5—16°S, a-c) and southern Africa (12-
30°E, 13-23.5°S, d-f), over the 1983-2016 period. a, d These show the daily means and overall trends of P, Ep, and E. The gray area (in a and d) indicates
the dry season based on P<P. b, e They show the individual contributions of T, RH, u», and Rn to the overall trend of Ep. ¢, f These show the changes of
parameters (S, VOD, Soil Moisture) representing the constraints of soil moisture and vegetation water content on E. Datasets included in this analysis are:
P from MSWEP v2.8, Ep, T, RH, u,, and Rn from ERA-5. E, Stress factor and Soil Moisture from GLEAM v3.3a, Vegetation Optical Depth from VODCA Ku-

band (available only for 1987-2016).

parameter in agricultural practices®?. This metric divides the
whole year into the relatively dry and wet periods, roughly half by
half (Fig. 2). With this metric, research has identified robust dry
season lengthening for some tropical regions!%1416, In particular,
a strong lengthening of the dry season by precipitation observa-
tions has been found in the southern Amazonial®?4 and the
Congo Basin!®, which is usually interpreted by the changes of
large-scale atmospheric circulation!, as well as feedbacks of
regional deforestation on precipitation*2-44,

The extension of the dry season is even more robust and
widespread when it is defined as P<Ep or P<E (vs. P<P)
(Fig. 4). These two metrics define dry and wet conditions
according to a balance between water supply vs. demand or
evaporative water loss at the surface (respectively)”!2. In a
warming and drying climate, decreased humidity and increased
temperature have significantly contributed to the increase in
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atmospheric water demand?!-23 in some regions, including the
southern Amazonia and central Africa (Fig. 4), thus exacerbating
the drying trend. In addition, increasing E due to alleviated
vegetation water stress?® has a greater impact than precipitation
changes, and thus causes a further drying trend (based on the
definition of P < E) in regions such as southern Africa (Figs. 4, 5).
Hence, the numerous previous studies that are based only on
P <P and lack consideration of the increasing water demand of
the atmosphere or ecosystems in a warmer climate may under-
estimate the prolongation of the dry season and the exacerbation
of the ecosystem water deficit.

Further, studies which only consider precipitation change may
not fully capture ecosystem responses to prolonged dry seasons,
as ecosystem dynamics can be strongly affected by the water
availability. For example, in the tropical wet-dry transition sea-
son, extended periods of high atmosphere water demand

7


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

(measured by the vapor pressure deficit) have been acknowledged
as a primary driver of large-scale tree mortality and wildfire in
forest ecosystems!145-47 Previous work has also indicated that,
during the dry season, photosynthesis and vegetation productivity
in tropical rainforests are mainly constrained by water
demand”#84°. Thus, because primary production in the tropics
plays an essential role in global C cycling and the size of the land
C sink, global C dynamics have likely been altered by changes in
tropical DSL and dry season water demand. Mounting evidence
shows that the P<Ep metric has been observed to decrease
(indicative of surface drying) under current warming trend and is
expected to continue into the future?!?0, Therefore, with
accounting for warming-driven increase in water demand, the
P < Ep definition is likely more suitable for studying potential
responses of ecosystem productivity to demand-driven dry season
changes, particularly on the increasing risk of heat, drought, and
wildfire disturbances in a warmer and drier climate.

Considering that the actual amount of ecosystem water con-
sumption, E, involves effects of complex land surface processes on
the hydrological cycle, dry season definition based on P < E could
capture seasonal changes in surface water resources more accu-
rately. Due to the soil moisture and vegetation phenological con-
straints, E trend can be decoupled from Ep trend on seasonal to
longer time scales?4-26>1-53, Ep is calculated by assuming the land
surface is not water-limited, hence it cannot capture E changes in
relatively dry periods or over extremely dry regions?4°2. For
example, in southern Amazonia, soil moisture and vegetation
phenology constraints have strongly limited the evaporation water
loss (Fig. 5). Furthermore, human land-use activities could have a
more substantial impact on E than on P or Ep. For example,
widespread forest clearing over the tropics may reduce
precipitation1°4-56, but the actual water limitation is eased since
the degraded ecosystems demand less water for growth>1:7.

In summary, our study reveals that the extent of dry season
lengthening over the global tropics varies depending on the
definition of “dry season”. Considering changes in water demand
or actual water loss exacerbates tropical dry season lengthening.
Climate change not only alters the precipitation regimes of the
global tropics, it also changes the demand side of the ecosystem
water cycling that has strong impact on tropical vegetation
dynamics and ecosystem carbon cycling. Therefore, in order to
more fully capture ecosystem response, we recommend that
future studies account for changing water demand when char-
acterizing changes in seasonal dry periods and ecosystem water
deficits in an increasingly warmer and drier climate.

Methods

Climate and land cover data. Our study of tropical dry season dynamics required
climatic variables with high temporal resolution (i.e., daily) and full coverage of
tropic regions. To reduce uncertainties associated with the choice of precipitation
(P) and evapotranspiration (Ep or E) datasets, we used an ensemble of eight pre-
cipitation products, three reanalysis-based products for Ep, and one satellite-based
land E product. These precipitation datasets were derived four gauge-based or
satellite observation (CHIRPS®$, GPCCS%, CPC-U®? and PERSIANN-CDR®!),
three reanalyses (ERA-5%2, MERRA-2%3, and PGF%%) and a multi-source weighted
ensemble product (MSWEP v2.8%%). The potential evapotranspiration (Ep) was
calculated using the FAO Penman-Monteith equation® (Egs. (1, 2)), which
requires meteorological inputs of wind speed, net radiation, air temperature, spe-
cific humidity, and surface pressure. We derived these meteorological variables
from the three reanalysis products (ERA-5, MERRA-2, and GLDAS-2.0%7). Since
PGF reanalysis lacked upward short- and long-wave radiation output and thus net
radiation, we used available meteorological outputs from GLDAS-2.0 instead,
which was forced entirely with the PGF input data.

Ep:0.408~A‘(R,,*G)«Fy‘%wtf(esfea)

A4y (14034 u,) @

- RH
VPD=¢, —¢, = 0.6108 - e+irs - [ 1 — — )
st 100

Where Ep is the potential evapotranspiration (mm day~!). R,, is net radiation at the
surface (MJ m~2day~!), T is mean daily air temperature at 2m height (°C), u, is
wind speed at 2 m height (ms~1), (e, — ¢,) is the vapor pressure deficit of the air
(kPa), RH is the relative air humidity near surface (%), A is the slope of the
saturation vapor pressure-temperature relationship (kPa°C~1), y is the psychro-
metric constant (kPa °C~1), G is the soil heat flux (MJ m~2 day—, is often ignored
for daily time steps G = 0).

We derived the daily evapotranspiration data from the Global Land
Evaporation Amsterdam Model (GLEAM v3.3a%8), which is a set of algorithms
dedicated to developing terrestrial evaporation and root-zone soil moisture data.
GLEAM fully assimilated the satellite-based soil moisture estimates from ESA CCI,
microwave L-band vegetation optical depth (VOD), reanalysis-based temperature
and radiation, and multi-source precipitation forcings. The direct assimilation of
observed soil moisture allowed us to detect true soil moisture dynamic and its
impacts on evapotranspiration. Besides, the incorporation of VOD, which is closely
linked to vegetation water content®®7?, allowed us to detect the effect of water
stress, heat stress, and vegetation phenological constraints on evaporation. Other
observation-driven ET products from remote-sensing physical estimation and flux-
tower are not included due to their low temporal resolution (i.e., monthly)”! or
short duration’273, ET outputs of reanalysis products are not considered in our
analysis, because the assimilation systems lack explicit representation of inter-
annual variability of vegetation activities and thus may not fully capture
hydrological response to vegetation changes®263:67,

We used land cover maps for the year 2001 from the Moderate-Resolution Imaging
Spectroradiometer (MODIS, MCD12C1 C574) based on the IGBP classification
scheme to exclude water-dominated and sparely-vegetated pixels (like Sahara, Arabian
Peninsula). All climate and land cover datasets mentioned above were remapped to a
common 0.25° x 0.25° grid and unified to daily resolution. The main characteristics of
the datasets mentioned above are summarized in Supplementary Table 1.

Outputs of CMIP6 simulations. To understand how modeled dry season changes
compare with observed changes, we analyzed outputs from the “historical” (1983-
2014) runs of 34 coupled models participating in the 6th Coupled Model Inter-
comparison Project’> (CMIP6, Supplementary Table 3). We used these models
because they offered daily outputs of all climatic variables needed for our analysis,
including precipitation, latent heat (convert to E), and multiple meteorological
variables for Ep (air temperature, surface specific humidity, wind speed, and net
radiation). All outputs were remapped to a common 1.0° x 1.0° grid and unified to
daily resolution.

Defining dry season length and timing. For each grid cell and each dry season
definition (P < Ep, P<E and P< P), we conducted a harmonic analysis to define the
number of dry and wet seasons experienced per year, through a Fourier transform of
the entire daily time series!>1676, We calculated the ratio of harmonic amplitudes at
frequencies of one and two cycles per year to determine seasonality (Fig. 1a, Sup-
plementary Fig. 2). A ratio greater than 0.75 indicates that the harmonic of two cycles
per year (i.e., two dry and wet seasons, Fig. 1c) may fit the time series better, otherwise
(ratio < 0.75) there is more likely a single dry/wet season (Fig. 1b).

The three definitions of “dry season” that we assessed were: (i) the period when
daily precipitation (P) is persistently less than daily potential evapotranspiration
(Ep), i.e., P < Ep, (ii) the period when daily precipitation is persistently less than
daily actual evaporation (E) i.e., P < Ep, and (iii) the period when daily precipitation
is persistently less than the multi-year average daily mean precipitation (P), ie.,
P < P. Other definitions of “dry season” (e.g., based on a specific rainfall
threshold’”-78) have been used in previous research. We chose these three
definitions because they can be applied across the entire tropical land area (i.e., they
are not locally determined by metrics such as a specific local rainfall threshold
value). The dry season should be continuous, not the total number of intermittent
dry days. We ensured the continuity for the definition with two rules: (1) regions
with bimodal rainfall regime were identified through previous harmonic analysis
and discussed separately, for which each single dry season should be continuous,
(2) we adjusted the widely-used P< P dry season algorithm!®16 to identify the
arrival and end of the dry season for all the three definitions, which can avoid the
influence of short-term climate anomalies. First, we calculated the mean P, Ep, and
E for each day (j) of the calendar year (Pj, Ep;, and E;) and the daily mean rainfall P
for all datasets for 1983-2016. To reduce the synoptic noise, we smoothed P, Ep,
and E with a 30-day running window. Then, we calculated cumulative P — Ep, P —
E, and P — P on day d, ranging from 1 Jan to 31 Dec, as:

d
A(d)= X P; — Ep (3)
j=1
B(d) = i P —E 4)
Jj=1
cd) = f P,—P 5)
j=1

A(d), B(d), and C(d) increase at day d when the daily precipitation is above the
daily mean rainfall, daily potential evapotranspiration or actual evaporation, and
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decrease when the daily precipitation is below the corresponding diagnostic criterion.
We defined the day of maximum A(d), B(d), or C(d) as the arrival of the
climatological dry season (DSA) and the day of minimum cumulative value as the end
of the climatological dry season (DSE). For regions with two or more dry seasons per
year, we detected all days of maximum and minimum in the cumulative curve
(Fig. 1c), but we used only the four days marking arrivals (dsal, dsa2) and ends (dsel,
dse2) of the two longest dry seasons for our analysis, usually a boreal summer
(June-August) dry season and a boreal winter (December-February) dry season.

We calculated DSA, DSE, and DSL under each definition for each dataset
(Supplementary Fig. 4), and we calculated the mean DSA, DSE, and DSL under
each definition in Fig. 2 and Fig. 3. The mean annual precipitation values and the
mean annual temperature values in Fig. 3 were derived from the ERA-5 datasets.
We examined the uncertainty by calculating the standard deviation among all
ensembles of P, Ep, and E under each definition.

To assess temporal changes, we calculated the arrival and end dates individually
for each year from 1983 to 2016. We calculated the cumulative A(d), B(d), and C(d)
for each day from DSA — 60 to DSE + 60 for each year instead of the entire
calendar year from 1 Jan to 31 Dec, to ensure the correct season was captured.
Since the dry season may potentially span multiple calendar years, the dry season
arrival and end are not computed for the first and last year of each record. For
regions with two dry seasons, the arrival and end dates were determined for the two
dry seasons separately. For those regions, we calculated the cumulative function
A(d), B(d), and C(d) for each day during DSA1 — 45 to DSE1 + 45 (for the first dry
season detection) and DSA2 — 45 to DSE2 + 45 (for the second dry season
detection). We used a shorter period (45 days, as opposed to 60 days used for
regions with one dry season) in order to better capture the characteristics of the
two dry seasons. Accordingly, DSL in days can be calculated as the difference
between DSE and DSA, or between DSE1 + DSE2 and DSA1 + DSA2 for cases of
two dry seasons. We calculated Water Deficit (WD) as the cumulative sum of P —
P, P—Ep, or P—E (dashed area in Fig. 1a), from the dates of DSA to DSE.

Long-term trend analysis. To assess temporal changes, we calculated annual dry
season diagnostics (DSL, WD, DSA, DSE) individually for each year from 1983 to
2016. We estimated the trends of dry season diagnostics and climatic variables
from the ordinary least squares linear regression. We defined each trend as the
slope of this linear regression, and we determined statistical significance (P value)
using two-tailed Student’s ¢ tests. We used the nonparametric Mann-Kendall trend
test to detect whether a significant monotonic increasing or decreasing trend exists,
and to provide additional verification for the robustness of the linear regression
trend analysis, as it is less sensitive to the beginning and end of the analysis
periodlé. In addition, we calculated the time series of DSL, DSA, DSE, WD, and
meteorological variables at the regional aggregated level using area-weighted
averaging over the southern Amazonia, northern and southern central Africa, and
southwestern Africa, to maximize large-scale features while minimizing local-scale
variability and noise!®. We estimated the linear trends at the regional level as at the
grid level (Supplementary Table 2).

Considering the inconsistency of trends across precipitation and
evapotranspiration datasets, we judged the level of consistency with the following
criterion??: “very likely” if the sign of the trend was the same and significant
(P<0.05) in six to eight precipitation datasets and no significant changes in the
others, “likely” if the sign of the trend was supported by four or five precipitation
datasets, “probably” if the sign of the trend was supported by one to three,
“uncertain” when conflict trends (i.e., both significant increase and decrease trends
existed) were found among different precipitation data sources, and “no change”
when no significant changes for all of the six datasets were detected. Arid and
humid regions (solid gray shaded area in Fig. 4) were excluded when calculating
the percent area, since there is no climatology wet or dry season, thus no trends
calculated under definitions of P<Ep or P<E.

Driving factors of Ep and E changes. To further illustrate the thermodynamic
mechanism driving higher atmospheric water demand, we disaggregated the
individual contributions of four meteorological variables (i.e., T, RH, u,, and Rn) to
the Ep trends. We derived the contribution of a certain meteorological variable I to
Ep change (C)) as the difference between the Ep calculated with all variables
changing (i.e., ALL) and that calculated with I fixed at its daily climatological values
(i€, Iqim) (Eq. 6). I can be air temperature T, air humidity RH, surface wind speed
u, or surface net radiation Rn. We calculated the linear trends of Ep and the
respective contributions of meteorological variables for the period 1983-2016
(Fig. 5).

Cr = Epyy, — Ep, (6)

As for E, GLEAM estimated this flux through reducing Ep by an evaporative
stress factor (S; E = Ep x S + Ei), based on satellite observations of Vegetation
Optical Depth (VOD) and assimilated soil moisture®8. The latter are calculated
using a multi-layer running-water balance. Interception loss (Ei) is calculated
separately in GLEAM using a Gash analytical model, but its contribution to overall
E changes was negligible. Hence, we analyzed changes of these parameters (S,
VOD, Soil Moisture) representing the constraints of soil moisture and vegetation
water content on evaporation. Daily VOD was derived from VODCA Ku-band”?,
but only available for the period 1987-2016.

clim

Data uncertainties. Due to the insufficient and unevenly distributed observation8?
in the rainfall data over tropics, we integrated daily meteorological station recode
(Supplementary Fig. 13), gauge-based, satellite-combined, and reanalysis datasets
to study the variations in precipitation and associated dry season change. Our
analyses unravel an overall trend of tropic dry season lengthening and identifying
some hotspot regions of changes. However, there are some discrepancies in regions
like central Africa and Amazon Basin that may have resulted from data uncer-
tainties and the different approaches used to generate homogeneous climate
records. Gauge-based and satellite-combined datasets are quite sensitive to the
number and density of observations used, but the observational station is sparse in
these regions with large number of missing values in daily record (Supplementary
Fig. 13). Different interpolation methods were adopted to fill data gaps and pro-
duce grid data, which might have generated errors in the rainfall products. For
reanalysis, uncertainties are mainly caused by the biases in reanalyzing models,
especially in regions with intricacy land surface process, such as Amazon rainforest.

For the Ep datasets, we used three independent sets of reanalysis data to verify
the changes of atmospheric water demand. Our analyses indicate consistent rising
in dry-season water demand, which exacerbated the lengthening of tropical dry
seasons, from all datasets in southern Amazonia and southern central Africa.
However, only a single dataset was used for E, due to the limited data availability at
daily intervals, so uncertainty in evapotranspiration estimation has not been fully
considered. Actual terrestrial evapotranspiration was modulated not only by
surface meteorological conditions and soil moisture but also by the physiology and
structures of plants. Changes in nonclimatic factors such as elevated atmospheric
CO,, nitrogen deposition, and land covers also serve as influential drivers.
Uncertainties from those complex processes all contributed to the unclear
uncertainty in E estimation. Therefore, more efforts should be made to identify and
reduce these uncertainties.

Data availability

All observational and reanalysis datasets that we used are publicly available. The daily
CHIRPS precipitation datasets are available from the following location: ftp://chg-ftpout.
geog.ucsb.edu/pub/org/chg/products/ CHIRPS-latest/. The daily satellite-observed
TRMM 3B42 precipitation datasets are available at https://disc2.gesdisc.eosdis.nasa.gov/
data/TRMM_L3/TRMM_3B42_Daily.7/. The daily CPC-U precipitation data are
available at https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html. The daily
GPCC precipitation datasets are available at https://www.dwd.de/EN/ourservices/gpcc/
gpcc.html. The daily PERSIANN-CDR precipitation data are available at https://www.
ncei.noaa.gov/data/precipitation-persiann/access/. The daily MSWEP v2.8 precipitation
data can be obtained from http://www.gloh20.org/mswep/. The Reanalysis products
MERRA-2 are available at https://disc.gsfc.nasa.gov/datasets?project=MERRA-2. The
climate variables of ERA-5 reanalysis are available at https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview. The PGF reanalysis
precipitation product is available at http://hydrology.princeton.edu/data/pgf/v3/0.25deg/
daily/. The GLEAM v3.3a datasets are available at https://www.gleam.eu. The land cover
product from MODIS (MCDI12C1 C5) is available at ftp://ftp.mpic.de/Kaiser/MODIS_
land_cover/0.05deg/. The VODCA products are open access at https://doi.org/10.5281/
zenodo.2575599.

Code availability
All computer codes for the process and analysis of the data are available from the
corresponding author upon reasonable request.
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