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a b s t r a c t 

Brain-age (BA) estimates based on deep learning are increasingly used as neuroimaging biomarker for brain 

health; however, the underlying neural features have remained unclear. We combined ensembles of convolutional 

neural networks with Layer-wise Relevance Propagation (LRP) to detect which brain features contribute to BA. 

Trained on magnetic resonance imaging (MRI) data of a population-based study ( n = 2637, 18–82 years), our 

models estimated age accurately based on single and multiple modalities, regionally restricted and whole-brain 

images (mean absolute errors 3.37–3.86 years). We find that BA estimates capture ageing at both small and large- 

scale changes, revealing gross enlargements of ventricles and subarachnoid spaces, as well as white matter lesions, 

and atrophies that appear throughout the brain. Divergence from expected ageing reflected cardiovascular risk 

factors and accelerated ageing was more pronounced in the frontal lobe. Applying LRP, our study demonstrates 

how superior deep learning models detect brain-ageing in healthy and at-risk individuals throughout adulthood. 
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. Introduction 

With the advent of large-scale magnetic resonance imaging (MRI)

tudies (e.g., UK Biobank, Sudlow et al., 2015 ; LIFE, Loeffler et al.,

015 ), the estimation of brain age (BA), and its contrast to the chrono-

ogical age of a person (diverging BA, DBA), have become an increas-

ngly predictive imaging marker for brain health. Higher DBA relates

o accelerated cognitive decline, pathologies such as alzheimer disease

AD), hypertension and type 2 diabetes, as well as other lifestyle-related

ardiovascular risk factors ( Franke and Gaser 2019 ; Dadi et al., 2020 ).

owever, underlying alterations of neural structures reflecting the rela-
Abbreviations: MLENS, multi-level ensembles; CNN, convolutional neural network  

ropagation. 
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ionship between BA and such factors are not well known. BA has been

inearly estimated on predefined neuroimaging outcomes (e.g., cortical

hickness maps; Liem et al., 2017 ). Yet, feature extraction and prepro-

essing could lead to overconfidence w.r.t., or to the dismissal of, neural

roperties that can be relevant to BA. In contrast, deep learning (DL)

odels, specifically convolutional neural networks (CNNs; LeCun et al.,

989 ; Ji et al., 2013 ) are trained on raw data and provide more pre-

ise BA estimates ( Cole et al., 2017 ; Cole and Franke 2017 ). Particu-

arly on large MRI datasets CNNs converge to a minimal mean absolute

rror (MAE) of 2.14 years ( Peng et al., 2021 ; see also Jonsson et al.,

019 ; Feng et al., 2020 ; Kolbeinsson et al., 2020 ; Dinsdale et al., 2021 ;
22 
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evakov et al., 2020 ; Bashyam et al., 2020 ). Despite these advan-

ages, their complex architectures restrict straightforward interpreta-

ions of which image features drive their estimates, known as the black-

ox problem ( Samek et al., 2019 ; Samek et al., 2021 ). Several meth-

ds have been proposed to open the black-box ( Samek et al., 2021 ),

uch as perturbation and gradient techniques ( Baehrens et al., 2010 ;

imonyan et al., 2014 ; Zeiler and Fergus 2014 ; Sundararajan et al.,

017 ; Zintgraf et al., 2017 ; Smilkov et al., 2017 ), which also have been

pplied for BA predictions ( Levakov et al., 2020 ). While many of these

ethods highlight input areas or intermediate feature maps that are rel-

vant for the prediction, they do not indicate whether this information

ncreases or decreases the predictor output. For the continuous case of

A estimates this means that neither the pace of ageing processes (i.e.,

BA), nor the state of their progression (BA) can be inferred from com-

uted saliency maps. Conversely, the Layer-wise Relevance Propagation

lgorithm (LRP) highlights relevant areas in the input (image) that both

avour and dismiss corresponding output decisions ( Bach et al., 2015 ;

ontavon et al., 2018 ; Lapuschkin et al., 2019 ). LRP has been success-

ully used with DL in MRI-based classification tasks ( Böhle et al., 2019 ;

itel et al., 2019 ; Thomas et al., 2019 ). However, the biological alter-

tions that underlie ageing are continuous in nature, which raises more

hallenges for both the DL model, and, consequently, its interpretation.

Here, we therefore aimed to provide a novel, openly available anal-

sis pipeline extrapolating from a proof-of-concept simulation study to

he implementation of superior CNNs on multi-modal MRI with the ex-

lanation algorithm LRP. Specifically, we asked which neurostructural

eatures drive individual predictions and whether BA truly captures bio-

ogical ageing processes. On a group level we explored, how DBA is mod-

lated by cardiovascular risk factors, and how this relationship mani-

ests in distinct neural features. Based on previous findings, we hypoth-

sized that BA relies on grey matter atrophy which include (pre)frontal

nd mesiotemporal cortex and cerebellum, and that risk factors such as

besity, hypertension and type 2 diabetes correlate with higher DBA, re-

ected in augmented vascular pathologies such as a higher white matter

esion load. Importantly, opening the black box of DL image analysis is

xpected to reveal novel features of MRI-based neuronal properties that

ontribute to BA estimates, and thus advance our knowledge of brain

ealth in ageing. 

. Materials and methods 

.1. Data acquisition 

The LIFE Adult study ( Loeffler et al., 2015 ), a population-based co-

ort study, encompasses dense clinical screenings of more than 10,000

articipants coming from the area of Leipzig, Germany. Among oth-

rs, the screening included measures of height, weight, blood pressure,

lood-based biomarkers, cognitive performance and questionnaire bat-

eries on mental health, and lifestyle (for more details see: Loeffler et al.,

015 ). 

.1.1. Study sample and exclusion criteria 

Of the more than 10,000 subjects of the LIFE Adult study, 2637 par-

icipants underwent a 1-hour MRI recording session at baseline. Of those

articipants with MR-scans, 621 participants were excluded mainly due

o pathologies, leaving 2016 subjects for further analysis (age range

8–82 years, mean age = 57.32, median age = 63.0; n female = 946; see

ig. 2 and Fig. A3 in Appendix D ). Partially overlapping exclusion cri-

eria were previous strokes ( n = 54), excessive brain lesions rated by

rained medical staff ( n = 114), including white matter (WM) lesions

ated with a Fazekas ( Fazekas et al., 1987 ) score of 3 ( n = 44), radio-

ogical diagnosis of brain tumour ( n = 22), diagnosis of multiple scle-

osis ( n = 5), epilepsy ( n = 27), cancer treatment in the last 12 months

 n = 109), centrally active medication ( n = 275), cognitive impairments
2 
ndicated by a MMSE score < 26 ( n = 80), and poor quality MRIs (failing

 visually quality check, e.g., regarding motion artefacts, n = 41). 

.1.2. MRI data 

MRI data was acquired in a 1-hour recording session using a 32-

hannel head coil in a 3T Siemens Verio scanner. Various MRI sequences

ere applied (see Loeffler et al., 2015 ). For this study, we trained

odels on three MRI sequences used in clinical settings: i) structural

1-weighted images were taken with an MP-RAGE sequence (1 mm

sotropic voxels, 176 slices, TR = 2300 ms, TE = 2.98 ms, TI = 900 ms,

eld of view 256 ×240 ×176 mm 

3 , sagittal orientation) which is often

sed to quantify cerebrospinal fluid, white and grey matter among oth-

rs. ii) Fluid-attenuated inversion recovery images (FLAIR) were ac-

uired (1 mm isotropic voxels, 192 slices, TR = 5000 ms, TE = 395 ms,

I = 1800 ms, field of view 250 ×250 ×192 mm 

3 , sagittal orientation).

LAIR is highly sensitive towards lesions in the WM, which are known

o accumulate with age ( Tang et al., 1997 ; Ge et al., 2002 ; Beck et al.,

021 ). Lastly, iii) susceptibility-weighted magnitude images (SWI) are

sed to detect iron-deposits in the basal-ganglia ( Pfefferbaum et al.,

009 ; Bekiesinska-Figatowska et al., 2013 ), which could be linked to

eurodegeneration and cognitive decline ( Haller et al., 2010 ; Du et al.,

018 ; Thomas et al., 2020 ), and are used to discover brain haem-

rrhages. SWIs were recorded with a T2 ∗ -weighted pulse sequence

0.8 × 0.7 × 2.0 mm non-isotropic voxels, 64 slices, TR = 28 ms,

E = 20 ms, field of view 230 ×173 ×128 mm 

3 , sagittal orientation). 

.2. MRI preprocessing 

MRIs of the three sequences (T1, FLAIR, SWI) were saved in three

rocessing stages: raw , freesurfer volume (recon-all, FreeSurfer 5.3.0;

ischl 2012 ), and MNI stage (MNI152; Fonov et al., 2011 , 2 mm;

ia ANTs 2.2, Tustison et al., 2020 ). In the freesurfer volume stage,

LAIR and SWI images were linear registered (linear interpolation;

NTs 2.2) to the corresponding space of the T1-weighted images

‘brain.finalsurf.mgz’), which were subject to various intensity normal-

zation steps and a skull stripping procedure, which are all part of the

reprocessing steps in FreeSurfer (for more details see the Appendix

 ). For memory and processing efficiency, all images in all stages were

runed, i.e., their background was maximally removed, while keeping

he same volume shape in the respective stage and, for raw images,

espective sequence across all participants. These minimally-sized vol-

mes were constrained to have a 2-voxel margin around the full brain

f the largest brain in the whole dataset in the respective stage and se-

uence. Moreover, the image data of each subject was compressed by

lipping upper intensity values to 383 (255 + 50%), which affected an

nsignificant number of voxels ( < 0.001%), and subsequently, by re-

ormalizing the data between 0 and 255 (i.e., into 2 8 discrete inten-

ity values per voxel). The re-normalized images were then processed

s memory efficient arrays of single-byte, unsigned integers (here: uint8

ype numpy 1.18.1 arrays; Harris et al., 2020 ). 

.3. Prediction model architecture (MRI data) 

Ensembles have been shown to predict more accurately and reduce

odel biases ( Dietterich 2000 ), also in the domain of BA prediction

 Jonsson et al., 2019 ; Couvy-Duchesne et al., 2020 ; Dinsdale et al., 2021 ;

eng et al., 2021 ; Levakov et al., 2020 ). The individual predictions of

he base models were used to train and evaluate a linear head model

f the respective sub-ensemble, leading to a weighted prediction of the

hole ensemble. Subsequently, an additional linear top-head model was

rained to aggregate predictions over those sub-ensembles (see the fol-

owing paragraphs, and Fig. 1 ). 

.3.1. Base model 

The base model architecture was a 3D convolutional neural net-

ork (3D-CNN; LeCun et al., 1989 ; LeCun et al., 1998 ; Ji et al., 2013 ;
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Fig. 1. Multi-level ensembles (MLENS). MLENS trained on the different MRI sequences (T1, FLAIR, SWI; top: MLENS type i), and their combinations with 3 brain 

regions (bottom: MLENS type ii). The predictions of the sub-ensembles of each MLENS on the test set were used to train and evaluate the top-level linear head model. 
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ole et al., 2017 ), implemented in native Keras 2.3.1 ( Chollet 2015 ).

ase models were tested with two intermediate activation functions: i)

he commonly applied rectified linear units (ReLUs), and ii) leaky Re-

Us, which promise to overcome some of the drawbacks of absent gra-

ients in standard ReLUs resulting from the background of MRIs, i.e.,

ero value input during training ( Maas et al., 2013 ). From bottom up,

he network consists of 5 convolutional blocks (ConvB), each starting

ith a convolutional layer (n filters , size kernel ), followed by leaky ReLUs

alpha = 0.2), and a 3D-max pool layer (size pool = 3 3 , stride = 2 3 ). Then

he signal was flattened to a 1-D vector, and during training a dropout
3 
ayer (rate = 0.5) was applied. Finally, a fully connected layer (size = 64)

ith (leaky) ReLUs propagated the signal to the linear output neuron.

he bias at the linear output layer was set to the target mean of the

ataset (mean age = 57.32), all other biases were randomly initialized

round zero (Keras’ default). The network was trained to minimize the

ean squared error (MSE) w.r.t. chronological age, using the ADAM op-

imizer (learning rate = 5e − 4 ; Kingma and Ba 2015 ). The data for the

ase models were split to a training, validation and test set (8:1:1 ratio).

he training process on the training set was monitored on the validation

et. The reported model performances are the results of its evaluation on
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Table 1 

Prediction performances of both types of multi-level ensembles (MLENS type i, ii) and their respec- 

tive sub-ensembles and 3D-CNN base models (bm), measured in mean absolute error (MAE). To 

receive an age estimate for each subject, MLENS were trained in a 10-fold cross-validation approach 

such that each subjects lies once in an unseen test set. 

Ensembles Head model Base models 

mean MAE ± SD min MAE max MAE N bm, MLENS 

Multi-level ensemble (type i) 3.86 – – – 30 

T1 sub-ensemble 4.11 4.66 ± 0.28 4.03 5.50 10 

FLAIR sub-ensemble 4.16 4.64 ± 0.24 3.97 5.27 10 

SWI sub-ensemble 5.74 6.54 ± 0.63 4.93 7.88 10 

Multi-level ensemble (type ii) 3.37 – – – 45 

Cortical-T1 sub-ensemble 4.64 5.33 ± 0.31 4.67 6.09 5 

Cortical-FLAIR sub-ensemble 4.27 4.91 ± 0.35 4.05 5.81 5 

Cortical-SWI sub-ensemble 5.87 6.70 ± 0.54 5.52 7.88 5 

Sub-Cortical-T1 sub-ensemble 4.53 5.46 ± 0.46 4.28 6.65 5 

Sub-Cortical-FLAIR sub-ensemble 3.89 4.66 ± 0.44 3.94 5.97 5 

Sub-Cortical-SWI sub-ensemble 4.79 5.73 ± 0.52 4.64 7.02 5 

Cerebellum-T1 sub-ensemble 5.27 6.17 ± 0.40 5.50 7.40 5 

Cerebellum-FLAIR sub-ensemble 4.83 5.49 ± 0.40 4.76 6.62 5 

Cerebellum-SWI sub-ensemble 7.21 8.22 ± 0.74 6.75 10.55 5 
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he test set, and are given as the mean absolute error (MAE) for better

nterpretability. 

.3.2. Model ensembles 

Two types of multi-level ensembles (MLENS) were trained ( Fig. 1 ):

he first type consists of 3 sub-ensembles for 3 MRI sequences (T1,

LAIR, SWI), respectively. Each sub-ensemble has 10 base models (BM)

hat were independently trained on the same training data (whole brain

ata in freesurfer volume stage of its respective MRI sequence). Then, a

inear head model (HM) with weight regularization, i.e. ridge regression

alpha = 1.) implemented in scikit-learn 0.22.1 ( Buitinck et al., 2013 ),

as trained on the predictions P of the 10 BMs per sub-ensemble on the

alidation set (P val, BM 

= X train, sub-HM 

with shape: N val x 10; where N val 

s the number of samples in the validation set), and evaluated on the test

et (shape of X test, sub-HM 

: N test x 10; where X test, sub-HM 

= P test, BM 

). The

esulting predictions P test, sub-HMs of these 3 sub-ensembles on the test set

ere then used to train yet another head model on top of the MLENS in

 5-fold cross-validation (CV; X CV, top-HM 

= P test, sub-HMs of shape N test x

) approach to obtain aggregated predictions across all MRI sequences.

hat is, we used 80% of the sub-ensemble predictions to train the top

ead model, and received the final MLENS estimates for the remain-

ng 20% of unseen data (1 fold). To receive estimates for the other 4

olds, we repeated this process by reinitializing the weights of the top

ead model. Note, only after the training of the whole MLENS, we eval-

ated single sub-ensembles, that is, we computed their MAE on the test

et. This was done to compare the information gain between input MRI

odalities with respect to age (see Table 1 ). Hence, using the test set

redictions of the independently trained sub-ensembles for the training

nd evaluation of the MLENS top head model was still naïve about the

orresponding participants’ age in the respective test fold of the CV, and

nly aimed to aggregate and weight the different input modalities. 

For the second MLENS type, the MRI data (in MNI stage, i.e.,

NI152; see Section 2.2 .) was additionally masked in three different

rain regions defined by the three complementary atlases (see Appendix

 : Brain atlases). For each combination of region and MRI sequence

3 × 3), 5 base models were trained, leading to a total of 45 base models.

or each such combinatorial pair, its base model predictions were first

ggregated with a linear head model (as above). Then, a linear top-head

odel combined these sub-ensemble predictions on the test set in the

bove mentioned 5-fold-cross-validation fashion to receive predictions

cross all input feature pairs ( Fig. 1 ). 

Both MLENS types (i, ii) can be conceptualized as neural additive

odels ( Hastie and Tibshirani 1990 ; Agarwal et al., 2020 ), i.e. sub-parts

f the ensemble are trained on different input features. 
4 
To receive an age estimate for each subject, the training procedure

as run 10 times, such that each subject lies once in the test set. In each

f the runs the MLENS models were re-initialized. 

.4. Estimation of model uncertainty 

Model certainty was measured subject-wise on both model levels,

ver each sub-ensemble and across them. That is, on the sub-ensemble

evel, model (un-)certainty is expressed as the standard deviation around

he mean prediction of all its base models for each subject. Additionally,

5%-confidence intervals were computed for visual interpretation. Sim-

larly, the standard deviation across the predictions of all sub-ensembles

ndicates the overall (un-)certainty of the MLENS. Note, the latter could

lso be interpreted as information gain across input features. 

.5. Prediction analyser: layer-wise relevance propagation 

Layer-wise Relevance Propagation (LRP; Bach et al., 2015 ;

ontavon et al., 2018 ; Lapuschkin et al., 2019 ) is an algorithm that

rovides explanatory heatmaps in the input to machine learning mod-

ls, including non-linear deep learning models. To this end, the method

ecomposes the prediction 𝑓 ( 𝑥 ) of the model 𝑓 w.r.t. the input 𝑥 into rel-

vance scores 𝑅 . For deep learning models, this decomposition is com-

uted layer-by-layer down to the input space, while satisfying the con-

ervation criterion: 
∑

𝑅 = 𝑓 ( 𝑥 ) (for details, see Montavon et al., 2019 ).

n contrast to gradient-based and occlusion-based explanation methods,

RP is computationally efficient, since it only needs a single backward

weep. This is particularly important for large size MRI data. Moreover,

RP does not suffer problems such as shattered gradients or pathologi-

al minima ( Montavon et al., 2019 ; Samek et al., 2021 ), while it shows

imilarities to the benefits of gradient smoothing as in SmoothGrad

 Smilkov et al., 2017 ). In contrast to standard occlusion-based expla-

ation methods, LRP takes not only local but also global feature inter-

ctions into account that are crucial for the model prediction (however,

here can be occlusion-based methods formulated that overcome this

ocality issue; see Samek et al., 2021 ). Lastly, Arras et al. (2022) could

how in a ground-truth testbed developed for explanation methods that

RP performed best across 10 different algorithms. 

LRP, which has been mainly employed in classification tasks, can

e simply adapted to a regression problem ( Letzgus et al., 2022 ). Ar-

ificial neural networks (ANNs) used for classification usually have an

utput neuron for each class label in the employed dataset. LRP allows

racing the activation of each of these individual output neurons back

o the input space through the network layers following a set of rules

hat depend on the layer types (for details, see Montavon et al., 2019 ).
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hat is, LRP highlights areas in the input most relevant for the acti-

ation of the output neuron of interest (e.g., the neuron representing

he ground-truth label, or the neuron with the highest output represent-

ng the model prediction). Information for the prediction will result in

ositive relevance scores in the input, while negative scores reflect in-

ormation that the model considers as speaking against the respective

utput label. This feature of discretizing between positive and negative

vidence makes LRP an useful approach among other explanation al-

orithms (e.g., SmoothGrad; Smilkov et al., 2017 ) of which many are

sed in absolute terms, i.e., without discretizing between positive and

egative relevance (e.g., in Levakov et al., 2020 ). 

ANNs for regression problems, mostly have only one output neu-

on (or more in multivariate regressions). In our case, adopting LRP

or brain-age predictions means applying its algorithm starting at the

ingle output neuron of the regression model. This is analogous, and

athematically equivalent to choosing the output neuron representing

he ground-truth label of a given sample in a classification task. Dif-

erences are the task-specific objective function, the bias at the output

ayer, which we set to the distribution mean, and the accompanying in-

erpretation of the relevance maps. Setting the output bias to the sample

ean entails that positive relevance values indicate information towards

he upper bound of the regression domain, while negative relevance val-

es indicate the opposite (here: model evidence for a younger age). 

.5.1. Simulation study on LRP for regression 

We created two-dimensional images of tori on black backgrounds

t an intensity range comparable to T1-weighted MRIs that exhibited

nner and outer surface atrophies as a linear function of their age (20–

0 years) with a normally distributed variance, to simulate cortical at-

ophy and enlargement of cerebrospinal fluid space. Additionally, we

imulated that the older a torus was, the more lesions it accumulated

ithin its body, appearing as image hyperintensities. In contrast to

he atrophies, this accumulation of lesions was non-linearly increasing

ith age (i.e., onset of linear increase at age 40), also with a normally

istributed variance. For each torus, the location of atrophies and le-

ions were known allowing for the evaluation of the sensitivity of the

odel represented in the relevance maps (see Section 2.5.2 .). For the

mage details, please see the openly available code: https://github.com/

HEscher/XDLreg . We created 2000 tori, with a similar age-distribution

s in the LIFE MRI sample. On this dataset, we then trained a 2D-version

f the CNN as described above. Finally, LRP heatmaps were created on

amples of the corresponding test set similar as described in following

ection. Since these heatmaps served only a qualitive analysis, we did

ot run statistical tests between them as we did for the MRI case. 

.5.2. LRP for the MRI-based multi-level ensembles 

LRP was applied on the trained base models in one ensemble of each

ype (via iNNvestigate 1.08; Alber et al., 2019 ), using the best-practice,

omposite rules ( Montavon et al., 2019 ; Kohlbrenner et al., 2020 ) of LRP

or CNNs (alpha = 1) implemented in iNNvestigate as "LRPSequential-

resetA". Note that we ran the LRP analysis only on models with ReLU

ctivation functions, as it is recommended in iNNvestigate. 

For the evaluation of the heatmaps, we took the average of the vari-

us relevance maps across base models similar to Levakov et al. (2020) .

or between-subject analyses, we warped the subject respective

eatmaps to MNI space. Aggregations of relevance maps within each

ubject were performed subsequently. The contribution of individual

rain-regions to the model prediction was evaluated by mapping the

RP heatmaps to the merged brain-atlas, and the Juelich histological

tlas (see Appendix A : Brain atlases). Additionally, we ran significance

ests on the relevance maps with FSL 5.0.8 (randomize function; us-

ng 5000 permutations and threshold-free cluster enhancement, TFCE)

o determine brain areas which were statistically relevant for the BA

rediction ( Jenkinson et al., 2012 ). This was done, across all partici-

ants on their absolute aggregated relevance maps (one-sample t -test).
5 
bsolute relevance values were taken, since they reflect meaningful in-

ormation for a model, irrespective of the age of a participant’s brain;

onversely, relevance values of zero reflect areas in the image that the

odel ignored for its age estimates. Contrastive relevance maps (un-

aired two-sample t -test) were computed in a young (age ≤ 40 years)

ersus elderly (age ≥ 60 years) group on their signed aggregated rele-

ance maps. In older adults (age ≥ 50 years), we analysed in which brain

egions relevance is attributed as function of the diverging (or delta) BA

DBA : = y predicted-age - y true-age ) independent of chronological age. That

s, we ran a generalized linear model (GLM; FSL 5.0.8, randomize), with

elevance maps as regressand, and DBA as regressor, while controlling

or age as covariate. Additionally, we explored the role of a pathobiolog-

cal biomarker (see the following section for more details), specifically

ype 2 diabetes mellitus on the BA estimates within a wider, older age

ange (50–75 years), contrasting diabetics to healthy controls (unpaired

wo-sample t -test on their signed aggregated relevance maps). Lastly, to

est whether the MLENS capture individual WM lesions, we followed a

wo-step approach. First, we calculated for each individual a WM lesion

robability map using the Lesion segmentation toolbox ( Schmidt et al.,

012 ), and applied a threshold of 0.8. In a second step, we aligned these

inarized WM lesion maps to the relevance maps. For participants with

ore than 30 WM lesion voxels, we calculated the average relevance

er WM lesion voxel. If the MLENS were able to capture individual WM

esions and use them as an information source to predict higher age,

he calculated average relevance for these voxels should be positive. To

ncrease the sample size for all tests, we combined relevance maps from

he validation and test set. 

.6. Brain-age as a biomarker 

As an exploratory analysis, we correlated (Pearson’s R; SciPy 1.4.1;

irtanen et al., 2020 ; Bonferroni-corrected) DBA with a set of variables

nown to relate to accelerated brain ageing. 

These included cardiometabolic risk factors (BMI, waist-to-hip-ratio,

yperlipidaemia, hypertension, systolic blood pressure, type 2 diabetes,

lycated haemoglobin), genetic factors (apolipoprotein epsilon 4 risk-

llele, APoE4, which has been associated with AD; Strittmatter et al.,

993 ), gender, time of education, cognitive functioning (composite

core of executive functions, memory and processing speed, as reported

n ( Kharabian Masouleh et al. 2016 ; Zhang et al., 2018 ), and neural in-

egrity (here measured as the logarithm of the ratio between number of

esions and white matter volume). For this, we applied an overlapping

liding window approach over the full age range (width 10 years) to

odel age-related associations between DBA and the above-mentioned

ariables, and to minimize the effect of age on the prediction error it-

elf. In each window we calculated R between DBA and the respective

ontinuous variable. For the remaining categorical variables, which are

ll binary, Pearson’s R is equivalent to the Phi coefficient or Kendall’s

au coefficient that are usually applied for categorical variables. For

implicity, we report for both binary and continuous variables the cor-

esponding coefficient as R. To control for multiple comparisons, we ap-

lied Bonferroni correction taking the number of variables into account

 n = 12). 

. Results 

We implemented two types of m ulti- l evel ens embles (MLENS,

ig. 1 ) on three clinically relevant MRI modalities (T1-weighted, fluid-

ttenuated inversion recovery, FLAIR, and Susceptibility Weighted

maging, SWI) of a well-characterized population-based cohort study

LIFE-Adult; Loeffler et al., 2015 ; age range 18–82 years, n = 2016). 

Briefly, MLENS type I was trained on whole brain MRI with a sub-

nsemble for each sequence with ten 3D-CNN models (base models, BM).

ub-ensembles served to extract information on model certainty and to

ompute more robust BA estimates. To additionally explore the contri-

ution of three distinct brain regions (cortical, sub-cortical structures,

https://github.com/SHEscher/XDLreg
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Fig. 2. Brain-age prediction performance and model certainty of deep learning-based multi-level ensembles (MLENS) combining clinically relevant MRI 

sequences. Left panel: test set predictions of the MLENS type ii), trained on 3 2 combinations of MRI sequences (T1, FLAIR, SWI) and brain regions (cortical, subcortical 

structures, and cerebellum). Right: prediction error (in red) and model uncertainty (in blue) per participant. Model uncertainty is measured as the standard deviation 

across the predictions of the sub-ensembles. The modulation of both variables as function of age was modelled with a 3rd order polynomial (red and blue lines). 

Both plots are produced over the concatenated test sets of the 5-fold-cross-validation, which were used to evaluate the top-level head models of the ensemble. 
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nd cerebellum) to the BA estimate, MLENS type ii was trained on 3 2 

ombinations of the MRI sequences and the brain regions, while em-

loying 5 BMs for each combination. 

.1. Model prediction performances 

The MLENS type i had a MAE of 3.86 and performed slightly

etter than all its sub-ensembles (MAE T1 = 4.11, MAE FLAIR = 4.16,

AE SWI = 5.74; Table 1 ). The MLENS type ii had a smaller MAE of

.37 (see Fig. 2 for prediction accuracy and model uncertainty) and

as again superior to the performances of its sub-ensembles ( Table 1 ).

etween both MLENS, there were highly significant correlations be-

ween their predictions ( R = 0.97, p < 0.001) and their prediction errors

 R = 0.73, p < 0.001) on the test set. Note that these models were trained

ith leaky rectified linear units (ReLUs), while models trained with stan-

ard ReLUs performed worse (MLENS type i, MAE = 3.88; MLENS type

i, MAE = 3.69; see Appendix C Table A2 ). 

.2. Relevance maps of model predictions 

To verify the behaviour of the LRP algorithm and its correct inter-

retation in a regression task, we first performed a simulation study. 

The CNN model for the simulation task corresponded to a 2D-version

f one base model in a MLENS. It was trained on a simulation dataset

f abstracted head models (tori; Fig. 3 ), in which ageing was simulated

s the accumulation of atrophies and lesions. The model had a MAE of

.80 on the hold-out test set. The prediction model captured the simu-

ated ageing process in both its facets well, which is revealed by the LRP

elevance maps (i.e., heatmaps) highlighting the inner and outer bor-

ers (atrophies), and the added lesions within the older tori (30 + years;

ig. 3 ). Areas, where atrophies can occur were considered as informa-

ion bearing, i.e., they received both positive and negative relevance.

oreover, the model seemed to cluster information w.r.t. its regression

ask, which is represented in the unique sign of relevance over larger

reas (see both tori on the right, Fig. 3 ). That is, while there were ac-

umulations of atrophies at the border of some tori, the CNN also took

djacent lesions into account to aggregate the overall information in a

pecific region. Note that in some occasions this could lead to inversely

eighted relevance in single pixels or small areas (see upper left part of

reen box in Fig. 3 ). The sum over all distributed relevance r is a proxy

or the final model prediction 𝑝 = 𝑏 𝑡 + 

∑
𝑟 . If it is positive, the prediction
6 
 is greater than the initiated model target bias (b t ; here, set to the mean

ge of the sample: b t = 51.1 years), and vice versa for the negative case.

ence, the summed relevance represents the evidence over the whole

mage that the model accumulates to make its prediction. 

.2.1. Relevance maps of the ageing brain in individuals 

Qualitative LRP analysis revealed individual relevance maps high-

ighting brain areas that voted for higher or lower BA predictions. Over-

ll, we detected strong contributions from voxels in and around the ven-

ricles and at the border from the brain to meningeal areas, indepen-

ent of MRI sequence, while white-matter (WM) areas appeared to be

ess informative, except WM lesions in FLAIR images ( Fig. 4 a ). In older

articipants, voxels covering cortical sulcal structures were often more

elevant than in younger participants and voted more often in favour

f older BA. Also, the corpus callosum, the brain stem and areas in and

round the cerebellum appeared to be relevant structures, from which

he models gained information for both younger and older participants.

verall, in all three major brain components (GM, WM, and cortical

pinal fluids, CSF), there was a linear increase of relevance scores as

unction of age, being strongest in GM, and weakest in CSF (see Fig. A4

nd Table A5 in Appendix E ). 

Both types of MLENS (whole-brain type i and region-based type ii)

ound similar brain structures important for their prediction ( Fig. 4 b ).

isually most recognizable are areas around the ventricles, and subject

pecific sulci, e.g., in the cortex and cerebellum. 

.2.2. Statistical relevance maps over the adult lifespan 

Quantitively, permutation-based one-sample t-tests (5000 permuta-

ions, threshold-free cluster enhancement, TFCE, and family wise error,

WE-corrected p ≤ 0.05) on combined relevance maps of the validation

nd test set (n T1 = n FLAIR = 402, n SWI = 314) of one MLENS type i re-

ealed that on average, in all 3 MRI sequences, nearly the full brain

ontains meaningful information about BA ( Fig. 5 ). The base models

rained within the T1 sub-ensemble, gained most information in the lat-

ral ventricle areas, corpus callosum, pre- and postcentral gyri in the

otor and sensorimotor cortex, operculum, and all grey matter (GM)

order areas including the frontal pole, temporal and visual poles and

rainstem, and cerebellar borders. In the FLAIR sub-ensemble, most rel-

vance was found around lateral ventricles, anterior temporal gyri, the

re- and postcentral gyri, and WM areas including cingulate gyrus, cor-

us callosum and fornix. Base models of the SWI sub-ensemble had a
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Fig. 3. Analysis of simulated ageing in artificial tori. Top left: Summed relevance per predicted sample in the test dataset, reflecting the model prediction relative 

to the sample mean (i.e., target bias = 51.1 years). That is, this global conversation property entails that all distributed relevance R in the input space of a given 

image x reflects the model prediction:, where R i is the relevance at pixel i ( Montavon et al., 2019 ). Bottom left and right column: three image samples of tori (T[ age ]) 

with their corresponding LRP relevance maps overlaid. Grey boxes: Details of relevance maps of tori T41 (green) and T63 (blue), respectively. Here, arrows indicate 

added lesions, while mint-green pixels at the inner and outer borders of the tori indicate ground-truth atrophies. Note that intact matter is predominantly attributed 

with negative (blue-turquois) relevance, indicating a younger age, while lesioned or atrophied matter is attributed with positive (red-yellow) relevance pointing to an 

older age. Colour coding: relevance values were symmetrically clipped around zero at the 0.99-percentile, then normalized (r norm ) and the corresponding colourmap 

was multiplied by a factor of 5 for better contrasts. Note, while the model predictions are continuous, we deliberately decided for a binary colour scaling to better 

contrasts the lower (young) and upper (old) bound of the regression. 
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tronger focus on GM areas in the visual pole and occipital lobe, limbic

reas, corpus callosum, WM fornix, internal capsule and on subcortical

uclei and brainstem areas, including striatum, subthalamic nucleus,

aphe and substantia nigra. For an analysis of the differences between

odalities see Appendix F . 

Next, we compared the LRP heatmaps of the young (age ≤ 40 years,

 = 61) versus older cohort (age ≥ 60 years, n = 243). Areas show-

ng greater relevance in older compared to younger brains (TFCE, FWE-

orrected p ≤ 0.5) were found in the T1 sub-ensemble of MLENS type i

n lateral ventricles, corpus callosum, amygdala, cerebral WM, particu-

arly paracingulate gyrus, opercular cortex, and (secondary) somatosen-

ory cortex. For FLAIR, there were increased relevance values found

n cerebellum (specifically, left and right crus I-II), caudate, inferior

rontal gyrus, pars triangularis, insular cortex, and inferior parietal lob-

le. For the SWI sub-ensemble, frontal pole, frontal orbital cortex, Infe-

ior frontal gyrus, pars triangularis, praecuneus, basal nuclei including

utamen and caudate, and occipital pole showed higher (i.e., positive)

elevance on average ( Fig. 6 a ). 

Lastly, based on our binarized WML probability maps, 654 partic-

pants had more than 30 WML voxels. the average relevance in WML
 p  

7 
oxels was significantly higher (i.e., 319 times) than the expected rele-

ance per brain voxel (M diff = 0.001, d = 0.9, t(653) = 22.95, p < 0.001).

.2.3. Relevance maps in diabetes and accelerated brain ageing 

To explore the role of health-related risk factors on BA, we con-

rasted the LRP relevance maps of subjects with type 2 diabetes ( n = 29)

ith healthy subjects ( n = 217) in the age range of 50 to 75 years

mean age = 65.61). For the T1 sub-ensemble (MLENS, type i), clusters

f higher positive relevance (non-healthy > healthy) were found to be

ignificant in the pre- and postcentral gyrus near the cortico-spinal tract

n the primary motor cortex (TFCE, FWE-corrected p ≤ 0.011), corpus

allosum and cingulum (TFCE, FWE-corrected p ≤ 0.02; see Fig. A7 in

ppendix G ). For the other two sub-ensembles (FLAIR, SWI), there were

o clusters indicating significant regional differences. However, there

as a high spatial correspondence between t-maps of the T1 and FLAIR

ub-ensembles ( Fig. 6 b ). 

We further estimated the change in relevance maps as function of

BA, i.e., the signed prediction error, in an older cohort (age ≥ 50,

ean age = 67.07, n = 134), while controlling for age (as 2nd order

olynomial regression; cf. Fig. 2 ) . Accordingly, all clusters indicating a
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Fig. 4. Exemplary individual LRP 

heatmaps (a) of multi-level ensemble 

(MLENS) type i trained on whole brain 

data. Rows: three participants (S1-S3) 

drawn from different age groups. Columns: 

three MRI sequences (T1, FLAIR, SWI), 

individually sliced in all three axes to 

highlight crucial areas that are unique to 

each participants’ age estimate. Next, to 

more global intact (mostly in young S3) 

or atrophied tissue (S1, S2), e.g., at the 

cortical surface, LRP also reveals smaller 

structures such as white-matter lesions 

(S1, FLAIR; which the model associates 

with higher age; see Section 3.2.2 .), 

vessel expansions and putative small iron 

depositions, e.g., in the form of cerebral 

microbleeds (S1, SWI; see Discussion) 

driving the BA estimation. Relevance maps 

per subject were aggregated over the base 

models of each sub-ensemble. (b) LRP 

heatmaps of regional (top row, type 

ii) and whole-brain (bottom row, type 

i) MLENS in elderly subject (S1) . Here, 

models were trained on FLAIR data of cere- 

bellum (left), subcortical structures (mid), 

and cortex (right), or of the whole-brain, 

respectively. For comparison, we warped 

the heatmap of whole-brain MLENS type 

i from subject space to MNI152 space (cf. 

top row in a ). Note, that the average age 

of the cohort that was used to compute 

the MNI152 brain-space was 25.02 ± 4.9 

years ( Fonov et al., 2011 ). Hence, the 

elderly subject S1 is warped to an ag- 

gregated young brain, which might lead 

to the impression that atrophies are less 

pronounced. Colour coding: as in Fig. 3 . 

Negative relevance scores (blue-turquois) 

represent model evidence in the input 

towards a younger age, and positive 

relevance (red-yellow) shows evidence 

towards a higher age. 
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ignificant association spatially corresponded to areas found in the BA

nalysis, however, accelerated ageing (DBA) was more strongly related

o higher relevance values in specific regions (see Fig. A8 in Appendix

 ): for the T1 sub-ensembles (MLENS type i) this difference was found

n frontal pole, brain stem, outer cerebellar boarders, WM including the

ortical spinal tract, putamen, caudate, amygdala, pre- and post-central
8 
yri, and cingulate gyri. For the FLAIR sub-ensemble, primarily pos-

erior region showed significant associations, including occipital and

arietal pole, lingual gyrus, and cerebellum (crus I and II, V, VI). Fi-

ally, for the SWI sub-ensembles, posterior and anterior regions showed

ignificant associations, including the frontal pole, frontal orbital cor-

ex, occipital pole, cerebellum (crus I and II, vermis VIII), but also some
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Fig. 5. Relevant areas for brain-age predictions across adult lifespan. T-maps of one-sample t -test over aggregated, absolute relevance maps shown in several 

brain slices. Left column: t(2,16); MNI152 z-axis range: 3–74. The wider range of t-values shows that the model uses information from the whole brain for its age 

estimates. Right column: 3D-projection of t-maps focusing on higher t-values narrowly clipped for each MRI sequence, separately. These narrower t-maps highlight 

areas which dominate the model estimates. Top row: tested on the T1 sub-ensemble (Iype i; n = 402, t max = 23.61). Mid row: FLAIR sub-ensemble ( n = 402, 

t max = 25.82). Bottom row: SWI sub-ensemble ( n = 314, t max = 16.07). The relevance scores were drawn from one of the MLENS type i models. 

9 
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Fig. 6. (a) Contrastive relevance maps of young vs. elderly participants. T-maps of two-sample t -test over relevance maps in the young and elderly group. Here, 

testing shows in which areas the relevance is greater in elderly (age ≥ 60 years) than in the young (age ≤ 40 years) group. Relevance maps were aggregated within 

each sub-ensemble of one of the MLENS type i models trained on T1 (top), FLAIR (mid), and SWI (bottom) data, respectively. (b) Contrastive relevance maps of 

healthy vs. diabetic participants T-maps (2, 6) of two-sample t -test show in which areas the relevance is greater in participants with type 2 diabetes than in healthy 

controls of the older cohort (50–75 years). Relevance maps were aggregated within each sub-ensemble of one of the MLENS type i models trained on T1 (top), and 

FLAIR (bottom). Note, only for T1 significant regional differences were found between the groups (see TFCE FWE-corrected maps in Fig. A7 in the Appendix G ). 

However, t-maps of T1 and FLAIR sub-ensembles show high correspondence (sliced in all three axes at x = − 18., y = 18.1, z = 28.1). 

10 
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Fig. 7. Relationship of diverging brain-age to biomarkers and lifestyle factors. Correlations (R) in overlapping sliding windows (width 10 years) between 

prediction errors (DBA) of both models (blue: type i; orange: type ii MLENS) and LIFE variables. Note, Kendall’s Tau for binary variables is equivalent to Pearson’s 

R that is used for the correlation analysis of continuous variables; we therefore name all correlations R for simplicity. Red rhombus: Bonferroni-corrected ( n = 12) 

p-value ≤ 0.05 per bin. Variables: education : time of education in years. bmi : body-mass-index. waist2hip : waist-to-hip-ratio. systolic BP : systolic blood pressure. APoE4 : 

apolipoprotein epsilon 4 risk-allele carrier status. HbA1c : glycated haemoglobin. Log lesionload-WM-ratio : logarithmised ratio between number of lesions and white 

matter volume. Binary variables: hypertension, diabetes, hyperlipidaemia, APoE4: no = 0, yes = 1. gender: female = 0, male = 1. 
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ore left-lateral parieto-temporal WM structures close to putamen and

perculum (for all sub-ensembles; TFCE, FWE-corrected p ≤ 0.05). All

tatistical maps in the figures above can be found in the following

euroVault collection: https://identifiers.org/neurovault.collection:

2784 . 

.3. Diverging brain-age and its relationship to other biomarkers 

We found in the younger cohort (age < 45 years) that higher DBA

orrelated with cardiovascular risk factors such as hypertension and hy-

erlipidaemia according to exploratory correlation analyses, which were

un on the hold-out test sets ( Fig. 7 ). In older subjects (age > 60 years)

he most prevalent positive association of DBA was found with type 2

iabetes and accordingly, but weaker with glycated haemoglobin levels
 t

11 
HbA1c). BMI, waist-to-hip ratio and WM lesion load showed positive

ssociations with DBA in participants almost across the full age range.

eak but relatively consistent trends appeared for the effect of gender

age > 30 years, where men had a higher BA on average) and the cogni-

ive composite score, which showed a negative relationship with DBA.

here was nearly no evident association between DBA and the pres-

nce or absence of an Apolipoprotein E epsilon 4 gene allele (APoE4),

ystolic blood pleasure or for higher education. Note, bivariate correla-

ions were run in a sliding-age-window approach without adjusting for

ossible confounders; for multiple comparison a Bonferroni-correction

as applied. While the here applied sliding-window approach aims to

educe the age-bias in DBA ( Fig. 2 ), in a further analysis, we regressed

his effect out over the full age range, before running the same correla-

ion analysis (see Appendix H ). 

https://identifiers.org/neurovault.collection:12784
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. Discussion 

The estimation of age and deviance from expected ageing trajectories

rom brain images is a difficult task that has been solved to a surprisingly

igh accuracy using various DL architectures ( Cole et al., 2017 ; Cole and

ranke 2017 ; Jonsson et al., 2019 ; Feng et al., 2020 ; Kolbeinsson et al.,

020 ; Dinsdale et al., 2021 ; Peng et al., 2021 ; Levakov et al., 2020 ;

ashyam et al., 2020 ). We provide a further dimension to this challenge,

amely, the means to extract insight from the trained neural networks,

uch that neurobiological theories can be validated and novel hypothe-

es can be generated. Specifically, we demonstrate that our accurate

stimates of continuous brain ageing can be related back to neurostruc-

ural features, by employing interpretable (here using LRP) DL-ensemble

odels on multi-modal 3D-MRIs that are trained end-to-end (i.e., no

rior knowledge on brain features is induced to the model). Our anal-

sis demonstrates that grey matter changes and atrophies detectable in

he cortex, subcortex, cerebellum and brainstem, but also white matter

esions, as well as more global brain shrinkage represented in the larger

ize of ventricles and sulci drove the age estimates of the models. In fur-

her studies, this list of brain features should be validated further, for

nstance, by exploring the role of iron accumulations, cerebral microb-

eeds, or calcium depositions for the model estimates, which are asso-

iated with age and neural pathologies ( Haller et al., 2010 ; Du et al.,

018 ; Thomas et al., 2020 ). This happens to a degree that even parts of

he brain and single MRI modalities (including SWI) led to accurate and

omparable BA predictions. While voxels around the ventricular system

nd subarachnoid spaces were most informative for our model, the pro-

ression of ageing and its pace (i.e., BA and DBA, respectively) could be

elated back nearly to the whole brain. Our simulation model further-

ore revealed – as to be expected – that undamaged tissue (i.e., absence

f atrophies and lesions) is associated with (young) age. From a method-

logical perspective, this demonstrated how the LRP algorithm can be

ntegrated into a complex regression task on continuous ageing, and how

esulting relevance maps carry information about age-related changes.

oreover, we found that accelerated ageing (DBA), which is associated

ith pathologies (here type 2 diabetes), shows relevant indicators in dis-

inct brain areas, which could be differentiated by the complementary

nformation from different MRI sequences and brain regions which we

ed to the MLENS models, leading to overall better prediction results.

ith this, we established a novel DL-based pipeline for MRI analysis,

hich leverages the predictive advantages of this model class while at

he same time making its estimates interpretable for research and clini-

al applications. 

.1. Opening the black-box of deep learning predictions 

To understand the estimates of our DL models, we applied the LRP

lgorithm, which provides directed, i.e., sign-specific, relevance maps

n the input space. Since, at the point of model inference a classification

roblem is mathematically similar to a regression problem, LRP could

e straight-forwardly adapted to the purpose of our study (see Section

.5 .). We successfully validated this approach in the regression domain

ccording to a simulation study with a 2D-version of the model architec-

ure that we employed in the main study. We found that the DL model

aptures the simulated ageing processes well by identifying the corre-

ponding features. Explanations maps have to be interpretated carefully,

voiding potential confirmation biases of the researcher ( Adebayo et al.,

020 ). To validate the approach further, we ran additional simulations,

here age is not modelled with strong image contrasts as in lesions and

trophies, but as function of shape and gradual local intensity shifts,

espectively (for details see Appendix B ). Also these analyses showed

hat the model captures the relevant information in the image, namely

t the border of the torus for age estimations based on shape, and at the

ocal area which was subject to age-related intensity shifts ( Fig. A1 ). In

he MRIs, we compared WM lesion maps with the relevance maps and

ound that also here, the model detects the WM lesions and associates
12 
igher age with them. LRP comes with the advantage of being direc-

ional, i.e., it indicates not only that a certain input area is relevant for

 given prediction, but also whether it provides information in direction

o the upper (here old age) or lower bound (young age) of the regression

roblem ( Figs. 3 , 4 ). The sign of the sum of relevance (SoR) is arbitrary

n this case, essential is the magnitude of the value. Here, we chose to

et the bias at the output layer of the CNNs to the mean of the target

ariable (age). As a consequence, the SoR becomes negative for predic-

ions lower, and positive for estimates higher than the bias. The model

oes not only capture the features that represent the ageing process (at-

ophies and lesions), but also the absence of them. That is, for the young

orus it attributes (here negative) relevance also to its intact surface and

orders. Moreover, LRP shows that the CNN finds irregular occurring

eatures (here lesions) which were randomly placed. However, the in-

erpretation of the local attribution of relevance needs to be taken with

aution, as we observed that the model often generalizes relevance over

arger areas of the simulated tori. One possible explanation for this is

hat relevance might be clustered over bigger areas after being passed

hrough the intermediate pooling and convolutional layers in the net-

ork, which aggregate information over increasingly larger areas in the

omputed feature maps. Then, later layers (usually fully connected lay-

rs) make decisions over these pooled regions by attributing relevance

owards one of the main directions in the regression ( Kohlbrenner et al.,

020 ). 

.2. Normal and accelerated brain ageing 

Applying LRP in the BA case shows that the DL models integrate

nformation from the whole brain ( Fig. 5 ). However, we see also

hat neurostructural properties specific to individual participants are

etected, specifically in the cortical surface areas, around ventricles,

he corpus callosum, at the surface of the brain stem, and cerebel-

um, and distinct smaller regions in WM areas of the cortex. Ven-

ricles are known to increase in size with age due to regional or

lobal brain shrinkage ( Earnest et al., 1979 ). Also, cortical surface

 LeMay 1984 ; Kochunov et al., 2005 ; Jin et al., 2018 ), the corpus callo-

um ( Doraiswamy et al., 1991 ), cerebellum and basal ganglia ( Raz et al.,

005 ; Raz et al., 2010 ) among others are subject to alterations. While

az et al. (2005 , 2010 ) found no age-related volume changes in, e.g.,

rimary visual cortices and putamen, our model showed that both ar-

as were relevant for the BA estimation across the full life-span, and

ge-independent rate-of-ageing (DBA) in the older cohort (age ≥ 50

ears). This may have several reasons: in contrast to linear feature

elective models (such as those using regional volume in Raz et al.,

005 ; Raz et al., 2010 ), our DL-architectures are trained end-to-end, and

hus can incorporate information from diverse neural features, includ-

ng volume, but also region-specific sizes and shapes, tissue structures

tc. Within our model those features can be non-linearly related and

eighted, and lastly, our multi-modal MLENS leverage this capacity by

ncorporating complementary image-contrasts. 

Similarly, in contrastive relevance maps, we found that heightened

BA values for subjects with type 2 diabetes displayed regions that cor-

esponds to findings of recent animal models ( Muramatsu et al., 2018 )

nd known diabetes-associated degenerations in the sensorimotor areas

n humans ( Ferris et al., 2020 ). Moreover, our results support previous

ndings in diffusion imaging studies of changes in fibre bundles of the

ingulum ( Hoogenboom et al., 2014 ; Cui et al., 2020 ) and neighbouring

orpus callosum ( Yu et al., 2019 ). That these findings appeared only sig-

ificant in T1-weighted images, and not, as expected in FLAIR, might be

ue to the small sample size in the hold-out subset in combination with

he less specific contrast of FLAIR in the absence of lesions. However,

e found a strong spatial correspondence between the t-maps of both

odalities. 

We conclude that normal and pathologically driven ageing is not ex-

lusively represented in selective features (e.g., in the decline of regional

olume) but also in diverse neurostructural properties accentuated by
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o  
ifferent MRI sequences, throughout the whole brain. More specifically,

ur analysis pipeline revealed that an individual’s structural MRI car-

ies not only global, macrostructural hints towards its age trajectory,

ut also reliable information on age-related, subtle grey and white mat-

er changes, including WM lesions that occur all over the brain. While

he limited image resolution does not offer explanations at the cellu-

ar level, those ubiquitous, rather subtle changes stem most likely from

icro-changes, including oxidative stress, DNA damage, cell death and

nflammation, in neuronal, vascular and glial compartments of the brain

 Cole and Franke 2017 ; Pluvinage and Wyss-Coray 2020 ) that eventually

lter the magnetic properties and thus image contrasts of the respective

equences. We can further infer that all brain regions and different neu-

al properties that are highlighted with the different MRI sequences are

redictive w.r.t. age, i.e., the ageing process emerges in all these modal-

ties. This calls for a multi-modal approach towards brain-ageing rather

han restricting this foundational phenomenon to selective neural vari-

bles such as grey matter volume, and acknowledges the capability of

ommon structural MRI to reveal not only gross anatomical changes but

lso subtle microstructural changes with advancing age. 

.3. The benefit of multi-level ensemble models 

Both types of MLENS performed close to the state-of-the-art in the

omain of BA prediction. Note that small performance differences might

tem from our smaller dataset with a large age-range in comparison to

tudies that used, e.g., UK Biobank data ( n > 14,000 MRIs, age range

4–81 years; e.g., the state-of-the-art model of Peng et al., 2021 , for

rain-age predictions achieved a MAE of 2.14 years. In Fig.2 of their

ublication, we can estimate a MAE of 3.1 years for a similar amount

f training data, as we used in our study. This performance is almost on

ar with our model, MLENS type 2: MAE = 3.37. The difference is most

ikely explained by the smaller age-range in the UK Biobank). With our

LENS we demonstrated that i) ensembles are performing better than

heir base models, and ii) MLENS integrating diverse input features, here

RI sequences and brain regions, perform even better than ensembles

hat are only trained on one of these features. 

On a methodological side, this shows that due to the feature selective

raining the model is prone to specialize on properties inherent to the re-

pective feature (e.g., a brain region). Splitting the brain in sub-regions

nd feeding them to different models seems to push the respective mod-

ls (here MLENS type ii) to specialize on the characteristics of each brain

egion rather than learning filters that are generally usable across the

hole brain, however, this needs to be tested systematically. 

The variability of predictions between different DL models (here de-

ned as the uncertainty between base models, which was higher for age

roups with less MRI data) with an identical architecture and training

n the same data, underlines the importance of the aggregation over a

et of models (i.e., an ensemble) to reduce both the variance and bi-

ses of single networks. In summary, MLENS can not only compensate

or the stochasticity of single DL models, but also provide estimates of

odel certainty and insights on the relationship of input features and

rediction. 

.4. Brain-age predictions and their association with other biomarkers 

To investigate biological determinants of BA, we showed in an ad-

itional exploratory analysis that DBA was associated with cardiovas-

ular risk factors such as BMI, waist-to-hip-ratio and type 2 diabetes.

otably, we found that many of these associations depend on the age

f participants. For instance, despite the smaller sample size in our

ounger (healthy) cohort, we discovered a high correlation between

MI and the estimated BA (age < 40 years), which was also reported

n ( Kolenic et al., 2018 ) for younger participants with first-episode psy-

hosis (18–35 years). Also in mid-aged participants (40–60 years) we

aw a significant correlation, for whom previous studies found higher
13 
MI to be associated with cortical thinning ( Shaw et al., 2018 ). Simi-

ar to previous findings ( Kharabian Masouleh et al. 2016 ), also in the

lder cohort (60–80 years), a positive relationship appeared. Overall,

ith age the association between BA and BMI becomes weaker. More-

ver, we found a positive correlation between DBA and type 2 diabetes,

hich was reported in Franke et al. (2013) , and the corresponding rel-

vance map analysis showed overlapping evidence w.r.t. GM changes

s discussed above. Blood glucose levels (here HbA1c) showed relative

onsistent association across the cohort. With the estimates of MLENS

ype i this association could also be seen in the 20–35 years old, a re-

ult that corresponds to recent findings showing a negative relationship

bA1c and WM integrity in young, non-diabetic (i.e., healthy) adults

mean age 28.8 years, HbA1c < 5.7%; Repple et al., 2021 ), motivat-

ng further investigations. Overall, we found similar relationships of

BA and various clinical markers as summarized in ( Franke and Gaser

019 ), but not regarding ApoE-4 (cf. Raz et al., 2010 ). The found as-

ociation between DBA and gender should be taken with caution, since

emographic factors might have influenced the cohort composition in

ifferent age groups. Also, the gender difference is typically most pro-

ounced in younger ages ( Gur et al., 2002 ), while with menopause it

ppears to become smaller, brain-region specific (e.g., Ritchie et al.,

018 ; Raz et al., 2010 ) or is even absent ( Jäncke et al., 2015 ). While we

ound a consistent, slightly negative trend (age > 25 years) between DBA

nd cognitive performance, the correlation was not significant for most

ge strata; however, this association has been reported to be more pro-

ounced in patients with AD or mild cognitive impairments ( Gaser et al.,

013 ; Liem et al., 2017 ). Note that we excluded participants with AD and

ther neurodegenerative diseases from this study, in which the relation-

hip of DBA to cognitive performance, but also to associated biomarkers

uch as ApoE14 (see above) might be more pronounced. A very robust

ositive correlation, nearly across the full age range was found between

he WM lesion-load and DBA. The typical accumulation of WM lesions

ith higher age as well as their pathological consequences are widely

nown ( Beck et al., 2021 ; Dinsdale et al., 2021 ), and consequently and

onversely, validates the BA models, while in parallel, this highlights

he possibility that typical and pathological ageing share similar funda-

ental mechanisms. 

Clearly, these results indicate that BA is a reliable imaging marker

eflecting biological plausible age-related neural changes. As deviations

rom the chronological age correlate with known risk factors for brain

amage, BA can be considered as a biomarker of the brain health status

f a person. 

.5. Limitations and future research 

Several limitations need to be considered. First, despite the local

nformation we receive with the LRP heatmaps, they do not explain

er se what the biological mechanisms are that made the respective

ighlighted area relevant to the model. For instance, when considering

elevant voxels around ventricles, we do not know whether a model

racks the size of a ventricle or potentially alterations at the tissue

round it, or both. Further developments in interpretation algorithms,

uch as LRP could allow the detection of interactions between local and

lobal relevance structures and in addition reveal causal relationships

eyond correlation. Second, similar to Levakov et al. (2020) , we found

hat aggregating relevance maps compensated for the observed vari-

bility between heatmaps of single base models (for a discussion see

evakov et al., 2020 ). However, aggregation techniques can also cause

nformation loss, for instance, not all of the base models within an en-

emble might detect all WM lesions in an image. Third, the age distribu-

ion in the LIFE MRI dataset is non-uniform, with a majority of partici-

ants being 65 to 75 years of age. This introduces a bias in the training

ataset. Moreover, many papers on brain-age estimation reported a cor-

esponding prediction bias towards the mean age in the data ( Cole et al.,

017 ; Beheshti et al., 2019 ; Smith et al., 2019 ; Peng et al., 2021 ). We

bserved this bias also in our stimulation. Although our ensemble ar-
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hitectures compensate for the prediction bias towards the distribution

ean, this tendency could not be fully eliminated. Therefore, we used a

liding-window approach in the correlation analysis with other biolog-

cal markers, which attenuated this bias further. The assessment of the

ovariate shift (e.g., Sugiyama et al., 2007 ), nonlinear head-models, and

ver- or undersampling techniques, combined with data augmentation

ould be further means to tackle this bias. Moreover, it is to be expected

hat age-related structural changes systematically effect MRI intensity

istributions that models can exploit for their predictions; however, our

nalysis of relevance maps has shown that the models integrate biolog-

cally meaningful brain features across all age groups. Fourth, in future

esearch one could run several cluster analyses to find common rele-

ance patterns within, for instance, participants with certain pathologies

r between different age groups. These could then be related to inter-

retable structural properties, such as cortical thickness ( Frangou et al.,

021 ). Finally, the majority of studies cannot afford to scan thousands

f participants. To make the presented explanation pipeline more sus-

ainable, one could explore transfer learning techniques to adapt the

re-trained models to smaller datasets and different (target) variables.

ince our approach makes it possible to combine information from dif-

erent modalities and single out regions which show alterations in these

odalities, one might also extend it to incorporating further imaging

easures, e.g., diffusion imaging or resting-state studies in fMRI or EEG.

. Conclusion 

While certain brain areas shrink in volume more dramatically with

lder age than others, ageing processes emerge in the whole brain. Their

rogress and pace can now be accurately captured and interpreted by

L ensembles from various brain regions and structural MRI modalities

T1, FLAIR, SWI), proposing that higher age and the presence of cardio-

ascular risk factors contributes to regionally pronounced yet ubiquitous

hanges in the brain. Employing the LRP interpretation algorithm, esti-

ates of brain-ageing can thus be related back to established, gross but

lso subtle, most likely microstructural biological markers of the ageing

rocess. This bias-free computational approach yields insights into the

lobal nature of brain ageing as well as pathomechanisms. Finally, due

o its generalizability, this approach can be broadly applied across clin-

cal neuroscience, galvanizing the generation of data-driven hypotheses

nd boosting its applications in personalized medicine ( Esteva et al.,

021 ; Stenzinger et al., 2021 ; Binder et al., 2021 ). 

ata Availability 

Both the LIFE MRI data for model training and evaluation, and the

IFE biomarkers are health data, thus, according the GPDR of the EU, the

ccess to the data can only be granted after application at the Leipzig

esearch centre for Civilization Diseases ( LIFE ; https://www.uniklinikum-

eipzig.de/einrichtungen/life ). 

The code for the prediction and interpretation pipeline of the sim-

lation study can be found and downloaded at https://github.com/

HEscher/XDLreg . The code of the corresponding analysis of the MRI

ata can only be shared after request, since the current state of the

ode base contains information on subject IDs, which are supposed to

e unique for each data access which is granted by LIFE . 

Statistical maps of this study can be found in the NeuroVault collec-

ion: https://identifiers.org/neurovault.collection:12784 . Further data

ill be made available on request. 
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