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We investigate the impact of a bosonic degree of freedom on Yu-Shiba-Rusinov (YSR) states

emerging from a magnetic impurity in a conventional superconductor. Starting from the Anderson

impurity model, we predict that an additional p-wave conduction band channel opens up if a

bosonic mode is coupled to the tunnelling between impurity and host, which implies an additional

pair of odd-parity YSR states. The bosonic mode can be a vibrational mode or the electromagnetic

field in a cavity. The exchange couplings in the two channels depend sensitively on the state of

the bosonic mode (ground state, few quanta or classically driven Floquet state), which opens

possibilities for phononics or photonics control of such systems, with a rich variety of ground and

excited states.
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A spin-polarised impurity embedded in a s-wave superconductor creates spatially localised

and spin-polarised states inside the superconducting gap ∆, the Yu-Shiba-Rusinov (YSR)

states [1–5]. Such systems have recently gained renewed attention, since they provide a

promising avenue towards realising unconventional superconducting phases and Majorana

bound states [6–10]. This raises the question of how YSR states can be manipulated in a

controlled manner [11, 12]. A versatile pathway to control properties of solids is periodic

driving (Floquet engineering), which can be used to manipulate both quantum impurities

[13–16] as well as bulk properties [17, 18], such as band structures [19–21], magnetic interac-

tions [22–24] and superconductivity [25–29]. However, strong driving with time-dependent

classical electromagnetic fields inevitably leads to heating via (multi-)photon absorption. A

promising alternative direction is to enhance the light-matter coupling [30, 31] by compress-

ing the mode volume in a cavity to the extent that single photons or vacuum fluctuations

affect the material properties [32–39]. By embedding the impurity which gives rise to YSR

states into a cavity, the electromagnetic field can either couple directly to the electron tun-

nelling between the impurity and the host, or through infrared active vibrations which in

turn interact with the electronic states at the impurity. For a magnetic impurity in the

Anderson model coupled to two normal metal leads, both Floquet engineering by a classi-

cal electric field [15, 16] and coupling to a center of mass vibrational mode [40] have been

predicted to give rise to two-channel Kondo physics. One can therefore expect that strong

coupling to a photon or phonon can also open additional channels for the emergence of YSR

states. This could be used to control multi-channel YSR physics, which can arise in undriven

systems due to exchange scattering in different orbital channels [3, 41–45], due to spin-orbit

coupling [11, 46] or from two bands in a superconductor [47].

In this work, we show that a bosonic mode can activate an additional exchange scattering

channel for a magnetic impurity embedded in a superconductor, and investigate its impact

on the YSR states. For the coupling in an initial s-wave channel, present for transition

metal impurities [45], the boson-assisted tunnelling involves conduction band states of p-

wave symmetry, and therefore corresponds to a distinct conduction band channel in the

presence of inversion symmetry. As a consequence, an additional and independent pair of

YSR states with p-wave symmetry appears. Our results suggest the opportunity to control

the interactions in both channels through a cavity or a classical drive. This paves the way

towards phononics or photonics control of such systems, with a tunability of the energy and
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spin-polarisation of the YSR states as well as the nature of the ground state.

Model – We start with a single-orbital Anderson impurity which is embedded in a

s-wave superconductor. Assuming inversion symmetry around the impurity, conduction

electron states come in pairs related to space inversion, which we refer to as ±k. Fermion

operators ĉkσ are then decomposed into even (γ = +) and odd (γ = −) parity combinations,

âkσ,γ = 1√
2

(ĉkσ + γĉ−kσ). In this representation, the Hamiltonian reads

Ĥ = Ĥd + Ĥhost + Ĥω0 + Ĥhyb, (1)

Ĥd =
∑
σ

(εd − µ)n̂dσ + Un̂d↑n̂d↓, (2)

Ĥhost =
∑
kσγ

Ekα̂
†
kσ,γα̂kσ,γ, (3)

Ĥhyb =
√

2
∑
kσγ

Vk,γ(gQ̂)â†kσ,γ ĉdσ + h.c. . (4)

Here, Ĥd describes the impurity orbital (with fermion operators ĉ†dσ, n̂dσ = ĉ†dσ ĉdσ and spin

index σ) at the energy level εd well below the Fermi energy µ = 0, and with Coulomb re-

pulsion U . For simplicity, we consider the particle-hole symmetric case, with εd = −U/2.

(An asymmetric model would lead to an additional potential scattering term in the low

energy Hamiltonian, which plays a subordinate role here, since it implies an asymmetry in

the bound state wavefunction but does not create intra-gap states by itself.) The super-

conductor is included in Eq. (1) as a BCS mean-field Hamiltonian Ĥhost, written in terms

of Bogoliubov quasiparticle operators α̂†kσ,γ = ukâ
†
kσ,γ − σvkâ−k−σ,γ with excitation energy

Ek =
√

(εk − µ)2 + |∆|2, where εk is the single-particle energy and uk and vk are the usual

coherence factors. The term Ĥhyb describes the tunnelling between the host and the impurity.

We consider the coupling to an inversion-odd mode with displacement Q̂ = (b̂†+ b̂)/
√

2, such

as the electric field or vector potential of the cavity, or an infrared active phonon; Ĥω0 = ω0b̂
†b̂

refers to the free Hamiltonian of the bosonic mode (~ = 1). The tunnelling matrix element

Vk(gQ̂) between the impurity orbital and the host states k depends on Q̂, where g is an

overall dimensionless coupling strength. Under inversion symmetry (Vk (r) = V−k (−r)), it

can be decomposed into the even and odd channel,

Vk,γ(gQ̂) =
1

2

[
Vk(gQ̂) + γVk(−gQ̂)

]
, (5)

leading to the hybridisation term in Eq. (4). For g = 0, the impurity therefore hybridises

3



only with the even conduction band channel, while the bosonic mode activates the coupling

to the odd parity channel.

Low-energy Hamiltonian – Uncoupled from the mode, the low-energy Hamiltonian

Ĥeff of the system in Eq. (1) for U � V can be derived by using a conventional Schrieffer-

Wolff transformation (V is a k-averaged tunnelling in the absence of the bosonic mode):

Empty and doubly occupied impurity states are projected out, and we are left with the

impurity spin, which is exchange-coupled to the even parity conduction band channel via

the coupling constant J = 8|V |2/εd due to virtual tunnelling processes between impurity

and superconductor. A static impurity spin, Ŝd = Sẑ, therefore corresponds to a magnetic

impurity which gives rise to intra-gap states, the YSR states. Inheriting the symmetry of

the superconductor, these intra-gap states come in pairs of opposite energy ±E inside the

gap ∆, and have an electron u (r) and a hole component v (r). With the density of states

at the Fermi energy ρ (εf ) and the dimensionless constant β = πρ (εF ) JS/2, we have [1–3]

E

∆
=

1− β2√
(1− β2)2 + 4β2

. (6)

Since the interaction is antiferromagnetic J < 0 (due to εd < 0), an antiparallel (a parallel)

alignment of the electron (hole) spin is favoured. In this state, the impurity localises a

quasiparticle which partially screens the impurity spin Sd = (S − 1/2) ẑ. A ferromagnetic

interaction, which will be encountered later, favours a parallel spin alignment of the con-

duction electrons. For sufficiently strong exchange scattering, the bound state energies cross

zero at the critical coupling constant JC = ± (0.5πρ (εF )S)−1 which marks a quantum phase

transition (QPT). Beyond this point (|J/JC | > 1, E < 0), the ground state (BCS state with

free impurity spin) and the excited state (YSR state) interchange roles. The impurity then

localises a spin-down quasiparticle in the ground state, leaving one unpaired electron in the

superconductor [5, 48].

When the bosonic mode activates the coupling to the odd parity channel (−), we obtain

two pairs of YSR states, one in each channel. For a high frequency ω0 � J , we can project

the low energy Hamiltonian Ĥeff onto a fixed boson number n ≥ 0, Ĥeff=Ĥn,n
eff |n〉 〈n|. Virtual

tunnelling can now go together with the virtual absorption or emission of bosons. Since

Vk,+(−)(gQ̂) contains only even (odd) powers of Q̂, the coupling to the even (odd) parity

combination of the bath involves an even (odd) number of virtual bosons. The Hamiltonian

can be split into the Hamiltonian for the even (+) and odd (−) channel, Ĥn,n
eff = Ĥn,n

+ +Ĥn,n
−
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(see App. A),

Ĥn,n
γ =

∑
kσ

Ekα̂
†
kσ,γα̂kσ,γ −

∑
kk′γ

Jkk′

n,γ Ŝ
kk′

γ · Ŝd , (7)

Jkk′

n,+(−) =
∑

l=even(odd)

8

εd − lω0

V n,n+l
k,+(−)

(
V n,n+l
k′,+(−)

)∗
. (8)

Here, Ŝkk′
γ = 1

2

∑
σσ′ â

†
kσ,γσσσ′ âk′σ′,γ is the spin of conduction electrons with Pauli vector

σ = (σx, σy, σz), and the exchange interaction with the coupling constant Jkk′
n,γ is given in

terms of the matrix elements V n,n+l
k,γ = 〈n|Vk,γ(gQ̂) |n+ l〉; l ≥ −n is the number of absorbed

(l < 0) and emitted (l > 0) bosons in the intermediate state. For g = 0, the impurity couples

only to the even channel, since the odd channel requires the exchange of at least one virtual

boson.

Results – In order to obtain quantitative results, we consider a Peierls-type coupling,

for which the matrix element in Eq. (5) takes the form

Vγ =
V

2

(
e−ig(b̂

†+b̂) + γeig(b̂
†+b̂)

)
. (9)

This model describes a quantum dot which is coupled to a left (L) and right (R) lead, where

left and right are defined by the polarisation direction (k,− k→ L, R). It qualitatively (up

to neglecting the k-dependence of the matrix elements) accounts for an embedded impurity

in a crystal, coupled to a linearly polarised photon mode. The exchange constant in Eq. (8)

then reads (see App. A)

Jn,+(−) = J
∑

l=even(odd)

j2
n,n+l

1− lω0

εd

, (10)

with the matrix element 〈n| eiγg(b̂+b̂†) |n+ l〉 = i|l|γljn,n+l. The latter decays rapidly with

|l|, such that the coupling between different photon bands decays quickly to zero [34]. The

contribution to the exchange scattering is antiferromagnetic (ferromagnetic) if the interme-

diate state lies higher (lower) in energy than the ground state, corresponding to a negative

(positive) value of the energy εd − lω0. Thus, the interaction changes its sign by traversing

the resonance at εd = lω0. For the vacuum (n = 0), only the emission of virtual photons is

allowed (l > 0), so that resonances are absent (note that εd < 0) and the exchange inter-

action in both channels remains antiferromagnetic with J0,γ/J ≤ 1. With a single photon

in the cavity (n = 1), we can control the sign and strength of the interaction in the odd
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FIG. 1. Exchange coupling constant for the even (a) and odd (b) channel normalised by J < 0

as a function of g and |ω0/εd| for n = 2. Antiferromagnetic (ferromagnetic) exchange scattering

is coloured in red (blue). The cavity-uncoupled case corresponds to J2,+ = 1 (red) and J2,− = 0

(white). Areas around the resonances (|ω0/εd| = 1/2, |ω0/εd| = 1) are excluded.

channel by traversing the resonance at ω0 = −εd. A sign change in the even channel is

still not possible due to the missing two-photon resonance at ω0 = −εd/2 for l ≥ −1. Full

tunability of the exchange interaction in both channels can be already obtained by injecting

two photons in the cavity. Figure 1 shows the two-photon exchange constants J2,γ as a

function of ω0 and g; red (blue) corresponds to antiferromagnetic (ferromagnetic) couplings.

For g = 0, the impurity couples only to the even channel, J2,− = 0, while J2,+ reduces to

the bare exchange constant J < 0. For g > 0, the coupling to the odd channel opens up.

In the even (odd) channel, a ferromagnetic contribution is obtained right above the two-

photon resonance 2ω0 = |εd| (one-photon resonance ω0 = |εd|), where one negative energy

denominator 1/(εd − lω0) dominates. For the even channel antiferromagnetism dominates

in most regions away from the resonance due to virtual tunnelling without the exchange of

any photon (l = 0). It is enhanced below and close to the resonance, and it is weakened by

the ferromagnetic contribution for larger values of ω0.

In the context of YSR states, the strength of the interactions controls their energies,

whereas the sign of the exchange coupling constant determines the spin-polarisation of the

bound quasiparticles. Figure 2 shows the energies E2,γ in the even and odd channel (Eq. (6)
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FIG. 2. Energy of the bound state for the even E2,+ and odd E2,− channel normalised by ∆ for

J = 0.5JC (a)-(b) and J = 1.5JC (c)-(d) as a function of g and |ω0/εd| for n = 2. The Fermi

energy µ is set to zero.

with the couplings J2,γ), for a bare exchange constant below the critical coupling J/JC < 1

(taking JC < 0) (see (a)-(b)) and above the critical coupling (J/JC > 1, (c)-(d)). With the

coupling to the mode (g > 0), in both cases we can tune the energy of the YSR states in both

channels to any value within the gap ∆, and also into the QPT (E2,γ = 0) where ground

and excited state interchange roles. For J/JC > 1, the reduction of exchange scattering in

the even channel further away from the resonance pushes its energy towards the QPT at

around g = 0.3 and finally to +∆ (Fig. 2 (c)).

These observations can be easily transferred to distinguish between different ground

states, which we label by the impurity spin Sd = Sdẑ and the number of bound quasi-

particles within each channel q = 0, 1+, 1−, 2 (see Fig. 3), where each channel can bind up

to one quasiparticle. For J/JC < 1 (a), each channel can selectively undergo a QPT close

to the respective resonance. Depending on the sign of J2,γ, the bound quasiparticle either

partially screens the impurity spin or aligns with it, which is indicated by Sd = S − 1/2

and Sd = S + 1/2, respectively. Above JC (b), regions open up in which both channels are

simultaneously at or beyond its QPT (q = 2). For antiferromagnetic exchange scattering

in both channels, the impurity spin is reduced to Sd = S − 1, whereas for opposite inter-
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FIG. 3. Ground state diagram for J/JC = 0.5 (a) and J/JC = 1.5 (b) as a function of g and

|ω0/εd| for n = 2. q denotes the number of bound quasiparticle(s) within each channel and Sd the

impurity spin.

action types the impurity spin appears to be free (Sd = S). The ground state in which

two quasiparticles align parallel to the impurity (Sd = S + 1) is absent, due to the reduced

ferromagnetic exchange scattering in the even channel.

A significant effect of the mode on the exchange interactions requires a sufficiently strong

coupling g. For the Peierls coupling, g is the dipole energy normalised by the photon

energy. Hence, for a photon energy of 1 eV, together with a sub-nanometer tunnelling

distance of a = 0.5 nm, reaching couplings g ∼ 0.1 requires a normalised mode volume

Vmode/λ
3 of the order of 10−8, where λ is the mode wavelength. Using a nanoplasmonic

cavity is a promising route to achieve such strong mode confinements [49]. Moving towards

lower photon frequencies allows larger mode volumes but results in a reduced controllability

within the present setting, since the largest effect on the exchange couplings is obtained for

near resonant couplings.

An alternative route to control the couplings is to consider a classically driven system,

where the strength of the light-matter interaction can be controlled by the amplitude of the

drive. In this classical limit, gQ̂ is replaced by a time-dependent field A cos (ω0t), with di-

mensionless amplitude A. This gives rise to a time-periodic Hamiltonian Ĥ (t) = Ĥ (t+ T )
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with period T = 2π/ω0. The stroboscopic dynamics, i.e., the evolution of the system over one

period of the drive, is described by a time-independent Hamiltonian, the Floquet Hamilto-

nian. Like in the undriven case, this Floquet Hamiltonian can be projected onto a given low

energy subspace (the singly occupied impurity) using a time-periodic Schrieffer-Wolff trans-

formation [15, 23, 50–52]. Alternatively, the Floquet Hamiltonian can be obtained within

the Floquet block matrix approach, in which the periodically driven system is mapped to

a time-independent Hamiltonian in an extended Hilbert space with an additional discrete

Floquet band index. In the high-frequency limit, we can then obtain the Floquet Hamilto-

nian by projecting to the lowest Floquet band [23, 52]. This classical Floquet Hamiltonian

is obtained from the quantum model in the limit g → 0 and a photon number n→∞, such

that 2g
√
n = A is a fixed number [34, 36]. The expression jn,n+l(g) in Eq. (10) is replaced

by the Bessel function J|l| (A), the Floquet band l takes the role of the photon index, and

the driving amplitude A replaces the coupling strength g. A similar degree of control as

given in the quantum case for g = 0.1 and n = 2 requires field strengths of the order of 108

V/m, which can be provided by strong (pulsed) laser sources. The effective Hamiltonian in

the classical limit gives qualitatively very similar results as the presence of two photons in

the cavity (see App. B). The energy of the YSR states is now the Floquet quasi-energy ε

with the corresponding Floquet state. Such a Floquet state can be reached adiabatically by

starting from the stationary bound state in equilibrium and turning on the drive sufficiently

slowly, such that the state evolves within the same quasienergy.

In conclusion, for an Anderson impurity embedded in a conventional superconductor, we

showed that a bosonic mode activates the coupling to the p-wave conduction band channel

in addition to the s-wave channel. For inversion symmetry around the impurity, these two

channels are independent, and two pairs of YSR states emerge. The exchange couplings in

the two channels depend sensitively on the state of the bosonic mode, such that the nature

of the YSR states can be controlled widely by varying the amplitude and frequency in the

limit of weak coupling and strong classical drive (Floquet engineering), or by the precise

quantum state of the bosonic mode in the strongly coupled limit. For strong coupling,

already the presence of only two bosons gives a degree of controllability which is comparable

to classical Floquet engineering. The strongly coupled quantum case could be realised by

placing the YSR impurity inside a nano-plasmonic cavity. The bosonic mode is either the

cavity field itself, or alternatively the cavity can hybridise with a vibrational mode, which
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in turn couples to the electronic transitions between impurity and superconductor. While

we have computed the exchange interactions in the presence of bosonic Fock states, in

an experiment the cavity would be excited into the multi-photon regime by driving with

an external laser field. The strong nonlinearity which we have demonstrated for the Fock

states, with a potentially different ground state of the impurity depending on the number

of bosons, indicates that exploring various driving protocols and the resulting intertwined

dynamics of cavity photons and the YSR state will be an interesting direction for future

research. Moreover, the interplay between gain and dissipation in a cavity leading to a

non-hermitian system is worth to be investigated. Beyond that, we expect our results to

be relevant for clusters of YSR impurities giving rise to unconventional superconductivity

and Majorana bound states. The possibility to control the p-wave conduction band channel

holds the promise to tune the system into a non-trivial topological phase [7, 8, 11] by a

cavity or a classical drive, without the need for spin-orbit coupling or rare spin textures.

M. E. was funded by the ERC Starting Grant No. 716648. S.V.K. acknowledge funding by

the Max Planck Society in the form of a Max Planck Research Group. M.E. and S.V.K. ac-

knowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-

dation) – Project-ID 429529648 – TRR 306 QuCoLiMa (“Quantum Cooperativity of Light

and Matter”).

∗ Helene.Mueller@dipc.org; Current address: Donostia International Physics Center (DIPC),
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[43] D.-J. Choi, C. Rubio-Verdú, J. de Bruijckere, M. M. Ugeda, N. Lorente, and J. I. Pascual,

Nat. Commun. 8, 15175 (2017).

[44] L. Arrachea, Phys. Rev. B 104, 134515 (2021).

[45] T. G. Saunderson, J. F. Annett, G. Csire, and M. Gradhand, Phys. Rev. B 105, 014424 (2022).

[46] P. Beck, L. Schneider, L. Rózsa, K. Palotás, A. Lászlóffy, L. Szunyogh, J. Wiebe, and
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APPENDIX A: DERIVATION OF THE EFFECTIVE HAMILTONIAN

In the following, the derivation of the low-energy model of Hamiltonian given in Eqs. (1)

to (4) in the main text is presented. We assume a high-frequency bosonic mode such that

the real exchange of bosons with the solid state system is suppressed. The corresponding

Hamiltonian is derived by using the Schrieffer-Wolff transformation Ĥ ′ = eŜĤe−Ŝ with the

anti-hermitian operator Ŝ where tunnelling to first order in Vk(gQ̂) and higher energy states

of the impurity (nd = 0, nd = 2) are projected out. We introduce the Hamiltonian of the

unperturbed system Ĥ0 := Ĥhost + Ĥd + Ĥω0 and the projection operator P̂nd,m onto the

subspace in which the impurity is occupied by the number of nd electrons (nd ∈ {0, 1, 2})

and in which the bosonic system is in the number state |m〉 with m ≥ 0. By performing

a Taylor expansion where only terms up to second order in Vk(gQ̂) are considered and by

imposing the condition P̂nd,m

[
Ĥ0, Ŝ

]
P̂n′

d,m
′ = P̂nd,mĤhybP̂n′

d,m
′ where either nd = 1 or n′d = 1

holds, we obtain the effective Hamiltonian Ĥeff. Expanded in the boson number basis {|m〉},

it can be written as

Ĥeff =
∑
mm′

(
P̂1,mĤ0P̂1,m′ +

1

2
P̂1,m

[
Ŝ, Ĥhyb

]
P̂1,m′

)
. (11)

In the high-frequency limit, the exchange of bosons with the solid occurs only as inter-

mediate states and we can project the Hamiltonian onto the sector of a fixed boson number

n ≥ 0. The Hamiltonian reads

Ĥn,n
eff |n〉 〈n| := 〈n| Ĥeff |n〉 |n〉 〈n| = P̂1,nĤ0P̂1,n +

1

2
P̂1,n

[
Ŝ, Ĥhyb

]
P̂1,n. (12)

The generator Ŝ can be determined by

〈n, nd,m| P̂nd,mŜP̂n′
d,m

′ |n′, n′d,m′〉 =
1

En,nd,m
− En′,n′

d,m
′
〈n, nd,m| P̂nd,mĤhybP̂n′

d,m
′ |n′, n′d,m′〉 .

(13)
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We introduced the eigenket |n, nd,m〉 with the eigenenergy En,nd,m
to the unperturbed sys-

tem Ĥ0, where n describes excitations in the substrate, nd is the occupation of the impurity

and m corresponds to the number of bosons. In order to calculate Eq. (13), we expand the

Hamiltonian in the boson number basis,

Ĥ =
∞∑
m=0

∞∑
m′=0

Ĥm,m′ |m〉 〈m′| , (14)

Ĥm,m′
= Ĥm,m′

0 + Ĥm,m′

hyb . (15)

By defining V m,m′

k,γ := 〈m|Vk,γ(gQ̂) |m′〉, the anti-hermitian generator written in terms of

Bogoliubov quasiparticle operators is given by

Ŝ =
√

2
∑

kσγmm′

∑
η=+,−

{
V m,m′

k,γ

(
u∗kn

η
d−σα̂

†
kσ,γ ĉdσ

Ek − εηd + (m−m′)ω0

+
σvkn

η
dσα̂−k−σ,γ ĉdσ

Ek + εηd − (m−m′)ω0

)
|m〉 〈m′| − h.c.

}
,

(16)

where we have introduced the definitions η = +,−, n+
dσ = ndσ, n−dσ = 1 − ndσ, ε+dσ = −εdσ

and ε−dσ = εdσ.

Neglecting constant energy terms and considering inversion-symmetry around the impu-

rity, we obtain two decoupled channels,

Ĥ0 =
∑
kσγ

(εk − µ) â†kσ,γ âkσ,γ −
∑
k,γ

(∆∗â−k↓,γ âk↑,γ + h.c.) , (17)

Ĥn,n
scat =

∑
kk′σγ

∞∑
l=−n

1

εd − lω0

[
V n,n+l
k,γ

(
V n,n+l
k′,γ

)∗
− V n+l,n

k,γ

(
V n+l,n
k′,γ

)∗]
â†kσ,γ âk′σ,γ, (18)

Ĥn,n
spin =− 4

∑
kk′γ

∞∑
l=−n

1

εd − lω0

[
V n,n+l
k,γ

(
V n,n+l
k′,γ

)∗
+ V n+l,n

k,γ

(
V n+l,n
k′,γ

)∗]
Ŝkk′

γ · Ŝd, (19)

with Ŝkk′
γ =

∑
σσ′

1
2
â†kσ,γσσσ′ âk′σ′,γ and the even and odd parity combinations âkσ,γ given in

the main text. We consider an impurity level εd well below the Fermi surface and a small

superconducting gap (compared to εd). Therefore, we used Ek± εd ≈ ±εd in the derivation.

In addition, we have used that V n,n+l
k,γ

(
V n,n+l
k′,−γ

)∗
= 0 holds, since Vk,+(−)

(
gQ̂
)

contain only

even (odd) powers of Q̂
(
V n,n+l
k,+(−) = 0 for l = odd (even)

)
.

Taking in addition the relation V n,n+l
k,γ

(
V n,n+l
k′,γ

)∗
= V n+l,n

k,γ

(
V n+l,n
k′,γ

)∗
into account, yields

Ĥn,n
scat =0, (20)

Ĥn,n
spin =−

∑
kk′γ

Jn,γŜ
kk′

γ · Ŝd. (21)
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The coupling constant is given by

Jn,+(−) =
∑

l=even(odd)

8

εd − lω0

V n,n+l
k,+(−)

(
V n,n+l
k′,+(−)

)∗
. (22)

In particular the Peierls coupling given in Eq. (9) in the main text yields

Jn,+(−) =
∑

l=even(odd)

8|V |2

εd

j2
n,n+l

1− lω0

εd

=
∑

l=even(odd)

J
j2
n,n+l

1− lω0

εd

, (23)

where we defined jn,n+l [34]

jn,n+l = e−g
2/2

n+l∑
s=0

(−1)s g2s+|l|

s! (s+ |l|)!

√
n!

(n+ l)!

(n+ l)!

(n+ l − s)!
for − n ≤ l ≤ 0, (24)

jn,n+l = e−g
2/2

n∑
s=0

(−1)s g2s+|l|

s! (s+ |l|)!

√
(n+ l)!

n!

n!

(n− s)!
for l > 0. (25)

APPENDIX B: CLASSICAL FLOQUET LIMIT

The classical Floquet Hamiltonian for the Peierls coupling is reproduced from the quan-

tum Floquet formalism by taking the limit n→∞, g → 0 with g
√
n being a finite number

[34, 36]. In this limit, jn,n+l converges to the |l|th Bessel function of the first kind J|l| (2g
√
n),

J|l| (A) =
∞∑
k=0

(−1)k

k! (k + |l|)!

(
A

2

)2k+|l|

. (26)

We obtain the effective Hamiltonian given in Eqs. (17), (20) and (21) in App. A but with

the modified coupling constant

J+(−) =
∑

l=even(odd)

J

(
J|l| (A)

)2

1− lω0

εd

. (27)

Figure 4 depicts the exchange coupling constant normalised by the bare antiferromagnetic

exchange constant J as a function of A and |ω0/εd| for the even (a) and odd (b) channel.

The obtained results are very similar to the exchange constants for two photons in the cavity

(see Fig. 1 in the main text). However, a resonance at |ω0/εd| = 1/3 is shown in the odd

channel due to the infinite number of available photons. In the quantum formalism, this

resonance appears for at least three photons in the cavity. These statements are transferred

to the expressions for the energies.
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FIG. 4. Exchange coupling constant for the even (a) and odd (b) channel normalised by J < 0

as a function of A and |ω0/εd| in the classical limit. Antiferromagnetic (ferromagnetic) exchange

scattering is coloured in red (blue). The undriven case corresponds to J+ = 1 (red) and J− = 0

(white). The areas around the resonances (|ω0/εd| = 1/2, |ω0/εd| = 1, |ω0/εd| = 1/3) are excluded.

FIG. 5. Lowest Floquet band quasienergy for the even E+ and odd E− channel normalised by ∆

for J = 0.5JC (a)-(b) and J = 1.5JC (c)-(d) as a function of A and |ω0/εd| in the classical limit.

The Fermi energy µ is set to zero.
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FIG. 6. Floquet state diagram for J/JC = 0.5 (a) and J/JC = 1.5 (b) as a function of A and

|ω0/εd| in the classical limit. q denotes the number of bound quasiparticles within each channel

and Sd the impurity spin.
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