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Abstract

Experimental diagnostics, analysis tools and simulations represent particle distributions in various forms and coordi-
nates. Algorithms to manage these data are needed on platforms like the ITER Integrated Modelling & Analysis Suite
(IMAS), performing tasks such as archiving, modeling, conversion and visualization. A method that accomplishes
some of the required tasks for distributions of charged particles with arbitrarily large magnetic drifts in axisymmetric
tokamak geometry is described here. Given a magnetic configuration, we first construct a database of guiding center
orbits, which serves as a basis for representing particle distributions. The orbit database contains the geometric infor-
mation needed to perform conversions between arbitrary coordinates, modeling tasks, and resonance analyses. Using
that database, an imported or newly modeled distribution is mapped to an exact equilibrium, where the dimensionality
is reduced to three constants of motion (CoM). The orbit weight is uniquely given when the input is a true distribution:
one that measures the true number of physical particles per unit of phase space volume. Less ideal inputs, such as
distributions estimated without drifts, or models of particle sources, can also be processed. As an application example,
we reconstruct the drift-induced features of a distribution of fusion-born alpha particles in a large tokamak, given only
a birth profile, which is not a function of the alpha’s CoM. Repeated back-and-forth transformations between CoM
space and energy-pitch-cylinder coordinates are performed for verification and as a proof-of-principle for IMAS.
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1. Introduction and workflow

1.1. Motivation, purpose and scope

The ITER Integrated Modelling & Analysis Suite
(IMAS) [1] offers various ways to store particle dis-
tributions for the study of magnetically confined fu-
sion plasmas. Different representations include differ-
ent choices of coordinates and different discretization
methods (mesh grids or marker particles). The Ener-
getic Particle Topical Group of the International Toka-
mak Physics Activity (ITPA) is currently driving an ac-
tion to equip IMAS with tools to model and convert dis-
tributions of fast particles between different representa-
tions that arise in experimental and computational work.

In experimental work, the observed position space of
an energetic particle diagnostic is often given by the
line-of-sight of the diagnostic in cylinder coordinates
(R, z, ζ), where R is the major radius, z the height and ζ
the toroidal angle. In tokamaks, ζ is often an ignorable
symmetry coordinate. For many diagnostics, the ob-
served velocity-space is given by weight functions that
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are derived from energy and momentum conservation
[2, 3, 4, 5]. The diagnostic weights are often expressed
as functions of kinetic energy E = M32/2 and velocity
pitch λ = 3‖/3, where 3 is the magnitude of the velocity
vector 3, 3‖ its component parallel to the magnetic field
vector B, and M the particle mass. Diagnosticians hence
have a good understanding of the observation regions
of diagnostics in phase space (E, λ,R, z). Synthetic di-
agnostics calculating expected measurements based on
numerical simulations are usually based on such repre-
sentations of local velocity distributions.

If one assumes that the plasma is not only toroidally
symmetric but also quiescent, the distribution functions
of confined charged particles can be taken to depend
only on three constants of motion (CoM). Analyses of
resonant instabilities are usually performed with respect
to such an equilibrated reference state, where the or-
bit time τ, gyrophase ξ and toroidal angle ζ are ignor-
able symmetry coordinates. The respective conserved
actions — namely, the kinetic energy E, magnetic mo-
ment µ, and canonical toroidal angular momentum Pζ

— combined with an index σ specifying the sign of
3‖ on passing orbits, constitute a natural set of CoM
coordinates (E, µ, Pζ ;σ) that is common in theoretical
analyses, although other useful (and equivalent) sets of
CoM exist. Recently, an experimental measurement of
a fast ion distribution function in three-dimensional (3-
D) CoM space was demonstrated for fast-ion D-α spec-
troscopy [6]. Efforts are underway to apply this orbit
tomography method [7] to other fast-ion diagnostics [8].

In order to make predictions of a measurement based
on a stability calculation or carry out stability analyses
based on measured data, we must be able to transform
distribution functions between 3-D CoM space and 4-
D representations given in various coordinates as illus-
trated in Fig. 1. Related problems have been tackled to
various degrees by different research groups with differ-
ent codes and methods. For instance, TRANSP/NUBEAM
[9] and LIGKA/HAGIS [10] employ binning and smooth-
ing procedures to map distributions of marker parti-
cles onto a mesh and compute their gradients in CoM
space. While TRANSP/NUBEAM uses Monte-Carlo
sampling, LIGKA/HAGIS uses a database of guiding
center (GC) orbits for all particle species. Related ac-
tivities were also reported by the ASCOT [11] and MEGA

[12] groups. Although these methods have been used
for many years, detailed documentations in the litera-
ture are rare. The above references [9, 10, 11, 12] all
point to presentations given at technical meetings. Use-
ful elements can also be found in many papers, but it is
necessary to assemble that information into a complete
goal-oriented workflow.

(B)

Unique mapping
570

400

Reduction to

an equilibrium

distribution

4-D guiding center (GC) phase space

Conserved actions       Reference points
(e.g. midplane crossing,

 turning point)
(and combinations

 thereof) 

(A)

3-D constants-of-motion (CoM) orbit space

Exact equilibrium

Figure 1: Examples of coordinate representations and transformations
(arrows) of a toroidally symmetric distribution function. We require
that every 4-D distribution f (Z) be reduced to an exact equilibrium
forb(CoM), so that the mapping between 4-D GC phase space and 3-D
CoM orbit space becomes unique and readily reversible. — Position
coordinates: major radius R; height z; poloidal magnetic flux ΨP(R, z);
poloidal angle ϑ. — Velocity coordinates: GC velocity components
3⊥ and 3‖ relative to the magnetic field B; kinetic energy E = M32/2
with 32 = 32

‖
+ 32⊥; pitch λ = 3‖/3; sign σ = 3‖J‖/|3‖J‖ | relative to the

parallel current density J‖. — Mixed coordinates: magnetic moment
µ = M32⊥/(2B); conserved pitch Λ = µB0/E; canonical toroidal angu-
lar momentum Pζ ; coordinates ΨP,ref , λref , etc., evaluated at a certain
reference point, such as a midplane crossing or a turning point.

Thus motivated, this paper documents the workflow
used in our computer code VisualStart [12, 13].
Since 2009, we have used this code to initialize hy-
brid simulations with modeled or numerically com-
puted beam ion distributions [14, 15, 16, 17] and to
analyze their resonant interactions with Alfvén waves
[18, 19, 20]. VisualStart represents GC distributions
using marker particles, which can be directly used in
full- f simulations1 and yield a quiet start [13]. The rep-
resentation in CoM space with an underlying GC orbit
database will also allow us to directly embed the distri-
bution functions in general phase-space transport theo-
ries [21, 22, 23, 24], both formally and technically.

Here we propose the orbit-based representation and
modeling technique as a solution for ITER IMAS and
other platforms that need to store and process distribu-
tions of charged particles in magnetically confined plas-
mas. The subject of smoothing is discussed briefly in
the following section, but the documentation and verifi-
cation of smoothing algorithms is left for future work,
as is the associated problem of initializing delta- f simu-
lations that require the evaluation of gradients. We note
that a similar and in many ways complementary effort
has been undertaken by S. Benjamin et al. [25].

1For instance, see Fig. 3 in Ref. [14], and Fig. 4 in Ref. [15] for
fast ion tails, and Fig. 4 in Ref. [16] for a birth distribution.
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1.2. Basic rules for practical situations

The theoretical foundations for transforming distri-
bution functions are relatively straightforward, but it is
also clear that compromises and creativity are needed
when tackling real-world data with numerical tech-
niques, where accuracy has to be traded for computa-
tional performance and where data may have varying
degrees of quality and completeness. For instance, the
singularities and topological boundaries of CoM space
[26] require attention when cutting a mesh to define
phase space volume elements. Experimentally mea-
sured distributions and numerically computed distribu-
tions are often incomplete and noisy, so some amount of
modeling is needed, including smoothing, interpolation
and extrapolation.

In view of these challenges, some basic rules should
be followed in order to maintain the physical and nu-
merical integrity of the data, independently of the par-
ticular workflow used to process distribution functions:

(i) Smoothing, interpolation and extrapolation are
best applied at the preparation stage, where a new
distribution function is first constructed or im-
ported. Such potentially irreversible manipulations
should be minimized in all subsequent operations.

(ii) Pay attention to the fact that, in toroidal geometry,
resolution and noise levels inevitably vary in space
and in time, because the mirror force and mag-
netic drifts cause particles to be distributed nonuni-
formly along their orbits. In particular:

• Inherent topological discontinuities and sin-
gularities, as found in CoM space, should be
preserved; e.g., through mesh accumulation
and by smoothing only around, not across
trapped-passing boundaries and loss cones.

• The optimal representation method (maxi-
mizing accuracy) may differ between archiv-
ing a distribution function and using it in a
simulation. While archiving merely requires
adequate resolution, simulations should also
minimize signal-noise correlations [13].

These issues are most pronounced in but not lim-
ited to cases with large magnetic drifts.

(iii) Ensure that the distribution to be transformed is an
exact equilibrium in the given magnetic configu-
ration; i.e., its shape must not vary in time when
evolved using unperturbed equations of motion.

The equilibrium constraint (iii) is crucial, so it de-
serves further explanation: Any distribution function
f can be mapped to CoM space, where the result forb

measures the time-averaged particle densities on unper-
turbed GC orbits. This operation is indicated by a blue
arrow in Fig. 1. However, when the original f is not an
equilibrium, this mapping operation is time-dependent
and it is impractical to store the information needed to
invert it. The equilibrium constraint reduces the effec-
tive dimensionality to three CoM by determining the
longitudinal distribution of particles along their GC or-
bit, which is now time-independent and with it all coor-
dinate transformations as well. The coordinate transfor-
mations f ↔ forb can then be readily performed in any
direction, as indicated by a red double arrow in Fig. 1.

Nonequilibrium distributions are very likely to be en-
countered in IMAS, where one can expect to receive
particle data from a measurement for which the mag-
netohydrodynamic (MHD) equilibrium is not exactly
known or from a simulation where waves or magnetic
islands were present. Enforcing the equilibrium con-
straint means that the input data are transformed into a
distribution that is consistent with a modeled magnetic
configuration, which generally differs somewhat from
the conditions where the input data originated from.

1.3. Orbit-based representation and modeling

The above considerations suggest that it is useful and
advantageous to represent distribution functions in CoM
space with an underlying database of unperturbed GC
orbits. With that geometric information, it is straight-
forward to reconstruct a 4-D distribution in arbitrary co-
ordinates by loading a suitable number of markers uni-
formly in time along each GC orbit [13]. Projections
to various coordinates and views of user-defined sub-
spaces with user-defined resolution can then be read-
ily obtained by binning the markers on demand. This
minimizes the amount of transformations and associ-
ated data corruption, as demanded in items (i) and (ii)
above. Marker particles are a natural choice for rep-
resenting fast particle distributions since the latter are
often computed using particle codes. Moreover, by or-
ganizing the markers on orbit contours, one can identify
and deal with inherent singularities and discontinuities
as required in item (ii). Last but not least, by repre-
senting a distribution function in CoM orbit space, the
equilibrium constraint (iii) is automatically enforced.

We note that the implementation and enforcement
of the equilibrium constraint only requires a conver-
sion to CoM coordinates: f → forb. The Jaco-
bians required for such transformations can be deter-
mined using the Monte-Carlo method as implemented
in TRANSP/NUBEAM by Breslau & Liu [9]. In this way,
it is possible to avoid integration along GC orbits.
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Figure 2: Relevant part of the VisualStart workflow in five steps as described in the text. This paper focuses on the tasks highlighted yellow.

However, the computational cost associated with
building an orbit database is more than repaid by the
information one gains about the shape of the orbits, the
longitudinal particle distribution, and the transit times.
The transit times are needed for resonance analyses and
their variation near trapped-passing boundaries can be
used for mesh accumulation. The information about the
orbit geometry is also useful for reduced models, for
instance to capture finite-orbit-width effects [27], and it
allows to define and make use of a variety of specialized
GC coordinates, like the radii Rm where an orbit crosses
the midplane. Last but not least, the information con-
tained in the orbit database is also valuable for carrying
out modeling tasks, such as the following example:

Given a model function Gmdl that may not be an ex-
act solution of a kinetic equation for physical particles
or GCs, we wish to construct an equilibrium distribu-
tion forb. A common example are models of the form
Gmdl(E, λ,ΨP) that contain measured radial profiles as
functions of flux ΨP and a velocity distribution com-
puted by a bounce-averaged Fokker-Planck code. In
such a case, the orbit database allows to incorporate the
effect of magnetic drifts a posteriori [28]. There are, of
course, various possibilities to perform this operation;
in other words, there is some freedom to interpret the
values of Gmdl as weights in an orbit distribution forb.2

An intuitive and physically meaningful choice is to per-
form an orbit-time average 〈...〉orb followed by a suitable
normalization: forb = const. × 〈Gmdl〉orb.

2Functions such as Gmdl(Z) described in this example will here
be called “quasi-distributions”, because they do not measure the true
number of objects of interest (here physical particles or GCs) in a
volume element dZ but require more elaborate transformations than a
mere conversion of coordinates. See Section 2 for details.

1.4. Workflow
The workflow described in this paper is shown

schematically in Fig. 2 and consists of five steps:

• Step 1: Define an axisymmetric magnetic field B;
e.g., using a dedicated MHD equilibrium code.

• Step 2: Define samples in 3-D CoM orbit space,
with cell indices (i, j, k). The blue and red work-
flow branches in Fig. 2 begin with different inputs:

(blue) Import marker particles from another code as
in earlier works [15, 16, 17]. The weights
of the imported samples are reinterpreted as
orbit weights: wimport → Worb(i, j, k).

(red) Use a meshing algorithm to divide the CoM
space into cells of size ∆Vorb(i, j, k). This
path is described in detail in this paper.

• Step 3: Integrate along GC orbits starting from the
samples defined in Step 2. Store in a database.

• Step 4: Represent an equilibrium distribution
function forb using weighted markers loaded on the
orbits in the database. When loading Nτ markers
uniformly in time, their weight is an Nτ’s fraction
of the orbit weight: w = Worb/Nτ. In the case of the
red workflow in Fig. 2, Worb = ∆Vorb × forb is the
product of the volume element ∆Vorb and the de-
sired phase space density function forb. The latter
may be imported or constructed from a model.

• Step 5: Visualize and verify. Iterate if necessary;
e.g., changing the resolution in CoM space (Step
2), the number of markers on the orbits, or the
weight assignment (Step 4). Export when ready.
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Note that MHD wave spectra can be obtained from the
data available in Step 1, and resonance maps can be
computed from the orbit database built in Step 3. Proce-
dures for smoothing the distribution, computing phase
space gradients and analyzing the stability of resonant
modes remain to be added in or around Step 5.

1.5. Outline

Clear definitions of symbols and terminology are a
prerequisite for successful conversion operations. Thus,
we begin our treatise in Section 2 with a discussion
of different classes of distributions functions and how
they are transformed. Step 1 of our workflow is part
of Section 3, where we describe the tokamak plasma
that serves as a working example, define coordinates
and normalizations. Step 2, the construction of a phase
space mesh, is covered in Section 4, where we also dis-
cuss orbit classes and the phase space topology in our
scenario. The GC equations of motion we solve to con-
struct the orbit database in Step 3 are given in Section 5,
and the formula for the orbit volume elements is derived
in Section 6. Steps 4 & 5 are covered in Sections 7 and
8, where we construct a distribution function f from a
model, visualize and analyze the result, and verify the
integrity and accuracy of our scheme by transforming
f back and forth between two different representations.
Modeling is a rich subject on its own, and our example
is only meant to highlight the utility of an orbit database
and to serve as a proof-of-principle for IMAS applica-
tions. The Appendices contain supplementary informa-
tion on binning procedures and numerical accuracy.

2. Classes of distributions and transformations

There are not only different coordinates and differ-
ent numerical representations of distributions; the lat-
ter also come in different types whose identity must be
clearly defined since it determines how they are trans-
formed. Here, we distinguish between three types of
distributions: (i) density functions, (ii) histograms, and
(iii) quasi-distributions.

The first two can be characterized as follows:

(i) The symbols f (Z) represent phase space densi-
ties, which have units of [m−6s−3] and whose val-
ues are independent of the coordinates Z appearing
in the argument, so f (Z(3, x)) = f (3, x). The ar-
gument merely specifies the representation space.

The same is true for velocity and volume integrals:

n(x) =

∫
d33 f : density field, (1a)

ν(3) =

∫
V

d3x f : velocity distribution
in a volume V .

(1b)

(ii) The symbols h(Z) represent histograms, which
have the units of the inverse volume element |dZ|−1

of the coordinates used for “binning” (counting
the objects of interest). Histograms are convenient
to construct and integrate since no Jacobian is re-
quired (except for coordinate conversions).

The phase space density function f is related to his-
togram functions h, h′, etc., as

f (Z) = J−1
Z h(Z) = J−1

Z′ h′(Z′) = ... (2)

where JZ is the Jacobian for the transformation from
Cartesian coordinates (3, x) = (3x, 3y, 3z, x, y, z) to an-
other arbitrary set of phase space coordinates Z.

A phase space density function f is an exact solution
of a kinetic equation for the objects of interest; in our
case, physical particles and guiding centers (GC). In this
work, we assume that all GC coordinates are defined
such that a single distribution function f represents both
the phase densities of physical particles and GCs; i.e., f
is a solution of both kinetic equations:

0 = (∂t + Ż · ∂Z) f (physical particles) (3)

= ∂t f + ( J̇gc︸︷︷︸
0

Zgc +Jgc Żgc) ·
∂Zgc f

Jgc

= (∂t + Żgc · ∂Zgc ) f (guiding centers). (4)

This is the case when the Jacobian Jgc for the transfor-
mation Z → Zgc from physical particle to GC coordi-
nates satisfies the GC phase space conservation law

J̇gc ≡ ∂tJgc + ∂Zgc ·
(
Jgc Żgc

)
= 0. (5)

Equation (5) is trivially satisfied for canonical coordi-
nates, since their volume elements differ only by a con-
stant factor, so Jgc = const. All our CoM coordinates
— namely, (E, µ, Pζ ;σ) and any equivalent set of GC
orbit coordinates, such as (3, 3‖,ref ,Rref) — are, by defi-
nition, conserved by the GC equations of motion that we
solve. This means that, even when the equations of mo-
tion are not in Hamiltonian form, our orbit coordinates
combined with the triplet of ignorable angle variables
(τ, ξ, ζ) — orbit time, gyrophase, toroidal angle — can
be considered to be canonical coordinates, whose Jaco-
bians are constants satisfying Eq. (5) down to the nu-
merical accuracy of our particle-pushing algorithm.
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A well-known set of noncanonical GC coordinates is
(µ, 3‖, xgc), whose volume elements transform as

d33d3x =
2πB∗

‖

M
dµd3‖d3xgc. (6)

The Jacobian factor B∗
‖

satisfies Eq. (5) as shown by
Littlejohn [29]. Equation (6) is very useful, because it
can be easily to converted to other velocity coordinates
that are defined locally in position space — such as the
pitches λ = 3‖/3 and Λ = µB0/E — since their Jacobian
factors can be derived analytically (Appendix A) [30].

Both (i) densities and (ii) histograms are true distri-
butions in the sense that, when integrated over a phase
space volume element ∆V,∫

∆V

dZ h(Z) =

∫
∆V

d33d3x f = N , (7)

they yield the true number N of objects contained in-
side that volume element. Functions or data that do not
satisfy this condition for the specified kind of objects
constitute the third type in our classification scheme:

(iii) The symbol G(Z) represents quasi-distributions,
which do not yield the true number of objects by
mere volume integration in the configuration at
hand, but require more complex transformations.

Quasi-distributions often arise in experimental or mod-
eling work. A typical example in experimental mea-
surements is the line-of-sight density, where the trans-
formation G → f takes the form of an inverse problem.
In fact, since the magnetic configuration in an exper-
iment is rarely known accurately, any experimentally
measured particle statistics should be treated as quasi-
distributions when used as input for modeling distribu-
tions in a numerically constructed MHD equilibrium.
In general, the process of “modeling” essentially con-
sists of choosing a physically meaningful transforma-
tion G → f . We will return to this topic in Sections 7
and 8, where we apply our methods to model a distri-
bution of fusion-born alpha particles, based on a quasi-
distribution G(ΨP) that represents their birth profile.

Finally, we emphasize that when a GC orbit distribu-
tion function is given in the form forb(E, µ, Pζ ;σ), or an
equivalent set of CoM coordinates, the Jacobian JCoM
must be accompanied by instructions concerning how to
deal with the index σ that specifies the sign of the par-
allel velocity. First, it must be clarified whether σ is the
sign relative to the magnetic field or the plasma current
if their directions differ. Second, it must be clarified how
particles trapped in a magnetic mirror are to be counted,
because σ is redundant for such trapped particle orbits.

Depending on the choice made, the integral in Eq. (7)
can be written in at least three ways:

N =
∑
σ=±1

∫
dEdµdPζ J

t/p
CoM(trap./pass.) forb︸                     ︷︷                     ︸

ht/p
orb(E,µ,Pζ ;σ)

, (8a)

=
∑

σpass=0,±1

∫
dEdµdPζ JCoM forb︸    ︷︷    ︸

horb(E,µ,Pζ ;σpass)

, (8b)

=
∑

σHFS=±1

∑
σLFS=±1

∫
dEdµdPζ

JCoM

2
forb︸     ︷︷     ︸

horb(E,µ,Pζ ;σ)

. (8c)

In the first case (8a), the summation over σ counts each
trapped orbit twice, which means that the histogram ht/p

orb
has two sets of identical entries each representing half of
the particles in the domain of trapped orbits. In the sec-
ond case (8b), the summation index σpass = {0,±1} is
three-valued, identifying trapped (0), co- and counter-
passing orbits (±1), so that horb represents the full num-
ber of particles in all regions of GC phase space without
duplicate entries. In mathematical form:

horb(σpass = 0) = 2 × ht/p
orb(trap.), (9)

JCoM = J
t/p
CoM(pass.) = 2 × J t/p

CoM(trap.). (10)

The values of the density function forb itself are, of
course, independent of the convention used. The point
we want to make is that it is crucial to ensure con-
sistency between the summation over σ and the Ja-
cobian when counting particles by integrating forb in
(E, µ, Pζ ;σ) space as in Eq. (8).

In this paper, we adopt the third option (8c), with
the single-valued constant Jacobian JCoM/2. Our CoM
phase space mesh defined in Section 4 will double-count
all orbits — passing and trapped — when they cross the
plasma midplane: once on the high-field side (HFS) and
once on the low-field side (LFS). The factor 2 dividing
the Jacobian in Eq. (8c) compensates this.

3. Geometry, coordinates and normalization

System geometry. The magnetic field vector is written

B = ∇ × A =∇ζ × ∇ΨP + Bζ∇ζ (11)
=∇ζ × ∇ΨP + ∇Ψ × ∇ϑ, (12)

where 2πΨ = 1
2π

∫
dΨdϑdζ J x

f B · ∇ζ is the toroidal
flux and 2πΨP = −2πAζ = 1

2π

∫
dΨdϑdζ J x

f B · ∇ϑ the
poloidal flux. These fluxes are related via the tokamak
safety factor q = dΨ/dΨP measuring the mean magnetic

6



Figure 3: Toroidal geometry and coordinates. Right-handed cylinder
coordinates (R, z, ζ) and the poloidal angle ϑ are indicated. The yel-
low arrows show the orientation of the toroidal magnetic field BT, the
plasma current Ip and the associated poloidal magnetic field BP in our
working example, which corresponds to the situation in typical JET
and JT-60U tokamak plasmas. The co-/counter injection of beams is
defined relative to the plasma current, as is the direction of co-/counter
passing particles. Definitions in the literature vary, but in the present
case there is no risk of confusion since Ip and BT are aligned.

field line pitch. J x
f = [∇Ψ · (∇ϑ ×∇ζ)]−1 = 1/Bζ is the

Jacobian for the transformation from Cartesian position
coordinates x to the toroidal flux coordinates (Ψ, ϑ, ζ),
where ϑ is a poloidal angle and ζ = −ϕ is the geomet-
ric toroidal angle, whose orientations are indicated in
Fig. 3. Also shown in Fig. 3 are the axes of the right-
handed cylinder coordinate system (R, z, ζ), with major
radius R =

√
x2 + y2 and vertical coordinate z.

The magnetic flux surface geometry and profiles for
the MHD equilibrium that we use as a working exam-
ple in this paper is shown in Fig. 4. This plasma is
partly based on recent experiments with central radio-
frequency (RF) heating using a 3-ion scheme [31, 32]
performed at the Joint European Torus (JET). The mag-
netic X-point has been removed and the profile of the
safety factor q is chosen to increase monotonically from
values near unity in the core (q0 = 0.98 on axis) to
qa = 5.44 at the boundary. This simulation scenario
is also used in ongoing studies of MHD instabilities
and fast ion physics [33]. The q profile in the above-
mentioned experiments varied dynamically and is likely
to differ from ours at most times.

Besides R and z, we will also use the auxiliary coordi-
nates X = R−R0 and Y = z−z0 measuring horizontal and
vertical positions relative to the magnetic axis, which is
located here at (R0, z0) = (2.98 m, 0.27 m).

Magnetic flux labels. The normalized toroidal and
poloidal fluxes (ψ, ψP) or their square roots (ρT, ρP) can

Figure 4: Our working example takes the basic plasma geometry from
JET [31, 32], with plasma current IP = 2.5 MA, on-axis magnetic field
B0 = 3.7 T, and magnetic axis location (R0, z0) = (2.98 m, 0.27 m).
Panel (a) shows contours of the poloidal flux ΨP(R,Z) (black) and
scalar pressure P(R,Z) (color), as well as the midplane (green,
Eq. (18)). The X-point has been removed and the plasma bound-
ary (red) is located slightly inside of would have been the last closed
flux surface. Panels (b)–(d) show the radial profiles of the safety fac-
tor q = dΨ/dΨP, the covariant toroidal field component Bζ and the
toroidal beta βT = 2µ0P/B2

0 (with µ0 = 4π × 10−7 H/m) as functions
of ρP defined in Eq. (13).

serve as convenient minor radial coordinates:

ρ2
T = ψ =

∫ V(Ψ)
0 dV/J x

f∫ V(Ψa)
0 dV/J x

f

, ρ2
P = ψP =

ΨP − ΨP,0

ΨP,a − ΨP,0
,

(13)
where V(Ψ) is the volume within the flux surface la-
beled Ψ. ΨP,0 and ΨP,a are the values of the poloidal
flux at the magnetic axis (r = 0) and boundary (r = a).
For the toroidal flux we have Ψa − Ψ0 =

∫ ΨP,a

ΨP,0
dΨP q.

In some occasions, we use a volume-averaged minor ra-
dius 0 ≤ r(Ψ) ≤ a, which is defined here as

r2 =
R0

π

∫ V(r)

0

dV
J x

f Bζ
=

R0

π

∫ Ψ(r)

0

dΨ

Bζ
≈ a2ψ. (14)

Our r reduces the geometric minor radius in the limit
of a cylindrical plasma with circular cross-section. For
Bζ ≈ R0B0, we have r/a ≈ ρT, and a ≈ [2(Ψa −

Ψ0)/B0]1/2 is the minor radius of the plasma boundary.

Particle and orbit coordinates. In the guiding center
(GC) description, the velocity space consists of the ig-
norable gyrophase ξ, the perpendicular particle velocity
3⊥, and the parallel GC velocity 3‖ = 3gc · b̂ relative to the
magnetic field vector B with unit vector b̂ ≡ B/B and
magnitude B = |B|. The canonical momentum can be
written in the form P = A/B0 + Ω−1

0 3 for a particle with

7



gyrofrequency Ω0 = QeB0/M, charge Qe and mass M.
In GC coordinates, its covariant toroidal component,

Pζ = Pgc · ∂ζx = −
ΨP

B0
+
3‖

Ω0

Bζ
B
, (15)

is called the canonical toroidal angular momentum
and is chosen here to have units of area per radian,
(2π)−1[m2]. Together with the lowest-order magnetic
moment µ and the signed kinetic energy E = σref E,

µ =
M32⊥
2B

, E = σref
M
2
3

2, σ =
3‖J‖
|3‖J‖|

, (16)

this yields a set of coordinates (E, µ, Pζ) that belongs to
the class of constants of motion (CoM), which are con-
served by our equations of motion (presented in Sec-
tion 5) when they are solved in a time-independent field
B that is symmetric along ζ (or “axisymmetric” around
êz), satisfying ∂ζBζ = ∂ζΨP = 0.

The sign σ of the parallel velocity is measured rel-
ative to the parallel current density J‖ = J · B/B.
While redundant or unnecessary for orbits trapped in
a magnetic mirror (both signs are present), σ identifies
whether a passing orbit with coordinates (E, µ, Pζ) is co-
or counter-going. In mathematical treatments, σ usu-
ally appears as a separate index, (E, µ, Pζ ;σ), but this is
inconvenient for numerical representations. In our or-
bit database, we define σref at a certain reference point;
namely, the starting point used for the orbit calculation.
This or any equivalent convention allows us to attach
σref to E as in Eq. (16) and obtain a compact represen-
tation where all CoM arrays in the computer code have
the same dimensionality: three.

It is also useful to define several different coordinates
measuring the velocity pitch:

Λ ≡
µB0

E
=

cos2 α

B̂
, sinα = λ ≡

3‖

3
= σB

√
1 − ΛB̂,

(17)
with B̂ = B/B0 ≈ R0/R and σB ≡ 3‖/|3‖|. Each pitch
coordinate has its advantages in practical applications:

• The coordinate λ = 3‖/3 is widely used together
with E or velocity 3 =

√
2E/M. The local velocity

space Jacobian of this set is a CoM (JEλ ∝
√

E,
Eq. (A.12)), and the Fokker-Planck equation can
be integrated analytically in these coordinates [34].

• The coordinate α is a true angle, so its value mea-
sures the velocity pitch in a very intuitive form.
Moreover, the domains of co- and counter-passing
particles are enlarged along the α-axis, making this
coordinate a good choice for sampling the velocity
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Figure 5: GC orbit of a core-localized trapped alpha particle with
kinetic energy E = 1.5 MeV and pitch angle α = 0.056π. This fig-
ure shows the inner region of the poloidal plasma cross-section of
Fig. 4(a). The grey contours are uniformly spaced in poloidal mag-
netic flux ΨP. The orbit is sampled uniformly in time (black circles).
The GC is co-moving (3‖ ≥ 0) in the red and counter-moving (3‖ < 0)
in the blue portion of the orbit contour. The high- and low-field-side
intersections of the orbit with the midplane are labeled HFS, LFS.

distribution of tangentially injected beam ions [17]
and distributions produced by central RF heating
using a 3-ion scheme [31, 32, 35].

• The coordinate Λ = B̂−1 cos2 α has the advantage
of being a CoM and that (in contrast to µ) its up-
per limit is independent of energy: 0 ≤ Λ ≤ B̂−1

min,
where Bmin = min{B̂} is the minimal field strength
in the considered domain. This makes Λ a conve-
nient choice for defining the lines along which to
divide the phase space as will be done in Section 4.

Unlike the conserved quantities E, µ and Λ, the pitch
coordinates α and λ vary along a GC orbit. The lat-
ter can be turned into orbit coordinates (i.e., CoM), αref
and λref , by evaluating them at a well-defined reference
point, as we did earlier for the sign σref .

Reference points for orbit coordinates. In cases where
we import computed particle distributions (blue work-
flow in Fig. 2), the initial reference point is taken to
be the position of an imported marker particle, which
may be located anywhere inside the plasma or in the
surrounding vacuum.

In cases where we need to construct a new CoM mesh
(red workflow in Fig. 2) the reference points lie in the
midplane, which (at least in a usual tokamak plasma)
contains all O-type stagnation points and is defined as
the curve zm(X) along which the magnetic field is per-
pendicular to its gradient,

zm(R) : B · ∇B = 0, (18)
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The midplane is shown as a dash-dotted green line in
Fig. 4. It contains the magnetic axis, (R, z) = (R0, z0),
but deviates from the horizontal plane z = z0 in up-down
asymmetric plasmas like ours. Every GC orbit crosses
the midplane twice, once in a region with higher field
strength and once in a region with lower field strength.
Figure 5 shows an example, where the orbit’s high-
and low-field side crossings of the midplane are labeled
“HFS” and “LFS”, respectively.

Normalization. Spatial positions and lengths are given
in meters unless stated otherwise. Particle velocities are
normalized by a reference value 30. Energy is normal-
ized by M320 (for each particle species) and the magnetic
field by its on-axis value B0 (here 3.7 Tesla):

3̂ =
3

30
, Ê =

E
M320

=
3̂2

2
, µ̂ =

µB0

M320
=
3̂2⊥

2B̂
. (19)

4. CoM mesh and drift orbit types

In this section, we describe how we sample the GC
orbit space. The example in Fig. 6 is used for illustra-
tion. A low resolution is chosen in order to make all grid
points clearly visible. All coordinates shown in Fig. 6
are evaluated at the height zm(X) of the midplane as de-
fined in Eq. (18). This means that all coordinates ap-
pearing in this section are constants of motion (CoM).
The set (Ê, α, X) used in panels (a) and (b) yields par-
ticularly compact and, in our opinion, intuitive plots.
Another view of pitch-position space in (Λ, X) coordi-
nates is shown in panel (c). The plasma boundary is
also taken to be the loss boundary for the GC orbits,
so we do not include the vacuum here and our mid-
plane mesh covers only the width of the plasma itself:
−1 m . X . 0.84 m.

The reference velocity used for normalization is cho-
sen to be 30 = 1.3 × 107 m/s, which corresponds to
E0 = M320/2 ≈ 3.5 MeV for fusion-born alpha parti-
cles (4

2He+2) or 1.75 MeV for deuterons (2
1H+). Both

species have the same charge-to-mass ratio Qe/M and
their characteristic gyroradius in this example is ρ0 =

30/Ω0 ≈ 0.07 m ≈ 0.02 × R0. We consider the full en-
ergy range 0 ≤ Ê ≤ Ê0 with Ê0 = 0.5 and define a mesh
consisting of N(g)

E grid points that are the boundaries of
NE = N(g)

E − 1 cells. The value of energy at the cen-
ter of cell i is denoted Êi. The example in Fig. 6(a) has
NE = 15 cells with equal sizes ∆Êi = Ê0/NE = const.

The remaining phase space is divided along the coor-
dinate lines of the conserved pitch Λ. These lines appear
parabolic in the (α, X)-plane of panel (b) and horizontal
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Figure 6: Method for sampling the GC orbit space in VisualStart.
Panel (a) shows the grid in normalized kinetic energy Ê = 3̂2/2, here
chosen to be uniformly spaced in 3̂2. Panel (b) shows the grid in pitch
angle-position space (α, X) at the midplane of Fig. 4(a). The color of
each grid point in (b) identifies the type of an orbit for a given energy,
here Ê = 0.217. These grid points lie along lines of Λ = const., which
appear parabolic in the (α, X)-plane of panel (b) and straight in panel
(c). The black circles in (c) indicate the locations of the samples taken
halfway between grid points. The bold red line indicates the contour
where ΛB̂max = 1. Each orbit is effectively sampled twice: trapped
orbits appear above and below the α = 0 line, and circulating orbits on
the left and right of the stagnation points. Thus, except very close to
a stagnation point, passing and trapped orbits can be treated equally,
because both are effectively double-counted in this mesh.

in the (Λ, X)-plane of panel (c). Two different proce-
dures are used in the domains above and below the red
line in Fig. 6, which represents ΛB̂max = 1:

• 0 < Λ < B̂−1
max: At X = Xmin, namely the left

vertical axis of panel (b), we define a grid in the
pitch angle coordinate −π/2 ≤ α ≤ π/2. In the
present example, it consists of Nα = 16 equally
sized cells with ∆α j = π/Nα = const. The cir-
cles at X = Xmin in panel (b) indicate the cell cen-
ters α j with j = 1...Nα. These points (α j, Xmin) are
the starting points for lines Λ = cos2 α/B̂ = const.
plotted gray in Fig. 6(b). Along each of these lines,
we define a grid in the radial coordinate X. In the
present example, it consists of NX = 16 cells with
∆Xk = (Xmax − Xmin)/NX = const. The upper part
of panel (c) shows the resulting samples (Λ j, Xk) at
the cell centers in the α > 0 portion of panel (b).

• B−1
max < Λ < B̂−1

min: At α = 0, namely the hor-
izontal axis at the center of panel (b), we define
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a grid in the radial coordinate X. Our example
has NX = 16 equally sized cells. The circles at
α = 0 indicate the cell centers X j with j = 1...NX ,
which form a diagonal (ΛB̂ = 1) in the lower part
of panel (c). They are the origins of grid lines
Λ

(g)
j = const., which are plotted gray in panel (b).

Here, we choose to have an approximately uniform
sample density. For this purpose, we define an aux-
iliary coordinate 0 ≤ d j ≤ L j that measures the
distance along a grid line Λ

(g)
j in the (α̂, X̂)-plane,

with α̂ = α/(2π) and X̂ = X/(Xmax − Xmin). Along
each grid line, we create N j cells with roughly
equal sizes ∆d j,k = L j/N j ≈ const. The number
of cells satisfies 2 ≤ N j ≤ 2NX and the cell index
1 ≤ k ≤ N j covers positive and negative pitches,
so there is at least 1 cell and at most NX cells in
each domain, α ≷ 0, respectively. The lower part
of panel (c) shows the resulting samples (Λ j, Xk) at
the cell centers in the α > 0 portion of panel (b).

The above procedure samples the phase space of con-
fined GC orbits twice, once on the LFS and once on the
HFS. This ensures full coverage of the phase space and
eliminates the need to distinguish between orbit types
inside the mesh-cutting algorithm. The double-counting
will be corrected by a factor 1/2 in the volume elements
derived in Section 6 below.

The color of each sample in Fig. 6(b) identifies the
type of an orbit for a given energy. Here, we have cho-
sen Êi=7 = 0.217. In the case of alpha particles with
E0 = M320/2 = 3.5 MeV, this corresponds to an energy
of 1.5 MeV. Orbits are divided into two groups: orbits
that are trapped in a magnetic mirror, and passing or-
bits (co- and counter-current). Trapped orbits contain a
point where 3‖ changes sign, while passing orbits do not.
Each group is further divided into two sub-categories as
defined in Table 1. This orbit classification scheme is
relatively simple; see Ref. [26] for more elaborate dis-
cussions. Note that for every tuple (E,Λ), the midplane
contains a pair of O-type stagnation points, where co-
or counter-passing stagnation orbits are point-like in the
poloidal plane. Since these O-type stagnation points
alone are insignificant, we have chosen to expand the
class of “stagnation orbits” to include all passing orbits
that do not encircle the magnetic axis.

The classes of potato and stagnation orbits arise from
magnetic drifts. The magnitude of the magnetic drift
velocity 3dB (see Eq. (23) below) is proportional to the
inverse aspect ratio a/R0 and the kinetic energy. Fur-
thermore, its (R, z)-component is inversely proportional
to the poloidal field BP ∝ Ip, which tends to divert it into
the toroidal direction. This means that magnetic drifts

Encircle magnetic axis at (X,Y) = (0, 0)
Yes No

Trapped: Potato orbits Banana orbits
Passing: Circulating orbits Stagnation orbits

Table 1: Orbit classification.

tend to be large for energetic particles in tokamak plas-
mas with relatively low plasma current and in compact
torii. In such cases, the overall fraction of potato and
stagnation orbits can be significant.

The mesh in Fig. 6(b) is rather sparse, and our au-
tomatic classification algorithm identified only 3 sam-
ples as potato orbits (see Fig. 8(a) for a denser mesh
and higher energy). The α > 0 legs of potato orbits
are found around the upper rim of the trapped-passing
boundary on the X > 0 side of Fig. 6(b). On the X < 0
side, they are located slightly below the α = 0 line.

It is important to note that the trapped-passing (t-p)
boundary on the X < 0 side also lies below the α = 0
line. This is due to the magnetic drifts and has the im-
plication that the turning points — where the magnetic
mirror force causes a sign reversal in 3‖ — are near but
not identical to the V-type stagnation points of trapped
particle orbits.3 The example in Fig. 7(a) illustrates this
for the case of an orbit very close to a t-p boundary.

The t-p boundary refers to a separatrix in the orbit
topology; i.e., it marks the topological transition of two
V-type stagnation points via an X-type stagnation point
as illustrated schematically in the box at the top left of
Fig. 7. The marginally trapped orbit in panel (a) has two
V-type stagnation points that nearly form an X. Across
the t-p boundary, this orbit decomposes into a counter-
passing orbit and a trapped orbit, each with a single V-
type stagnation point that turns into a smooth part of the
orbit contour as one departs from the t-p boundary.

We use the word “stagnation” to indicate that GCs
spend a relatively large amount of time in a relatively
small region of the poloidal plane. Around O-type stag-
nation points, this is the case for the entire orbit. In
the case of X- and V-type stagnation points as in Fig. 7,
GCs spend a large amount of time in a small portion
of the orbit contour. Spatial stagnation also means that
3‖/3 = σB

√
1 − ΛB̂ stagnates as shown in panel (b).

The pitch angle scans of the poloidal and toroidal
transit times in panels (c)–(f) of Fig. 7 show true sin-
gularities in τpol and τtor, and a topological discontinu-
ity (see also Fig. 3 of Ref. [37]). The role of the transit
time singularities will be discussed later in Section 6.

3The discussion below Eq. (19) in Ref. [36] is related to this.

10



Figure 7: Properties of GC orbits near a trapped-passing (t-p) bound-
ary. Panel (a) shows the poloidal orbit contour of a trapped alpha
particle with E = 3.5 MeV located very close to the t-p boundary,
which is a topological discontinuity occurring at the X-point of the
orbit’s counter-going leg (3‖ < 0, blue). The box on the top left illus-
trates schematically the topological transition between two pairs of V-
type stagnation points via an X-point at the t-p boundary. The turning
points, where 3‖ changes sign, are also indicated in (a). The time trace
of the pitch 3‖/3 = sinα is shown in panel (b) with time t in millisec-
onds. Panels (c)–(f) show the pitch angle dependence of the poloidal
transit time τpol (c,d) and the toroidal transit time τtor (e,f) across the
t-p boundary (vertical dashed line). The starting point (E, αstart, Xstart)
lies on the midplane (Y ≈ 0) as indicated by the crosses in panel (a):
Xstart = 0 is on the inner leg with α < 0 for (c,e), and Xstart ≈ 0.6 m
is on the outer leg with α > 0 for (d,f). The poloidal transit time τpol
exhibits singular behavior at the t-p boundary. Meanwhile, the appar-
ent discontinuity merely reflects the partition of a phase space volume
element between two orbits upon crossing the t-p boundary.

The discontinuity is a matter of perspective, as it merely
reflects how a larger volume element of GC phase space
is divided into two components represented by a pair
of orbits that were unified on the other side of the t-p
boundary. In some sense, the transition is smooth if one
views the disconnected orbits as a pair.

Finally, we note that 3‖ = 0 constitutes a degeneracy
in CoM space, since Λ and Pζ(X) cannot be varied inde-
pendently for fixed E at that location. This is why, ge-
ometrically, the parabolic Λ = const. curves have their
pole at that location in Fig. 6. Since we are defining our
CoM mesh in the midplane, we are able to avoid these
degenerate 3‖ = 0 points entirely by locating them along
the Xk cell boundary on (E,Λ) = const. lines. All cell
centers are, thus, ensured to have 3‖ , 0.

5. Equations of motion

As indicated by the red and blue arrows between
Steps 2 & 3 in our workflow Fig. 2, the GC phase space
samples that are provided by

(a) the mesh constructed in Section 4, or
(b) particle codes like OFMC [38, 39] and MEGA [40, 41]

(when operated in full- f mode [14, 42])

serve as initial conditions for the GC equations of mo-
tion, which we solve once around each orbit.
VisualStart solves the same equations with the

same numerical scheme as its current target code MEGA.
Following the formalism introduced by Littlejohn [29]
and reviewed by Cary & Brizard [43], we use the ef-
fective electromagnetic fields B∗ ≡ ∇ × A∗ and E∗ ≡
−∇Φ∗ − ∂t A∗, with the potentials A∗ ≡ A +

3‖

Ω
B and

QeΦ∗ ≡ QeΦ + µB. Here, we consider the motion of
GCs in an unperturbed magnetic field and in the absence
of any electric field (∂t B = Φ = 0), so the effective
fields reduce to

B∗ = B +
3‖

Ω
B∇ × b̂, E∗ = −

µ∇B
Qe

, (20)

and the equations for the GC velocity 3gc = ẋgc and its
parallel acceleration become

ẋgc = 3‖
B∗

B∗
‖

+
E∗ × b̂

B∗
‖

= 3∗‖ + 3∗dB, (21)

3̇‖ =
Ω

B
B∗ · E∗

B∗
‖

. (22)

b̂ = B/B is the unit vector along B, and B∗
‖
≡ B∗ · b̂

is Littlejohn’s GC Jacobian for the noncanonical set of
GC coordinates (µ, u, ξ, xgc) with u ≡ b̂(xgc) · ẋgc ≈ 3‖
(see also the discussion on p. 704 of Ref. [43]). The GC
velocity is composed of a parallel component (modified
by curvature effects) and magnetic drifts due to ∇B and
curvature ∇ × b̂:

3∗‖ = 3‖
B
B∗
‖

, 3∗dB =
µ

QeB∗
‖

b̂ × ∇B +
32
‖

Ω

B
B∗
‖

∇ × b̂. (23)

In the normalization of VisualStart (Section 4):

3̂∗‖ = 3̂‖
B̂
B̂∗
‖

, 3̂∗dB = ρ0
µ̂

B̂∗
‖

b̂ × ∇B̂ + ρ0

3̂2
‖

B̂∗
‖

∇ × b̂, (24)

with ρ0 = 30/Ω0. The computed GC orbits are recorded
in a database, following accuracy checks (Appendix B).

The example in Fig. 6, gives a total of about 8000 or-
bit samples, 52% of which lie inside the region bounded
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by the red curve (ΛB̂max ≤ 1) for the present setup.
About 1100 orbits (14%) are lost as they hit the (arti-
ficial) boundary of the simulation domain due to mag-
netic drifts. Using 3 processes on an 8th Generation In-
tel CORE i7-8565U processor (1.80 GHz × 8), it took
about 35 minutes to compute these 8000 orbits with
our simple Matlab code in which there is much room
left for optimization. A proper orbit database for the
entire plasma volume may require at least 100 times
more samples, which would take 150 core-hours with
the present implementation. An optimized code in a
compiled language such as Fortran or C is expected
to need only a small fraction of this time. Making use
of GPUs, the time required to compute such an orbit
database should be reasonably short for routine work.

6. Volume elements and weighting

6.1. Derivation
Having computed the GC orbits using the unper-

turbed equations of motion in Section 5 starting from
the midplane mesh defined in Section 4, the next step
is to represent the distribution function f in discretized
form using an ensemble of marker particles labeled
n = 1...Nmrk, which sample the orbits in our database. In
other words, we seek the Klimontovich representation4

f (Z) ≈
Nmrk∑
n=1

wn × δ(Zgc,n − Z). (25)

At this point, Zgc,n is the marker position in an arbi-
trary set of GC coordinates including ignorable angles,
for instance (32⊥, 3‖, ξ, xgc). The Dirac δ distribution has
units of inverse phase space volume [m−6s−3] and may
be viewed as a proxy for any sort of particle shape fac-
tor needed to map the weights wn onto a discrete mesh.
Although each marker follows the trajectory of a GC as
indicated by the subscript in Zgc,n, its weight factor wn

represents a certain number [∆Nphys]n of physical parti-
cles (not GCs!):

wn = [∆Nphys]n = ∆Vn ×
Nphys(∆Vn)

∆Vn
,

= ∆Vn × f . (26)

where ∆Vn denotes a Cartesian volume element in
physical coordinates that is attached to marker n.

Since we are considering only exact equilibrium dis-
tributions, the orbit time τ is an ignorable angle coor-
dinate with period τpol and all factors in Eq. (26) are

4Appendix A describes in detail how we evaluate Eq. (25).

independent of the three angle coordinates (τ, ξ, ζ); they
depend only on three CoM coordinates, whose values
we will represent by cell indices (i, j, k). When we load
Nτ markers uniformly in time along an unperturbed GC
orbit, neighboring markers are indistinguishable. Each
marker carries precisely an Nτ’s fraction of their orbit’s
volume ∆Vorb and weight W:

∆Vn → ∆Vi jkl =

[
∆Vorb

Nτ

]
i jk

=

[
∆Vorb∆τl

τpol

]
i jk
, (27)

wn → wi jkl =

[
W
Nτ

]
i jk

for l = 1, ...,Nτ,i jk. (28)

As indicated in Eq. (27), the markers also represent
equal fractions ∆τ of an orbit’s poloidal period τpol:

∆τi jkl =

[
τpol

Nτ

]
i jk
. (29)

Recalling from Eqs. (26) that the volume element is
eventually applied to a distribution function f , it is clear
that Eq. (29) actually implies an orbit time average:

Nτ,i jk∑
l=1

∆τi jkl f (Zgc,i jkl) ≈
∮
τpol

dτ f ≡ τpol 〈 f 〉orb︸︷︷︸
forb

. (30)

The average is trivial for true equilibrium distributions,
which are independent of τ, so that f = forb. However,
f in Eq. (30) may also be replaced by an arbitrary quasi-
distribution G, so this equation also constitutes a recipe
for transforming arbitrary models into true equilibria. In
summary, Eq. (26) becomes

wi jkl =

[
W
Nτ

]
i jk

=

[
∆Vorb

Nτ
× forb

]
i jk
. (31)

In applications where we merely import particle data
computed by another code (blue workflow in Fig. 2), the
weights wl are provided with the data. Each sample is
interpreted as the initial position of a new GC orbit, so
the input weight is interpreted as the weight of an orbit:
[wimport]l → Wi jk. This step enforces the equilibrium
constraint and the first equality of Eq. (31) yields the
marker weights. The volume element ∆V and distribu-
tion function f do not appear explicitly in such a case.

In applications where we construct a new distribution
function from a model or where we reexpress a mesh-
based distribution function in the orbit-based represen-
tation (red workflow in Fig. 2), it is necessary to de-
termine the GC orbit volume element [∆Vorb]i jk for a
given mesh in CoM space. In our case, the mesh has
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the form shown in Fig. 6 and the associated volume el-
ements [∆Vorb]i jk in units of [m6s3] can be readily ob-
tained when written in terms of the canonical action co-
ordinates (E, µ, Pζ) associated with the ignorable angles
(τ, ξ, ζ), taking advantage of the fact that the Jacobian
for a canonical transformation is constant in both space
and time (see, for instance, Ref. [36]).

With our definition Pζ = −ΨP/B0 + 3‖Bζ/(Ω0B),
which has units of (2π)−1[m2], the transformation
between Cartesian coordinates (3, x) for the phase
space of physical particles and canonical coordinates
(E, τ, µ, ξ, Pζ , ζ) for the phase space of GCs has the form

d33d3x =
1
2
×

[dE
M

dµB0

M
dPζdτdξdζ

]
σHFS

+

[
dE
M

dµB0

M
dPζdτdξdζ

]
σLFS

 . (32)

The index σ = 3‖J‖/|3‖J‖| determines in which domain
(co- or counter-going) a volume element lies, irrespec-
tive of the orbit type (trapped or passing). Using the fact
that canonical volume elements are identical anywhere
on a GC orbit (E, µ, Pζ), Eq. (32) adds the volume ele-
ments at the high- and low-field side (HFS, LFS) mid-
plane crossings and divides the result by 2, in accor-
dance with our double-counting convention in Eq. (8c).
Integrating over the angles ξ and ζ, using the pitch coor-
dinate Λ = µB0/E instead of the magnetic moment, and
applying our normalizations 3̂ = 3/30 and Ê = E/(M320),
we obtain

(2π)2ÊdÊdΛ ×

([
dPζdτ

]
σHFS

+
[
dPζdτ

]
σLFS

)
×
30

2

≈ (2π)2Êi∆Êi∆Λ j∆Pζ,k30∆τi jkl ×
1
2
, (33)

for our CoM mesh with indices (i, j, k) as defined in Sec-
tion 4, where the cell index k covers positive and neg-
ative signs of σ for both the HFS and LFS midplane
crossings. It remains to specify the increment ∆Pζ .

Since our CoM mesh in Fig. 6 is defined in the mid-
plane, the canonical toroidal momentum Pζ for fixed E
and Λ is a function of major radius only, which is here
expressed in terms of X = R − R0:

[Pζ]EΛ(X) = −
ΨP(X)

B0
+ ρ0
3̂‖(X)
B(X)

Bζ(X). (34)

Its increment can then be evaluated as

∆Pζ,i jk ≈ Pζ

(
X(g)

k+1

∣∣∣∣ Êi,Λ j

)
− Pζ

(
X(g)

k

∣∣∣∣ Êi,Λ j

)
, (35)

where X(g)
k and X(g)

k+1 are the grid points adjacent to cell

Xk. Alternatively, using 3‖ = σB

√
2E(1 − ΛB̂), the in-

crement ∆Pζ can be expressed in terms of ∆X as

∆Pζ =

∣∣∣∣∣∣∣−Ψ′P

B0
−
ρ0

3̂‖

Ê +
3̂2
‖

2

 BζB′

B2 + ρ0
3̂‖

B
B′ζ

∣∣∣∣∣∣∣︸                                           ︷︷                                           ︸
|P′ζ |

∆X, (36)

where radial derivatives like P′ζ ≡ [∂XPζ]EΛ are taken
along the midplane with fixed E and Λ, and they are
evaluated at cell centers Xk.

In summary, substituting Eq. (29) into (33) and mul-
tiplying by the number Nτ of markers used to represent
an orbit, we obtain the GC phase space volume element
represented by the orbit sample in cell (Ei,Λ j, Xk) in a
form that can be readily evaluated numerically:5

[∆Vorb]i jk = 4π2
30Êi∆Êi∆Λ j [τpol∆Pζ]i jk︸        ︷︷        ︸

contains zeros &
singularities

×
1
2
. (37)

The final factor 1/2 originates from Eq. (8c) via Eq. (32)
and compensates our double-counting of all orbits in the
domain Xmin ≤ X ≤ Xmax in Fig. 6(b) via index k.

6.2. Discussion
The formula for the volume element in Eq. (37) may

look harmless, but the factor τpol∆Pζ should be evalu-
ated with care so as to minimize numerical inaccura-
cies. We have already seen in Fig. 7(c,d) that τpol pos-
sesses singularities at t-p boundaries, although not all of
them are problematic as we will see shortly. The ex-
istence of zeros and singularities in the increment ∆Pζ

can be readily anticipated from the derivative |P′ζ |EΛ in
Eq. (36), which can be approximated at leading order as

P′ζ(X) ≈ −
Ψ′P(X)

B0
+

ρ0

3̂‖(X)

(
Ê +

1
2
3̂

2
‖ (X)

)
. (38)

Clearly, 3‖ = 0 constitutes a singularity and there are at
least two points where the terms on the right-hand side
cancel, giving |P′ζ |EΛ = 0. Figure 8 shows an example
for 3.5 MeV alpha particles. We consider orbits along
the black parabolic line in Fig. 8(a), where Λ = 0.865.

Figure 8(b) shows the form of the increment ∆Pζ(X)
evaluated using Eq. (35) (solid curves) and Eq. (36)
(dotted). The values agree nicely nearly everywhere,
except in the vicinity of the 3‖ = 0 singularity labeled

5Eq. (37) differs from the formula for the volume element given in
Eq. (40) of Ref. [13]. We consider the present derivation to be more
rigorous. This affects mainly trapped particles, which were effectively
absent in previous applications of the code VisualStart.
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Figure 8: Radial dependence of the increment ∆Pζ and the poloidal
and toroidal transit times τpol and τtor on a contour (E,Λ) = const.
Panel (a) shows a CoM mesh constructed in the midplane using cell
numbers NΛ = NX = 48 for alpha particles with E = 3.5 MeV. The
total number of Λ = const. contours is (NΛ/2) + NX = 72 and we
inspect contour j = 40 (counted from α = −π/2), which is drawn as
a black curve in (a). In panel (b), solid lines represent |∆Pζ | given
by Eq. (35) and the dotted lines are the alternative form |P′ζ∆X| in
Eq. (36). Blue and red lines in (b)–(d) represent orbits starting with
3‖ ≶ 0, respectively. Labeled arrows: (A) loss boundary, (B,D,G) t-p
boundaries, (C,D,F) stagnation points, and (E) the 3‖ = 0 singularity.
In fact, points (B,D,G) represent the same point in CoM space. This
can be seen in panel (e), which shows the trajectory of a barely trapped
orbit near the t-p separatrix. Panel (f) shows the time trace of 3‖/3 on
this orbit, and 3‖ ≶ 0 legs are colored blue and red.

(E).6 A verification exercise similar to that performed
later in Section 8.4 showed systematic errors when us-
ing Eq. (36). These errors seemed to be effectively ab-
sent when ∆Pζ is evaluated using Eq. (35), which is
therefore our default choice.

The zeros of ∆Pζ(X) correspond to stagnation points
and imply that these and nearby orbits have a small
weight factor Wi jk. In the example in Fig. 8 there are
three such points: (C) and (F) are the O-type stagnation
points in the domains of counter- and co-passing parti-
cles; whereas (D) is an X-type stagnation point situated
on the separatrix of the t-p boundary.

The zero of ∆Pζ(X) at point (D) plays an important
role: it cancels one of the three singularities of the
poloidal transit time τpol in Fig. 8(c). In fact, a glance
at the nearby barely trapped orbit in Fig. 8(e) shows
that points (B,D,G) actually refer to the same transit
time singularity; i.e., the same t-p separatrix. Strictly
speaking, our algorithm counts such separatrices thrice,
but one of these instances — namely the X-point at
(D) — vanishes, owing to ∆Pζ(X) being zero at that
location. This confirms that all orbits are effectively
double-counted, so that the overall factor 1/2 appearing
in Eq. (37) is justified even near the t-p boundary. Of
course, on a discrete mesh the cancellation of the third
sample at point (D) is unlikely to be perfect, so some
amount of numerical inaccuracy must be expected.

The remaining transit time singularities — namely
points (B) and (G) in our example — have the conse-
quence that orbits representing those and nearby por-
tions of GC phase space may accumulate a relatively
large weight. One could compensate these singularities
by demanding that the value of the distribution function
forb vanishes at the t-p boundary; e.g., by including a
factor τ−1

pol in forb. However, this may not be physically
meaningful as the following arguments show.

The particles populating the barely trapped orbit in
Fig. 8(e) as well as nearby potato and counter-passing
orbits spend a relatively large amount of time in a small
portion of pitch-position space (3‖/3,R, z) near V-type
stagnation points. This fact is highlighted by the bunch-
ing of the small black circle symbols in Fig. 8(e,f),
which represent 16 marker particles distributed uni-
formly in time. However, unlike the tiny O-type stag-
nation orbits around points (C) and (F), the large orbits
near t-p boundaries like (B) and (G) can actually be-
come densely populated in real plasmas. This becomes
evident if one thinks in terms of particle sources: parti-
cles deposited on orbits located near a t-p boundary, like

6We expect that the red and blue curves in Fig. 8(b,c) connect
smoothly near X ≈ −0.4 m if one adds grid points closer to 3‖ = 0.

14



our example in Fig. 8(e), will be conveyed to the V-type
stagnation points and spend a long time in that region,
producing a local spike in the particle density.

Of course, the finite particle supply rate along with
instabilities and collisions will prevent the formation
of a true singularity in a real plasma. Nevertheless,
the above arguments show that, within certain limits,
the spikes in the transit times in Fig. 8(c) and result-
ing spikes in the orbit volume elements (37) and marker
weights (31), are physical meaningful.

Such spikes can however cause numerical problems.
In some cases, the resulting inaccuracies may be tol-
erable. In the worst case, the presence of singularities
may prevent the attainment of numerical convergence,
since a finer mesh will have grid points closer to the
singularity. If necessary, one may adjust the weights as
mentioned a few paragraphs earlier; e.g., by imposing
an upper limit on their values (or their gradients) as in
the flux limiter scheme of fluid dynamics. Although this
trick may ensure convergence, it is likely to converge to
a somewhat inaccurate value. On the other hand, one
may argue that the correct value is unknown as it de-
pends on physical mechanisms that have been ignored,
such as scattering by collisions and field fluctuations.
Perhaps the most elegant solution in the collisionless
limit is to use an analytical estimate of a volume ele-
ment near the singularity, provided that a well-behaved
solution exists. Anyhow, we believe that the optimal
approach to dealing with singularities depends on the
application at hand, so we leave it for future research.
It seems meaningful to deal with this problem in the
context of smoothing techniques that will be needed to
evaluate phase space gradients for instability analyses.

7. Modeling CoM distributions with large drifts

A computed or modeled equilibrium distribution forb
is needed to determine the weight factor in Eq. (31).
A model that is a function of CoM only, such as
Gmdl(E, µ, Pζ), would directly yield an exact equilibrium
distribution forb. While simple models may suffice for
physics studies at a fundamental level, predictive sim-
ulations and simulations used to interpret observations
require more realism. It would be convenient to have
Gmdl given in an explicit, purely analytical form. How-
ever, for fast ions with significant magnetic drifts, a
large number of control parameters is usually necessary
to mimic realistic distribution functions, which tends to
make the modeling job cumbersome, at least for non-

Figure 9: GC orbit of a barely trapped 3.5 MeV alpha particle born
at the magnetic axis (X,Y) = (0, 0) with pitch angle α = −0.1065π.
Small black circles indicate 16 marker particles separated by equal
time intervals. At the nearby trapped-passing (t-p) boundary, this or-
bit decomposes into a small core-localized counter-passing orbit and
a large potato orbit, which are indicated by dashed lines. Note that the
outer orbit is disconnected from the hot central core, which appears
yellow in the contours of the MHD pressure P(ΨP) of the bulk plasma.
This illustrates how the alpha particle distribution forb(E, µ, Pζ ) can
develop a strong nonuniformity around the t-p boundary since the fu-
sion reactivity is not a function of the alpha’s Pζ but of the bulk pres-
sure (color contours) and, thus, magnetic flux ΨP (black contours).

artificial intelligence.7

For instance, consider the problem of constructing
a model for fusion-born alpha particles. Even if one
assumes that their pitch angle distribution is uniform
at birth time,8 strong pitch angle nonuniformities can
promptly arise within one poloidal transit time. The loss
cone, which contains orbits whose trajectories intersect
plasma-facing components, is an obvious example. The
magnetic drifts that cause those losses in toroidal geom-
etry also affect the pitch angle distribution of confined
orbits. For instance, for fusion-born alpha particles in
ITER, the anisotropy associated with drift orbit topol-
ogy was estimated to be around 10% (see Section 7 of
Ref. [46]). Pitch anisotropies and bump-on-tail struc-
tures along the energy axis are also a well-known cause
of velocity space instabilities that can be observed as ion
cyclotron emissions (ICE) (e.g., see Refs. [47, 48]).

Let us consider a more concrete example. Figure 9

7With a human-manageable amount of control parameters, it can
be difficult to design a CoM distribution that has both the desired ra-
dial profile and the desired pitch distribution, because both vary si-
multaneously when one varies parameters controlling the dependence
of fmdl on the canonical toroidal angular momentum Pζ .

8Precisely speaking, when an anisotropy exists in the distribution
of fusion fuel particles, this anisotropy may also be imprinted on the
fusion products due to angular correlations in nuclear reactions (e.g.,
see Ref. [44] and Fig. 10 in Ref. [45]). Here this effect is neglected.
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shows the GC orbit of a barely trapped 3.5 MeV alpha
particle, which traverses both the hot plasma core and
the cooler plasma periphery. If one uses a slowly vary-
ing function Gmdl(E, µ, Pζ) to model the overall distri-
bution of alpha particles in this range of energies and
pitch angles, the density will be similar on the barely
trapped orbit shown in Fig. 9 and on the neighboring
large potato and small counter-passing orbits indicated
by dashed lines, because their coordinates have similar
values.9 In other words, the particle density will be sim-
ilar on both sides of the t-p boundary.

However, this may not be an accurate representation
of a real distribution of fusion-born alphas, in particular
when the fusion reactivity varies substantially in differ-
ent portions of the orbit. To illustrate this, the 3.5 MeV
alpha particle orbit in Fig. 9 has been underlaid with
the contours of the sharply peaked MHD pressure field
from of our working example (cf., Fig. 4), which is char-
acteristic for the bulk component of a JET plasma where
3-ion RF heating was applied near the magnetic axis
[31, 32]. In such a case, fusion-born alphas from the
plasma center will populate the entire orbit shown in
Fig. 9, albeit in a nonuniform manner as indicated by
the small black circles. Just across the t-p boundary,
however, most of the newly born alphas will be concen-
trated on the small counter-passing orbit, while the large
potato orbit would be populated only sparsely, since it
is topologically disconnected from the particle source.
In principle, this can produce a steep gradient in the dis-
tribution function forb(E, µ, Pζ) across the t-p boundary.
In reality, collisions or instabilities can be expected to
have a smoothing effect, but depending on the relevant
time scales, a strong nonuniformity may be sustained.
Such information may be necessary for interpreting ex-
perimentally observed signals or for reproducing them
in simulations, and it is advantageous to have the ability
to construct suitable models.

A viable recipe for doing so can be found in Eq. (30).
Such an orbit time average can be readily realized using
our orbit database and constitutes a physically meaning-
ful way to convert an arbitrary model function Gmdl(Z)
into a true equilibrium distribution forb:

forb = 〈Gmdl(ρP)〉orb ≡
1
τorb

∮
dτGmdl(Z(τ))

≈ forb(i, j, k) =
1

Nτ,i jk

Nτ,i jk∑
l=1

Gmdl(Zgc,i jkl); (39)

9In our example: µB0/E = 0.875...0.892 and P̂ζ = 0.215...0.219

with normalized P̂ζ ≡ ψP − 3̂‖
Bζ
B

ρ0 B0
ΨP,a−ΨP,0

and 0 ≤ ψP ≤ 1.

where Zgc,i jkl is the position of marker l on orbit (i, j, k).
For instance, in the example discussed in the previous
paragraphs, one may let Gmdl ∝ P(ΨP), so that the MHD
pressure field in Fig. 9 acts as a particle source.

This approach can be viewed as taking the path
of “self-organization”, where we leave it to the equa-
tions of motion to determine a distribution function that
is consistent with the magnetic geometry and system
boundaries at hand, and the constraints encoded in Gmdl
determine the particular spatial profile and velocity dis-
tribution for a certain case. This idea also underlies
Monte-Carlo codes that follow GC orbits many times
around the torus in the presence of sources and colli-
sions. We mimic a part of this process with reduced
computational effort: the GC orbits in our database are
followed for only one poloidal turn in the absence of
any perturbations (field fluctuations and collisions).

8. Application and verification

In this section, we demonstrate how the methods that
we presented in this paper can be applied to a practi-
cal example. Section 8.1 describes the setup and how
we construct — from a simple model Gmdl— an equi-
librium distribution forb of alpha particles that are as-
sumed to be born near the center of a large tokamak
plasma with an isotropic distribution of pitch angles at
birth time. The results are discussed in Sections 8.2 and
8.3. In the final Section 8.4, we demonstrate how we use
our orbit database to convert a binned 4-D distribution
function f (0)(E, λ,R, z) (or any other coordinates) back
to an orbit-based representation f (1)

orb in CoM space. The
result is binned again to give f (1) for comparison with
the original f (0). The procedure is then iterated one
more time, yielding f (2), in order to reveal systematic
errors. The contents of this section may be summarized
in diagrammatic form like this:

Modeling CoM space Arbitrary coordinates

Gmdl → f (0)
orb(i, j, k) → f (0)(E, λ,R, z)

↙ ≈ ? 1st verification

f (1)
orb(i, j, k) → f (1)(E, λ,R, z)

↙ ≈ ? 2nd verification

f (2)
orb(i, j, k) → f (2)(E, λ,R, z)

(40)

Strictly speaking, we transform only between 2-D and
3-D spaces, (A j, Pζ(Xk)) ↔ (λ,R, z), since both sets
share the energy coordinate E, which is a conserved
quantity, so the mapping in that direction is identi-
cal. We will work here with an arbitrary normalization
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Form of Sampling parameters E0 = 35 keV E0 = 350 keV E0 = 3.5 MeV
E-distrib. NE Nα NX Nτ Norb Nmrk Norb Nmrk Norb Nmrk

Mono-E0 1 2 × 64 2 × 64 128 Lorb
Lbnd

(min.: 16) 33,335 1.88M 31,841 1.70M 27,684 1.29M
Flat-E ≤ E0 24 2 × 24 2 × 24 48 Lorb

Lbnd
(min.: 16) 112,483 2.74M — — 99,308 2.18M

Table 2: Phase space sampling parameters in our five test cases. NE , Nα, NX determine the number of cells in (E, α, X)-space defined in Section 4.
The number Nτ of markers sampling an orbit is (with a lower bound of 16) chosen to be proportional to the orbit length Lorb, the reference value
being the number of markers per plasma boundary length, here Lbnd ≈ 7.50 m. There are Nmrk markers sampling Norb confined orbits.

E [keV] Circ. Stagn. Banana Potato Lost ≈
35 25,780 359 7,158 38 780

350 24,430 1,066 6,191 154 2,280
3500 20,531 3,165 3,505 483 6,430
0...35 87,368 612 24,456 47 1,710

0...3500 75,178 7,208 15,861 1,061 14,880

Table 3: Partition of orbit types (circulating, stagnation, banana,
potato, lost) as defined in Section 4. These numbers are not weighted
by particle densities, so they only characterize the partition of orbit
samples on our mesh. The actual prompt losses of real particles are
negligible in our large plasma with centrally peaked density profile.

(henceforth indicated by hats), so the values of f̂orb of f̂
must match but bear no particular meaning.

Our distribution functions will be inspected here in
the same way as an experimental diagnostician would:
measure spatial distributions by integrating over certain
portions of velocity space, and measure velocity distri-
butions by integrating over certain portions of position
space. The required binning operations and Jacobians
are described in Appendix A.

8.1. Setup and parameters
In order to highlight how toroidal geometry affects

the form of the constructed equilibrium distribution
function via the mirror force and magnetic drifts, we
start from a quasi-distribution Gmdl that is independent
of pitch and has a relatively sharp peak in minor radius:

Gmdl(ρP) = C × n̂mdl(ρP) × Hmdl(E), (41)

where C a normalization constant that is arbitrary here.
The radial density profile n̂mdl(ρP) is shown as a solid

black line in Fig. 10(a). Although this is primarily
meant to be a toy model for testing our algorithms with
a localized particle source and large magnetic drifts, we
note that this profile is physically feasible if one consid-
ers scenarios with a sharply peaked ion temperature pro-
file as produced in 3-ion-heated JET plasmas [31, 32].

The energy dependence of particle distributions in a
real plasma is governed by processes such as collisional
drag and instabilities (e.g., see Fig. 4 in Ref. [17]).

Figure 10: Panel (a) shows the radial profiles of our source model
n̂mdl(ρP) used in Eq. (41) (black) and constructed mono-energetic al-
pha particle densities n̂(ρP) (colored) as functions of the square root
of normalized poloidal flux, ρP = ψ1/2

P , on a grid that is uniform in ψP.
For 35 keV and 3.5 MeV, panels (b) and (c) show the corresponding
density fields n̂(X,Y) in the poloidal plane, overlaid with examples of
(A) trapped and (B) circulating orbits as well as flux surfaces (gray).

These processes are not considered here. We use en-
ergy only to exemplify the effects of magnetic drifts,
which increase with E; or, rather, with its square root√

E, because the effect of magnetic drifts is roughly pro-
portional to the ratio 3dB/3 of the drift velocity to the
particle velocity. For this purpose, we use two types of
distributions: one mono-energetic with E = E0, and one
that is flat in the range 0 ≤ E ≤ E0 and zero beyond:

Hmdl(E) =

 δ(E − E0) = mono-energetic,
1−

∫ E
0 dE′ δ(E′−E0)

E0
= 1

E0
for 0 ≤ E ≤ E0,

(42)

where δ is the Dirac delta distribution.
Table 2 shows the parameters for five test cases that

we will consider here: three mono-energetic alpha dis-
tributions with E = E0 = (35, 350, 3500) keV and
two distributions that are uniform in the energy range
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Figure 11: Moments of the mono-energetic alpha distribution with
35 keV. We integrated over velocity space using Eq. (A.5) with the
following weight factors: (a) w for particle density n̂(X,Y); (b) 1 for
the number of markers per cell; (c) w×E/3 for alpha particle pressure
P̂a, then divided by density to yield temperature Ta = P̂a/n̂; (d)–(g)
w × (3R, 3z, 3ζ , 3‖) for horizontal, vertical, toroidal and parallel current
densities ( jR, jz, jζ , j‖). The amplitude is normalized to n̂0 = 1.

0 ≤ E ≤ E0 with E0 = (35, 3500) keV. Table 3 sum-
marizes the numbers of circulating, stagnation, banana,
potato and lost orbit samples (CoM mesh points) in each
case. Panels (b) and (c) of Fig. 10 show how the con-
tours of a banana orbit (A) and a circulating orbit (B)
change due to magnetic drifts when the kinetic energy
is increased from 35 keV to 3.5 MeV.

While the model in Eq. (41) has a simple appear-
ance, the actual form of the alpha particle distributions
we construct here is determined by the combination of
Eq. (41) and the equations of GC motion (21) and (22),
whose solutions are folded into the simple model via the
integral (39). In other words, the geometric effects are
captured by the GC orbits in our database, whereas the
model Gmdl effectively describes the structure of the par-
ticle sources that populate those orbits, and the integral
(39) combines all that information.

The geometric effects that we expect to see in this
setup may be summarized as follows. These properties
of a toroidally confined and radially bounded plasma are
well-known and are listed here only for completeness
and to simplify the discussion of the results:

• The peripheral plasma will be populated by parti-
cles on orbits that also pass through the core as in
Fig. 10(c). Such orbits are found in a certain range
of pitch angles around the t-p boundary.

• Flux surface-averaged profiles tend to be smoothed

Figure 12: Moments of the mono-energetic alpha distribution with
3.5 MeV. Arranged as Fig. 11.

on the scale length of the magnetic drifts. The gy-
roradii have a similar effect and may be included
via satellite particles [49] (not done here).

• Magnetic drifts shift co-passing orbits outward in
R and counter-passing orbits inward.

• The mirror force confines some particles to the
low-field side of the plasma and causes them to ac-
cumulate near V-type stagnation points.

• The energy- and pitch-dependence of the above-
mentioned spatial nonuniformities gives rise to net
flows both poloidally (due to radial nonuniformity)
and toroidally (due to a local imbalance between
co- and counter-going particles).

8.2. Properties of mono-energetic distributions

Figure 10(a) shows the computed density profiles
n̂(ρP) on a mesh that is uniformly spaced in normalized
poloidal flux ψP = ρ2

P. The profile for 35 keV alphas is
similar to the model n̂mdl(ρP). The small discrepancy at
ρP = 0 can be eliminated with a finer mesh as shown
in the inset. The magnetic drifts increase with increas-
ing energy, causing the profile n̂(ρP) to broaden and the
central value n̂(0) to drop. The total number of parti-
cles in the plasma is nearly the same in all three cases,
since prompt losses are relatively small: less than 1%
for 350 keV and about 2.5% for 3.5 MeV.

Figures 11 and 12 show the form of various moments
of the alpha distributions with kinetic energies 35 keV
and 3.5 MeV in the poloidal plane (X,Y):
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• Particle density (a): Even for 3.5 MeV, our model
yields an alpha density that is peaked at the axis,
but the peak is wider than in the 35 keV case, espe-
cially in the horizontal (X = R − R0) direction.

• Markers/cell (b): Since we have set a lower bound
of 16 markers per orbit, the smallest stagnation
orbits stand out in the plots showing the number
of markers per cell, while the surroundings are
fairly uniform. At 35 keV, the co- and counter-
passing stagnation points effectively coincide with
the magnetic axis. At 3.5 MeV, their mean separa-
tion along X is about 0.14 m (cf. Fig. 8(b)).

• Temperature (c): With the density nonuniformity
divided out, the 3.5 MeV temperature field clearly
shows that our alpha particle distribution effec-
tively consists of two partially overlapping co- and
counter-going mono-energetic beams, which are
shifted radially out- and inward, respectively.

• Flows (d–g): The relative shift of the co- and
counter-going beams causes net local currents.
The poloidal current field (consisting of jR and
jz) forms two vortices, one on the high-field side
(HFS) of the magnetic axis rotating clockwise, and
one on the low-field side (LFS) rotating counter-
clockwise. Toroidal and parallel currents jζ and
j‖ are very similar here, since the magnetic pitch
is relatively uniform (q ≈ 1) in the plasma center.
The structure and spatial extent of the currents is
similar at lower and higher energies, but the magni-
tude should be proportional to

√
E and, thus, differ

by about a factor of 10. This seems to be the case
here if one accounts for the fact that the 35 keV
case has a smaller signal-to-noise ratio.

Figure 13 shows the pitch angle distribution of our
mono-energetic alpha particles. The spatially integrated
distributions ν̂(α|E0) in panel (a) show that a pitch
nonuniformity exists around α = 0, up to intermedi-
ate pitch angles, |α| . 0.2π. The deviation from the
mean increases from about 10% for 35 keV to about
50% for 3.5 MeV. At larger pitch angles, |α| & 0.2π,
the distributions are flat (except for aliasing noise, to
be discussed later). More detailed views of the nonuni-
formities in the region |α| . 0.2π of the cases with
E0 = 35 keV and 3.5 MeV are provided in panels (b)
and (c), where we plot the contours of ν̂(α, X|E0) to
show the radial dependence of the pitch angle distribu-
tion in the range −0.48 m < X < 0.48 m. Here, the
summation over markers was performed over the Y co-
ordinate for radial bins of size ∆X = 0.04 m.

Figure 13: Pitch angle distributions for the mono-energetic cases.
Panel (a) shows pitch profiles ν̂(α|E0) = Ĵ−1

Eα × ĥp(α|E0), where
ĴEα = 23̂⊥ is the Jacobian from Eq. (A.12), and ĥp(α|E0) is the
pitch angle histogram integrated over the entire spatial domain and
divided by B∗

‖
/B as in Eq. (A.1b). The black dotted curve shows the

3.5 MeV result for a reduced domain size, where the artificial plasma
boundary has been placed at 0.25% of the flux space [33], remov-
ing many large orbits (scaled to match the blue curve outside the loss
cone). Panels (b) and (c) show contours of the local pitch distribu-
tion ν̂(α, X|E0) = Ĵ−1

Eα × ĥp(α, X|E0) obtained by integrating over
the height of the spatial domain in radial bins of size ∆X = 0.04 m.
The two crosses and two plus symbols (sometimes overlapping) in
panels (c) and (d) mark the starting points of four alpha particle or-
bits with E0 = 3.5 MeV whose poloidal contours are shown in panel
(d). Blue and orange orbits start with α = −0.09π and +0.09π, re-
spectively. Solid orbits start from Y = 0 (crosses) and dashed orbits
from Y = 0.56 m (pluses). Panel (d) also shows the color contours of
the 3.5 MeV alpha particle density field from Fig. 12(a), ΨP contours
(white), the midplane (dark green), and the boundary (light green).

The structures seen in Fig. 13 can be readily ex-
plained on the basis of our model function Gmdl, the ef-
fects of toroidal geometry (mirror force and magnetic
drifts), and the loss boundary. Rather than saying any-
thing new, the purpose of the following discussion is to
show that our procedures work reliably and produce the
expected results. We focus on the 3.5 MeV case.

Figure 13(c) clearly shows the opposite radial shift
of co- and counter-going particles due to their opposite
magnetic drifts: the peak in the region α > 0 is shifted
towards the right (X > 0) and the peak in the region
α < 0 is shifted to the left (X < 0). The wedge-shaped
structure of the pitch anisotropy around α = 0 repre-
sents the widening of the domain of trapped particles
towards the low-field side as expected from Fig. 8(a).

In order to explain the structure of the pitch
anisotropy in the region |α| . 0.2π, it is helpful to
consider the trajectories of a few GC orbits in that re-
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Figure 14: Moments of the alpha distribution that is uniform in the
energy range E = 0...3.5 MeV. Arranged as Fig. 11.

gion. For this purpose, Fig. 13(d) shows the GC orbits
of four simulation particles with energy E = 3.5 MeV.
Two of them (solid lines) are launched near the mid-
plane (Ystart ≈ 0): the small orange orbit starts from
(X, α)start = (0.05 m, 0.09π), and the blue orbit starts
from (X, α)start = (−0.05 m,−0.09π), as indicated by
the crosses in panels (c) and (d). The blue orbit is a
large potato orbit that passes both near the center of the
plasma and through the periphery. The small orange or-
bit is a stagnation orbit. Now recall Eq. (39), where we
defined the orbit distribution forb to be the orbit time-
average of the model Gmdl(ρP) that represents our alpha
particle birth profile. Since the latter is sharply peaked
near the plasma center, the values of Gmdl(ρP) can differ
substantially on the above-mentioned pair of orbits.

Generally speaking, orbits that spend most of their
time inside the peak of the source profile Gmdl(ρP) are
densely populated with physical particles, so our GC
markers representing them have larger weights wl. Or-
bits that spend most of the time outside are sparsely
populated. The mirror force and magnetic drifts have
the consequence that particles on counter-passing or-
bits spend less time inside the central peak of Gmdl(ρP)
than co-passing orbits. In addition, the losses of co-
and counter-going particles are asymmetric, especially
in the vicinity of the trapped-passing boundary. These
effects are manifested in the minima and maxima of
ν̂(α|E0) and ν̂(α, X|E0) in Fig. 13, which are most pro-
nounced in the high-energy case due to its larger drifts.

Note that the distribution ν̂(α, X|E0) in Fig. 13(c)
was computed by integrating along the vertical coordi-

Figure 15: Spatially integrated velocity distributions ν̂(a, b) = J−1
ab ×

ĥp(a, b) in the cases that are uniform in the energy ranges E =

0...35 keV (top) and 0...3.5 MeV (bottom), visualized in different co-
ordinates: ν̂(α, Ê) on the left, ν̂(3̂‖, µ̂) in the central column, and
ν̂(Ê,Λ) with Ê ≡ σÊ on the right. For plots of ν̂(λ, Ê), see Fig. 16.
Note that different color scales are used in the upper and lower row.

nate Y , so it also includes particles on orbits like those
shown by dashed lines in panel (d). The dashed or-
bits were launched from (X, α)start = (0.05 m,±0.09π),
but more than half a meter above the midplane, from
Ystart = 0.56 m, as indicated by pluses in panels (c) and
(d). The orbit starting with a positive pitch (orange)
passes through the central plasma, where it acquires
a relatively large weight due to the centrally peaked
source profile Gmdl(ρP). In contrast, the orbit starting
with a negative pitch travels outward and nearly hits the
boundary (light green curve).

In fact, the entire peak of ν̂(α|E0) around α/π ≈ +0.1
can be explained in that way. We have verified this with
a test case where the plasma boundary had been placed
at ψP = 0.25 (ρP = 0.5) instead of ψP = 1, so that
orbits are constrained to the inner 25% of the present
flux space [33]. In that case, the plasma boundary is
located around X ≈ 0.38 m at the height of the outer
midplane, so that the three large orbits in Fig. 13(d) are
all lost. The resulting pitch angle profile is shown as a
black dotted line in Fig. 13(a). It has a deeper and wider
loss cone, and there is no peak at α/π ≈ +0.1.

8.3. Properties of flat-energy distributions

Realistic alpha particle distributions are nonuniform
in energy. The reason for our use of a model that is flat
in energy is that the E-dependence of geometrically in-
duced nonuniformities can be easily seen, and it is also
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easier to verify that our method works as expected.
The densities and current fields are very similar to

those in the mono-energetic cases shown in Figs. 11 and
12 above. A few different features can be observed in
the high energy case, E = 0...3.5 MeV, whose moments
are shown in Fig. 14. The presence of particles with a
wide range of energies can be inferred primarily from
the blurring of the stagnation points in panel (b), and
from the nonuniformity of the temperature field in (c).
The latter resembles somewhat the letters “IO” as fast
particles dominate outside the central density peak; es-
pecially the co-passing ones (forming the “O” shifted to
the right) for the same reasons as discussed in the last
paragraphs of Section 8.2 above.

Figure 15 shows the velocity distributions integrated
over position space. One can see that, apart from noise,
our result has the desired uniformity in both energy and
pitch in the domains populated by passing particles. As
discussed in Section 8.2 above, the pitch anisotropy
around α = 0 is induced by toroidal geometry (mir-
ror force, magnetic drifts and resulting losses) in com-
bination with the centrally peaked source profile. The
anisotropy clearly increases with increasing energy.

Our orbit database is relatively sparse (NE × Nα ×

NX = 24 × 48 × 48, see Table 2), and the bins used
in Figs. 14 and 15 have effectively the same resolution:
NE × Nα × NRz = 24 × 48 × 482. The binned results
are smooth along energy, because the orbit samples co-
incide with the bins. Most of the noise in Fig. 15 is in
the pitches α and Λ, where the distribution of bins is
similar but not identical to the distribution of orbit sam-
ples (CoM space). In other words, the noise in the range
0.3 . |α|/π . 0.5 and Λ . 0.7 is effectively an aliasing
effect. The noise is largely suppressed in the poloidal
plane (X,Y) in Fig. 14, and in (3̂‖, µ̂)-space shown in the
central column of Fig. 15, since the bins in these coordi-
nates have a shape very different from the mesh we used
to sample the CoM space (cf. Figs. 6 and 8).

Figure 15 also highlights potential difficulties in at-
tempts to convert the binned distributions from one set
of coordinates to another. In particular, the small region
around the origin (3‖, µ) = (0, 0) in the central column of
Fig. 15 is expanded to the full length of an axis in (α, E)
and (E,Λ) spaces on the left and right sides of Fig. 15,
so some features of the distribution functions are likely
to get lost in direct conversions unless a polar mesh is
used in (3‖, µ) coordinates, which is equivalent to us-
ing another set of coordinates, such as (E, α). We em-
phasize that we have not performed direct conversions
between binned distributions in Fig. 15. They were all
obtained by binning, on the respective mesh, the marker
particles of the orbit-based representation forb.

Figure 16: Comparison between 1st- and 0th-order binning results
ν̂(E, λ) in the flat-energy case with E = 0...3.5 MeV. Here, we loaded
Nτ = 480 × Lorb/Lbnd (min. 16) markers per orbit, giving a total of
Nmrk ≈ 18M markers. Panel (b) is a projection of the input distribu-
tion f̂ (0)(E, λ,R, z) used in our verification exercise in Section 8.4.

The binning in Figs. 10–15 was performed using a
1st-order (linear) interpolation scheme as commonly
used in particle-in-cell (PIC) codes, where each marker
is assumed to have the shape of a top-hat function whose
width is equal to the bin size. Naturally, the noise is
larger with a 0th-order (binary) binning scheme, where
markers resemble δ functions. The difference between
1st- and 0th-order binning can be seen by comparing
panels (a) and (b) of Fig. 16, where we show the spa-
tially integrated velocity distribution ν̂(E, λ) with λ =

3‖/3 = sin−1(α). Note also that the result in Fig. 16(a)
appears smoother than that in 15(d) simply by using λ
instead of α, because this change in coordinates reduces
the above-mentioned aliasing effect. Another difference
is that Fig. 16 was obtained with 10 times more markers
per orbit, but this does not have a strong influence on the
aliasing in the domain of deeply passing particles, since
those markers rarely cross the bin boundaries.

8.4. Verification of reversibility and accuracy of coordi-
nate conversions via an orbit-based representation

The results discussed in the previous sections were
obtained by binning the marker weights of our orbit-
based representation in CoM space to a mesh in arbi-
trary coordinates. The reverse transformation is also
easily performed as we will demonstrate in this section.
On platforms like ITER IMAS, we expect this to be an
essential part of the transformation toolbox, especially
if an orbit-based representation is used as a reference.
Here, this operation serves us primarily as a verification
exercise to test with what degree of accuracy we can
perform and reverse coordinate conversions without ap-
plying any smoothing algorithms.

We consider the flat-energy case with E0 = 3.5 MeV
and follow the procedure that was outlined in Eq. (40).
Let us now define the relevant steps in detail:

1. Using Eqs. (39) and (41), we construct a distribu-
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tion function forb in the orbit-based representation:

Gmdl → forb(i, j, k). (43)

The CoM mesh that underlies our orbit database
has the same number of cells as specified in Ta-
ble 2: NE × (Nα × NX) = 24 × 482. The number
of markers per boundary length is increased by a
factor 10 to Nτ = 480× Lorb/Lbnd (min. 16), giving
a total of Nmrk = 18 M markers.

2. The orbit-based CoM distribution forb is binned on
a uniform 4-D mesh in the widely used coordinates
(E, λ,R, z). In compact form, this operation can be
written as

f (η)
orb(i, j, k)→ f (η)(E, λ,R, z) (44)

where η = 0, 1, 2 is the iteration number. The ini-
tial result f (0) is referred to as the “input” distri-
bution for the subsequent back-and-forth transfor-
mations. More precisely, the binning operation we
perform is given by Eq. (A.3) in the form

f (Ei, λ j,Rk, zm) =

Nmrk∑
n=1

wn × Π(Zgc,n − Zi jkm)

(2π)2
[

B∗
‖

B 3̂R
]

n
∆Ei∆λ j∆Rk∆zm

. (45)

where the shape factor 0 ≤ Π ≤ 1 is a top-hat
function, which means that the markers resemble
δ functions. That is, we use the 0th-order binning
scheme as in Fig. 16(b) and the number of bins (=
cells) is NE × Nλ × (NR × Nz) = 24× 24× 482. The
pitch resolution was reduced from Nλ = 48 to 24 in
order to reduce noise and aliasing (cf. Section 8.3).

3. For each orbit in the database, we compute new
weight factors W (η+1)

i jk by integrating f (η)(E, λ,R, z)
in time τ along the orbit contour as

W (η+1)
i jk =

∆Vorb

Nτ∑
l=1

f (η)(E, λ(τl),R(τl), z(τl))


i jk

,

(46)
which gives a new orbit-based distribution:

f (η)(E, λ,R, z)→ f (η+1)
orb (i, j, k). (47)

4. Repeat step 2 and compare the result with the pre-
vious iteration:

f (η+1) ?
≈ f (η). (48)

We have then iterated steps 3 and 4 one more time, look-
ing for increasing deviations that may hint at systematic
errors. The results are summarized in Figs. 17 and 18.
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Figure 17: (a) Radial density profiles n̂(η)(r) with iteration index
η = 0, 1, 2, and (b) their relative errors in the flat-energy case E =

0...3.5 MeV. Unlike in Fig. 10, the radial profiles in panel (a) here are
all normalized by the same value. The total numberNphys of physical
particles increases slightly with each iteration as shown in the legend.

Figure 17(a) shows that the overall shape of the radial
density profile is reproduced well. A closer inspection
of the relative errors in Fig. 17(b) reveals that the first it-
eration changes the particle density by about +2% in the
densely populated region r/a . 0.3. Around r/a ≈ 0.7
the increase is about +10%, and near the boundary we
have a reduction by about −20%. The relative error
roughly doubles in the second iteration, indicating that
it is not random but systematic. As indicated in the leg-
end of Fig. 17(a), the total number of physical particles
Nphys increases by 1.9% in the first and 2.4% in the sec-
ond iteration, where the error accumulates to 4.3%.

Figure 17(b) shows that our procedure has the ten-
dency to increase the particle density in the plasma in-
terior and reduce it near the plasma boundary. We have
not investigated why the systematic errors have this par-
ticular form and it may, in fact, depend on the particular
magnetic configuration at hand. However, the larger er-
rors in the outer region of the plasma are likely related
to the fact that, in our test case, this region is popu-
lated almost exclusively by particles on large orbits near
the trapped-passing boundary (cf. Fig. 10(c)), where the
poloidal transit time τpol exhibits singular behavior (see
Fig. 8) and inaccuracies can be expected. In the present
case, the magnitude of these errors can be reduced by
increasing the number of phase space samples as shown
in Appendix B.4.

Figure 18 shows the results for the velocity space
distributions ν̂(η)(E, α) and ν̂(η)(E, λ) for iterations η =

0, 1, 2. No significant differences can be seen in the en-
ergy direction, which is to be expected since it is a con-
served quantity and our energy bins are identical in both
representations. But even along the pitch coordinates α
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Figure 18: Spatially integrated pitch and energy distributions for the
cases in Fig. 17. The curves in (a) were normalized by the number
of physical particles Nphys at each iteration (shown in the legend) in
order to highlight the degree of accuracy at which their shape is repro-
duced. The contours in (c)–(f) are colored differently from Figs. 15
and 16 to improve the visibility of small deviations. Usage of 0th-
order (binary) binning is responsible for the aliasing noise being larger
in panel (a) here than in Fig. 13(a), where a 1st-order (linear interpo-
lation) scheme had been used.

and λ, excellent agreement is obtained after dividing out
the systematic increase ofNphys. The noise at large pitch
values retains its form as expected for an aliasing effect,
and its magnitude increases systematically from one it-
eration to the next. The minimum associated with the
loss cone tends to deepen with each iteration, which is
also to be expected due to the irreversibility of losses.
As was noted in connection with Fig. 16, we see again
in Fig. 18 that binning on a uniform mesh in λ instead
of α reduces aliasing and, thus, yields smoother results
in the deeply passing domain (|α| & 0.3π or |λ| & 0.8).

Before proceeding to the conclusion of this paper, we
shall add a few encouraging words for readers who may
find the results in this section somewhat unsatisfactory.
First, it should be noted that we have chosen a fairly
challenging setup for our application example: Our den-
sity peak is localized deeply in the plasma core, where
derivatives of the poloidal magnetic flux ΨP are small
so that Pζ is dominated by drift terms. This means the
so-called “non-standard” orbits are actually prevalent
here. Second, we have sampled the CoM space only
relatively sparsely (Table 2) and used no smoothing pro-
cedure whatsoever. Even the binning of particles was
done using a 0th-order scheme, which is why the noise

in Fig. 18 is larger than in Fig. 13.
In other words, one may say the we have been looking

here at a worst-case scenario with the least degree of so-
phistication. This should be taken in a positive way, be-
cause it means that there is much room for improvement
even with well-established techniques. Higher resolu-
tion in CoM space, higher-order binning schemes and
other smoothing techniques are obvious solutions to re-
duce noise to a level where the distribution becomes suf-
ficiently smooth to measure local phase space gradients
of a particle distribution. The application of such tech-
niques in combination with the orbit-based representa-
tion method described here is left for future work.

9. Summary and conclusion

This paper was motivated by the need to model and
process distributions of charged particles in tokamak
plasmas in a unified framework like the ITER Integrated
Modelling & Analysis Suite (IMAS), which has to ad-
dress the needs of a diverse community of users deal-
ing with experimental and numerical data. One of the
tasks IMAS will need to perform is the conversion of
distribution functions between various coordinates. Our
proposal is to construct a database of unperturbed GC
drift orbits and use it as a basis for representing distri-
bution functions in constants-of-motion (CoM) space.
A concrete workflow based on our code VisualStart

[12, 13] is proposed and described in detail in this paper.
It should be noted that dedicated IMAS data struc-

tures for storing GC orbit properties and quantities
along GC trajectories of marker distributions have re-
cently been added into the ‘distributions’ IDS (Interface
Data Structures) [50], making IMAS readily compatible
with the representation and methods proposed here.

An orbit-based representation maps any input distri-
bution to an exact equilibrium that is consistent with the
specified magnetic field configuration. While the result
may generally differ from the original input, the equi-
librium constraint ensures that all subsequent mappings
from 3-D CoM orbit space back to arbitrary 4-D sets
of coordinates become unique and straightforward. In
fact, further operations like visualization or exporting
are reduced to binning marker particles on user-defined
meshes in arbitrary coordinates and arbitrary subspaces.

A new orbit database needs to be set up for each
MHD equilibrium, and one may even have to set
up one for different energy ranges (say, 1...tens keV,
and 0.1...few MeV). The required computational effort
should be manageable if the code is optimized and capa-
ble of exploiting state-of-the art computing technology.
Once the database has been constructed, it can be used
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to represent and model various populations of charged
particles that may be present in the same plasma, such
as beam ions, RF-heated ions and fusion products. One
orbit database may be shared between particle species
with identical charge-to-mass ratio Qe/M by scaling
their energies.

The time spent on preparing the orbit database is also
justified by the fact that the acquired information can
be used for other important tasks, such as resonance
analyses and modeling, which must also be part of the
IMAS toolbox. The degrees of freedom for modeling
are vast, since each orbit can be assigned an independent
weight. Rather than prescribing parametric functions
of CoM — whose limitations were briefly discussed
in Section 7 — it is worth exploring unconventional
ways that make better use of the degrees of freedom
available and take advantage of the fact that our orbit-
based representation automatically enforces the equilib-
rium condition and physical constraints associated with
toroidal geometry; namely, the mirror force, magnetic
drifts and the resulting velocity space nonuniformities
and boundary losses. As an example, we have demon-
strated in Section 8 how the orbit database can be used
to model a distribution of alpha particles with a core-
localized birth profile that is not a function of the fast
alpha’s CoM. This method to design distribution func-
tions was inspired by orbit-following Monta-Carlo sim-
ulations, but is much cheaper computationally. We ex-
pect that similar strategies can be used to model distri-
bution functions based on various types of experimen-
tally measured data or from results of bounce-averaged
Fokker-Planck codes that ignore magnetic drifts [28].

Finally, we demonstrated in Section 8.4 how a distri-
bution of energetic alpha particles with large magnetic
drifts can be converted back and forth between a 4-D
mesh in arbitrary coordinates and the orbit-based repre-
sentation in 3-D CoM space. Besides being an essential
part of the coordinate transformation toolbox needed
by platforms like IMAS, this procedure served us as a
method to verify the numerical accuracy and logical in-
tegrity of the workflow. In fact, this procedure enabled
us to identify and correct subtle problems that arose in
early versions of our implementation of the algorithm.
The lessons we learned are documented in this paper.

The methods presented here can serve as a start-
ing point that already provides much of the required
functionality required by IMAS. One of the next steps
should be the adoption or development of smoothing
techniques with the goal to mitigate the effect of dis-
cretization noise, while minimizing systematic errors
associated with such irreversible data manipulations.
This is a prerequisite for performing stability analyses

of resonant modes and for preparing initial conditions
for delta- f simulations, which require explicit informa-
tion about gradients in the phase space density.

We suggest the reader to also follow related and com-
plementary developments in orbit tomography [6, 7, 8,
25]. For instance, those studies demonstrate an alterna-
tive way to sample the orbit space and employ methods
for adaptive meshing and reducing binning errors.
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Appendix A. Binning operations and Jacobians

In this section, we describe how we evaluated the
Klimontovich representation (25) to visualize our re-
sults in Section 8. The marker weights wl in Eq. (31)
represent physical particles. Meanwhile, the marker po-
sitions and orbits are those of GCs, since it is their equa-
tions of motion (21) and (22) that we solve. We must
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thus be careful to determine where Littlejohn’s GC Ja-
cobian B∗

‖
from Eq. (6) enters. The guiding principle is

that the result (i.e., values of f ) must be the same irre-
spective of whether we choose GC coordinates or phys-
ical particle coordinates for binning and visualization.

For clarity, we break the procedure up into (i) the
computation of histograms h and (ii) their conversion to
density functions f . As a concrete example, we consider
the set of coordinates (E, λ,R, z), with volume element
∆Vi jkm = ∆Ei∆λ j∆Rk∆zm.10 Depending on whether cell
coordinates Zi jkm = (Ei, λ j,Rk, zm) are interpreted as po-
sitions of GCs or physical particles (“phys”), two kinds
of histograms can be computed:

hgc(Zi jkm) =

Nmrk∑
l=1

wl
S (Zgc,l − Zi jkm)

∆Vi jkm
, (A.1a)

hphys(Zi jkm) =

Nmrk∑
l=1

wl
S (Zgc,l − Zi jkm)[

B∗
‖

B

]
l
∆Vi jkm

. (A.1b)

The markers are located at GC positions Zgc,l, but their
weights wl represent physical particles (cf. Eq. (26)).
The shape function 0 ≤ S ≤ 1 defines how we map
these weights onto our mesh. Within the accuracy lim-
its of our discrete mesh, we may assume that [B∗

‖
/B]l ≈

[B∗
‖
/B]i jkm. The phase space density function f is then

f =
hgc

J
(x,3)
gc

=
hgc

J
(x,3)
phys × B∗

‖
/B

=
hphys

J
(x,3)
phys

. (A.2)

In the first equality, B∗
‖
/B is contained in the Jacobian

J
(x,3)
gc for the conversion from Cartesian to noncanonical

GC coordinates (cf. Eq. (6) with dµ→ B−1Md32⊥/2). In
the last equality, B∗

‖
is part of the histogram hphys. Sub-

stituting Eq. (A.1) into (A.2), the formula for mapping
the phase space density function f to a mesh becomes11

f (Ei, λ j,Rk, zm) =

Nmrk∑
l=1

wl × S (Zgc,l − Zi jkm)[
B∗
‖

B J
x
RzJ

3
Eλ

]
l
∆Vi jkm

, (A.3)

10In contrast to the canonical 6-D phase space volume elements
∆Vorb and ∆V of GC orbits and their markers as defined in Section 6,
the symbol ∆V appearing here denotes an element in an arbitrary mesh
in an arbitrary number of dimensions.

11Conventional PIC codes sample the phase space by loading
marker particles in a uniformly randomized manner at the beginning
of a simulation (t = 0). In that case, the initial marker weights (via
their volume elements) carry a factor B∗

‖
(t = 0)/B(t = 0). When eval-

uating moments of the distribution function during a simulation, that
factor is effectively multiplied by the inverse factor B(t)/B∗

‖
(t) that ap-

pears in Eq. (A.3). These two factors cancel approximately and may,
thus, be omitted, if one ignores corrections of order O(ρ2

0/a
2).

which is independent of whether the cell coordinates
Zi jkm = (Ei, λ j,Rk, zm) are interpreted as those of GCs
or physical particles.

Based on Eq. (A.3), we compute density fields in 1-D
and 2-D by binning marker weights wl as follows:

n(ψP,i) =

Nmrk∑
l=1

wl[
B∗
‖

B J
x
ψP

(R, z)
]

l

S (Zgc,l − Zi)
∆ψP,i

, (A.4)

n(Ri, z j) =

Nmrk∑
l=1

wl[
B∗
‖

B J
x
Rz(R)

]
l

S (Zgc,l − Zi j)
∆Ri∆z j

. (A.5)

The spatially integrated velocity distributions are

ν(ai, b j) =

Nmrk∑
l=1

wl[
B∗
‖

B Ĵ
3
ab

]
l

S (Zgc,l − Zi j)
∆ai∆b j

. (A.6)

In Sections 8.2 and 8.3, we used 1st-order shape func-
tions S for binning (linear interpolation), and in Sec-
tion 8.4 we used 0th-order (binary) binning.

Finally, we present expressions for the Jacobians as-
sociated with the coordinates we use. Since the factor
B∗
‖
/B has already been singled out in (A.3), we are going

to work in physical space. Converting to polar velocity
coordinates and integrating over gyrophase, we obtain

d3̂xd3̂yd3̂z × d3x = 2π3̂⊥d3̂⊥d3̂‖ × d3x. (A.7)

The Jacobian J x
ψP

for transforming between d3x and
the normalized poloidal flux ψP is obtained numerically.
The Jacobian for cylinder coordinates is J x

Rz = 2πR.
Analytical expressions can also be derived for the Ja-
cobians of all velocity coordinates that we use here.
Namely, from the relations

3̂
2
⊥ =2ÊΛB̂ = 2Ê cos2 α = 2Ê(1 − λ2), (A.8)

3̂‖ =
√

2Ê sinα =
√

2Êλ = σB

√
2Ê(1 − ΛB̂), (A.9)

with σB ≡ 3‖/|3‖|, one readily obtains the Jacobians

J3ab = 2π

∣∣∣∣∣∣ 1
2∂a3

2
⊥ ∂a3‖

1
2∂b3

2
⊥ ∂b3‖

∣∣∣∣∣∣ (A.10)

for locally (in x) transforming velocity space elements
2π3⊥d3⊥d3‖ to other sets (a, b), such as

Ĵ3
Eµ = πB̂/|3̂‖|, Ĵ3

EΛ = 2πÊB̂/|3̂‖|, (A.11)

Ĵ3Eα = Ĵ3⊥,3‖ = 2π3̂⊥, Ĵ3Eλ = 2π3̂. (A.12)
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Appendix B. Numerical accuracy and data storage

Researchers tend to invest significant effort in the
preparation of their simulation scenarios, balancing ac-
curacy against speed. However, the data on platforms
like IMAS are likely to be of variable quality, since
some of it originates from automated or semi-automated
workflows. The tools used to process those data should
hence have a certain degree of tolerance with respect
to inaccuracies and be able to detect and handle ex-
ceptions. The workflow in VisualStart also con-
tains such sensibility checks and ways to mitigate the
effects of inaccuracies. Some of the inaccuracies aris-
ing in VisualStart could be avoided with more so-
phisticated techniques, while others are practically in-
evitable due to numerical resolution being necessarily
finite. This Appendix contains notes concerning some
issues that are relevant for the subject of this paper or, at
least, for the current implementation of VisualStart.

Appendix B.1. Particle pushing
At present, the particle pushing routine used to com-

pute GC orbits in VisualStart uses the same finite-
difference algorithm as the MHD-PIC hybrid code MEGA
[40, 41]: a primitive 4th-order Runge-Kutta scheme
advances the equations of motion expressed in simple
cylinder coordinates. Derivatives are taken through sim-
ple finite differences. This choice has been made delib-
erately in order to have the same level of accuracy as
the hybrid code for which VisualStart prepares ini-
tial conditions. This allows us to detect possible prob-
lems, if any, at an early stage, before launching expen-
sive hybrid simulations. Of course, accuracy can be
improved with various techniques, including a Hamil-
tonian formulation like that used in codes like ORBIT

[51, 52, 53] and HAGIS [54, 55], albeit with the compli-
cation of having to work with a specialized set of coor-
dinates. The benefits of such techniques become notice-
able when following orbits for long periods of time (as
in Poincaré analyses). For evaluating a single poloidal
transit as we do here, simple techniques often suffice,
but due attention must always be paid to regions near
singularities and stagnation points like those shown in
Figs. 7 and 8.

Appendix B.2. Orbit database
Although one may load GC phase space markers as

soon as an orbit contour has been computed, it is advan-
tageous to store orbits in a database and load the mark-
ers later as needed. One reason is that the orbits can be
recycled when preparing distribution functions for dif-
ferent sets of particles: alpha particles and deuterons are

Figure B.19: Sampling of potato orbits. The two examples in (a) and
(b) correspond to 2.52 MeV alpha particles with different pitch angles
in the scenario of Fig. 4 that is partly based on JET. The coordinate
values listed are those at the starting point of an orbit contour, which
is indicated by a large yellow circle. The small black circles represent
Nτ = 16 samples spaced by equal length intervals (∆` = Lorb/Nτ, left)
or equal time intervals (∆t = τorb/Nτ, central and right column).

indistinguishable for identical velocities, and one may
have multiple beams as well as RF-heated populations
of a certain particle species in the same plasma. These
sets of particles may all share the same orbit database.

In order to keep the size of the database manage-
able, the representation of the orbits must be efficient.
VisualStart saves all orbits in discretized form, typ-
ically using 32–64 samples per orbit. The user can
choose between three options for the distribution of
samples: (i) uniform in space, (ii) uniform in time, or
(iii) a 50:50 combination of (i) and (ii). We usually
choose option (i) for beam-like distributions that consist
only of passing particles. Option (iii) is preferred when
trapped particles are present in order to ensure good res-
olution both near and far away from V-type stagnation
points as the examples in Fig. B.19 show.

The recorded time arrays must include at least R(t),
Z(t), 3‖(t) and the time t itself. Our databases con-
tain many other arrays that have been stored for vari-
ous purposes, such as ζ(t), 3R(t), 3z(t), 3ζ(t) and ψP(t).
The database file from our low-resolution example in
Fig. 6 has a size of 33 Mbyte in NetCDF format. The
databases with the parameters in Table 2 occupy about
150 Mbyte each in the mono-energetic cases and 500
Mbyte in the flat-energy cases. These files also con-
tain useful auxiliary information, such as the numerical
parameters, poloidal and toroidal transit times, the or-
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Figure B.20: Example of interpolation errors caused by a small mis-
match between the start and end points of an orbit, which can be
seen in the zoomed inset in panel (a). Panel (b) shows the re-
sults of various interpolation algorithms using the Matlab function
interp1: linear interpolation, piecewise cubic spline (spline),
spline without the last sample (“N−1”), and shape-preserving piece-
wise cubic interpolation (pchip). The magnetic field in this example
is based on a JT-60U plasma as used, for instance, in Ref. [17].

bit length, bounce angle, the orbit type, and some mea-
sures of the computational accuracy: energy conserva-
tion, and spatial mismatch between start- and end-point.

Orbits that have not been completed within a certain
upper bound of time steps are labeled as “incomplete”.
Before proceeding to Step 4 of our workflow in Fig. 2,
we deal with such incomplete orbits and those that have
insufficient accuracy. Bad orbits can be corrected if nec-
essary, or simply discarded if sufficient accuracy is diffi-
cult to achieve and unnecessary (as may happen for tiny
orbits very close to an O-type stagnation point).

Data related to marker weighting are also present; in
particular, the volume element sizes ∆Vorb. There is
an option to undo the factor 1/2 in the volume element
given by Eq. (37) for stagnation orbits that are smaller
than the cell size and, hence, cannot be double-counted.
Their volume elements may then be rescaled in propor-
tion to the orbit’s radial diameter, but the effect is usu-
ally negligible since such orbits carry little weight (and
one should use a finer mesh if they are of interest).

Interpolation is necessary when converting the raw
data from the particle pushing algorithm to the sam-
ples used to represent an orbit in the database. Fur-
ther interpolation is necessary when loading markers on
an orbit that has been retrieved from the database. As
shown in Fig. B.20, we found that a tiny discontinu-
ity in an orbit contour (mismatch between start and end
points) can cause relatively large “ringing” in spline in-
terpolations. Subsequent interpolations in that region —
namely, when we load marker particles — can produce
corrupt samples that may even lie outside the plasma.
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Figure B.21: Convergence test showing the reduction of the relative
errors in the radial density profiles n̂(η)(r) with iteration index η = 1, 2.
The analysis is equivalent to that in Fig. 17, except that it is performed
here for the monotonic-energetic case with E = 3.5 MeV. Panel (a)
shows the result for the default number of NX = 2 × 64 radial grid
points. In panel (b) it is NX = 2 × 160. The other parameters are
the same as in Table 2, except that the number of markers per orbit
Nτ was increased from 48 Lorb

Lbnd
to the same value of 480 Lorb

Lbnd
as used

for Fig. 17. The relative change in the total number Nphys of physical
particles is shown in the legends.

When applying the 1-D interpolation function interp1
of Matlab for processing our orbits (and other poten-
tially “noisy” data), we avoid such problems by using
the pchip option instead of spline.

Appendix B.3. Marker loading
In order to avoid crowding at the midplane, the mark-

ers on each orbit are loaded with a random time offset
0 ≤ τ0 < τpol relative to the starting point at the mid-
plane. When using the markers in a simulation, they are
also spread (randomly) along the toroidal angle ζ.

Appendix B.4. Convergence test
Figure 17(b) showed indications of relatively large

errors that increased systematically with each iteration
of our back-and-fourth transformation between a 4-D
mesh in the coordinates (E, λ,R, z) and the orbit-based
representation in 3-D CoM space. In our discussion
in Section 8.4, we attributed this problem to inaccura-
cies in the estimation of the volume elements for orbits
sampling the region near the trapped-passing boundary,
where some factors exhibit singular behavior.

Further tests show that these errors can be reduced
by simply increasing the number of phase space sam-
ples via the parameters Nα, NX and Nτ in Table 2.12 In

12Since kinetic energy is conserved and our 3-D and 4-D distri-
butions both share the same energy mesh, the parameter NE has no
impact on the numerical accuracy in our verification exercise.
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Fig. B.21 we demonstrate this for the case where we
increased the number of radial grid points NX . While
the flat-energy case with E = 0...3.5 MeV was used in
Fig. 17, we have chosen only mono-energetic alpha par-
ticles with E = 3.5 MeV for the convergence test in
Fig. B.21. For an identical mesh, this results in larger
values of the relative errors in Fig. 17 since only the
particles with the largest magnetic drifts are present.

The comparison between panels (a) and (b) of
Fig. B.21 shows a significant reduction of the numeri-
cal errors in both the local values of the alpha particle
density profile n̂(η)(r) and the total number of particles
Nphys. As before, the errors accumulate with each itera-
tion, which confirms their systematic character.

Besides the brute-force approach of increasing the
number of samples, there may exist other ways to cor-
rect or otherwise suppress the inaccuracies associated
with singular volume elements. This is left for fu-
ture work. A preliminary discussion was given in Sec-
tion 6.2 of the main text.
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