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Bit reset is a basic operation in irreversible computing. This costs work and dissipates energy in
the computer, creating a limit on speeds and energy efficiency of future irreversible computers. It was
recently shown in Ref. [Phys. Rev. Lett. 127, 190602 (2021)] that for a finite-time reset protocol,
the additional work on top of the quasistatic protocol can always be minimized by considering a
two-level system, and then be lower bounded through a thermodynamical speed limit. An important
question is to understand under what protocol parameters, including bit reset error and maximum
energy shift, this penalty decreases exponentially vs inverse linearly in the protocol time. Here we
provide several analytical results to address this question, as well as numerical simulations of specific
examples of protocols.

I. INTRODUCTION

It has been a long-term effort to reduce the energy
consumption of computing. As an elementary operation
in irreversible computation, bit reset initializes unknown
logical bits to certain states. Understanding the work
cost to reset a bit is important when dealing with the
energetic cost of irreversible computation [1]. Indeed,
not only does the work cost contribute to the overall en-
ergy cost of the computation, but also the excess work
dissipates as heat, which limits the number of compu-
tations per second. Landauer’s principle [2–4] imposes
a fundamental limit to such energy cost: the erasure of
one bit of information requires at least kBT ln 2 amount
of energy, where kB is the Boltzmann constant and T
is the temperature of the environment. This limit has
been extrapolated based on current trends to be reached
around 2035 [5]. The principle is moreover of fundamen-
tal significance to the foundation of information thermo-
dynamics [6–25], and has been tested in various experi-
ments [26–32].

Since Landauer’s principle assumes quasistatic pro-
cesses to obtain the limit of energy cost, it is necessary to
ask how this limit can be improved in realistic processes.
For a finite-time protocol of bit reset, the crucial ques-
tion is how to characterize a correction term added to the
Landauer limit. Developments have been made towards
solving this problem, by discussing the extra energy cost
(or heat dissipation) of bit reset in different systems and
scenarios. For instance, in the Langevin dynamics case of
colloidal particles trapped in a double-well potential, it
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is shown that optimal reset protocols [33, 34] yield a cor-
rection of heat dissipation proportional to 1/τ [35, 36],
where τ is the finite time for the reset. Using a two-
level system, it was shown that there exist efficient reset
protocols where the work cost drops faster when certain
assumptions can be made [37].

Recently, the above two results were further unified
and generalized in the framework of stochastic thermody-
namics [38]. It was shown that the work penalty, defined
as the difference between the actual work cost and qua-
sistatic work, is the summation of two terms: the first is
the change of relative entropy of the system state and the
thermal state, and the second is the entropy production
for the entire process. For bit reset, the entropy pro-
duction cannot escape 1/τ time scaling [38], guaranteed
by the speed limit [39], and that there exists a region of
small τ where the relative entropy change dominates the
work cost and decays exponentially with τ [38].

While this result applies to a large class of reset pro-
tocols, in implementations, one still needs to design con-
crete protocols to tailor the work penalty, such that spe-
cific requirements (e.g., limitations on energy input, reset
time, reset error, or thermalisation rate) can be fulfilled.
Therefore, it is necessary to investigate the trade-off re-
lations between protocol parameters for typical classes of
reset protocols.

In this paper, we therefore give a precise analysis of
the work penalty for two kinds of bit reset protocols. We
focus on two concrete protocols where two-level systems
undergo thermalization that respects detailed balance:
a protocol with discrete shifts of energy levels and one
with continuous driving. We study both in two scenarios
of fixed maximal energy level and fixed reset error. We
show that for both cases, the work penalty decays expo-
nentially in τ for small τ and inverse linearly for large
τ . We give, for one explicit protocol, a simple sufficient
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condition on τ for the exponential scaling to dominate.
We further show analytically and numerically how the
work penalty and reset error changes with the allowed
maximal energy and the allowed reset error. Our work
gives a more comprehensive understanding of bit reset
protocols, and helps to improve the design of bit reset
protocols with system-dependent conditions.

II. WORK PENALTY OF BIT RESET

The bit is the basic physical ingredient for informa-
tion processing. It has two logical states “0” and “1”.
In practice, any physical system, whether discrete or
continuous, can be used as a bit through coarse grain-
ing [40], i.e., fine-grained states are grouped into two
coarse-grained states representing the logical states of a
bit. For instance, a colloidal particle in a double-well
potential can be regarded as a bit, with the left well rep-
resenting “0” and the right well representing “1” (see
Fig. 1 and Refs. [3, 4, 26, 27, 33–36]).

“0” “1”Potential

System configuration

Potential
P

robability P0
P1

FIG. 1. An example of coarse-graining a multi-level system
to a bit system. A colloidal particle immersed in a double-
well potential (yellow curve) has multiple microstates (config-
urations). These microstates occur with certain probabilities
(blue and red bars), and are grouped into two bit states “0”
and “1”, with probabilities P0 and P1, respectively.

Denote probabilities of the bit system in states “0”
and “1” as P0 and P1, respectively. It has been proved
that the work penalty of bit reset can be minimized by
considering an effective two-level system [38], therefore,
here we only consider the two-level system. For con-
venience, we write the state of the system at time t
as P (t) = [P0(t), P1(t)]. The system is assumed to be
in contact with a heat bath at a fixed temperature T .
The system is controllable via varying the energies E0(t)
and E1(t) associated with states “0” and “1”, respec-
tively. Let the thermal states, which depend on E(t),
be γ(t) = [γ0(t), γ1(t)] with γa(t) = exp[−βEa(t)]/Z(t).
Here, Z(t) =

∑
a exp[−βEa(t)] is the partition function.

We assume there is a Markovian thermalisation pro-
cess, consistent with the stochastic thermodynamics
framework. Any non-Markovian dynamics can be made

Markovian by adding the necessary historical record to
the microstate description [41, 42]. The master equa-
tion of the bit evolution can, assuming detailed balance,
always be described by the partial-swap thermalization
towards the equilibrium state [37, 38, 43], i.e.

d

dt
P (t) = µ [γ(t)− P (t)] . (1)

Here, for gaining physical insight of the model, we have
assumed that the the swap rate µ is time-independent
and that the equilibrium state is the thermal state. In
general, the swap rate and the equilibrium may depend
on the hidden degrees of freedom. The meaning of par-
tial swap can be seen from taking a small time duration
δt, when a proportion of µ(t)δt of system state P (t) is
swapped with the thermal state γ(t).

Bit reset is the process of erasing an unknown bit, i.e.,
driving the bit from the maximally unknown state P =
[1/2, 1/2] to a definite logical state, say “0”. Without los-
ing generality, a bit reset protocol can then be processed
as follows. Initially, one set E1(t = 0) = E0(t = 0) = 0
and has let the system sufficiently thermalize such that
P (t = 0) = γ(t = 0) = [1/2, 1/2]. Then, fix E0(t)
for all the times while increases E1(t) until a final time
t = τ . During the energy shift, P1(t) decreases as a
result of thermalization described by Eq. (1). Finally,
at time τ , the protocol ends and the system evolves to
state P (t = τ). Denote ε = P1(τ) as the reset error.
One can immediately conclude that ε approaches zero if
E1(τ) = Emax is sufficiently large and τ is sufficiently
long.

The work cost associated with the above protocols de-
pends on how E1(t) is lifted, i.e.

W (τ) =

∫ τ

0

dtP1(t)
dE1

dt
(t). (2)

The W (τ) is fundamentally restricted by Landauer’s
principle when quasistatic protocols are considered. For
such protocols, the system state is exactly the thermal
state at each energy configuration, such that the qua-

sistatic work cost is Wqs(Emax) =
∫ Emax

0
γ1(E1)dE1 =

kBT ln[2/(1 + e−βEmax)]. One can further reach Lan-
dauer’s limit kBT ln 2 [3] by letting Emax →∞.

In a realistic situation, however, not only is the reset
protocol far from quasistatic, but also a non-vanishing re-
set error exists. We therefore look at the additional work
cost in the finite-time scenario, i.e., the work penalty [37],
defined by

Wpn(τ) = W (τ)−Wqs(Emax). (3)

The work penalty can be equivalently written as the sum
of two terms (see for example Ref. [38, 44])

βWpn(τ) = D [P (τ)‖γ(τ)] + Σ(τ), (4)

where D[P (τ)‖γ(τ)] =
∑
a Pa(τ) ln[Pa(τ)/γ(τ)] is the

relative entropy between P (τ) and γ(τ), and Σ(τ) is the
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entropy production. Moreover, the work penalty can be
lower bounded by [38]

βWpn (τ) > Dε(τ) +
(1− 2ε)2

µτ
, (5)

where Dε(τ) = D[P (τ)‖γ(τ)].
This bound is tight when the protocol is qua-

sistatic [38]. It is clear to see that whilst a part of Wpn(τ)
cannot drop faster than 1/τ scaling, if the Dε(τ) term
dominates in a certain τ regime, Wpn(τ) would effectively
scale however Dε(τ) does [38]. We now look at the scaling
and trade-offs between the relevant quantities, including
the work penalty, reset error, and finite times, in specific
models.

III. DISCRETE-SHIFTING PROTOCOL

As a specific, yet simple, protocol to study the vari-
ation of the work penalty with protocol parameters, we
consider the protocol discussed in Refs. [37] and [38]. In
this protocol, let the initial time be 0 and the final time
be τ , which is divided into N equal size steps. At the start
of each step the energy is changed by E = Emax/N (we
assumed initial energy to 0). Thus in k-th step energy
goes from (k− 1)E to kE . We assume this change occurs
instantaneously. Followed by the change in energy, the
system undergoes thermalization, which takes time τ/N .
Therefore, the energy level in the k-th step, is

Ek1 = kE , k = 1, . . . , N. (6)

The instantaneous energy change additionally assumes
that the interaction between the system and work
medium is much larger than the interaction between the
system and the heat bath. According to the partial swap
model, P1(t = kτ/N), denoted as P k1 , can be derived by
solving Eq. (1) as

P k1 = e−µτ/NP k−1
1 +

(
1− e−µτ/N

)
γk1 . (7)

Consequently, one can obtain the work cost and work
penalty exactly, albeit not in a simple form, from Eqs. (3)
and (7).

We show that, for general protocols on a two-level sys-
tem, Dε(τ) cannot drop faster than an exponential scal-
ing, as it is lower bounded by

D [P (τ) ‖γ (τ)] > max
{
e−2µtG1 − e−µt

(
1− e−µt

)
G2,

0} , (8)

where G1 = ln [(1 + cosh (βEmax)) /2] /2 and G2 =
β [Wpn (τ)− εEmax]. We give the derivation of Eq. (8)
in Appendix A 1.

In the other direction, Dε(τ) is upper bounded by an
exponential function [38],

Dε(τ) 6 e−µτ/ND [γ(0)‖γ(τ)] (9)

= e−µτ/Nβ

[
Emax

2
−Wqs(Emax)

]
. (10)

Together with Eq. (8), we can conclude that Dε(τ) drops
exponentially with τ . Moreover, as βWpn(τ) is the sum of
Dε(τ) and Σ(τ), and the speed limit approach guarantees
that Σ(τ) > (1−2ε)2/(µτ), we conclude that Wpn(τ) may
have an exponential scaling or an inverse-linear scaling,
dependent on which term dominates.

We further derive a sufficient condition such that
Wpn(τ) is dominated by Σ(τ), namely

τ >
N

2µ
ln 2, (11)

and give the proof in Appendix A 2.
We shall also compare the expressions here with up-

per and lower bounds on Wpn(τ) which were derived in
Ref. [38] using techniques from Ref. [37]:

Wpn(τ) > e−µτ/N
[

1

2
− 1

1 + eβ(Emax−E)

]
E , (12)

Wpn(τ) 6
eβE − 1

2β
+ e−µτ/N

[
Emax

2
−Wqs(τ)

]
. (13)

In the following, we study the performance of these
bounds with different parameters N , ε, Emax, and µ. We
particularly discuss two cases: the case of fixed Emax and
the case of fixed ε. These are two important parameters
that could be varied as part of the protocol design. Emax

can be heavily constrained for given hardware. ε is a
key performance indicator: the bit reset error probabil-
ity. We break the task of considering all combinations of
these two parameters into two parts by considering one
parameter fixed and the other as free.

A. Case of fixed Emax

We consider protocols with fixed Emax and discrete
shifting. As Emax determines γ(τ), it further restricts
the reset error by ε = P1(τ) > γ1(τ). In Fig. 2 we
show the dependence of the work penalty Wpn(τ) and
reset error ε on the finite time τ and the maximal energy
Emax. When the finite time increases, both Wpn(τ) and
ε decrease. For a given finite time τ , Wpn(τ) increases
when Emax increases or when ε decreases. Moreover, the
bound in Eq. (5) restricts Wpn(τ) closely, and the tight-
ness becomes better for small finite times. This feature is
mainly due to the tightness of the speed limit in Eq. (5),
as shown in Fig. 3. Furthermore, one might guess that
the work penalty would explode when τ goes to zero,
seen from Eq. (5). However, this is not the case here.
As we have fixed Emax, when τ → 0, E1 is almost in-
stantly shifted from 0 to Emax, such that ε → 1/2 and
Wpn → Emax/2−Wqs(Emax).

In addition, we provide a lower bound for ε with deriva-
tions in Appendix A 3:

ε > γN1 + e−µτ/NγN1
(
1− γN1

) (
1− e−βE

)
, (14)
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Finite time τ
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Reset error ε

Emax = 100
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FIG. 2. The discrete-shifting protocol with fixed maximal
energy Emax. The solid lines, dashed lines and dashdotted
lines represent the work penalty Wpn(τ), the work penalty
bound in Eq. (5) and the reset error ε, respectively. N = 10,
µ = 0.1 and β = 1 have been chosen for the simulation.

where γN1 = 1/(1 + eβEmax). This bound gives a minimal
reset error achieved by the discrete-shifting protocol. In-
deed, as the bit system is driven by a non-equilibrium
protocol, the final P1(τ) is a bit larger than γ1(τ).
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FIG. 3. Performance of the discrete-shifting protocol for dif-
ferent parameters when the maximal energy Emax is fixed
(β = 1). The shaded area is restricted by Eqs. (12) and (13).

The restrictions of different bounds on the work
penalty, the relative entropy, and the entropy produc-
tion under different parameters are shown in Fig. 3. The
Wpn(τ) (solid black) and Dε(τ) (solid red) generally de-
crease as τ increases, while Σ(τ) (solid blue) is almost
zero for short times as the system state is not changed
too much for the small-time drive. Recall that Dε(τ) is
upper bounded by Eq. (10) (dashed red line) while Σ(τ)
is lower bounded by the second term in Eq. (5) (dashed

blue line). As a result, Wpn(τ) is mainly contributed by
Dε(τ) for short times and by Σ(τ) for long times, and
consequently the work penalty initially drops exponen-
tially and then drops inverse-linearly. Moreover, due to
the separation between Σ(τ) and the speed limit bound,
the bound in Eq. (5) becomes less tight for long times.
Furthermore, Wpn(τ) decreases when N increases as less
heat is dissipated into the bath (and this change is slight
in the figure because of the chosen parameters). When
µ increases, the system thermalizes faster such that the
energy shift in each step costs less work and therefore
Wpn(τ) becomes less. If one decreases Emax, Wpn(τ) will
decrease significantly but the reset error will be large,
which can also be seen from Fig. 2. As for the alterna-
tive bounds in Eqs. (12) and (13), we can see that the
upper bound in Eq. (13) restricts the exponential scaling
of Wpn(τ) generally while the lower bound in Eq. (12)
performs better than Eq. (5) only when both N and τ
are small.

B. Case of fixed ε

The dependence of the work penalty Wpn(τ) and the
required maximal energy level Emax on the finite time τ
and the reset error ε is shown in Fig. 4. It can be seen
that the bound of Eq. (5) (dashed lines) restricts Wpn(τ)
(solid lines) closely. For a finite time τ > τε, both Wpn(τ)
and the required Emax increase when ε decreases. We
derive in Appendix A 4 that the required Emax satisfies

ln
1− ε
ε

6 βEmax 6 ln
1− ε− N

√
2ε/2

ε− N
√

2ε/2
. (15)

Meanwhile, from the logarithmic scale in the figure, it
can be seen that Wpn(τ) drops faster and slower than the
exponential scaling for short and long times, respectively.
We remark that for a fixed ε, there exists a minimal finite
time below which any reset protocol would fail to achieve
ε [45].

To study how the bound in Eq. (5) restricts Wpn(τ)
for different protocol parameters, we show in Fig. 5 the
work penalty Wpn(τ), relative entropy Dε(τ) and entropy
production Σ(τ) for given reset error ε, shift number
N , and swap rate µ. From the figure, we can see that
Wpn(τ) (black solid) is closely restricted by Eq. (5) (black
dashed). As Wpn(τ) is upper bounded by the right hand
side of Eq. (10) for short times, we can conclude that
Wpn(τ) drops exponentially and then almost inverse lin-
early. In addition, when ε is sufficiently small, Dε(τ)
may be less than Σ(τ), such that Wpn(τ) will mostly
have an inverse-linear time scaling, as shown in the last
panel of the figure. We also observe that Wpn(τ) becomes
larger when N increases, as in this case, the time inter-
val of each thermalization step becomes small such that
one requires a higher energy shift to drive the system
to the desired state with reset error ε. Similarly, when
µ increases, Wpn(τ) decreases, as the system is better
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FIG. 4. The discrete-shifting protocol with fixed reset error
ε. The solid lines, dashed lines and dashdotted lines repre-
sent the work penalty Wpn(τ), the work penalty bound in
Eq. (5) and the required maximal energy level Emax, respec-
tively. N = 10, µ = 0.1 and β = 1 have been chosen for the
simulation.
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FIG. 5. Performance of the discrete-shifting protocol for dif-
ferent parameters when the reset error ε is fixed (β = 1). The
shaded area is restricted by Eqs. (12) and (13).

thermalized for each thermalization step such that the
energy shift costs less energy. Thus also in this case the
the work penalty decreases exponentially in τ for small
τ and inverse linearly in large τ .

IV. CONTINUOUS DRIVING PROTOCOL

For continuous driving, the protocol can be described
by a function of E1(t) with E1(0) = 0 and E1(τ) = Emax.
Here, we investigate if the time scaling discussed in the
discrete case can be extended to the continuous case. As
the entropy production can be lower bounded via the

speed limit approach, i.e. Σ(τ) > (1 − 2ε)2/µτ , we can
immediately conclude that the work penalty cannot es-
cape the inverse-linear scaling when Σ dominates. In
contrast, if Dε(τ) dominates the work penalty, a differ-
ent scaling may occur. Unfortunately, the upper bound
of relative entropy in Eq. (10) does not apply to the con-
tinuous case. Instead, we analytically prove that there
always exists a sufficiently small finite time before Dε(τ)
drops exponentially. We specifically consider a finite time
τ 6 −µ−1 ln ε. Then, Dε(τ) can be proved to be bounded
by

Dε (τ) 6 e−µτ ln
(
1 + eβEmax

)
. (16)

In a more general sense (for general τ), we can show that
Dε(τ) is upper bounded by

Dε (τ) 6e−µτD [γ(0)‖γ(τ)]

+
(
1− e−µτ

)
D
[
γ(0+)‖γ(τ)

]
. (17)

We provide the proofs of the above two inequalities in
Appendix A 5.

To numerically investigate the case of the continu-
ous protocol, we particularly consider a special proto-
col where the driving is linear but an initial-time energy
jump exits. Indeed, linear driving is arguably the easiest
control in practice while the initial energy jump has been
employed in many optimal protocols (see, e.g., Refs. [34–
36, 46]). To further simplify the analysis, let the energy
jump be ∆/β and the speed of driving be µ/β, i.e.,

E1(t) = (µt+ ∆)/β, 0 < t 6 τ. (18)

The convenience of this protocol is that the bit evolution
can be analytically solved, based on partial swap model
(see Eq. (A1)), as

P1(t) = e−µt
[

1

2
+ e−∆ ln

1 + eµt+∆

1 + e∆

]
. (19)

From this equation, Wpn(τ), Dε(τ), Σ(τ) and associated
bounds can be calculated. Similar to the case of discrete-
shifting protocol, we study this continuous protocol for
cases of fixed maximal energy level and fixed reset error,
as shown from Figs. 6 to 9.

A. Case of fixed Emax

For the case of fixed maximal energy level, i.e., E1(t =
τ) = Emax, we show in Figs. 6 and 7 that Wpn(τ) de-
creases as the finite time τ increases, while the work
penalty bound in Eq. (5) restricts Wpn(τ) closely. Simi-
lar to the discrete case, Wpn(τ) approaches Emax/2 when
τ is almost zero. From the slope of the solid and dash-
dotted lines in Fig. 6, we can see that both the work
penalty and the reset error drops almost exponentially
for small times of τ . Particularly, when Emax increases,
for a given finite time τ , the work penalty increases while



6

the reset error decreases. In Fig. 7, however, the expo-
nential decay of Wpn(τ) is not obvious. This is due to the
fact Σ(τ) increases quickly, while Dε(τ) is upper bounded
by Eq. (17) closely in small times. Furthermore, if one
increases µ such that the system can thermalize better,
Wpn(τ), Dε(τ) and Σ(τ) become smaller, as shown in
Fig. 7.
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FIG. 6. The continuous driving protocol as described in
Eq. (18) with fixed maximal energy level E1(τ) = Emax. The
solid lines, dashed lines and dashdotted lines represent the
work penalty Wpn(τ), the work penalty bound in Eq. (5) and
the reset error ε, respectively. µ = 0.1 and β = 1 have been
chosen for the simulation.
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FIG. 7. Performance of the continuous driving protocol as
described in Eq. (18) for different parameters, when the max-
imal energy Emax is fixed (β = 1).

B. Case of fixed ε

For the case of fixed reset error, i.e., P1(τ) = ε, we show
in Figs. 8 and 9 that Wpn(τ) can be restricted closely by
the bound in Eq. (5), implying that Wpn(τ) cannot es-
cape the inverse-linear scaling. There is also a minimal
finite time below which any reset protocol would fail to
achieve ε [45]. Moreover, Wpn(τ) decreases faster than
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FIG. 8. The continuous driving protocol as described in
Eq. (18) with fixed reset error P1(τ) = ε. The solid lines,
dashed lines and dashdotted lines represent the work penalty
Wpn(τ), the work penalty bound in Eq. (5) and the required
maximal energy level Emax, respectively. µ = 0.1 and β = 1
have been chosen for the simulation.
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FIG. 9. Performance of the continuous driving protocol as
described in Eq. (18) for different parameters, when the reset
error ε is fixed (β = 1).

exponential drops for short times, as shown by the slopes
of the solid lines in the left panel of Fig. 8. Consequently,
the required Emax to obtain a final ε also drops sharply.
If one requires the protocol to reset the bit better, i,e.,
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demanding a smaller ε, one then needs to increase Emax

and apply more work if the finite time τ is small. For
the trade-off contribution between Dε(τ) and Σ(τ) to
Wpn(τ), we show in Fig. 9 that Dε(τ) drops extremely
fast such that Wpn(τ) is mainly due to Σ(τ) for most
finite times.

V. CONCLUSION

In this paper, by considering an effective two-level sys-
tem, we have investigated the scaling of the work penalty
with the protocol parameters, including the time allowed,
the bit reset error allowed and the final energy gap. We
derived results for two specific protocols: the discrete-
shifting protocol and the continuous driving protocol. We
have shown that for both protocols, the work penalty de-
cays exponentially when considering a sufficiently small
finite time and decays inverse-linearly when the finite
time is large. This is due to the trade-off in contribu-
tion between the relative entropy and the entropy pro-
duction to the work penalty. Above all, our work shows
in detail how the work penalty of finite-time bit reset
depends on the protocol requirements. The result ad-
ditionally helps the design of reset protocols to balance
the energy cost and reset errors. Particularly, for a cer-
tain hardware where the maximal energy gap between
the bit-value states is fixed and for a certain demanded
reset error, our result can be used to select suitable reset
protocols. In scenarios where the time is constrained, one
can strike a balance between the time and reset error by
setting the parameters such that the work penalty falls
beyond the exponential region but not too far into the
inverse-linear region.

There are related results that are based on information
geometry, and provide efficient tools to study the optimal
protocols such that the entropy production can be lower
bounded. Particularly, an information geometric lower
bound with 1/τ scaling was given in Ref. [47]. To evalu-
ate the (Wasserstein) distance in the bound one can use
either a bound in terms of total variation distance and a
measure of the strength of the time evolution, or numer-
ical methods for evaluating geodesics. Ref. [48] employs
similar methods to create tight bounds under a Fokker-
Planck master equation. Ref. [49] shows how to derive
analogous results for discrete state spaces. The informa-
tion geometry approach was moreover employed to derive
an expression for the optimal power of heat engines op-
erating between two temperatures in Ref. [50]. These
information geometry type results are, as described, e.g.,
in Ref. [47] closely related to the speed-limit on entropy
production employed here. They offer a complementary
route to show 1/τ scaling in the long time regime and
tools to determine optimal values numerically. It would
be interesting to apply the information geometry ap-
proach to analyse the exponential scaling in the short-
time regime.
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Appendix A: Derivations in the main text

1. Proof of Eq. (8)

We firstly show that the partial swap model in Eq. (1)
can be solved as

P1 (t) = e−µt
[
P1(0) + µ

∫ t

0

dseµsγ1 (s)

]
. (A1)

An efficient reset protocol requires E1(s) 6 E1(t) for any
two times s 6 t. This leads to γ1(t) = 1/(1+exp(βE1(t))
monotonically decreasing with time such that γ1(s) >
γ1(t). Substituting this relation into Eq. (A1) and ap-
plying the initial condition P1(0) = γ1(0), we have

P1(τ) > e−µτγ1(0) +
(
1− e−µτ

)
γ1(τ). (A2)

Meanwhile, D[P‖γ] is monotonically increasing with
P1, which can be verified by

∂

∂P1
D [P‖γ] = ln

(1− γ1)P1

(1− P1)γ1
> 0, (A3)

where we have used the fact that P1 > γ1 > 0. Using
the inequality of Eq. (A2), and for convenience denoting
q = exp(−µτ) and γ̃ = qγ(0)+(1− q) γ(τ), we can bound
the relative entropy as

D [P (τ) ‖γ (τ)] (A4)

>D [γ̃‖γ (τ)] =
∑
a

γ̃a ln
γ̃a

γa (τ)
(A5)

=
∑
a

[qγa (0) + (1− q) γa (τ)] ln
γ̃a

γa (τ)
(A6)

=q
∑
a

γa (0)

[
ln

γ̃a
γa (0)

+ ln
γa (0)

γa (τ)

]
+ (1− q)

∑
a

γa (τ) ln
γ̃a

γa (τ)
(A7)

=− qD [γ (0) ‖γ̃] + qD [γ (0) ‖γ (τ)]

− (1− q)D [γ (τ) ‖γ̃] (A8)

>q2D [γ (0) ‖γ (τ)]

− q (1− q)D [γ (τ) ‖γ (0)] (A9)
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where we have used the convexity of relative entropy.
Since

D [γ (τ) ‖γ (0)] =
∑
a=0,1

γa (τ) ln
γa (τ)

1/2
(A10)

=
∑
a=0,1

γa (τ) ln
2e−βEa(τ)

Z (τ)
(A11)

= ln
2

Z (τ)
−
∑
a

γaβEa (τ) (A12)

= β [Wqs (τ)− εEmax] (A13)

D [γ (0) ‖γ (τ)] =
∑
a=0,1

1

2
ln

1/2

γa (τ)
(A14)

= − ln 2 +
1

2
ln

1

γ0 (τ) γ1 (τ)
(A15)

=
1

2
ln

(
1 + cosh (βE)

2

)
(A16)

Finally, we have

D [P (τ) ‖γ (τ)] (A17)

>max
{

0, e−2µtG1 − e−µt
(
1− e−µt

)
G2

}
, (A18)

where G1 = ln [(1 + cosh (βEmax)) /2] /2 and G2 =
β (Wpn (τ)− εEmax).

2. Proof of Eq. (11)

In the discrete-shifting protocol, the work penalty can
be written as βWpn(τ) = D

[
PN‖γN

]
+ Σ(τ), where

Σ(τ) =
∑N
k=1 Σk is contributed by the entropy produc-

tion of each thermalization step, i.e.

Σk = D
[
P k−1‖γk

]
−D

[
P k‖γk

]
. (A19)

Similarly, we also introduce the relative entropy changes
for each step of energy shift and thermalization such that

D
[
PN‖γN

]
=
∑N
k=1D

k with

Dk = D
[
P k‖γk

]
−D

[
P k−1‖γk−1

]
. (A20)

We consider a sufficient but not necessary condition
for D 6 Σ, i.e. when Dk 6 Σk for all k. This condition
is equivalent to

2D
[
P k‖γk

]
6 D

[
P k−1‖γk−1

]
+D

[
P k−1‖γk

]
, (A21)

for all k. Note that in the supplementary ma-
terials of [38] we have proved that D

[
P k‖γk

]
6

e−2µτ/ND
[
P k−1‖γk

]
. Then, to obtain Eq. (A21) we

can require 2e−2µτ/ND
[
P k−1‖γk

]
6 D

[
P k−1‖γk−1

]
+

D
[
P k−1‖γk

]
, which is equivalent to

2e−2µτ/N 6
D
[
P k−1‖γk−1

]
D [P k−1‖γk]

+ 1. (A22)

This equation is satisfied if 2e−2µτ/N 6 1, i.e., when
τ > N ln 2/(2µ). Therefore, if τ satisfies this condition,
we must have Dk 6 Σk for each k such that Wpn(τ) is
dominated by Σ(τ).

3. Proof of Eq. (14)

From Eq.(7), the reset error can be bounded by

ε = PN1 = e−µτ/NPN−1
1 +

(
1− e−µτ/N

)
γN1 (A23)

> γN1 + e−µτ/N
(
γN−1

1 − γN1
)
, (A24)

where we have used PN−1
1 > γN−1

1 . Since γk1 =

1/
(
1 + eβkEmax/N

)
, we have

γN−1
1 − γN1 =

1

1 + eβEmaxe−βE
− 1

1 + eβEmax
(A25)

=
eβEmax − eβEmaxe−βE

(1 + eβEmaxe−βE) (1 + eβEmax)
(A26)

>
eβEmax

(1 + eβEmax)
2

(
1− e−βE

)
(A27)

= γN1
(
1− γN1

) (
1− e−βE

)
, (A28)

where E = Emax/N . Therefore,

ε > γN1 + e−µτ/NγN1
(
1− γN1

) (
1− e−βE

)
(A29)

4. Proof of Eq. (15)

For the case of fixed reset error ε, we have shown that
µτ > − ln (2ε). Together with Eq. (7), we can show that

ε = e−µτ/NPN−1
1 +

(
1− e−µτ/N

)
γN1 (A30)

6 γN1 + e−µτ/N
(

1

2
− γN1

)
(A31)

6 γN1 +
N
√

2ε

(
1

2
− γN1

)
, (A32)

where we have used PN−1
1 6 1/2. Then, we obtain

ln
1− ε− N

√
2ε/2

ε− N
√

2ε/2
> βEmax. (A33)

Moreover, using the fact that

ε > γ1 (τ) =
1

1 + eβEmax
, (A34)

we have

βEmax > ln
1− ε
ε

. (A35)
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5. Proof of Eq. (16) and Eq. (17)

For the reset error ε, let

τD =
1

µ
ln

1

ε
. (A36)

We define a binary distribution Q = [1−Q1, Q1] with

Q1 = eµτ ε 6 1, for τ 6 τD. (A37)

This leads to the relation

P1 (τ) = ε = e−µτQ1 (A38)

6 e−µτQ1 +
(
1− e−µτ

)
γ1 (τ) , (A39)

for τ 6 τD. (A40)

According to the monotonically increasing property of
D [P‖γ] with respective to P1, we have Eq. (16), i.e.

Dε (τ) = D [P (τ) ‖γ (τ)] (A41)

6 D
[
e−µτQ+

(
1− e−µτ

)
γ (τ) ‖γ (τ)

]
(A42)

6 e−µτD [Q‖γ (τ)] , (A43)

where the last inequality comes from the convexity of
relative entropy. Moreover, D [Q‖γ (τ)] can be trivially
upper bounded by replacing Q with deterministic distri-
bution [0, 1], then

D [Q‖γ (τ)] 6 ln
1

γ1(τ)
= ln

(
1 + eβEmax

)
(A44)

In the general case, we have that

P1 (τ) 6 eµτP1 (0) + (1− eµτ ) γ1

(
0+
)
. (A45)

Using the above procedure again, we have

Dε(τ) 6e−µτD [P (0) ‖γ (τ)] (A46)

+
(
1− e−µτ

)
D
[
γ
(
0+
)
‖γ (τ)

]
(A47)

such that Eq. (17) is obtained.
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