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Abstract

The ground-state hyperfine splitting of 3He+ in a strong external magnetic field is inves-
tigated in a Penning-trap setup that was newly constructed in the context of this thesis.
The nuclear g-factor of 3He+ g′I = −4.255 099 606 9(30)stat(17)sys was measured for the
first time directly. This result is one order of magnitude more precise than previous in-
direct determinations and provides a calibration for 3He NMR probes via the accurately
calculated diamagnetic shielding parameters of 3He+ and atomic 3He. The experimental
result for the bound electron g-factor of 3He+ ge = −2.002 177 415 79(34)stat(30)sys is con-
sistent with the state-of-the-art theoretical value. Furthermore, the zero-field hyperfine
splitting EHFS = −8 665 649 865.77(26)stat(1)sys Hz was extracted from the measurement
and allows to calculate the Zemach radius rZ = 2.608(24) fm, which characterizes the
electric and magnetic form factors of the nucleus.

Zusammenfassung

Die Hyperfeinstruktur des Grundzustandes von 3He+ wurde in einem im Rahmen dieser
Arbeit konstruierten Penningfallen-Aufbau untersucht. Der g-Faktor des Kerns von 3He+

g′I = −4.255 099 606 9(30)stat(17)sys wurde erstmalig direkt gemessen. Dieses Ergebnis
stellt eine Verbesserung der Präzision um eine Größenordnung im Vergleich zu vorherigen
indirekten Messungen dar und ermöglicht mithilfe der theoretisch exakt bestimmten Ab-
schirmkonstanten von 3He+ und atomarem 3He die Kalibrierung von 3He NMR Proben.
Das experimentelle Ergebnis für den g-Faktor des gebundenen Elektrons in 3He+ ge =

−2.002 177 415 79(34)stat(30)sys stimmt mit dem theoretischWert überein. Aus der gemesse-
nen Hyperfeinkonstante EHFS = −8 665 649 865.77(26)stat(1)sys Hz folgt der Zemach Ra-
dius rZ = 2.608(24) fm, der die elektrischen und magnetischen Formfaktoren des Kerns
charakterisiert.
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Chapter 1

Motivation

Quantum-jump spectroscopy based on the continuous Stern-Gerlach effect in a Penning
trap allows the measurement of the transition frequencies between the spin states of a
single charged particle and the extraction of the corresponding g-factor. Applying this
technique has led to the most precise measurement of the g-factors of free and bound
electrons [1, 2], the positron [3], as well as the proton and anti-proton [4, 5]. These mea-
surements probe free and bound-state quantum electrodynamics and through comparison
of the g-factors of particles and anti-particles provide some of the most stringent con-
straints of CPT symmetry to date. This thesis discusses a newly constructed experiment
which for the first time applies this technique to the 3He+ ground-state hyperfine struc-
ture, leading to the first directly measured values for the nuclear g-factor of 3He+, the
zero-field hyperfine splitting and the bound electron g-factor.

Helium-3 can be hyper-polarized using laser optical pumping techniques, resulting in
a very stable and sensitive probe to the magnetic field [6]. 3He nuclear magnetic reso-
nance (NMR) probes have been proposed as a new standard for high-precision absolute
magnetometry [7, 8]. This application requires a high-accuracy value of the 3He nuclear
magnetic moment, which, however, has so far been determined indirectly and with a rel-
ative precision of 12 parts per billion (ppb), only [9, 10]. Combined with the accurately
calculated shielding factors in 3He [11], the measurement presented here provides the
first direct calibration for 3He probes independent of water probes and also improves the
precision by one order of magnitude compared to the indirect results.

As opposed to superconducting quantum interference devices (SQUID), giant magne-
toresistance sensors (GMR) or optical magnetometers, NMR probes allow measurements
of the absolute magnetic field with high precision and 3He NMR probes, in particular,
offer a higher accuracy than standard water NMR probes. They require significantly
smaller corrections due to systematic effects such as dependence on impurities, probe
shape, temperature and pressure [8]. Moreover, the diamagnetic shielding σ of the bare

1
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nuclear magnetic moment by the surrounding electrons is known more precisely for 3He
than water, for which it can only be measured. In case of atomic 3He the factor 1− σ3He

correcting for the shielding by the two electrons has been calculated theoretically with
a relative precision of 23 ppt [11]. Thus, 3He probes with an independent high-precision
calibration have a wide variety of possible applications including cryogenic NMR tech-
niques for new experiments on the electron and positron magnetic moments [12, 13] and
the muon g−2 experiments [14–16].

The muon g−2 experiments located at Fermilab and J-Parc are motivated by the 4σ

discrepancy [16,17] between experimental and theoretical values of the muon’s anomalous
magnetic moment aµ = (gµ−2)/2 as predicted by the Standard Model. Both experiments
are based on the measurement of the anomaly frequency ωa of the muon in a precisely
tuned magnetic field [18] and the spin precession frequency ω′

p of protons in state-of-the-
art water NMR probes [19] to extract aµ via

aµ =
ωa/ω

′
p

µµ/µ′
p − ωa/ω′

p

, (1.1)

aiming at an improved precision of 0.14 ppm. Here, all quantities on the right hand side
of are determined experimentally, however, the experimental uncertainty of the ratio of
the muon and shielded proton magnetic moments µµ/µ

′
p is 0.12 ppm [20]. Alternatively,

aµ can be expressed without this factor as

aµ =
ge
2

ωa

ω′
NMR

mµ

me

µ′
NMR

µe

, (1.2)

where mµ/me is the muon-to-electron mass ratio and ge is the electron g-factor, which
are known to 25 ppb and 0.76 ppt, respectively [1, 20]. Both of these approaches are
applicable with water NMR probes, which using the independent value for the nuclear
magnetic moment of 3He presented here can now be calibrated using 3He probes.
In the planned g-factor measurement of 3He2+ in a Penning trap [21, 22] the ratio

ωL

ωc

= µ3He

(
qℏ

2m3He

)−1

(1.3)

will be determined directly and with high precision, so that the last factor in Eq. (1.2)
follows from

µ′
3He
µe

=
mu

m3He

me

mu

1

ge
(1− σ3He)

ωL

ωc

. (1.4)

Here, mu is the atomic mass unit so that the first two factors above are known to 14 ppt
and 30 ppt, respectively [23,24]. Thus, once the factor in Eq. (1.3) has been determined,
this approach can be used for the determination of aµ with 3He NMR probes as an
uncorrelated test of the results with water NMR probes.
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Furthermore, the result presented in this thesis can be used to test diamagnetic shield-
ing corrections in water by comparing the precisely measured ratio of 3He and water NMR
frequencies [9] to the ratio of the helion and proton magnetic moments [4]. The ratio of
the molecular hydrogen and 3He shielding parameters is

1− σH2O

1− σ3He
=

ν ′
H2O
ν ′

3He

µ3He

µp

. (1.5)

Here, ν ′
H2

and ν ′
3He are the nuclear resonance frequencies of molecular hydrogen and

atomic 3He, i.e. including electronic shielding.
Besides the nuclear magnetic moment, the zero-field hyperfine splitting is extracted

from the measurement. Previously, the most precise measurement of the zero-field ground
state hyperfine splitting of 3He+ studies the spin-dependent collision processes between
a cloud of 3He+ ions stored in a radio-frequency quadrupole ion trap and a polarized
beam of Cs atoms [25]. This measurement is limited to a relative precision of 10−9

by resonance line broadening due to the second order Doppler effect. For hydrogen-like
systems the hyperfine splitting is given to leading order by the Fermi contact term EF [26].
Corrections contributing to the energy splitting arise from QED effects δQED, the strong
interaction δhvp and recoil effects δrec. In addition the nuclear polarizability as well as the
spatial distribution of the charge and the magnetic moment within the nucleus δnucl, the
latter known as Zemach radius, contribute:

∆EHFS = EF (1 + δQED + δrec + δhvp + δnucl). (1.6)

The measurement of ∆EHFS we are aiming for is highly sensitive to nuclear structure
effects, as δnucl contributes at a relative precision of 2 · 10−4 and allows us to extract the
Zemach radius.

Furthermore, the bound electron g-factor was measured with a precision of 6 ppb
and agrees with the much more precise theoretical value, which serves as a systematic
cross-check for the cyclotron measurement and therefore also the nuclear g-factor. If in
the future the experimental uncertainty of ge can be decreased by orders of magnitude
a competitive determination of α would be possible, as He+ is the only one-electron ion
where uncertainties arising from nuclear structure are sufficiently small for this purpose
[27].

This thesis is structured as follows: In chapter 2 the theoretical basics of the exper-
iment are introduced, such as the working principle of Penning traps and the detection
technique. Chapter 3 details the measurement procedure for the hyperfine structure of
3He+ in a Penning trap and the relevant transition lineshape. In chapter 4 the design of
the cryogenic Penning-trap apparatus is described, including the internal 3He source and
microwave input. Chapter 5 discusses the characterization of the properties of the two
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Penning traps used in the experiment. Finally, chapter 6 contains details on the data
analysis and systematic effects, as well as the final results.



Chapter 2

Theoretical Background

2.1 Ideal Penning trap
An ideal Penning trap consists of a homogeneous magnetic field B⃗ = B0e⃗z in the axial
direction and a superimposed quadrupolar electrostatic potential, which in cylindrical
coordinates [z,ρ] is described by

V (z, ρ) = V0C2

(
z2 − ρ2

2

)
. (2.1)

Here, V0 is the trapping voltage and C2 characterizes the typical geometrical length scale
of the potential. It can be created by hyperbolic electrodes as depicted in Fig. 2.1 (A).
The electrostatic force F⃗E = −q∇⃗V , acting on a trapped particle of mass m and charge
q, leads to a harmonic oscillation in the axial direction with frequency

νz =
1

2π

√
2
q

m
C2V0. (2.2)

Radially, the particle is confined due to the Lorentz force F⃗L = qv⃗× B⃗, which in absence
of the electric field would lead to a periodic circular orbit perpendicular to the magnetic
field with the so-called free cyclotron frequency

νc =
1

2π

q

m
B0. (2.3)

Solving the equation of motion for the total force F⃗ = F⃗E + F⃗L leads to the two radial
eigenfrequencies

ν± =
1

2

(
νc ±

√
ν2
c − 2ν2

z

)
, (2.4)

The magnetic and electric fields are typically chosen such that

νc > ν+ ≫ νz ≫ ν−. (2.5)

5



6 Ideal Penning trap

A B

B0
V0

ω-

ω+

ωz

Figure 2.1. (A) Illustration of a Penning trap with hyperbolic electrodes placed in a
magnetic field. (B) Trajectory of the trapped particle. The large black circle represents
the magnetron motion with frequency ω−. The superposition of the magnetron motion
and the modified cyclotron motion with frequency ω− is indicated by the blue line. Both
radial motions are superimposed by the axial oscillation with frequency ωz (red line).

A schematic of the three eigenmotions and their superposition is shown in Fig. 2.1 (B).
the free cyclotron frequency follows from the eigenfrequencies via the so-called invariance
theorem

νc =
√

ν2
+ + ν2

z + ν2
−, (2.6)

where trap imperfections cancel to large extend [28]. In a g-factor measurement the
invariance theorem is used to extract the magnetic field from the observable eigenfre-
quencies. Additionally the Larmor, or spin precession, frequency is determined, which
for a spin 1/2 particle is

νL = gµB/NB0/h. (2.7)

Here, µB/N is the Bohr magneton or nuclear magneton in case of an electron or bare
nuclear g-factor, respectively. Thus, for a single electron, positron or (anti-)proton the
mass cancels in the ratio of both frequencies g = 2νL

νc
, while for other particles the mass

has to be inserted to determine the magnetic field.
Since the three eigenmotions are independent harmonic oscillators, the total energy

of an ion in a Penning trap in the quantum mechanical picture is given by

E =

(
n+ +

1

2

)
hν+ +

(
nz +

1

2

)
hνz −

(
n− +

1

2

)
hν− +mshνL (2.8)

where ni is the quantum number of the corresponding motion and ms the secondary
spin quantum number. The magnetron energy E− = −

(
n− + 1

2

)
hν− is dominated by

potential energy and in the case of a reduction of motional quanta, e.g. through cooling
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Λ

z0 z1z2 z4 z5z6 z7z8 z9z3

a

z
lc lr

V3V2 V4 V5V1

d

Figure 2.2. Sectional view of a Penning trap with five cylindrical electrodes, which
create a quadrupolar electrostatic potential at the trap center if the voltages Vi and
electrode lengths li are chosen appropriately.

mechanisms, the magnetron radius increases, i.e. the magnetron motion is metastable.
At the temperatures reached through the cooling meachanisms described in Sec. 2.4.1,
the quantum numbers are still on the order of 105 and allow a classical treatment of the
ion motion. The axial energy Ez relates to the amplitude zmax of the axial motion via

Ez =
1

2
mω2

zz
2
max = mω2

z⟨z(t)2⟩. (2.9)

The axial motion is coupled to the detection system, which constitutes a heat bath and
leads to a Boltzmann distributed amplitude zmax, so that the axial temperature of the
single particle can be defined via

1

2
kBTz = ⟨Ez,kin⟩ =

1

2
⟨Ez⟩ (2.10)

and thus
kBTz = mω2

z⟨z(t)2⟩. (2.11)

For the radial modes the radii follow from the mode energies through

E± =
1

2
mω±r

2
± − 1

4
mω2

zr
2
± (2.12)

so that E− ≈ −1
4
mω2

zr
2
− and E+ ≈ 1

2
mω+r

2
+ and kBT± = ⟨E±⟩ as above.

2.2 Cylindrical Penning trap
In practice, the axial potential is created by a stack of cylindrical electrodes [29], which
compared to hyperbolic electrodes are easier to construct with high precision. A typical



8 Field imperfections

five-polar trap consists of a central ring electrode with voltage V0 surrounded by two
identical correction electrodes with voltage Vc and two endcaps connected to ground, see
Fig. 2.2. The voltages applied to the electrodes of inner radius a constitute Dirichlet
boundary conditions V (a, z) to the solution of the cylindrical Laplace equation in free
space

0 = ∇2V (z, ρ). (2.13)

From the separation ansatz V (z, ρ) = Vρ(ρ)Vz(z) follows the solution

V (z, ρ) =
∞∑
n=1

I0(knρ)An cos(knz), (2.14)

with the Bessel functions of first kind Im(ρ), the total trap length Λ and kn = nπ
Λ
. The

coefficients An follow from the boundary conditions by calculating
∫ Λ

0
V (z, a), where the

potential in the spacing d between neighbouring electrodes is linearly interpolated:

An =
2

ΛI0(kna)

(
V1 cos(knz0)− V5 cos(knΛ)

kn
+

4∑
i=1

Vi+1 − Vi

k2
nd

(sin(knz2i)− sin(knz2i−1))

)
.

(2.15)
The expansion of the potential in powers of the axial coordinate around the trap center
is given by

V (z, 0) = V0

∑
j

Cjz
j (2.16)

with the coefficients

Cj =
1

j!V0

∑
n

An

(nπ
Λ

)j
sin
(π
2
(n+ j)

)
. (2.17)

In an ideal trap with symmetric electrode lengths and potentials V2 = V4 = Vc, V1 =

V5 = 0 the coefficients Cj with odd j vanish. By choosing adequate electrode lengths, the
trap can be designed to be “compensated” as well as “orthogonal”. Compensation means
that the first higher order corrections C4 and C6 of the multipolar potential expansion
vanish at the same tuning ratio, defined as the ratio of the ring voltage and correction
voltage:

TR =
Vc

V0

. (2.18)

Orthogonality means that the axial frequency νz of the particle is independent of the
voltage applied to the correction electrodes, i.e. D2 =

∂νz
∂TR = 0.

2.3 Field imperfections
The first anharmonic contributions to the electrostatic potential in a symmetric trap are
determined by C4 and C6 and change the simple harmonic equation to a Duffing type
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differential equation

z̈ = − q

m
∂z

(
V0

∞∑
j=1

C2jz
2j

)
= −ω2

z(z + 2C4/C2z
3 + 3C6/C2z

5), (2.19)

giving rise to energy dependent shifts of the axial frequency. Using a perturbation theory
approach [30] the energy dependent shifts can be determined for the three eigenfrequen-
cies: 

∆ν+/ν+

∆νz/νz

∆ν−/ν−

 =
3

qV0

C4

C2
2


1
4
Ω4 −1

2
Ω2 −Ω2

−1
2
Ω2 1

4
1

−Ω2 1 1



E+

Ez

E−

 . (2.20)


∆ν+/ν+

∆νz/νz

∆ν−/ν−

 =
45

16q2V 2
0

C6

C3
2


−1

3
Ω6 −Ω2 −4Ω2 2Ω4 4Ω2 −8Ω2

Ω4 1
3

4 −1
2
Ω2 −8Ω2 4

2Ω4 2 8
3

−8Ω2 −8Ω2 8





E2
+

E2
z

E2
−

E+Ez

E+E−

EzE−


.

(2.21)
Here, Ω = νz/ν+ is used. In order to quantify frequency shifts due to magnetic field
imperfections, the magnetic field can be expanded into a polynomial

B(z) =
∞∑
i=0

Bi
iz

i. (2.22)

The radial modes with angular momenta L± produce magnetic moments in the axial
direction

µ⃗± =
q

2m
L⃗± = −qρ2±πν±e⃗z, (2.23)

which lead to the additional force Fz = ∂z

(
µ⃗± · B⃗(z)

)
. Thus, B1 shifts the central

position of the ion in the trap by

∆z =
−µ±B1

2qV0C2

, (2.24)

while leaving the axial frequency unchanged. The second order contribution Fz =

−2zB2µ± shifts the axial frequency by

∆ωz =

(√
1 +

2B2µ±

mω2
z

− 1

)
ωz ≈

B2

ωz

µ±

m
. (2.25)

All eigenfrequency shifts resulting from a quadratic inhomogeneity B2 are given by [30]
∆ν+/ν+

∆νz/νz

∆ν−/ν−

 =
1

(2πνz)2m

B2

B0


−Ω2 1 2

1 0 −1

2 −1 −2



E+

Ez

E−

 . (2.26)
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2.4 Detection principle
The trapped particle’s oscillation induces image charges in the trapping electrodes that
can be read out by a current detector in order to non-destructively detect the particle’s
eigenfrequencies. The induced current for the axial motion

I =
q

D
ż, (2.27)

depends on the particle’s charge q and the effective electrode distance D, which follows
from the trap geometry. If the axial signal is picked up on one of the correction electrodes
of a cylindrical trap the effective electrode distance is given by [31]

Dz =
Λ

4

(∑
n

sin(knlc) sin(kn(lc + le + 2d))/I0(2kna)

)
. (2.28)

A superconducting coil is connected in parallel to the trap (Fig. 2.3) so that the coil’s
inductance Lres, self-capacitance Cres, effective resistance Rp and the trap capacitance
CT form an RLC circuit with resonance frequency

ωres =
1√

Lres(CT + Cres)
. (2.29)

At ωres the total resistance of the resonator Zres =
(
R−1

p + (iωLres)
−1 + iω(Cres + CT )

)−1

approaches Rp = QωresLres. Here, Q is the quality factor of the tank circuitQ = ωres/∆ω,
experimentally accessible via the 3db-width ∆ω.

The trapped particle induces the voltage U = Zres(ω)I in the trap electrodes, which
leads to an additional term F = − q

D
U in the equation of motion (EOM). By inserting

Eq. (2.27), this leads to the EOM of a damped harmonic oscillator

z̈ + γż + ω2
0z = 0, (2.30)

with damping constant γ(ω) = q2/(mD2)Zres(ω), and thus cooling time constant τ(ω) =
1/R(γ(ω)). On resonance, the imaginary part of the damping constant vanishes and the
shift of the eigenfrequency ω′ =

√
ω2
0 − γ2/4 ≈ ω0 is negligible, while off resonance the

imaginary part leads to the image current shift described in Sec. 6.3.
By inserting Eq. (2.27), the EOM can be expressed in terms of the induced current and

takes the form of the differential equation of a series RLC circuit LionÏ+Zresİ+I/Cion = 0

with an effective capacitance and inductance of the ion:

Cion = q2/(ω2
zmD2) Lion = mD2/q2. (2.31)

The total resistance of the equivalent circuit (Fig. 2.3) is

Ztot =

(
1

iωLion + (iωCion)−1
+

1

Zres

)−1

(2.32)
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Cion

Lion

CT Cres LresRp

signal

Penning trap tank circuit

Figure 2.3. Schematic of particle detection in a Penning trap. The particle can be
described by an effective inductance and capacitance Lion and Cion. The tank circuit
consists of an inductance Lres, an effective resistance Rp and a parasitic capacitance Cres.
The signal is coupled to a cryogenic amplifier.

with real part

R(Ztot) = Rp

(
1 +

(
ω

τ(ω2 − ω2
z)

−Q

(
ω

ωres

− ωres

ω

))2
)
, (2.33)

where ωz = 1/
√
LionCion was used. On resonance the particle acts as a short or dip with

bandwidth ∆ω = 1/τ .

2.4.1 Sideband coupling

In order to cool the radial modes and measure the radial eigenfrequencies ω±, an external
driving field ERF with frequency ωRF = ω± ∓ ωz is applied, which near the center of the
trap is to lowest order given by

E⃗RF = E0 cos (ωRF t)(ze⃗x + xe⃗z). (2.34)

The resulting force qE⃗RF leads to two coupled simple harmonic oscillators and thus an
energy exchange between axial and radial mode with the Rabi-frequency [32]

Ω =
qE0

2m
√
ωzω±

. (2.35)

The amplitude modulation of the axial mode z(t) = z0 sin(Ωt/2) sin(ωzt+ ϕ0) corre-
sponds to two modified eigenfrequencies ωl/r = ωz∓Ω/2, so that two dips are observed in
the noise spectrum of the axial resonator (”double-dip”). In case of an off-resonant exci-
tation with frequency ωRF = ω± ∓ ωz + δ these eigenfrequencies depend on the detuning
δ:

ωl = ωz ∓ δ/2−
√
Ω2 + δ2/2, ωr = ωz ∓ δ/2 +

√
Ω2 + δ2/2. (2.36)
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By measuring the double-dip frequencies, ω± can be experimentally determined using

ω± = ±ωl ± ωr ∓ ωz + ωRF , (2.37)

where the shifts due to the detuning cancel.
The interaction with the photon of frequency ωRF allows the transition |nz, n±⟩ →

|nz − 1, n± ± 1⟩, which heats the radial mode, or the transition |nz, n±⟩ → |nz + 1, n∓ ± 1⟩,
which cools the radial mode. While n± > nz, the rate of the latter transition domi-
nates [33], so that in thermal equilibrium the quantum numbers of the coupled modes
are equal n± = nz. As the axial mode is thermalized to the temperature Tz of the axial
resonator ℏωz⟨nz⟩ = kBTz, the energy of the radial mode is Boltzmann distributed with
⟨E±⟩ = ±ω±/ωzkBTz.

2.4.2 Continuous Stern-Gerlach effect

Measuring the resonance frequencies of the hyperfine transitions requires determining the
spin state, which can be achieved via the continuous Stern-Gerlach effect [34], i.e. the
coupling of the spin magnetic moment to the axial frequency. For this purpose a magnetic
bottle B2 is superimposed on the homogeneous background field resulting in the total
magnetic field

B⃗(z, ρ) = B0e⃗z +B2

((
z2 − ρ2

2

)
e⃗z − ρze⃗ρ

)
. (2.38)

As described in Sec. 2.3 the axial frequency is then shifted by

∆νz ≈
B2

4π2νz

∆µz

mHe
, (2.39)

where ∆µz is the change is the z-component of the ion’s magnetic moment µz = µz,s +

µz,+ +µz,− that consists of the contributions from the total spin angular momentum and
the two orbital angular momenta µ± = E±/B0. For a single spin 1/2 particle without
hyperfine structure such as 3He2+ this computes to

∆νz,SF = ± hνL
4π2mνz

B2

B0

, (2.40)

with Larmor frequency νL. The case of a hyperfine transition in 3He+ is described in
more detail in Sec. 3.1.
The magnetic bottle is created by placing a ferromagnetic electrode in one of the Penning
traps, the analysis trap (AT), where the magnetic inhomogeneity allows for spin-state
detection by detecting the axial frequency shift, while limiting the precision with which
the ion’s eigenfrequencies and the transition frequencies can be measured due to line-
broadening [35]. The AT is therefore separated by several transport electrodes from the
precision trap (PT), in which the magnetic inhomogeneity is sufficiently small to detect
these frequencies with high precision.
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Δφ
FFT

splitter

mixer

mixer
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attenuator

local

oscillator

Penning trap

tank circuit

Figure 2.4. Schematic of active particle-temperature control using phase shifted feed-
back. The signal is amplified and phase-shifted and fed back. The feedback gain is
adjusted with an attenuator.

2.4.3 Controlled feedback

Electronic feedback [36, 37] can be used to change the effective temperature of the de-
tection system. Part of the signal is phase-shifted and fed back to the trap via weak
capacitive coupling. The temperature is decreased and increased with negative or posi-
tive feedback, respectively. The gain is adapted using an attenuator, see Fig. 2.4. The
temperatures with and without feedback, TFB and T0, are related to the quality factors
as follows:

TFB

T0

=
QFB

Q0

. (2.41)

The lowest achievable temperature is limited by the noise added by the amplifier, which
causes additional heating.





Chapter 3

g-Factor and EHFS Measurement
Principle

3.1 Hyperfine states of 3He+ in an external magnetic
field

The hyperfine splitting of the level structure of an atom or ion with non-vanishing nuclear
spin is due to the interaction of the spin magnetic moment of the nucleus with the
total magnetic moment of the electrons. For a hydrogen-like system with electronic
orbital angular momentum L = 0, which is exposed to an external magnetic field B⃗, the
Hamiltonian up to linear-order Zeeman effect then reads [38]

H = A (σ⃗e · σ⃗I)− (µeσ⃗e + µI σ⃗I) B⃗. (3.1)

Here, A is a constant describing the spin-spin interaction, which is negative in case of 3He+

due to its negative nuclear magnetic moment. σ⃗I and σ⃗e are the Pauli matrices ⃗σI/e =

σx,I/ee⃗x + σy,I/ee⃗y + σz,I/ee⃗z referring to the nuclear or electronic spin, respectively, and
µI and µe the nuclear and electron spin magnetic moment. The latter are given by µe =

geµB/2 and µI = g′IµB/2, where µB and µN are the Bohr magneton and nuclear magneton.
In the ion, the diamagnetic shielding of the nucleus by the electron effectively modifies the
bare nuclear g-factor gI to the shielded nuclear g-factor g′I = gI(1−σ3He+). The shielding
constant and the bound electron g-factor can calculated theoretically with high accuracy
[11,39]. Expressed in the basis {|++⟩, |+−⟩, |−+⟩, |−−⟩}, where |mj,mI⟩ = |mj⟩⊗|mI⟩
is a product state of electron and nuclear spin state with |+⟩ or |−⟩ denoting spin up or

15
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Figure 3.1. Energies of the hyperfine states E1, E2, E3 and E4 as function of the mag-
netic field according to Eq. (3.4). The four double-headed arrows indicate the hyperfine
transitions measured in this work.

spin down, the Hamiltonian above reads:

H =


A+Bµ 0 0 0

0 −A+Bµ′ 2A 0

0 2A −A− Bµ′ 0

0 0 0 A− Bµ

 , (3.2)

using the abbreviations µ = −(µe + µI) and µ′ = −µe + µI . By diagonalizing this
Hamiltonian one finds the eigenstates

|1⟩ = |++⟩ , |2⟩ = r+ |−+⟩−r− |+−⟩ , |3⟩ = r− |−+⟩+r+ |+−⟩ , |4⟩ = |−−⟩ , (3.3)

where r± =
√

(1± tanh (θ))/2 and sinh (θ) = Bµ′/(2A) was defined. The corresponding
eigenenergies (Breit-Rabi equation) are:

E1,4 = A∓ (µIB + µeB) , E2,3 = −A± 2

√
A2 +

1

4
(µeB − µIB)2 . (3.4)

Thus, the hyperfine splitting at zero magnetic field is EHFS = 4A < 0, using the definition
EHFS = E(F = 1) − E(F = 0) with total angular momentum quantum number F .
Corrections due to the quadratic Zeeman shift are identical for all states involved and
have therefore no influence on the transition frequencies [40]. For large magnetic fields
the factor r− in Eq. (3.3) approaches 1 while r+ vanishes. At the magnetic field 5.72 T in
the experiment, they evaluate to r+ = 0.0270 and r− = 0.9996, so that |2⟩ ≈ |+−⟩ and
|3⟩ ≈ |+−⟩, see also Fig. 3.1. Accordingly, the transitions |1⟩ ↔ |2⟩ and |3⟩ ↔ |4⟩ are
referred to as nuclear transitions and the transitions |1⟩ ↔ |3⟩ and |2⟩ ↔ |4⟩ as electronic
transitions. Using the Breit-Rabi formula, one can extract the two parameters g′I and
EHFS from the combined fit to the resonance curves of both nuclear transitions and ge

from one of the electronic transition.
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A magnetic bottle with B(t) = B0 +B2z(t)
2 results in an additional contribution to the

Hamiltonian above [41]

HB2 = −B2z(t)
2


−µ 0 0 0

0 tanh (θ)µ′ 2r+r−µ
′ 0

0 2r+r−µ
′ − tanh (θ)µ′ 0

0 0 0 µ

 , (3.5)

expressed in the basis {|1⟩ , |2⟩ , |3⟩ , |4⟩}. With the the diagonal entries µi (i = 1, ..., 4),
the axial frequency shift in case of a hyperfine transition |i⟩ ↔ |j⟩ thus follows from
∆µ = µi − µj in Eq. (2.39). With an inhomogeneity of B2 = 110 kTm−2 in the analysis
trap, an electronic or nuclear transition leads to a ∆νz = ±22 Hz or ∆νz = ±43 mHz
jump of the axial frequency, respectively.

3.2 Nuclear spin state detection scheme

Direct detection of nuclear spin-flips has so far been demonstrated only for protons and
anti-protons [4, 5]. Compared to a proton, 3He has a larger mass and smaller nuclear
magnetic moment so that the axial frequency jump indicating a spin-flip is smaller by a
factor of 4 and not detectable using state of the art techniques. Broadband voltage noise
on the trap electrodes [42,43] induce cyclotron quantum number jumps which according
to Eq. (2.39) lead to axial frequency fluctuations. As the angular momentum due to
the radial motion is µ± = E±/B0 ∝ n±, this noise can be suppressed by reducing the
cyclotron energy E+. In the case of 3He2+, deterministic sympathetic laser cooling [44]
to much lower temperatures than by state of the art techniques would be necessary.
However, in case of 3He+ a novel method can be employed which deduces the nuclear spin
state from more easily detectable electronic transitions. As shown in Fig. 3.1, if the ion
is in hyperfine state |1⟩ or |3⟩ the nuclear spin state is |↑⟩, while states |2⟩ and |4⟩ imply
that the nuclear spin state is |↓⟩. Thus, depending on the nuclear state only one of the
two electronic transitions |1⟩ ↔ |3⟩ and |2⟩ ↔ |4⟩ can be driven. In the experiment at
5.7 T, these transitions are separated by several GHz and thus easy to distinguish. The
nuclear state can therefore be found by exciting both electronic transitions alternatingly
until a spin-flip occurs.
A measurement cycle starts with determining the initial hyperfine state in the AT. The
ion is then transported adiabatically to the PT, where the cyclotron frequency is first
measured to determine the expected hyperfine transition frequency. It is afterwards
measured again while a microwave excitation drives one of the four hyperfine transitions
at a random frequency offset with respect to the expected resonance frequency. Whether
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a spin-flip was successfully driven in the PT is then assessed after transporting the ion
back to the AT. This process is repeated several hundred times for each of the four
transitions so as to measure the spin-flip probability in the magnetic field of the PT as a
function of the microwave frequency offset.

3.3 Transition lineshape

In the quadratic magnetic inhomogeneity B2 the axial oscillation z(t) leads to a time-
dependent shift δωij(t) of the resonance frequency ωij of the HFS transition |i⟩ ↔ |j⟩

δωij = z(t)2B2(µi − µj) (3.6)

with µi as given above. The average is the linewidth parameter

∆ωij = ⟨z(t)2⟩B2(µi − µj) =
kBTz

mω2
z

B2(µi − µj), (3.7)

with the axial temperature Tz according to Eq. (2.11). The spin-state transition proba-
bility P1/2(∆MW ) as a function of the detuning

∆MW = ωMW − ωij(B0) (3.8)

of the applied drive frequency ωMW from the resonance frequency ωij(B0) for the magnetic
field at z = 0 is derived in [45] to be

PSF (∆MW ) =
1

2

(
1− e−πΩ2Texcχ(∆MW )

)
. (3.9)

Here, Ω is the Rabi frequency and Texc the excitation time. The lineshape χ is defined as
the Fourier transform

χ(∆MW ) =
1

2π

∫ ∞

−∞
exp(i∆MW t)χ̃(t) dt (3.10)

of the correlation function

χ̃(t) =

〈
exp

(
i

∫ t

0

δω(t′) dt′
)〉

, (3.11)

where the angle brackets denote a statistical averaging over the random axial amplitude.
In [45] the general result

χ1(∆MW , γ,∆ω) =
4

π
R

(
γ′γ

(γ′ + γ)2

∞∑
n=0

(
γ′ − γ

γ′ + γ

)2n
1

(n+ 0.5)γ′ − 0.5γ − i∆MW

)
(3.12)
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is derived, where γ′ =
√

γ2 + i4γ∆ω and γ is the coupling of the ion to the resonator.
This expression can be simplified in the cases of strong coupling ∆ω/γ ≪ 1, which is
fulfilled for nuclear transitions in the PT, as

χ1(∆MW ,∆ω) = δ(∆MW −∆ω) (3.13)

or weak coupling ∆ω/γ ≫ 1, which is fulfilled for nuclear and electronic transitions in
the large magnetic bottle of the analysis trap, as

χ1(∆MW ,∆ω) =
θ(∆MW )

∆ω
exp
(
−∆MW

∆ω

)
. (3.14)

An alternate derivation is given in [46], where the probability for a spin-flip after time
t is described by the Rabi-equation

P (∆) =
Ω2

Ω2 +∆2
sin2

(
t

2

√
Ω2 +∆2

)
, (3.15)

replacing the sine function by the average 1/2 as the transition is driven incoherently.
Because of the magnetic inhomogeneity the detuning is shifted in dependence on the axial
energy

∆(Ez) = ωMW − (ωij(B0) + δω)

= ωMW −
(
ωij(B0) + ∆ω

Ez

kBTz

)
,

(3.16)

so that the above expression for P is convoluted with the Boltzmann-distribution of the
axial energy due to the coupling to the resonator:

χ′(∆) =
1

2kBTz

∫ ∞

0

exp
(
−Ez

kBTz

)
Ω2

Ω2 +∆(Ez)2
dEz. (3.17)

Using the lower incomplete gamma function

Γ(a, x) =

∫ ∞

x

ta−1et dt (3.18)

the integral above can be expressed as

χ′(∆MW ,Ω,∆ω) =
b

4
R
(
ieb(i−a)Γ(0, b(i− a))− ie−b(i+a)Γ(0,−b(i+ a))

)
, (3.19)

defining a = ∆MW/Ω and b = Ω/∆ω. The lineshape χ in Eq. (3.9) then is

χ2(∆MW ,Ω,∆ω) = 2/(πΩ)χ′(∆MW ,Ω,∆ω) (3.20)

with the normalization ∫ ∞

−∞
χ(∆MW ,Ω) d∆MW = 1. (3.21)
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The magnetic field Bmeas follows from the double-dip measurement during which the
magnetic bottle shifts the average magnetic field by δν+/ν+ = ⟨z2⟩B2/B0 (compare
Eq. (2.26)) so that ωij(Bmeas) = ωij(B0) + ∆ω and thus

∆MW = ωMW − ωij(B0) = ωMW − ωij(Bmeas) + ∆ω (3.22)

is inserted in Eq. (3.9). Furthermore, the measured cyclotron frequency is normally
distributed with a relative width of σB/B0 = 1.7·10−9. The underlying function describing
the spin-flip probability is therefore convoluted with the Gaussian of the magnetic field
measurement:

P̃SF (ωMW , ωij(Bmeas),Ω,∆ω) =
1√
2πσB

∫ ∞

−∞
PSF (ωMW − ωij(Bmeas) + ∆ω − y,Ω)

× exp
(−(y/ω′

ij)
2

2σ2
B

)
dy

ω′
ij

. (3.23)

Here, ω′
ij is the derivative ω′

ij = dωij/dB(B0) for transition |i⟩ ↔ |j⟩. The two line-
shape models and spin-flip probabilities are plotted in Figs. 3.2, 3.3 and 3.4 for the trap
parameters γ and B2 in the AT and PT and Rabi-frequencies used in the experiment.
For low Rabi frequencies the jitter of the magnetic field measurement dominates and
the spin-flip probability P̃ for both lineshape models approaches a Gaussian centered at
ωMW − ωij(Bmeas) = 0, see Fig. 3.2 (E) and (F).
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Figure 3.2. Lineshape and spin-flip probability for both lineshape models for an elec-
tronic transition in the PT with linewidth ∆ω = 634 s−1. The x-axis in (A)-(D) is
∆MW/∆ω = (ωMW−ωij(B0))/∆ω, while in (E) and (F) it is given by ωMW−ωij(Bmeas) =

∆MW −∆ω, compare Eq. (3.22).
(A) and (B): lineshapes χ1(∆MW , γ,∆ω) and χ2(∆MW ,Ω,∆ω) given in Eqs. (3.12) and
(3.20) for two Rabi frequencies. (C) and (D): spin-flip probability (Eq. (3.9)). (E) and
(F): spin-flip probability convoluted with the Gaussian distribution describing the double
dip measurement, see Eq. (3.23).
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Figure 3.3. Lineshape and spin-flip probability for both lineshape models for a nuclear
transition in the PT with linewidth ∆ω = 1.2 s−1. The x-axis in (A)-(D) is ∆MW/∆ω =

(ωMW −ωij(B0))/∆ω, while in (E) and (F) it is given by ωMW −ωij(Bmeas) = ∆MW −∆ω,
compare Eq. (3.22).
(A) and (B): lineshapes χ1(∆MW , γ,∆ω) and χ2(∆MW ,Ω,∆ω) given in Eqs. (3.12) and
(3.20) for two Rabi frequencies. (C) and (D): spin-flip probability (Eq. (3.9)). (E) and
(F): spin-flip probability convoluted with the Gaussian distribution describing the double
dip measurement, see Eq. (3.23).
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A B

Figure 3.4. Lineshape and spin-flip probability for both lineshape models for an elec-
tronic transition in the AT with ∆ω = 673 ·105 s−1. (A): lineshapes χ1(∆MW , γ,∆ω) and
χ2(∆MW ,Ω,∆ω) given in Eqs. (3.12) and (3.20). (B): spin-flip probability (Eq. (3.9)).





Chapter 4

Design of the Experiment

4.1 Overview

The Penning-trap system is located at the center of the vertical cold bore of a super-
conducting magnet with a magnetic field B = 5.72 T. The coils of the superconducting
magnet are thermalized by a 160 l liquid helium reservoir connected to the cold bore
filled with about 14 l liquid helium. The helium reservoir is surrounded by an insulation
vacuum and an additional liquid nitrogen reservoir to reduce the heat load at the 4 K
stage.
A sectional view of the setup inside the magnet is shown in Fig. 4.1. On top of the
vacuum apparatus, a CF60 double-cross with separate flanges for the DC supply-, HV
supply-, excitation- and detection-line feedthroughs as well as the turbopump and a win-
dow flange is placed. Above the window, the microwave setup that emits the microwaves
for electronic spin-flip excitation through the window is screwed onto a bredboard. The
electronic lines are lead into the prevacuum chamber through two CF16 stainless steel
tubes, to which aluminium plates serving as heat shields are fixed. The spaces in between
the shields are stuffed with cotton such that the vaporized helium is forced to rise slower
out of the setup, cooling it while the helium heats up from 4 K to room temperature.
The prevacuum chamber, which contains the axial frequency detectors, the 70 K filter
stage for the electronic lines and the trap chamber, is continuously pumped by the tur-
bopump during the experiment. Before inserting the setup into the magnet, the flanges
of the trap chamber are indium sealed and the trap chamber is baked out and pumped for
several days to around 10−6 mbar through a copper tube soldered in the trap chamber
which is finally pinched-off to seal the inner volume. When the setup is inserted into
the magnet, the residual gas freezes due to the cryogenic temperature, leading to ion
storage times of several months in the trap [47]. The magnetic field in the trap chamber
is additionally stabilized by a shielding coil consisting of a superconducting NbTi wire

25
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Figure 4.1. Computer-aided design (CAD) model of the experimental setup. On the
right side the prevacuum chamber containing the trap chamber, detection system and
the DC filters at 70 K and 4K is shown in more detail.
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Figure 4.2. (A) Sectional view of the trap tower. The gold-plated nickel electrode
is depicted in grey. The microwaves for driving nuclear transitions are radiated from
the depicted copper spin-flip coils, while the 150 GHz microwaves for driving electronic
transitions are transmitted through a waveguide from the top of the right side. The field-
emission-point (FEP) on the left side is used to ionize the atoms emitted by the resistively
heated 3He filled glass sphere. (B) Spatial variation of the magnetic field inside the trap
tower along the z-axis.

wound around the trap chamber [48].

4.2 Trap tower

A cross sectional view of the assembled trap tower is shown in Fig. 4.2 and a photograph
in Fig. 4.3. It consists of the electrode gun, the analysis trap, transport electrodes, the
precision trap, the target electrode where the 3He source is attached and on top a 8 cm
long electrode as part of the microwave guide, see Sec. 4.4. The stack of electrodes is
pressed together and suspended by copper rods inside a 10 cm diameter trap chamber.
The electrodes are made of oxygen-free high thermal conductivity (OFHC) copper with
a tolerance of a few micrometers and then galvanically gold plated with a layer of 8 µm
gold on top of 7 µm silver. The electrodes are kept at a distance of 0.14 mm from each
other by sapphire rings.

The PT consists of five cylindrical electrodes with inner radius 3.5 mm and the elec-
trode lengths were optimized to achieve C4 = C6 = 0 at the same optimal tuning ratio
TR4 = TR6 as well as D2 = 0 by solving these equations with the analytical expression
for the potential coefficients Ci given in Sec. 2.2. Because of the limited precision with
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A                                                B

23 cm

Figure 4.3. (A) Photograph of the assembled trap tower. (B) Glass sphere serving as
3He source mounted on the trap tower with thermally insulating PTFE.
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which the electrodes can be produced, the optimal trap length are then rounded to 1 µm,
which leads to the non-zero D2 and ∆TR = TR4 − TR6 given in Tab. 4.1. One of the
correction electrodes in the PT is split and the halves are isolated from each other with
sapphire spacers to allow for the creation of quadrupolar fields that couple the ion’s axial
and radial modes via sideband coupling and also the direct detection of the modified
cyclotron frequency via image current detection.

The shape of the ferromagnetic ring and the correction electrodes of the AT, see
Fig. 4.2, was optimized in [49] for the creation of a large magnetic bottle as well as
a compensated and orthogonal electrostatic potential by finite element method (FEM)
calculations, as the analytical expression for the potential of cylindrical electrodes is not
an adequate approximation in this case. For this experiment, the ring electrode of the
AT is made of ferromagnetic Ni, rather than a material with higher magnetization such
as Co/Fe, as it creates a sufficiently strong inhomogeneity B2 at the chosen trap radius of
1.8 mm to easily detect electronic spin-flips via axial frequency jumps of ∆νz = 22.5 Hz.

The centers of the two traps are separated by 6 cm with transport electrodes to achieve
a theoretical magnetic inhomogeneity B2 = 0.12 Tm−2 in the PT, small enough for the
shifts of the measured frequencies to be negligible.

Table 4.1. Theoretical parameters of the PT and AT as designed.

PT AT
inner radius a (mm) 3.5 1.8

ring length lr (mm) 0.988 0.386

correction electrode length lc (mm) 2.715 1.359

potential coefficient C2 (mm−2) −30586.6 −114310

orthogonality parameter D2 (mm−2/UnitTR) 5.6 22

optimal tuning ratio TR4 for C4 = 0 0.880964 0.8797

optimal tuning ratio TR6 for C6 = 0 0.880940 0.8801

magnetic field at the center B0 (T) 5.72 5.46

magnetic bottle at the center B2 (T/m2) 0.12 87 · 103

4.3 Ion source
As described above, the trap chamber is hermetically sealed from the surrounding pre-
vacuum and the 3He can therefore not be introduced into the trap by an external gas
inlet. Instead, a 3He filled SO2 glass sphere with an attached heating resistor inside
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Figure 4.4. Number of helium atoms per second which diffuse out of the quartz sphere
with diameter 1 cm and wall thickness 1 mm as function of the temperature [50, 51].

the trap chamber serves as an internal 3He source (Fig. 4.2 and Fig. 4.3 B). Except for
rubber, glass and in particular fused silica SO2 is the material most easily permeated
by helium [52] and has a strongly temperature dependent permeability (Fig. 4.4). Thus,
at 4 K the rate of released atoms is negligible and does not compromise the vacuum
while at approximately 100 K the permeation rate is sufficient to ionize of the order of
1 atom per second [50]. The target electrode, placed above the PT, has two opposing
holes of diameter 7 mm where the glass sphere with diameter 1 cm is attached via a
5 mm long PTFE ring for thermal insulation. Three 200 Ω SMD thinfilm resistors are
mounted around the sphere with thermally conductive glue (Electrolube TBS20S) and
connected with copper wire in series. They are used to create a heating power of 1 W for
around 10 s to reach the necessary temperature in the sphere. Afterwards, the released
He atoms are ionized by electron impact using an electron gun (Fig. 4.2) consisting of
a high-voltage electrode above a field-emission-point (FEP) made of tungsten wire with
the etching method described in [53]. When a high voltage of around 1 kV is applied
at the high-voltage electrode, an electron beam is emitted from the tip of the FEP and
accelerated along the magnetic field lines through the trap tower. During loading, the
electrodes above the PT where the glass sphere is placed and the upper endcap of the
PT are biased with a voltage slope guiding positive ions into the PT. Simultaneously a
negative voltage is applied to the FEP so that the emitted electrons reach at least 24.6 eV,
the first ionization energy of helium, in the electrode potentials or ∼ 100 eV to maximize
the cross-section [54, 55].
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4.4 Microwave transmission

The microwaves for spin-flip excitation need to be transmitted inside the experiment over
a distance larger than 1.5 m from the CF60 cross to the trap chamber at the center of the
magnet, see Fig. 4.1. For the nuclear transitions at about 4.5 GHz this can be achieved by
semi-rigid coaxial cables with low heat conductivity that lead directly to the feedthrough
flange of the trap chamber. Inside the trap chamber cables lead to two copper coils next
to the analysis and precision trap, which produce a radial magnetic field component at
the center of the trap. However, microwaves at the higher frequencies of the electron
spin transitions at 150 GHz can only be efficiently transmitted through waveguides not
cables. The waveguides and horns used for this purpose were designed to optimise for
low microwave power losses in [41].
The microwave signal is provided by an Anritsu MG3692C signal generator and fed into
the signal generator extension (SGX) from VDI, which multiplies the input frequency
by a factor of 12. In order to reduce the magnetic field that the microwave generator
is exposed to, it is placed around 30 cm above the CF window flange held up by rods
attached to the bredboard placed there. From the SGX module, the microwaves pass
through a standard straight WR6 waveguide piece to a microwave horn that transmits the
microwaves through the window to the prevacuum stage, where an oversized waveguide
consisting of a 1.5 m long stainless steel pipe with a radius of 4 mm picks them up. With
this oversized stainless steel waveguide the heat load can be reduced drastically compared
to standard copper waveguides. It is flanged to a 5.7 cm long transition section that adapt
the inner radius from 4 mm to the 2.5 mm radius of the following window flange that
leads into the trap chamber. The fused silica window flange that is cryogenically sealed
with indium separates the vacuum inside the trap chamber from the prevacuum. In the
trap chamber, the microwaves are coupled in through a copper horn with a small opening
angle connected to a 8 cm long electrode which bridges the gap to the trap stack.

4.5 Detection system

The detection system consists of a cryogenic low-noise amplifier and a high-Q tank cir-
cuit in form of a coil wound around a PTFE core and surrounded by a cylindrical OFHC
housing. For this experiment three axial detectors and one cyclotron detector were de-
signed [56]. Fig. 4.5 shows CAD models of the axial and cyclotron detectors and Tab. 4.2
shows the results of their characterization in a cryocooler test and in the final setup.
In the cryocooler a test version of trap electrodes was used as capacitive load and the
self-inductance as well as self-capacitance were deduced from the measured resonance
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A                            B

2.6 cm

5 cm

Figure 4.5. (A) CAD model of the assembled axial detection system. The amplifier
boards are arranged around the copper housing holding the three coils. (B) Sectional
view of the cyclotron resonator housing with amplifier board at the bottom and coil
body inside. The resonator is attached next to the trap tower.

frequencies with different additional parallel capacitances [56].
The axial resonators consist of a toroidal PTFE core around which approximately

1000 windings of formvar-insulated NbTi wire with a diameter of 0.075 mm are wrapped
in three layers. Formvar and PTFE are chosen due to their low loss tangents to improve
the signal-to-noise ratio of the detectors. The toroidal geometry additionally reduces eddy
current losses induced by the magnetic field in the surrounding material as it confines
most of the coil’s magnetic field inside the PTFE core. Each coil is on one end connected
to ground and after N of the total Ntot windings a tap leads to a cryogenic amplifier. The
other end of the coil is connected to the trap electrode. In this way an autotransformer is
created so as to suppresses limitations of the coil’s effective parallel resistance due to the
input resistance of the amplifier [31, 57]. The coupling factor κ = N/Ntot modifies the
signal-to-noise ratio and linewidth of the dip and is chosen to be κ = 0.2 for this setup.

The axial resonators are placed in an OFHC copper housing below the trap chamber
so that both the resonators and their amplifiers are thermalized near 4 K. Copper braided
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Table 4.2. Self-inductance L, self-capacitance C and Q-values determined in the cry-
ocooler test setup and resonance frequency and Q-value in the final setup inserted in the
magnet.

resonator νres L C Q (cryocooler) Q (magnet)
axial PT 515.3 kHz 3.56(1) mH 12.0(1) pF 7000(500) 5100(200)
axial AT 472.2 kHz 3.33(1) mH 12.9(1) pF 7000(500) 4200(200)
axial spare 780.8 kHz 1.49(1) mH 6.60(1) pF 13500(500) 12400(500)

cyclotron PT 28.96 MHz 1.08(1) µH 2.35(1) pF 610(20) 600(150)

hoses additionally connect the bottom of the copper housing to the lower flange of the
prevacuum chamber to improve the thermal coupling to the liquid helium bath. The
copper housing can hold three toroidal coils, one for each trap and a spare resonator
which is additionally attached to the AT. The number of windings N ∝

√
L is adjusted

to reach the resonance frequency of 3He+ in the 14 V range of the voltage source for the
C2 of the particular trap, taking into account the coil’s self-capacitance of approximately
10 pF and another 15 pF from the trap and the feedthroughs.

In the PT, a cyclotron resonator is additionally installed which is used for the ion
preparation and detuned from the ion frequency by means of a tunable parallel capaci-
tance during the HFS measurements. For the cyclotron detector the optimization of the
Q-value is not as critical as in case of the axial detectors which have to allow for effec-
tive dip detection. The coil of the cyclotron detector was therefore made from 99.99%
pure copper with a diameter of 0.4 mm instead of a superconducting material to avoid
thermalization problems. As the effective parallel resistance of the cyclotron resonator is
only 120 kΩ, no decoupling of the amplifier via an inductive tab as for the axial detectors
is necessary. In order to reduce the parasitic capacitances between the hot end of the
resonator and ground, the wires between the resonator and the trap and the amplifier are
kept short. Therefore, the amplifier is attached directly on top of the resonator’s OFHC
housing which is placed inside the trap chamber close to the PT. Because of the limited
space in the trap chamber, a solenoid coil instead of a toroidal coil is chosen here. The
number of windings N = 38 was adapted to achieve a resonance frequency slightly larger
than the ion’s eigenfrequency, as the resonance frequency can be easily decreased but not
increased after the characterisation by an additional parallel capacitor.

The cryogenic amplifier design generally used for this application, described in [31],
consists of a first amplifier stage with one dual-gate MESFET in common-source layout
(cascode) and a source follower as second stage. The latter matches the high output



34 Wiring

impedance of the first stage to the impedance of the rf-lines, while the cascode serves to
provide a high voltage gain at high input impedance. This layout requires four supply
lines, the two gates of the first MESFET (G1 and G2), the gate of the source follower
(Gsf), and a shared terminal for the drain of both transistors (D). The cyclotron amplifier
design is similar to that of the axial amplifier but has an additional fixed capacitor and
a tunable capacitor in form of a varactor diode to adjust the resonance frequency. The
amplifier boards were manufactured from PTFE laminate milled circuit boards using low
loss SMD components with the cryogenic GaAs MESFETs NEC NE25139 and Siemens
CF739 as cascode and source follower, respectively. They were afterwards tested and
characterized in a cryocooler setup [56].

4.6 Wiring

From outside the vacuum setup, the electronic lines are guided through feedthrough
flanges to the prevacuum stage and via another feedthrough flange at the bottom of the
trap chamber to the trap. Here, alumina vacuum feedthrough are used except for the lines
connecting the axial resonators placed outside the trap chamber to the trap electrodes,
where sapphire feedthroughs are utilized to reduce losses.

The complete connection diagram is shown in Fig. 4.6. On the left side, the instru-
ments connected to the setup at room temperature are shown. The electrode biases
are supplied by two Stahl-Electronics UM1-14 high-precision voltage sources, where the
channels ’A’, ’B’ and ’C’ are the high-precision channels used for the ring and correc-
tion electrodes. The DC lines are filtered at room temperature, 70 K and again at 4 K
with surface-mounted device (SMD) RC low-pass filters. These consist of a R = 820 kΩ
resistor and a C = 4.7 nF capacitance or for the central trap electrodes a C = 20 nF
capacitance. The cryogenic amplifier requires 5 DC supplies, one of which connected to
the drain (D) of the transistors and is therefore filtered with a smaller resistor, C = 1 µF
and R = 50 Ω, to reduce the heating power due to the ∼ 3 mA drain current. The layout
of the 70 K and 4 K filter boards are depicted in Fig. 4.7. The 4 K board is attached
directly on top of the feedthrough flange of the trap chamber. At the 70 K stage, the
lines coming from room temperature or 4 K are attached with plug connections, so that
the trap chamber can be removed from the rest of the setup in assembly.

The AC lines, high-voltage lines and the line for the heater of the 3He source are
guided by cryogenic coaxial cables. Inside the trap chamber all lines are connected to the
electrodes by copper wire. The coaxial cables for the quadrupole and dipole excitation
lines are attached with a twisted pair to the 4 K filter board, where external noise is
reduced using a capacitive voltage divider and the DC line connected to the same electrode
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is blocked by a R = 500 kΩ resistor. The PT quadrupole excitation line is connected
to one of the two halves of the split correction electrode of the PT. The two halves are
connected by a R = 27 MΩ resistor and the second half leads to the cyclotron detector,
which is placed inside the trap chamber to minimize the wire length. In the AT, the
spin-flip coil can be used for quadrupole excitation. Both traps have a dipole excitation
line connected to one of their endcaps. The signals for quadrupole and dipole excitation
are created by a Keysight 33600A Waveform Generator and the nuclear spin-flip drive by
a Systron Donner Microwave Synthesizer.

The three axial resonator coils and the cyclotron resonator coil are shown as grey
boxes in Fig. 4.6. The feedback line is mounted in close proximity to the axial detection
line of the PT to achieve capacitive signal coupling. The axial and cyclotron detection
signals coming from the cryogenic amplifiers are additionally amplified at room tempera-
ture by Mini-Circuits ZFL-500LN amplifiers and down-mixed by a single-sideband down
converter [56, 58] into the 10 kHz range so that it can be digitized by a National Instru-
ments NI-9250 module and then analyzed via Fast Fourier Transformation (FFT). All
frequency generators and signal analyzers are locked with a Stanford Research Systems
FS725 Rubidium 10 MHz frequency standard, which is itself locked to a GPS pps sig-
nal to allow for absolute frequency determinations as necessary to measure the zero-field
splitting EHFS.
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Figure 4.6. Connection diagram of the setup. Where not indicated differently, the RC
low-pass filters consist of a R = 820 kΩ resistor and a C = 4.7 nF capacitance. Otherwise
they consist of C = 20 nF and R = 820 kΩ or C = 1 µF and R = 50 Ω.
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Figure 4.7. Schematics of the filter boards, where G1, G2, Gsf and D refer to the
cryogenic amplifier supply lines and UM GND connects ground of the high-precision
voltage supply to ground on the 4 K board. (A) 70 K filter boards. The cables coming
from the trap chamber or from room temperature are connected with plugs to simplify
the assembly. (B) 4 K filter board, designed to fit directly on top of the flange containing
the feedthroughs to the trap chamber. The sapphire feedthroughs connect the axial
resonators outside the trap chamber to the electrodes.





Chapter 5

Trap Characterization

5.1 Precision trap

5.1.1 Ion preparation

After first inserting the experiment into the superconducting magnet, the magnetic field
in the PT is determined from double-dip spectra using 12C4+ ions, to then be able to
unambiguously identify 3He+ via its cyclotron frequency. The carbon frozen on the walls
of the trap chamber allows loading 12C4+ ions into the trap independently of whether
the 3He source is heated simultaneously, using the electron gun with a FEP bias of
around −90 V. The cyclotron frequencies of 12C4+ and 3He+ are different by ν

3He+

c −
ν

12C4+

c = −156 kHz, so that 12C4+ can also be observed via peaks on the cyclotron detector
calibrated for 3He+. When loading 3He ions, as described in Sec. 4.3, a lower FEP bias of
−60 V is applied to avoid contamination with 12C4+, thereby simplifying the cooling and
cleaning process as both species have a similar axial frequency ν

3He+

z −ν
12C4+

z = −1.4 kHz.
An axial dip spectrum with several 10 3He+ ions then becomes visible after cooling the
magnetron mode by sideband coupling. Unwanted ion species in the trap, such as protons
and low charge states of 12C and 16O, are afterward removed from the trap by exciting
their axial modes, while leaving 3He+ unaffected, and subsequently lowering the axial
potential to a minimal value around −0.1 V for 1 s. For this purpose, a broadband signal
with notches around the 3He+ eigenfrequencies is applied using an arbitrary waveform
generator (Stored waveform inverse Fourier transform, SWIFT), while the axial frequency
of the 3He+ ions is in resonance with the axial detector for cooling. A single 3He+ ion
is finally prepared by heating the modified cyclotron mode with rf-sweeps until only a
single peak is observed on the cyclotron resonator. Due to the relativistic mass increase
the modified cyclotron frequency of the hot ions is reduced significantly, so that they can
be selectively excited further before lowering the trapping potential to remove the most

39
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Figure 5.1. C4 and C6 fitted to the axial frequency shift after magnetron excitation to
different energies.
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Figure 5.2. Tuning-ratio optimization with axial noise. (A) Relative axial frequency
shift as function of excitation power for one of the tuning ratios. (B) Fitted slope as
function of the tuning ratio.

excited ions. Whether the observed signal is due to only a single 3He+ ion can be afterward
verified by measuring the 3 db width of the axial dip signal, which is proportional to the
number of ions

∆νz,dip

Nions
= 1.3(1) Hz. (5.1)

5.1.2 Tuning ratio

The frequency dependent shifts caused by anharmonicities of the electrostatic potential
are minimized by optimizing the tuning ratio TR = Vc/V0 to reach C4 = 0, and the
residual value of C6 at this tuning ratio is characterized. For this purpose, the magnetron
mode is excited with bursts of N cycles to different energies ∆E− ∝ N2 for different
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tuning ratios and the resulting shift

δνz
νz

≈ (a1C4 + a2B2)∆E− + a3C6(∆E−)
2 (5.2)

of the axial frequency is measured, with a1, a2 and a3 according to Sec. 2.3. The B2-
dependent term is negligible assuming the measured value of B2,PT , see below. From the
shifts δνz(N) at different tuning ratios follows the result plotted in Fig. 5.1 and thus the
optimized tuning ratio TRopt = 0.880833(3). In order to determine the residual anhar-
monic contributions and associated systematic corrections, the proportionality constant
∆E−/N

2 is determined by inserting the theoretical value

D4,theo = −3.5 · 109m−4Unit−1
TR (5.3)

for the measured slope D4 = dC4/dTR. It follows C4 = 0(5) · 104 m−4 and C6 =

2(1) · 10−6 mm−6 at the optimized tuning ratio. From the same measurement follows the
axial frequency shift per unit tuning ratio in the PT D2 = −2.0(2) · 103 Hz/UnitTR.

As a cross-check, the tuning ratio was additionally optimized by heating the axial
mode with white noise applied to the dipolar excitation line and measuring the axial
frequency, see Fig. 5.2. The resulting shift of the axial frequency [30]

δνz
νz

=
3

4

1

qV0

C4

C2
2

Ez (5.4)

is independent of B2,PT and the optimal tuning ratio found by this method TR =

0.880834(13) agrees well with the value above.

5.1.3 Axial and cyclotron temperature

During the double-dip measurements of the cyclotron frequency in the PT, the coupling
of the axial and modified cyclotron mode thermalizes the modified cyclotron mode with
the axial detection system at

T+ = Tz
ν+
νz

. (5.5)

These temperatures are determined by transporting the ion to the AT and measuring
the axial frequency scatter. Due to the magnetic bottle in the AT, the axial frequency
is shifted proportional to the Boltzmann-distributed cyclotron energy E+. A similar
measurement without cyclotron thermalization in the PT showed that the additional
energy spread due to heating during transport from the PT to the AT is negligible. A
maximum likelihood fit of a Boltzmann-distribution to the axial frequencies therefore
gives the temperature T+ = ⟨E+⟩ and thereby Tz = 11.7(7) K, see 5.3 A and B.

At this temperature, the average spread of axial frequencies in the AT is 2.3 kHz.
During the double-trap measurement of the HFS transition frequencies, the cyclotron
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mode is therefore cooled in the PT ahead of each transport into the AT to reduce the
voltage range that has to be scanned in order to detect the dip signal. Because of the large
cooling time constant of the cyclotron resonator τcyc = 396(13) s, this is implemented
instead by coupling the axial and cyclotron mode while reducing the axial temperature
with negative feedback to Tz = 2.5(5) K, see Fig. 5.3 C and D.

A                                                B

C                                                D

Figure 5.3. (A) Ring voltages that center the ion on the AT resonator after thermalizing
the cyclotron mode in the PT. (B) Boltzmann-distribution of cyclotron temperatures
in the PT following from the ring voltages in the AT. (C) and (D): Cyclotron energy
distribution after feedback cooling in the PT.

Furthermore, the cyclotron temperature is determined from the C4 and B2,PT induced
shifts of the axial frequency in the PT. After thermalizing the cyclotron mode at T+ with
sideband coupling, these shifts are amplified by directly exciting the modified cyclotron
mode and subsequently the axial frequency in the PT is measured. This process is
repeated 200 times with excitation pulses of fixed cycle number N and amplitude. The
expectation value of the axial frequency fluctuations ∆νz,i = νz,i − νz,i+1 then is

⟨∆νz⟩ =
√
2(a1C4 + a2B2)⟨E+⟩

= P1(C4, B2)⟨ρ2+⟩, (5.6)
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using E+ = ρ2+m3He+ω
2
+/2 with constants a1/2 as given in Eqs. (2.26) and (2.20). The

cyclotron radius ρ+ after applying the excitation pulse depends on the initial thermal
cyclotron radius and the phase difference ∆ϕ between excitation pulse and ion motion

ρ2+ = ρ2exc + ρ2thermal(T+) + 2ρexcρthermal(T+) cos(∆ϕ). (5.7)

This leads to the expectation value and standard deviation as function of the excitation
radius ρexc ∝ N2 [59]:

⟨∆νz⟩ ≈ P1(C4, B2)ρ
2
exc

δ∆νz ≈
√
(P2(C4, B2, T+)ρexc)2 + P0, (5.8)

with

P2(C4, B2, T+) = 2P1(C4, B2)

√
πkBT+

2m3He+ω
2
+

√
4

π
+

1

2
. (5.9)

Here, P0 is the energy independent contribution to the fluctuations of the axial frequency,
mainly due to the electrode voltage supply and the axial dip fits. For this setup, the
proportionality constant κ = ρexc/N

2, relating the excitation radius and the number of
cycles N of the applied drive, is not calibrated independently so that the values for C4

and B2,PT have to be inserted to then deduce κ and T+ from the experimental results for
P1κ

2 and P2κ. The magnetic bottle B2,PT was measured as described in the next section,
while the value of C4 at a given tuning ratio is deduced from the theoretical result for
D4 = dC4/dTR given in Eq. (5.3). The results for the standard deviation and average of
the axial frequency fluctuations as function of the number of excitation pulse cycles N

is plotted Fig. 5.4. This was repeated with two different values for C4 by changing the
tuning ratio by 1 · 10−4, giving the results Tz = 12.4(1.4) K at C4 = 0(52500) 1/m4 and
Tz = 14.4(1.1) K at C4 = 350000(52500) 1/m4. These agree with the result Tz = 11.7(7)

from the Boltzmann-distribution in the AT within 1 σ and 2 σ, respectively.

5.1.4 Magnetic field

The cyclotron frequency is determined from double dip spectra at different ions positions
along the z-axis, see Fig. 5.5 A, by shifting the ion using asymmetric offsets on one
correction electrode. Here, the ion position at a given offset voltage was calculated using
the analytical expression of the potential of a cylindrical trap. From this measurement,
the linear inhomogeneity B1,PT = 14.1(6) mT/m could be determined while the effect
of the quadratic inhomogeneity B2,PT is too small in this range. The magnetic bottle
B2,PT was instead measured by exciting the modified cyclotron mode and measuring the
resulting shift of the axial frequency

δνz
νz

=
1

m3He+(2πνz)2
B2

B0

E+, (5.10)
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A                                                B

Figure 5.4. (A) Average and (B) standard deviation of 200 measurements of the axial
frequency fluctuations after cyclotron excitation in the PT as function of the square of the
number N of the excitation cycles at two different tuning ratios TRopt and TRopt−1·10−4.

A                                                       B

Figure 5.5. (A) Magnetic field in the PT for different offset voltages that lead to the
plotted shifts of the ion positions along the z-axis. (B) Modified cyclotron frequency
versus shift of the axial frequency after excitation of the modified cyclotron mode.
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as well as the simultaneous shift of the modified cyclotron frequency

δν+
ν+

=

(
− 1

m3He+c2
−
(
νz
ν+

)2
1

m3He+(2πνz)2
B2

B0

)
E+. (5.11)

The latter was determined by detecting the peak on the cyclotron resonator with an
averaging time of 4 s ≪ τcyc = 396(13) s, before detuning the cyclotron resonator via the
varactor voltage to average the axial FFT signal without cooling the cyclotron mode. The
second expression, Eq. (5.11), includes an additional B2,PT independent term accounting
for the relativistic mass increase, which allows to extract B2,PT from the slope δν+/δνz

fitted in Fig. 5.5 B. Here, the uncertainty of the shifts of both frequencies due to the
uncertainty of C4 is negligibly small. The result B2,PT = 1.17(4) Tm−2 is significantly
larger than the value expected from the nickel AT ring electrode at the position of the
PT B2 = 0.12 Tm−2, due to either the trap placement in the superconducting magnet
or other ferromagnetic components in the setup. This magnetic bottle leads to a spread
of the modified cyclotron frequency

∆ν+,B2 =
ν+

m3He+(2πνz)2
B2,PT

B0

kBTz = 18(1) mHz. (5.12)

The stability of the measured cyclotron frequency can be seen in Fig. 5.6. The cyclotron
frequencies plotted here result from taking alternating single-dip and double-dip spectra
in the PT over a span of 12 h, where the axial frequency is determined by averaging the
values measured before and after the sideband coupling. In this time frame no magnetic
field drift is observed and the cyclotron frequency could be determined with a relative
statistical uncertainty of ∆νc/νc = 1.8 · 10−9, or ∆νc = 41 mHz, which is limited by
the axial frequency determination. Here, the standard deviation of the fluctuations of
the two axial frequencies νz,1 − νz,2 measured before and after the sideband coupling is
∆(νz,1 − νz,2) = 65 mHz, see Fig. 5.6 B. The statistical uncertainty of a single axial
frequency determination is therefore ∆νz,1/2 = ∆(νz,1 − νz,2)/

√
2 = 46 mHz, where the

dominant contribution is due to the voltage fluctuations of the high-precision voltage
supply UM-1-14. According to the specifications these are limited to ≤ 1.1 µV ≡ 50 mHz
in the ±0.10 K temperature stabilized laboratory. As the two axial frequencies before and
after the double-dip spectrum are measured at different cyclotron energies, the frequency
shift due to the residual magnetic bottle in the PT quadratically contributes to the
fluctuations

∆νz,B2 =
1

m3He+(2π)2νz

B2,PT

B0

kBT+ = 18(1) mHz. (5.13)

In the cyclotron measurement with the double-dip method the axial frequency shifts due
to B2,PT cancel, see also next chapter.

Long term magnetic field drifts observed in the PT during the double-trap measure-
ments over several days are ∆νc/νc < 1.5 ·10−9 per hour, see for example Fig. 5.7. This is
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Figure 5.6. Continuous measurement of the cyclotron frequency in the PT. (A) Cy-
clotron frequency as function of time. (B) Histogram of the difference of subsequent
determinations of the axial frequency (green) and cyclotron frequency (blue).

A                                                B

Figure 5.7. Long term drift of the magnetic field in the PT detected during two long
doubletrap-measurement runs.

equal to ∆νc/νc < 4 · 10−11 per double-dip averaging time of 180 s and thus not limiting
the uncertainty of the measured g-factors and EHFS.

5.1.5 HFS resonances

The linewiths due to B2,PT of the electronic transitions (|1⟩ ↔ |3⟩ and |2⟩ ↔ |4⟩) and
nuclear transitions (|1⟩ ↔ |2⟩ and |3⟩ ↔ |4⟩) are

∆ωPT
e

2π
= 101(10) Hz and ∆ωPT

n

2π
= 0.19(2) Hz, (5.14)

respectively. As described in the chapter 3, the total width of the lineshape at low
microwave power is therefore dominated by the Gaussian profile of the cyclotron mea-
surement, and has a width 2 · 10−9 for the electronic transitions and 1.5 · 10−9 for the
nuclear transitions, respectively, due to the different scaling with the magnetic field.
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Figure 5.8. Resonance of the transition |1⟩ ↔ |3⟩ in the PT with magnetron sidebands.
The x-axis is the difference of the applied microwave drive frequency and the theoretically
expected resonance frequency for the simultaneously measured magnetic field.

The HFS transition resonance curves in the PT are determined around the expected
resonance frequency for the measured magnetic field using the double-trap method de-
scribed in Sec. 3.2. Initially, this requires approximate theoretical values for the electronic
and nuclear magnetic moments and zero-field hyperfine splitting appearing in the Breit-
Rabi equation Eq. (3.4), taking into account bound QED corrections due to the small
linewidths. From the 3He NMR measurements [10] and the theoretical shielding due
to both electrons [60] follows the bare nuclear magnetic moment with a precision of 12
ppb. The correction factors for the bare nuclear magnetic moment and the free electron
magnetic moment in the 3He+ ion, which are of the order 10−5, were then calculated
using the expression given in [61]. From the results, µ′

e ≈ −9.284 106 759 · 10−24 J/T and
µ′
I ≈ −1.074 579 37 · 10−24 J/T, and the only previous measurement for the 3He zero-field

splitting EHFS = −8 665 649 867(10) Hz [62] follow the expected resonance frequencies in
the PT at the measured cyclotron frequency. The first resonance, plotted in Fig. 5.8, was
scanned with a wider range of excitation frequencies compared to the rest of the data
discussed in the next chapter. As seen in Fig. 5.8, sidebands are visible at νres ± ν−,
possibly due to a radial magnetic field inhomogeneity causing a frequency modulation of
the transition frequency with the magnetron frequency.

5.2 Analysis trap

5.2.1 Tuning ratio

In the analysis trap, the ring voltage at which the ion is in resonance with the detector
as well as the optimal tuning ratio are dependent on the radial energy. This is due to the
inhomogeneities B2 and B4, which due to the ion’s magnetic moment along the z-axis
µ± = E±/B0 effectively contribute to C2 and C4, respectively, see Sec. 2.3. The ring
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Figure 5.9. Optimized tuning ratio TR and ring voltage V0 for different cyclotron
energies in the AT.

voltages and tuning ratios at different cyclotron energies were characterized by optimiz-
ing the signal-to-noise ratio of the dip in the AT after thermalizing the cyclotron mode
by sideband coupling in the PT, see Fig. 5.9. The ring voltage Vmin at minimal cyclotron
energy corresponds to C2,AT = 112342(1) mm−2. In each cycle of the double-trap mea-
surements of the g-factors and EHFS, the ring voltages V0 with the tuning ratio TR(V0)

according to Fig. 5.9 are scanned after transport to the AT. With the feedback cooling
mentioned above, the spread of axial frequencies is reduced to ∆νz(T+) = 600 Hz. The
ion is first located within ≤ 300 Hz by scanning the voltages starting at Vmin = −1.23 V
while applying parametric excitation of the axial mode close to the 2 · νres, until a peak
is detected on the axial detector. The ring voltage is then further increased until a dip
can be fitted and centered on the resonator.

5.2.2 Magnetic field and electronic transition resonances

The ion’s axial motion in the magnetical field B(z) = B0,AT +B2,ATz
2 of the AT leads to

a relative linewidth of the cyclotron frequency as well as the resonance frequencies of both
electronic transitions of ∆ν/ν = 10−4. The modified cyclotron frequency is measured by
exciting this mode directly at a low amplitude, which leads to an observable jump of the
axial frequency when energy is absorbed resonantly. The excitation frequencies νexc are
scanned from low to high frequencies, starting below the value for ν+ estimated for the
center of the AT from the magnetic field in the PT and the magnetic bottle. As seen
in Fig. 5.10 A, an axial frequency jump is observed at the modified cyclotron frequency
ν+ ≈ 27.6658 MHz corresponding to B0,AT and at higher frequencies due to the cyclotron
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linewidth. Fig. 5.10 A shows an additional smaller jump at the lower magnetron sideband
around νexc ≈ ν+ − 4 kHz. The magnetron frequency, which is only weakly dependent
on the magnetic field, was additionally determined from a double-dip spectrum to be
ν− = 3969(1) Hz. It follows the magnetic field at the center of the magnetic bottle
B0,AT = 5.43352(4), which is then used to estimate the resonance frequencies of the
electronic transitions in the AT, ν13 ≈ 148.054 GHz and ν24 ≈ 156.719 GHz. With a drive
at these frequencies applied to the ion in the AT, the axial frequency jumps as depicted in
Fig. 5.10 B could be observed, which can be interpreted as a change of the ion’s magnetic
moment due to the HFS transition. These axial frequency jumps ∆νz,SF = 22.638(5) Hz
correspond to a magnetic bottle of B2,AT = 124.119(27) kT/m2. For both transitions
resonance curves were measured, which allow to optimize the efficiency with which these
transitions can be driven in the AT during the double-trap measurement. Fig. 5.10 C
and Fig. 5.10 D show the resonances of transitions |1⟩ ↔ |3⟩ and |2⟩ ↔ |4⟩, respectively,
where the plotted transition probabilities PSF (νRF ) where determined from 40 attempts
at each frequency step with a 0 dbm drive applied for 1 s. The fitted lines following
Eq. (3.14), depicted in red in Fig. 5.10 C and D, yield the linewidths ∆ωAT

13 /(2π) = 8(1)

MHz and ∆ωAT
24 /(2π) = 11(1) MHz, which gives an estimate for the axial temperature

via the theoretical value ∆ωAT
e /(2π) = Tz,AT · 1.088(3) MHzK−1.
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Figure 5.10. (A) Axial frequency shift in the AT after exciting the modified cyclotron
mode. (B) Axial frequency jumps in the AT when driving the electronic transition |1⟩ ↔
|3⟩. (C) and (D) Resonance curves of the electronic transition |1⟩ ↔ |3⟩ and |2⟩ ↔ |4⟩ in
the AT. The red lines are fits with the lineshape given in Eq. (3.14).



Chapter 6

g-Factor and EHFS Measurement
Results

In the following, the zero-field splitting and the g-factors rather than the magnetic
moments of 3He+ are determined directly. This allows to reformulate the HFS state
energies Ei (µe, µI , EHFS, B) in Eq. (3.4) combined with the measured magnetic field
B = m3He+ωc/e in terms of mass ratios instead of masses in units of kg with relative
uncertainty 3 · 10−10 [63]. With the definition

E = ℏωc
m3He+

4me

, (6.1)

the eigenenergies can be expressed as

E1,4 (ωc, ge, g
′
I , EHFS) =

EHFS

4
∓
(
ge + g′I

me

mp

)
E ,

E2,3 (ωc, ge, g
′
I , EHFS) = −EHFS

4
±

√(
EHFS

2

)2

+

(
−ge + g′I

me

mp

)2

E2 . (6.2)

The electron mass me and proton mass mp in atomic mass units are known with rel-
ative precisions of 2.9 · 10−11 and 5.3 · 10−11, respectively [24, 63, 64]. The 3He+ mass
m3He+ = 3.015 480 768 667(97) u used here was determined from the helion mass [63]
corrected for the additional electron mass [63] and second ionization energy [63], so
that the uncertainties of the mass ratios are negligible for the total systematic uncer-
tainty given below. The 3He mass given in the recent atomic mass evaluation [65]
corrected for the missing electron mass [63] and first ionization energy [66] leads to
m′

3He+ = 3.015 480 768 452(60) u, which deviates from the value above by 1.9 σ. Us-
ing m′

3He+ instead would change the results by δge/ge = 7 · 10−11, δg′I/g′I = 1 · 10−10 and
δEHFS/EHFS = 3 · 10−13, one order of magnitude less than their total uncertainty given
in Sec. 6.4.

51
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6.1 Maximum likelihood fit procedure
Each measurement cycle n starts with a first cyclotron measurement ω(0)

c,n in the PT. Af-
terwards a microwave frequency ωMW,n is randomly picked from a uniform and continuous
distribution of detunings from the expected resonance frequency
ωij(ω

(0)
c,n, gtheo

e , g′I,ref, EHFS,ref) = |Ei − Ej|/ℏ. At this frequency ωMW,n a hyperfine transi-
tion is excited while a second cyclotron measurement ω

(1)
c,n is performed simultaneously.

It follows a third cyclotron measurement ω(2)
c,n to investigate systematic effects. The de-

tuning ∆ = ωMW,n − ωij(ω
(1)
c,n, gtheo

e , g′I,ref, EHFS,ref) during spin-flip excitation can then be
calculated from the second cyclotron frequency measurement. For visual representation
of the resonance curve, the resulting spin-flip probabilities are binned into appropriate
intervals of the detuning defined in this way. However, this binned detuning depends on
the expected parameters gtheo

e , g′I,ref and EHFS,ref and can thus not be used to fit the reso-
nance line with the least square method. By this method the result would also depend on
the chosen bin width, leading to an additional systematic uncertainty. Furthermore, the
error assigned to the binned data points is determined by the binomial probability dis-
tribution and thus asymmetric, while the nonlinear regression based on the least squares
method assumes normally distributed errors. Therefore, the maximum likelihood method
is chosen instead, where the statistical probability of the complete set of detunings as
a function of a set of lineshape parameters is optimized. For this purpose, the set of
lineshape parameters is found which maximizes the log-likelihood function

L =
∑
n

ln(pn), (6.3)

defined as the logarithm of the probability
∏

n pn to reach the given measurement out-
come in all cycles assuming these lineshape parameters. Here, the probabilities pn are
determined for a particular lineshape χ1/2 from P̃SF,1/2 given in Eq. (3.23) as

pn(ge, g
′
I , EHFS,Ω) = P̃SF,1/2(ωMW,n, ωij(ω

(1)
c,n, ge, g

′
I , EHFS),Ω,∆ωPT

ij ) (6.4)

in case of a spin-flip in cycle n and accordingly in case of no spin-flip in this cycle

pn(ge, g
′
I , EHFS,Ω) = 1− P̃SF,1/2(ωMW,n, ωij(ω

(1)
c,n, ge, g

′
I , EHFS),Ω,∆ωPT

ij ). (6.5)

When combining N measured resonance curves in one fit, the log-likelihood function
accordingly is the sum of the log-likelihood functions of the individual resonances and
depends simultaneously on the free parameters {ge, g′I , EHFS, Ω1, ..., ΩN}. To simplify
this, the two parameters g′I and EHFS are determined by combining one resonance curve
of each of the two nuclear transitions using the theoretical electron g-factor (Eq. (6.21)),
as the nuclear transition frequencies depend only weakly on ge. The electron g-factor
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is subsequently fitted using only one resonance curve of an electronic transition with g′I

and EHFS fixed at the measured values. Changing the fixed parameters by 3σ of the
theoretical ge or the measured g′I and EHFS, respectively, leads to a shift of the result
which is more than two orders of magnitude smaller than its statistical uncertainty.

6.2 Lineshape uncertainty
The resonance curves of the four transitions were measured several times for different
microwave powers and are plotted in the appendix. Fitting the electronic resonances
with the maximum likelihood procedure using either P̃SF,1/2 or the Gaussian lineshape

PSF,G(ωMW , ωij(ωc, ge, g
′
I , EHFS), σ, pmax) = pmax exp

(
−(ωMW − ωij(ωc, ge, g

′
I , EHFS))

2

2σ2

)
(6.6)

leads to the results in Fig. 6.1. For high microwave powers, or Rabi frequencies, the
electron g-factors fitted with the different lineshapes deviate significantly from each other.
At low microwave powers the results using P̃SF,1/2 or PSF,G agree, as in this case the
Gaussian distribution of the magnetic field measurement in the convolution in Eq. (3.23)
dominates the lineshapes P̃SF,1/2, compare Fig. 3.2 (E) and (F). The deviation of P̃SF,1/2

from a Gaussian PSF,G is plotted as function of the Rabi frequency in Fig. 6.2. Here, the
two possible spin-flip probabilities P̃SF,1/2 for different Rabi frequencies are fitted with a
Gaussian line to determine the shift of the center frequency and correspondent difference
of the deduced parameters ge, g′I and EHFS.

For the final results each resonance is fitted with a Gaussian and ascribed a systematic
uncertainty given by the maximum of the differences between a fit with a Gaussian and
with P̃1/2, as calculated in Fig. 6.2. In case of ge only the three resonances at lowest
amplitude, where the lineshape uncertainty is δge/ge = 1.5 · 10−10, are taken into account
for the final value. As shown in Fig. 6.2, the systematic shifts of the two nuclear transitions
|1⟩ ↔ |2⟩ and |3⟩ ↔ |4⟩ that are combined in one fit largely cancel for EHFS but not
for g′I . This is also indicated by the difference between the results measured at different
amplitudes plotted in Fig. 6.3, while not with statistical significance. The conservative
uncertainties due to lineshape ascribed to the three measurements according to the Rabi
frequencies and Fig. 6.2 are summarized in Tab. 6.1.
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Figure 6.1. (A) and (B): transition |2⟩ ↔ |4⟩. (C) and (D): transition |1⟩ ↔ |3⟩.
Shown is the electron g-factor fitted with a Gaussian or functions P̃1/2 from Eq. (3.23)
which is convoluted with a Gaussian. The x-axis is the Rabi frequency fitted with the
respective lineshapes. The graphs on the left side in (A) and (B) show only the smallest
Rabi frequencies, where the results for different lineshapes agree.



Lineshape uncertainty 55

A B

C D

E F
0 1 2 3 4

(s 1)

1

0

1

E
H
FS

/E
H
FS

,g
a
u
ss

-1

1e 11
transition 12
transition 34

0 1 2 3 4
(s 1)

8

6

4

2

0

g
I/g
g
a
u
ss

-1

1e 10
transition 12
transition 34

0.0 0.2 0.4 0.6 0.8
(s 1)

1.0

0.5

0.0

0.5

1.0

E
H
FS

/E
H
FS

,g
a
u
ss

-1

1e 11
transition 12
transition 34

0.0 0.2 0.4 0.6 0.8
(s 1)

5

4

3

2

1

0

g
I/g
g
a
u
ss

-1

1e 10
transition 12
transition 34

Figure 6.2. Difference of the fitted electron g-factor, nuclear g-factor and EHFS with
the models P1 (A,C,E) and P2 (B,D,F) compared to a Gaussian as a function of the Rabi
frequency extracted from the fit.



56 Lineshape uncertainty

A                                                                B

g'I/g'I, ref refEHFS/EHFS, ref

Figure 6.3. Results for (A) the shielded nuclear g-factor and (B) the zero-field hyperfine
splitting with a maximum likelihood fit of a Gaussian, combining one resonance of each of
the two nuclear transitions with microwave powers P12 and P34. The y-axis gives the value
assumed for ge in the fit of g′I and EHFS. The results are plotted for ge = ge,theo and for
ge = ge,theo(1− 6 · 10−13), which corresponds to a difference of 3σ of the theoretical value.
In order to make the overlapping errorbars better visible, the datapoints are depicted
slightly shifted from these two values along the y-axis. Changing ge by 3σ shifts the
fitted g′I and EHFS by two orders of magnitude less than their statistical uncertainties.
For the final results, ge is fixed to the theoretical value while the less precise experimental
ge would not significantly affect the result.

Table 6.1. Fit results for the Rabi frequencies Ω1 and Ω2 of the two measured nuclear
transitions assuming lineshapes χ1 and χ2, respectively, which correspond to a systematic
uncertainty shown in Fig. 6.2. As gI and EHFS are determined from a combined fit of
one resonance of each nuclear transition, the combined uncertainty of both transitions
are given for these parameters.

amplitude (dbm) transition Ω1 (1/s) Ω2 (1/s) δgI/gI δEHFS/EHFS

−20 12 3.8(7) 0.76(7)

−15 34 1.9(4) 0.53(6) 7 · 10−10 5 · 10−12

−33 12 0.9(2) 0.29(5)

−23 34 0.5(1) 0.20(4) 5 · 10−10 1 · 10−12

−40 12 0.33(8) 0.15(3)

−30 34 0.30(8) 0.13(3) 4 · 10−10 1 · 10−12
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6.3 Systematic shifts of the eigenfrequencies
In this section, corrections of the fitted g-factors and zero-field splitting due to systematic
shifts of the measured magnetic field are determined.
The resonant drive frequency during sideband coupling of the axial and cyclotron mode
in case of systematic shifts ∆νz and ∆ν+ is νRF(δ = 0) = ν+ +∆ν+ − (νz +∆ν+). The
modified cyclotron frequency follows as

ν+,meas = νl,meas(δ) + νr,meas(δ)− νz,meas + νRF(δ)

=

(
νz +∆νz −

δ

4π
−

√
Ω2 + δ2

4π

)
+

(
νz +∆νz −

δ

4π
+

√
Ω2 + δ2

4π

)

− (νz +∆νz) +

(
ν+ +∆ν+ − νz −∆νz +

δ

2π

)
= ν+ +∆ν+ , (6.7)

independently of the detuning δ of the drive from resonance. Thus, the measured value
is shifted by ∆ν+ while the systematic axial frequency shift cancels. The equivalent
holds for the determination of the magnetron frequency via sideband coupling, while
magnetron shifts are negligible for the extracted magnetic field due to ν− ≪ ν+. The
cyclotron frequency calculated via the invariance theorem Eq. (2.6), and therefore also
the measured magnetic field are shifted by a factor

∆νc
νc

=

√
(ν+ +∆ν+)2 + (νz +∆νz)2 + (ν− +∆ν−)2 − νc

νc

≈ ν+∆ν+ + νz∆νz
ν2
c

. (6.8)

When extracting the electron g-factor from the resonance frequencies of one of the tran-
sitions |1⟩ ↔ |3⟩ and |2⟩ ↔ |4⟩, this leads to the same relative shift for this parameter:

∆ge = −∆νc
dν13
dνc

(
dν13
dge

)−1

= −∆νc
dν24
dνc

(
dν24
dge

)−1

= −1.00 ·∆νc
ge
νc

. (6.9)

Similarly, for the nuclear g-factor determined from both nuclear transitions

∆g′I = −∆νc
dν12
dνc

(
dν12
dg′I

)−1

= −∆νc
dν34
dνc

(
dν34
dg′I

)−1

= −1.60 ·∆νc
g′I
νc

. (6.10)
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The result for the zero-field splitting is weakly dependent on the magnetic field and
furthermore the shift of both nuclear transitions mostly compensate due to

dν12
dνc

(
dν12
dEHFS

)−1

≈ −dν34
dνc

(
dν34
dEHFS

)−1

= 0.07 ·∆νc
EHFS

νc
. (6.11)

Therefore when combining the two nuclear resonances measured alternatingly in the same
measurement run in one fit of gI and EHFS this averages to

∆EHFS = −∆νc
1

2

(
dν12
dνc

(
dν12
dEHFS

)−1

+
dν34
dνc

(
dν34
dEHFS

)−1
)

= −4.02 · 10−3 ·∆νc
EHFS

νc
. (6.12)

The results are accordingly corrected by factors 1−∆EHFS/EHFS, 1−∆ge/ge or 1−∆g′I/g
′
I

for the systematic effects described below, as summarized in Tab. 6.2.

Image charge
The electrostatic field generated by the image charges that are induced in the trap elec-
trodes by the ion shifts the radial eigenfrequencies by [67]

∆ν± = ∓ e2

8π2ϵ0m3He+a3νc
= ∓0.93 mHz, (6.13)

where a = 3.5 mm is the trap radius.

Image current
With the damping γ+/z due to the axial or cyclotron detector, the solutions of Eq. (2.30)
for ρ+(t) or z(t) take the form A exp(−γ/2t) exp

(√
ω2
0 − γ2/4t

)
. Thus, the imaginary

part of the damping constant leads to eigenfrequency shifts

∆ν+/z

ν+/z

=
− Im(γ+/z)

ω+/z

=
−∆ω

ω2
+/z + 4Q2

+/z∆ω2

Q+/z

τ+/z

. (6.14)

For all detunings ∆ω of the resonator, the relative shift of the modified and therefore also
the free cyclotron frequency is |∆νc/νc| ≤ 3.5 · 10−12, and −∆νc/νc < 1 · 10−12 when de-
tuning the cyclotron resonator during the HFS measurements. Furthermore, a detuning
δν of the the axial dip from the resonator gives close to center ∆νz/δν = −1.6 mHzHz−1,
and with |δν| < 5 Hz therefore ∆νc/νc = 0(5) · 10−12 Hz−1.

Relativistic
The relativistic mass increase due to the ion’s motion leads to a shift of the modified
cyclotron mode by ∆ν+/ν+ = −⟨E+⟩/(m3He+c

2) = 2.1(1) ·10−10, while shifts of the other
eigenmodes and relativistic shifts of the Larmor frequency [68] can be neglected.
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Magnetic field imperfections
The temperature dependent shifts of the average magnetic field are

∆B(Tz) = ⟨z2⟩B2

= 6.3(5) · 10−10B0 , (6.15)

∆B(T+) =
kBT+

m3He+ω2
z

(
−B2

1

B0

− B2
ν2
z

ν2
+

)
= −1.2(1) · 10−11B0 , (6.16)

see Sec. 2.3. This affects the microwave detuning averaged over the ion trajectory ∆ =

ωMW − ωij(B0 + ∆B), which is taken into account by inserting the measured averaged
cyclotron frequency q/m(B0 +∆B) into the Breit-Rabi equation and therefore does not
require a correction of the extracted g-factors and EHFS.

It remains the systematic shift of the axial frequency∆νz = B2⟨µ+⟩ ∝ B2T+ to be cor-
rected for, which via the invariance theorem leads to ∆νc/νc = νz∆νz/ν

2
c = 1.1(1) ·10−11.

Here, the same T+ during single and double dip spectra can be assumed as the cyclotron
resonator is detuned so that the single-dip averaging time is 90 s ≪ τcyc(ν+).

Electrostatic anharmonicity
The residual anharmonic term of the electrostatic potential C6 = 2(1) · 10−6 mm−6 leads
to a systematic axial frequency shift that corresponds to a relative cyclotron frequency
shift of ∆νc/νc = −1.5(9) · 10−12, according to Eqs. (2.20) and (6.8). Additionally, the
uncertainty of ∆C4 = D4∆TR due to the uncertainty of the optimal tuning ratio is taken
into account, leading in total to ∆νc/νc = −1.5(2.5) · 10−12.

Axial fit
The dependence of the fit result on a shift ∆νres of the input resonator frequency is deter-
mined to ∆νz/∆νres = 9 mHzHz−1 by varying the input parameter of the axial fits. The
resonator frequency in each cycle deviates by less than ∆νres = ±5 Hz from the assumed
value, leading to a conservative estimate of ∆νc/νc = 0(3) · 10−11 as given in Tab. 6.2.

Non-linear axial frequency drifts
After each transport to the PT, the eigenfrequency measurements start after a 10 min
waiting period to suppress possible drifts from heating of the apparatus by the spin-flip
excitation in the AT and allow voltages to settle. Systematic shifts of the measured
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cyclotron frequency due to linear axial frequency drifts are cancelled, as the single dip
spectra immediately before and after the double dip spectrum are averaged. The resid-
ual drift νz1 − νz2 between the two frequencies that are averaged to determine the axial
frequency (νz1 + νz2)/2 during spin-flip excitation is νz1 − νz2 = −13(2) mHz combining
the low amplitude electronic resonances that enter ge and νz1 − νz2 = −11(3) mHz for
the nuclear resonance at lowest amplitude that enters g′I . Taking the total drift as upper
limit for the non-linear contribution implies a negligible additional systematic uncer-
tainty of δνc/νc < 8 · 10−12. For the two nuclear resonances at higher amplitude the drift
is νz1−νz2 = −11(3) mHz (P12 = −33 dbm, P34 = −23 dbm) and νz1−νz2 = −26(4) mHz
(P12 = −20 dbm, P34 = −15 dbm). Assuming accordingly δνc/νc = 1.5 · 10−11 as ad-
ditional systematic uncertainty for the resonance at highest microwave power does not
contribute significantly to the total systematic uncertainty.

Axial amplitude modulation
The coupling of the axial and modified cyclotron modes during the double-dip measure-
ment leads to a modulation of the axial amplitude z(t) = z0 sin(ΩDDt/2) sin(ωzt+ ϕ0)

and thus the magnetic field seen by the ion. The transition frequency ωij is therefore
modulated with the Rabi frequency of the coupling ΩDD = 22 Hz, causing sidebands in
the resonance. For the nuclear transitions this effect is not relevant as the modulation
index is h = ∆ωij/ΩDD ≪ 1. For the electronic transitions the modulation index is
h ≈ 5, however a shift of the resultant ge is not expected as symmetric sidebands would
not affect the center of the Gaussian. This has been checked by measuring the |2⟩ ↔ |4⟩
resonance with and without a double-dip during the spin-flip drive at the same microwave
power, giving results that agree within 1σ. In the measurement without simultaneous
double-dip detection ω

(1)
c , the cyclotron frequency was determined by averaging the mea-

sured frequencies before and after applying the drive (ω(0)
c +ω

(2)
c )/2, as these values were

consistent with ω
(1)
c for the other measurement runs.
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Table 6.2. Corrections to the nuclear g-factor, electron g-factor and zero-field hyperfine
splitting due to systematic effects. The lineshape uncertainty in the last line relates to
the resonances at low amplitude that enter the final result.

−∆g′I/g
′
I (10−10) −∆ge/ge (10

−10) −∆EHFS/EHFS (10−12)

image charge -0.514(3) -0.321(2) -0.128(1)
relativistic -0.33(2) -0.21(1) -0.084(4)

magnetic inhomogeneity 0.17(2) 0.11(1) 0.044(4)
electrostatic anharmonicity -0.03(5) -0.02(3) -0.01(1)

axial fit 0(0.5) 0(0.3) 0(0.1)
resonance lineshape 0(4) 0(1.5) 0(1)

Σ -0.7(4.0) -0.4(1.5) -0.2(1.1)

6.4 Final experimental results
The bound electron g-factor of 3He+

ge = −2.002 177 415 79(34)stat(30)sys (6.17)

is calculated as the weighted average of the measurements at the smallest Rabi frequencies
and correcting the results for the systematic shifts. Here, two resonances of transition
|2⟩ ↔ |4⟩ and one of transition |1⟩ ↔ |3⟩ are taken into account. The nuclear g-factor
and zero-field splitting determined from all measured nuclear resonances |1⟩ ↔ |2⟩ and
|3⟩ ↔ |4⟩ are summarized in Tab. 6.3. At lowest microwave amplitude one finds

g′I = −4.255 099 606 9(30)stat(17)sys , (6.18)

EHFS = −8 665 649 865.77(26)stat(1)sys Hz . (6.19)

6.5 Comparison to theory

6.5.1 Bound electron g-factor

The g-factor of the free electron can be expressed as the Dirac value gDirac = −2 with
QED corrections expanded in powers n of the fine-structure constant α and additional
hadronic and electroweak contributions. Each term cnα

n represents the sum of all n-loop
QED Feynman diagrams, where the first-order term is the Schwinger term α/π. For an
electron bound in a hydrogen-like ion, the leading relativistic binding term is

−gDirac − 2 =
4

3

(√
1− (Zα)2 − 1

)
, (6.20)



62 Comparison to theory

Table 6.3. Experimental results for the zero-field hyperfine splitting EHFS and the
shielded nuclear g-factor at different microwave powers or Rabi frequencies Ω1/2 according
to lineshape P̃1/2. For EHFS the average of all runs is additionally given, as the effect of
the lineshape asymmetry is suppressed for this parameter.

amp (dbm) Ω1 (1/s) Ω2 (1/s) g′I EHFS (Hz)

P12 = −20 3.8(7) 0.76(7)

P34 = −15 1.9(4) 0.53(6) -4.255 099 612 7(34)stat(30)sys -8 665 649 865.94(27)stat(4)sys
P12 = −33 0.9(2) 0.29(5)

P34 = −23 0.5(1) 0.20(4) -4.255 099 610 8(20)stat(21)sys -8 665 649 866.12(18)stat(1)sys
P12 = −40 0.33(8) 0.15(3)

P34 = −30 0.30(8) 0.13(3) -4.255 099 606 9(30)stat(17)sys -8 665 649 865.77(26)stat(1)sys
average -8 665 649 865.94(14)stat(2)sys

which follows from the Dirac equation for the 1s electron in the potential of a point-like
charge Ze [69]. For low-Z ions as in case of He, the QED corrections to the value above
can be calculated as the sum of the free-electron QED contributions and QED binding-
terms, due to diagrams with photon exchange with the nucleus, expanded in powers of
Zα [70–73]. Further terms correct for finite nuclear mass and size, the latter at the level
of 1 ppt in 3He+. The sum of all contributions evaluated for 3He+ in [39] is

gtheo
e = −2.002 177 416 252 23(39) , (6.21)

where the uncertainty is dominated by α from [63] in the Schwinger term, giving ∆α/π =

3.5 · 10−13. The theoretical value above is three orders of magnitude more precise than
the experimental result and both agree within 1σ.

6.5.2 Zero-field splitting and Zemach radius

The zero-field hyperfine splitting EHFS is the difference between the hyperfine levels with
the total angular momenta F = 0 and F = 1, that can be described by [74, 75]

∆EHFS(F ) =αgI
me

mp

F (F + 1)− I(I + 1)− j(j + 1)

2j(j + 1)
mec

2(Zα)3M

× [A(Zα) + δFS + δNP + δQED + δµVP + δhadVP + δew + δrec] . (6.22)

Thus for the ground state with quantum numbers j = 1/2, I = 1/2:

EHFS = ∆EHFS(1)−∆EHFS(0)

= EF [A(Zα) + δFS + δNP + δQED + δµVP + δhadVP + δew + δrec] (6.23)
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with the so-called Fermi energy

EF = αgI
me

mp

4

3
mec

2(Zα)3M . (6.24)

Here, A(Zα) = (2γ + 1)/(γ(4γ2 − 1)) is the relativistic factor with γ =
√

1− (Zα)2, and
M =

(
1 + me

MN

)−3

is the mass prefactor with the nuclear mass MN . The correction terms
in these equations denote finite nuclear size δFS, nuclear polarization δNP, QED δQED,
muonic δµVP and hadronic vacuum polarization δhadVP, electroweak δew and nuclear recoil
δrec contributions.

The finite-size correction δFS and the recoil correction δrec depend on both the electric
and magnetic form factors of the nucleus GE/M . The combined finite size charge and
finite size magnetization distribution

δFS = −2αZ
meMN

me +MN

rZ(1 + δrel1)δrel2 (6.25)

can be expressed as the leading non-relativistic limit given by the Zemach term propor-
tional to the Zemach radius rZ and the relativistic corrections δrel1/2 [76–78]. Here, the
Zemach radius is defined using the electric charge ρE and magnetization ρM distributions
or in momentum space the electric GE(q

2) and magnetic GM(q2) form factors:

rZ =

∫
drdr′ρE(r)ρM(r′)|r − r′| (6.26)

= − 4

π

∞∫
0

dq
q2

(
1

1 + κ
GE(q

2)GM(q2)− 1

)
, (6.27)

with GM(0) = 1 + κ and the anomalous magnetic moment of the nucleus (1 + κ)/MN =

gI/(2Zmp). The Zemach radius as well as the charge and magnetic root-mean-square
(rms) radii are deduced from elastic electron scattering experiments [79] to be

rZ = 2.528(16) fm ,
√
⟨r2⟩E = 1.973(14) fm ,

√
⟨r2⟩M = 1.976(47) fm. (6.28)

The latter two are defined by

⟨r2⟩E =

∫
drρE(r)r2 = −6

d
dq2GE(q

2)

∣∣∣∣
q2=0

(6.29)

⟨r2⟩M =

∫
drρM(r)r2 = − 6

1 + κ

d
dq2GM(q2)

∣∣∣∣
q2=0

. (6.30)

Aside from electron scattering data, the charge radius of 3He can also be determined
from that of 4He [80] combined with the measured isotope shift of the 23S − 23P and
23S−21S transitions. However, currently the results of several such determinations differ
by 4σ [81–84].
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Evaluating all contributions to EHFS with the finite-size and recoil terms based on the
radii in Eq. (6.28) leads to [39]

Etheo
HFS = −8 665 701(19) kHz. (6.31)

Here, the uncertainty is in equal parts due to the Zemach radius in δFS, uncalculated
contributions to δrec of higher orders in the electron-nucleus mass ratio and a conservative
estimate for the uncertainty of the nuclear polarization correction δNP. Contributions to
the uncertainties of δrel1/2 and δrec due to different nuclear model form factors GE/M(q),
which were adjusted to fulfill the rms radii in Eq. (6.28), are small in comparison.

Alternatively, the experimental result Eexp
HFS = −8 665 649 865.77(26)stat(1)sys Hz can

be inserted to determine the relevant GE/M -dependent correction terms via

δFS + δrec =
Eexp

HFS
EF

− A(Zα)− δNP − δQED − δµVP − δhadVP − δew . (6.32)

It follows the Zemach radius [39]

rtheo
Z = 2.608(24) fm (6.33)

and magnetic rms radius
√

⟨r2⟩M = 2.15(4) fm by assuming the charge radius
√

⟨r2⟩E
from Eq. (6.28). As in Etheo

HFS above, the dependence of δrec on different realistic model
form factors is taken into account in the uncertainty.

The Zemach radius calculated from Eexp
HFS and the value from electron scattering data

differ by 2.8σ. The difference between the theoretically calculated Etheo
HFS above and the

experimental value is 6 ppm. In a previous theoretical work, the discrepancy is 46 ppm
[85]. In [86], a difference of 222 ppm between the QED prediction and the previous
experimental value EHFS = −8 665 649 867(10) [62] is taken as an estimate of contributions
to HFS due to nuclear effects.

6.6 Bare nuclear g-factor and shielded nuclear g-factor
in atomic 3He

The modification of the coupling of the nuclear magnetic moment to the external magnetic
field due to the electrons in an ion or atom is parameterized as g′I = (1− σ)gI , with the
diamagnetic shielding σ that contains contributions analogous to the theory of the bound
ge and of EHFS. In case of singly or doubly ionized 3He, only QED and recoil corrections
are relevant at the current precision with negligible nuclear size contributions, so that the
uncertainties of the values given in the following are dominated by uncalculated higher
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order QED terms. Theoretical results for 3He+

σ3He+ = 35.507 38(3) · 10−6 (6.34)

σ3He+ = 35.507 434(9) · 10−6 (6.35)

were evaluated in [39] and [11], respectively. The shielding in atomic 3He σ3He =

59.967 43(10) · 10−6 was calculated in [87] and more recently in [11]

σ3He = 59.967 029(23) · 10−6. (6.36)

Here, the 4σ discrepancy is due to an updated QED theory of order α2(Zα)3 in [11], which
also accounts for the 1.6σ difference between Eqs. (6.34) and (6.35). This difference is
negligible compared to the experimental uncertainty when calculating the g-factor of
3He2+. From the measured g′I = −4.255 099 606 9(30)stat(17)sys and Eq. (6.35) follows the
g-factor of the bare nucleus

gI =
g′I

1− σ3He+

= −4.255 250 699 9(30)stat(17)sys , (6.37)

or gI = −4.255 250 699 7(30)stat(17)sys(1)theo with Eq. (6.34). The shielded magnetic
moment relevant for the 3He NMR frequency ν ′

3He ∝ µ3He therefore is

µ3He = µN/2 · gI(1− σ3He)

= −1.074 553 111 92(93) · 10−26 JT−1 , (6.38)

limited by the uncertainty of g′I . Here, Eq. (6.37), Eq.(6.36) and the nuclear magneton
µN , which has a relative uncertainty of 3.1 · 10−10 [63] are used.

6.6.1 Comparison to NMR measurements

The CODATA [63] value for the shielded magnetic moment

µcodata
3He = −1.074 553 090(13) · 10−26 JT−1 (6.39)

differs from the result above by 21 ppb, or 1.7 σ. It is based on the NMR frequency ratio
of 3He and protons in water [9]

ν ′
3He

ν ′
H2O(25°C)

= 0.761 786 131 3(33) (6.40)

and the shielding of protons in a spherical H2O probe at 25°C σcodata
H2O = 25.689(11) ·

10−6. The latter follows from the ratio of the water NMR frequency at 34.7°C to the
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hydrogen-maser frequency [88] and the separately measured temperature dependence of
the shielding factor d(1− σH2O)/dT = −10.36(30) · 10−9 K−1 [89]. Combining the NMR
frequency ratio above with µ3He determined in this thesis yields a deviating shielding in
H2O at 25°C

σH2O(25°C) = 1−
(

ν ′
3He

ν ′
H2O(25°C)

)−1 |µ3He|
µp

= 25.6686(44) · 10−6 . (6.41)

Furthermore, the 3He NMR frequency was compared to that of protons in molecular
hydrogen in [90]. In this experiment, a measurement of the NMR frequency ratio of 3He
to protons in HD

ν ′
3He/ν

′
HD = 0.761 786 625(2) (6.42)

is combined with the measured difference of the NMR frequencies of protons in HD to
protons in H2 to extract

ν ′
3He/ν

′
H2

= 0.761 786 594(2) . (6.43)

This is in the following compared to the 3He magnetic moment µ3He determined in this
thesis by assuming either the experimental or theoretical shielding parameter in molecular
hydrogen.

The difference of shielding parameters of protons in molecular hydrogen and in water
was measured to be [10]

∆σ(25°C) = σH2 − σH2O(25°C) = 0.6080(15) · 10−6 . (6.44)

This can be combined with Eq. (6.43) to indirectly get the 3He-to-water NMR ratio

R =
ν ′
3He
ν ′

H2

1− σH2

1− σH2O(25°C)
=

ν ′
3He
ν ′

H2

(1−∆σ(25°C)) = 0.761 786 130 8(23), (6.45)

which is consistent with the directly measured value (Eq. (6.40)). It therefore leads to a
magnetic moment that is consistent with µcodata

3He

µ
(1)
3He = −µp(1− σcodata

H2O )R

= −1.074 553 089(12) · 10−26 JT−1 (6.46)

and deviates from the result in this thesis by 20 ppb with an uncertainty limited by the
shielding in water. Assuming instead the theoretical shielding parameter in molecular
hydrogen H2 or HD leads to more precise values for the magnetic moment:

µ
(2)
3He = −µp(1− σtheo

H2
)
ν ′
3He
ν ′

H2

= −1.074 553 099 0(36) · 10−26 JT−1 , (6.47)
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µ
(3)
3He = −µp(1− σtheo

HD )
ν ′
3He
ν ′

HD

= −1.074 553 094 5(31) · 10−26 JT−1. (6.48)

Here, the theoretical shielding parameters of protons in H2 σtheo
H2

= 26.288(2) · 10−6 and
protons in HD σtheo

HD = 26.3329(12) · 10−6 [91] were combined with the frequency ratios
in Eq. (6.43) and Eq. (6.42), respectively. These values are shifted compared to µcodata

3He

and deviate from the result determined in this thesis by 12 ppb in case of µ(2)
3He and 17

ppb in case of µ(3)
3He. Here, the relative uncertainties of 3.4 ppb and 2.9 ppb are due

to the frequency uncertainties in [90], while according to [63, 92] these uncertainties are
underestimated by a factor of three because of the deviation of the assumed lineshape
from the data.
The 21 ppb difference between the magnetic moment µ3He determined in this thesis and
the CODATA value would correspond to a shift of the nuclear resonance frequencies by
three times the resonance width or alternatively a relative shift of the measured B-field
by ∆B/B = 1.4 · 10−8. A systematic shift in the magnetic field measurements of this
order of magnitude can be excluded as ∆B/B = 1.4 · 10−8 would result in a 29σ shift of
gexp
e , which, however, agrees with gtheo

e .





Chapter 7

Conclusion and Outlook

The three directly determined parameters are summarized and compared to theory or
previous experiments in Tab. 7.1. The ground-state zero-field hyperfine splitting Eexp

HFS

is in agreement with the previous most precise measurement −8 665 649 867(10) Hz [25],
while improving the precision by two orders of magnitude. Through comparison to theory
it yields the Zemach radius

rZ = 2.608(24) fm . (7.1)

With the calculated shielding parameters [11] follows the g-factor of 3He2+

gI = −4.255 250 699 9(30)stat(17)sys (7.2)

with negligible theoretical uncertainty, as well as the magnetic moment that calibrates
3He NMR probes

µ3He = −1.074 553 111 92(93) · 10−26 JT−1 . (7.3)

This result is one order of magnitude more precise than the most precise determination
based on water NMR probes [9].

Table 7.1. Experimental results of the bound electron g-factor ge and the zero-field
hyperfine splitting EHFS compared to the theoretical values from [39] and the only pre-
viously measured value of the hyperfine splitting [25]. Furthermore, the experimental
result for the shielded nuclear g-factor is given and for comparison the CODATA2018
value of the bare gI-factor corrected by the calculated shielding parameter of 3He+ [11].

ge EHFS (Hz) g′I

this work -2.002 177 415 79(34)stat(30)sys -8 665 649 865.77(26)stat(1)sys -4.255 099 606 9(30)stat(17)sys
theo -2.002 177 416 252 23(39) -8 665 701(19)
exp -8 665 649 867(10) [25] -4.255 099 522(50) [63]

69
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The results for the bound electron g-factor as well as the shielded or bare nuclear
g-factor are limited by the uncertainty of the resonance lineshape and could thus be
improved by reducing the magnetic inhomogeneity in the PT. With optimized positioning
of the trap in the superconducting magnet and no ferromagnetic components other than
the AT ring electrode this parameter should be reduced to 0.1 Tm−2 instead of 1.1 Tm−2.
Secondly, a more precise magnetic field measurement could be achieved by introducing
phase-sensitive detection methods [93]. Attempts at this failed in the setup described in
this thesis, likely because of the residual C6 present in the five-polar PT due to the limited
manufacturing precision. This can be fixed in the seven-polar PT implemented in the
new setup that is currently in operation, as the additional pair of correction electrodes
allows tuning C6 independently of C4. Thus the statistical and systematic uncertainties of
gem3He+/me, g′Im3He+/mp and EHFS can be decreased by around one order of magnitude,
where m3He+/mp is known to 0.062 ppb. The current relative uncertainty of the measured
ge is 0.23 ppb, so that with such an improvement the mass ratio m3He+/me (0.043 ppb)
would follow with improved precision from the electronic resonances via gtheo

e m3He+/me

in the Breit-Rabi equation. This would not, however, allow an improved determination
of m3He+ in atomic mass units at the current precision of me (29 ppt). Furthermore, He+

is the only hydrogen-like ion where uncertainties arising from nuclear structure are small
enough to in principle enable an extraction of α from ge with competitive precision [27].
This would require an independent and more precise value for m3He+/me as well as a
further significant improvement of the experimental precision to the level of ∆ge/ge < 0.1

ppt.
Currently, the measurement of the magnetic moment of the bare 3He nucleus is real-

ized in an altered setup designed to allow for direct detection of nuclear spin-flips with
the continuous Stern-Gerlach effect. Besides increasing the axial frequency jump induced
by nuclear spin-flips with a different analysis trap [22], sympathetic laser cooling with
9Be+ ions in a separate trap next to the PT will be implemented for the necessary axial
frequency stability [21]. The latter also requires an improved liquid helium level and
pressure stabilization [56] and is further optimized by a Josephson junction as voltage
reference for the AT ring electrode. The experiment is aimed at determining the Larmor-
to-cyclotron frequency ratio with a relative precision of 1 ppb or better. This ratio can
be expressed as

ωL

ωc

= µ3He

(
qℏ

2m3He

)−1

, (7.4)

directly applicable in the muon g-2 experiment as described in chapter 1, or as
ωL

ωc

= gI
m3He

4mp

(7.5)
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to extract the g-factor with the helion-proton-mass ratio known at 44 ppt [63]. Combined
with the result presented in this thesis, the result gI constitutes a test of the theoretical
value of the shielding factor 1-σ3He+ = g′I/gI at ppb level. Furthermore, the methods de-
veloped for this purpose will allow for direct bare nuclear magnetic moment measurements
of other nuclei heavier than protons.
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Figure A.1. Electronic transition resonance resonance curves with fitted lines assuming
a Gaussian (Red line) or lineshape models P̃1 (Green line), P̃2 (Blue dashed line), compare
Eq. (3.23). The shaded area indicates the 1σ interval of the Gaussian line parameters.
(A) and (B): transition |1⟩ ↔ |3⟩. (C)-(F): transition |2⟩ ↔ |4⟩ at increasing Rabi
frequencies.
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Figure A.2. Resonance curves of transition |2⟩ ↔ |4⟩ at increasing Rabi frequencies
with fitted lines assuming a Gaussian (Red line) or lineshape models P̃1 (Green line), P̃2

(Blue dashed line), compare Eq. (3.23). The shaded area indicates the 1σ interval of the
Gaussian line parameters.
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Figure A.3. Resonance curves the of nuclear transitions |1⟩ ↔ |2⟩ (A, C, E) and
|3⟩ ↔ |4⟩ (B, D, F) at increasing Rabi frequencies with fitted lines assuming a Gaussian
(Red line) or lineshape models P̃1 (Green line), P̃2 (Blue dashed line), compare Eq. (3.23).
The shaded area indicates the 1σ interval of the Gaussian line parameters.


