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S1 Numerical Solution of Pauli-Fierz Hamiltonian and Ensem-

ble Averaging

The exact solution of our quantized 3-body matter system coupled to a cavity mode relies on the

choice of a highly optimized, i.e. problem specific, coordinate representation,S1,S2 in combination

with Gauss-Laguerre numerical quadrature (see Supporting Information of Ref. S3 for numerical

details and S4 of this work for specific computational parameter choices).

When evaluating ensemble averages numerically, we assume V → ∞, which implies a con-

tinuum of quantum numbers kz, which allows an efficient numerical evaluation, i.e. we replace

∑kz 7→
∫

∞

∞
dkz. Hence, we can apply the Gauss-Hermite quadrature procedure to approximate the

infinite integral along kz numerically, i.e. by using the following relation,S4

∫
∞

−∞

1
σ
√

2π
e−

(y−µ)2

2σ2 h(y)dy≈ 1√
π

s

∑
i=1

wih(
√

2σxi + µ), (S1)

where xi are the roots of the Hermite polynomial Hs(x) and the weights wi =
2s−1s!

√
π

s2[Hs−1(xi)]2
.

In our case, we map the ensemble averages of observable Â as,

〈Â〉T =
∫

∞

∞

dkz

(
∑
n

e−βEkz,n

Zmin

〈
Φ′kz,n

∣∣∣ Â′ ∣∣∣Φ′kz,n

〉)

=
∫

∞

∞

dkze
− β

2M

(
kz−

λα Qtot〈p̂α 〉0
ωα

)2(
∑
n

e−βEred
kz,n

Zmin

〈
Φ′kz,n

∣∣∣ Â′ ∣∣∣Φ′kz,n

〉)
=

∫
∞

∞

dkze
− β

2M

(
kz−

λα Qtot〈p̂α 〉0
ωα

)2

h(kz)

≈

√
2M
β

s

∑
i=1

wih
(√

2M
β

xi +
λαQtot〈p̂α〉gs

ωα

)
(S2)
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and accordingly,

Zmin =
∫

∞

∞

dkze
− β

2M

(
kz−

λα Qtot〈p̂α 〉0
ωα

)2(
∑
n

e−βEred
kz,n

)
(S3)

=
∫

∞

∞

dkze
− β

2M

(
kz−

λα Qtot〈p̂α 〉0
ωα

)2

g(kz) (S4)

≈

√
2M
β

s

∑
i=1

wig
(√

2M
β

xi +
λαQtot〈p̂α〉gs

ωα

)
. (S5)

This assumes that the transformed Â′ does not depend on kz, ky, R̂c and P̂c, which is indeed the case

for all our observables. The COM reduced Energy eigenvalue is defined as Ered
kz,n := Ekz,n−

(
kz−

λα Qtot〈p̂α 〉
ωα

)2. Hence, for the determination of µ = λα Qtot〈p̂α 〉0
ωα

it is assumed that the ground-state

contribution 〈p̂α〉0 to the ensemble average dominates. However, from the symmetry argument in

Eq. (19) we immediately notice µ = 0, since 〈p̂α〉= 0 for all states in absence of external driving

currents, which makes accurate integration possible for few discrete kz-evaluations only.

S2 Numerics for Logarithmic Negativity

The canonical density matrix given in Eq. (9) can be written for our system in terms of COM,

relative and photon basis explicitly as,

ρ̂ = ∑
k,n

e−βEk,n

Z ∑
i,s

∑
j,t

c∗i,s(kz,n)c j,t(kz,n)
∣∣∣e−ikRc

〉
|rci〉i |qα〉s

〈
eikRc

∣∣∣〈rci| j 〈qα |t , (S6)

which accounts for the blockdiagonal nature in terms of COM coordinates. For our subsytem

choices W ∈
{

rci, q̂α

}
the partial transpose follows from Eq. (S6) by either c∗i,sc j,t 7→ c∗j,sci,t or

c∗i,sc j,t 7→ c∗i,tc j,s, leading e.g. to the partial transpose of the photon subsystem,

ρ̂
′Γqα

α = ∑
k,n

e−βEk,n

Z ∑
i,s

∑
j,t

c∗i,t(kz,n)c j,s(kz,n)
∣∣∣e−ikRc

〉
|rci〉i |qα〉s

〈
eikRc

∣∣∣〈rci| j 〈qα |t , (S7)
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which can be diagonalised yielding the corresponding eigenvalues wΓqα

k′,l (T ) =
e−β

k′2x +k′2y +k′2z
2M

Z wΓqα

k′z,l

and eigenfunctions
∣∣∣e−ik′Rc

〉
∑i,s dΓqα

i,s (k′z, l) |rci〉i |qα〉s. For a fixed kz-value, this diagonalization

can efficiently be computed numerically for our HD+ molecule and the choice of our subsystems.

The logarithmic negativity entanglement measure then follows immediatly from:

ηW (ρ̂) = log2

(
∑
k,l
|wΓW

k′,l|−wΓW
k′,l + 1

)
(S8)

= log2

(∫
dk3

∑
l
|wΓW

k′,l|−wΓW
k′,l + 1

)
, (S9)

where in the last step the summation over k were approximated by an integral, as it was previously

the case for the ensemble averages.

S3 Jaynes-Cummings Light-Matter Entanglement in Canoni-

cal Equilibrium

The three energetically lowest eigenfunctions of the JC-model are

∣∣Ψg
〉

= |g〉⊗ |0〉 (S10)

|Ψl〉 =
1√
2
(|e〉⊗ |0〉− |g〉⊗ |1〉) (S11)

|Ψu〉 =
1√
2
(|e〉⊗ |0〉+ |g〉⊗ |1〉) (S12)

which are composed from the bare matter {|g〉 , |e〉} and photon {|0〉 , |1〉} eigenstates, assuming the

rotating wave approximation. Furthermore, we have assumed for simplicity that the cavity is tuned

exactly on resonance with the first bare matter excitation energy ωα = Ee−Eg. Expressing the

corresponding canonical equilibrium density in the light-matter basis {|g〉⊗ |0〉 , |g〉⊗ |1〉 , |e〉⊗
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|0〉 , |e〉⊗ |1〉} leads to the following matrix representation,

ρ
JC =



e−
Eg

kBT 0 0 0

0 e
− El

kBT

2 + e
− Eu

kBT

2 −e
− El

kBT

2 + e
− Eu

kBT

2 0

0 −e
− El

kBT

2 + e
− Eu

kBT

2
e
− El

kBT

2 + e
− Eu

kBT

2 0

0 0 0 0


(S13)

with partial transpose

ρ
Γm,JC = 

e−
Eg

kBT 0 0 −e
− El

kBT

2 + e
− Eu

kBT

2

0 e
− El

kBT

2 + e
− Eu

kBT

2 0 0

0 0 e
− El

kBT

2 + e
− Eu

kBT

2 0

−e
− El

kBT

2 + e
− Eu

kBT

2 0 0 0


. (S14)

The four eigenvalues of the matrix ρΓm,JC can be determined and we find three strictly positive

eigenvalues and only one negative,

λ
− =

1
2

(
e−

Eg
kBT −

√
e−

2Eg
kBT +

(
e−

El
kBT − e−

Eu
kBT
)2
)

, (S15)

which then solely enters the logarithmic negativity measure.

S4 Simulation Parameters

For the numerical solution, parameters for HD+ in a cavity were taken from Ref. S3 (e.g. particle

mass or radial grid scaling) if not explicitly mentioned otherwise. The number of radial grid points,

was slightly reduced from Nmatter = 12 to Nmatter = 10, since we required additional resources to

explicitly account for the ensemble averaging in kz (i.e. thermal effects acting on the charged
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COM motion). The COM integrals were usually approximated by either s = 5 (fluctuations) or

s = 9 (subsystem temperatures and entanglement) grid points, which effectively required either 3

or 5 evaluations of the computationally expensive h(kz) expression only. This simplification arises

to the ensemble symmetry of kz with respect to the origin kz = 0, (i.e. µ = 0). The number of Fock

states to represent the quantized field was chosen to be Npt = 4 for the fluctuation analysis, Npt = 3

for the subsystem temperature and Npt = 2 for the entanglement measurements. For our chosen

coupling strengths a choice Npt > 2 only becomes relevant if one is interested in small deviations

of the field fluctuations. Numerical convergence was ensured for all our results.
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Figure S1: Light-matter entanglement measured by logarithmic negativity η with respect to the
temperature T for a coupling constant λ = 0.005 at different cavity frequencies ωc (given in
atomic units). On the top, the cavity frequency is tuned close to the first ro-vibrational excitation,
whereas in the bottom plot the IR to visible regime is covered. In both cases, light-matter
entanglement is lost quickly in the deep cryogenic regime. However, while the numerical results
for the upper case are certainly converged, deviations may occur in the lower figure due to the
highly optimized grid-representation, which was designed to reproduce groundstate and
ro-vibrational matter properties with high accuracy, but not simultaneously (!) the higher
electronic and vibrational excitations. These states cannot be populated anyways in the chosen
temperature regime, but still the accuracy of the matter basis contributions, which are mixed into
the hybrid groundstate, may still be reduced in principle. Nevertheless, the loss of light-matter
entanglement at low cryogenic temperatures seems to be a generic property for thermal ensembles
under strong coupling conditions, roughly independently of the chosen cavity frequency. This is
in line with typical experimental evidence, which does not allow for quantum computing devices
at sizable temperatures.
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