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The first experimental campaigns have proven that, due to the optimization of the
magnetic configuration with respect to neoclassical transport, the contribution of tur-
bulence is essential to understand and predict the total particle and energy transport
in Wendelstein 7-X (W7-X). This has spurred much work on gyrokinetic modelling for
the interpretation of the available experimental results and for the preparation of the
next campaigns. At the same time, new stellarator gyrokinetic codes have just been or
are being developed. It is therefore desirable to have a sufficiently complete, documented
and verified set of gyrokinetic simulations in W7-X geometry against which new codes
or upgrades of existing codes can be tested and benchmarked. This paper attemps to
provide such a set of simulations in the form of a comprehensive benchmark between
the recently developed code stella and the well-established code GENE. The benchmark
consists of electrostatic gyrokinetic simulations in W7-X magnetic geometry and includes
different flux tubes, linear ion-temperature-gradient (ITG) and trapped-electron-mode
(TEM) stability analyses, computation of linear zonal flow responses and calculation of
ITG-driven heat fluxes.

1. Introduction
One of the main issues in magnetic confinement fusion plasmas is the theoretical

understanding of turbulence and turbulent transport, attributable to the action of
instabilities driven by density and temperature gradients. Since decades, turbulence is
known to be the main source of transport in low collisionality tokamak plasmas. In
stellarators, neoclassical transport at low collisionality is usually large, at least in the
plasma core, and turbulence has sometimes been assumed to play a less important role.
The first experimental campaigns of Wendelstein 7-X (W7-X) (Wolf et al. (2017); Klinger
et al. (2019)) have made it evident that, in general, the total particle and energy transport
is higher than predicted by neoclassical theory (Bozhenkov et al. 2020), turning turbulent
transport into an essential mechanism to understand and predict these results. This
disagreement between the experimental measurements and the predictions of neoclassical
theory has motivated much work on gyrokinetic modelling, including upgrades of existing
codes and development of new ones with the aim of understanding the first available
experimental results of W7-X and preparing the next experimental campaigns.
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While existing tokamak gyrokinetic codes (Parker et al. (1993), Kotschenreuther et al.
(1995), Lin (1998), Dorland et al. (2000), Jenko (2000), Candy & Waltz (2003), Jolliet
et al. (2007), Peeters et al. (2009)) have been extensively exploited and tested, less work
has been carried out in the validation and verification of stellarator gyrokinetic codes
(Kornilov et al. (2004), Watanabe & Sugama (2005), Xanthopoulos & Jenko (2007),
Baumgaertel et al. (2011), Cole et al. (2019), Barnes et al. (2019), Maurer et al. (2020),
Wang et al. (2020)). In the context of verification between stellarator gyrokinetic codes,
comparisons have also been reported. In Helander et al. (2015) the growth rate of linear
ion-temperature-gradient-driven modes in W7-X computed with the global particle-in-
cell code EUTERPE and with the full flux surface version of GENE are compared. These
simulations have later been reproduced with the global particle-in-cell code XGC-S in
Cole et al. (2019) and with the global version of GENE, GENE-3D, in Maurer et al.
(2020). Although valuable, as they account for global effects, these efforts are limited
to linear cases and a single type of instability. In this paper we provide a set of linear and
nonlinear gyrokinetic simulations in W7-X geometry against which present and future
stellarator gyrokinetic codes can be tested and benchmarked (following the example of the
tokamak community with the Cyclone Base Case (Dimits et al. 2000)). It is presented
in the form of a comprehensive benchmark between the recently developed flux-tube
gyrokinetic code stella and the well-established code GENE in W7-X geometry. The most
important difference between these two codes is the treatment of the parallel streaming
and acceleration terms of the gyrokinetic Vlasov equation. The mixed implicit-explicit
numerical scheme used by stella makes it possible to handle these terms implicitly,
allowing a larger time step size in simulations with kinetic electrons. This turns stella
into an efficient code for multispecies turbulence simulations in stellarators.

The rest of the paper is organized as follows. In section 2, the flux tube equations
solved by stella and GENE are presented, as well as some relevant differences between
their implementation in these two codes. In section 3, the W7-X magnetic configuration
selected for our study is described together with the two flux tubes in which the simu-
lations will be performed, the so-called bean and triangular flux tubes. The simulations
of this paper are divided into five tests and the parameters used to carry out each one
of them are also collected in this section. In section 4, the linear part of the study is
performed, encompassing the first four tests. In tests 1 to 3, the values of growth rate
and real frequency computed with GENE and stella are compared. Tests 1 and 2 assume
adiabatic electrons, studying ITGs in the bean and triangular flux tubes, and test 3
includes kinetic electrons, studying density-gradient-driven TEMs in the bean flux tube.
In these tests, the structure of the electrostatic potential is also given, discussing the
features of each instability. The remarkable difference between the time step size required
by stella and GENE in linear simulations with kinetic electrons is also emphasized. In test
4, the linear zonal flow response is computed with both codes, comparing four different
time traces of the electrostatic potential relaxation. In section 5, nonlinear simulations
results are given. They include the study of the ITG-driven heat flux and the contribution
of each mode to this quantity, computed with stella in the bean and triangular flux
tubes. The results obtained in the bean flux tube are compared with GENE calculations
in test 5. Finally, section 6 contains the summary and the conclusions.

2. Equations solved by stella and GENE
The codes stella and GENE are based on the δf gyrokinetic theory, first proposed

in Catto (1978). In the present paper, we use versions of these codes that solve the
flux-tube gyrokinetic equations for stellarator electrostatic turbulence. The flux-tube
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approach explicitly exploits the scale separation between the typical variation lengths
of the background magnetic field and plasma profiles, and the typical spatial scales of
the turbulent fluctuations in the plane perpendicular to the magnetic field. Next, we
introduce the coordinates used along the paper and write the electrostatic flux-tube
equations.

We consider stellarator configurations with nested magnetic surfaces and define spatial
coordinates {r, α, z}, where r ∈ [0, a] is a radial coordinate that labels magnetic surfaces,
α ∈ [0, 2π) is an angular coordinate labeling field lines on each magnetic surface and
z ∈ [zmin, zmax] is a coordinate along field lines. Here, a is the stellarator minor radius.
The value r = a corresponds to the last closed flux surface†. Specifically, we choose

r := a

√
ψt

ψt,a
, (2.1)

where 2πψt(r) is the toroidal flux enclosed by the surface labeled by r and ψt,a := ψt(a).
As for α, we take

α = θ − ιζ, (2.2)
where θ and ζ are, respectively, the poloidal and toroidal PEST flux coordinates (Grimm
et al. 1983) and ι(r) is the rotational transform. In these coordinates, the magnetic field
can be expressed as

B = ψ′
t∇r ×∇α. (2.3)

Throughout the paper, a prime (′) means differentiation with respect to r. Note that
with our choice for r, we have

ψ′
t(r) =

2ψt,ar

a2
. (2.4)

It is also useful to define the quantity Ba, which will be used in this paper as a reference
magnetic field and it is given by

ψt,a = sgn(ψt,a)
a2Ba

2
, (2.5)

where sgn(·) is the sign function, so that Ba is always positive.
Let r0 and α0 be the values of r and α that select a flux tube (and the center of the
simulation domain). In the plane perpendicular to B, stella and GENE use coordinates
x and y defined as

x := r − r0 (2.6)
and

y := r0(α− α0), (2.7)
whereas, along B, stella takes z = ζ and GENE employs z = θ. In velocity space, stella
and GENE use v|| and µ as independent coordinates, where v|| is the component of the
velocity parallel to the magnetic field line and µ = mjv

2
⊥/2B is the magnetic moment,

with v⊥ the component of the velocity perpendicular to the magnetic field, |B| = B the
magnetic field strength and mj the mass, where the subscript j indicates the species.
Here, j can take the values ‘i’, if it refers to ions, and ‘e’, if it refers to electrons. In
coordinates {x, y, z, v||, µ}, the fluctuating distribution function of the species j can be

† Given the volume of the last closed flux surface, Va, the minor radius can be defined as
a =

√
Va/2π2R0, where 2πR0 is the length of the magnetic axis and R0 is called the stellarator

major radius. This definition of a coincides with the effective minor radius computed by VMEC
(Hirshman 1983).
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Fourier expanded as

gj(x, y, z, v∥, µ, t) =
∑

kx,ky

ĝk⊥,j(z, v∥, µ, t)e
i(kxx+kyy) (2.8)

and, equivalently, the fluctuating electrostatic potential can be expressed as

φ(x, y, z, t) =
∑

kx,ky

φ̂k⊥(z, t)e
i(kxx+kyy), (2.9)

where t is the time. The flux-tube gyrokinetic equation for the mode k⊥ of the fluctuating
distribution function, ĝk⊥,j , reads

∂tĝk⊥,j + v∥b̂ · ∇z
(
∂z ĝk⊥,j +

Zje

Tj
∂z [ ˆφk⊥J0(k⊥v⊥/Ωj)]F0,j

)
− µ

mj
b̂ · ∇B∂v∥ ĝk⊥,j

− i
sgn(ψt,a)ky

Ba

[
n′j
nj

+
T ′
j

Tj

(
mj(v

2
∥/2 +Bµ/mj)

Tj
− 3

2

)]
φ̂k⊥J0(k⊥v⊥/Ωj)F0,j (2.10)

+
i

Ωj

(
v2∥b̂× κ+

µ

mj
b̂×∇B

)
· k⊥

(
ĝk⊥,j +

Zje

Tj
φ̂k⊥J0(k⊥v⊥/Ωj)F0,j

)
−Nk⊥,j = 0,

where Ba is given by (2.5), nj(r) and Tj(r) are the density and temperature, assumed
to be flux functions, Ωj = ZjeB/mj is the gyrofrequency, Zj is the charge number, e is
the proton charge, k⊥ = kx∇x+ ky∇y is the perpendicular wavevector,

F0,j = nj(mj/2πTj)
3/2 exp

[
−mj(v

2
||/2 + µB/mj)/Tj

]

is a Maxwellian and J0 is the zeroth order Bessel function of the first kind. Finally,
κ = b̂ · ∇b̂ is the curvature vector, with b̂ = B−1B and Nk⊥,j is the mode k⊥ of the
nonlinear term, which can be written as

Nk⊥,j =
sgn(ψt,a)

Ba

∑

kx1
,ky1

kx2 ,ky2

(kx1
ky2

− kx2
ky1

)J0 (k⊥1
v⊥/Ωj) φ̂k⊥1

ĝk⊥2
,j ,

where k⊥1
= kx1

∇x+ ky1
∇y and k⊥2

= kx2
∇x+ ky2

∇y are such that k⊥1
+ k⊥2

= k⊥.
The quasineutrality equation reads

∑

j

ZjB

mj

∫ ∞

−∞
dv∥

∫ ∞

0

dµJ0(k⊥v⊥/Ωj)ĝk⊥,j

+
∑

j

Z2
j enj

2πTj

(
Γ0

(
k2⊥v

2
th,j

2Ω2
j

)
− 1

)
φ̂k⊥ = 0, (2.11)

where vth,j =
√
2Tj/mj is the thermal speed and Γ0(b) = exp(−b)I0(b) with I0 the

zeroth order modified Bessel function of the first kind. In (2.10) and (2.11), geometric
quantities, as well as the plasma profiles and their derivatives, are evaluated at r0 and
α0. Both stella and GENE read the geometric quantities required to solve the gyrokinetic
equations from a VMEC output.

Despite solving the same equations (2.10) and (2.11), there are some differences
between stella and GENE when implementing them. We will only mention the most
relevant ones and refer the reader to Barnes et al. (2019) and Merz (2009) for further
details. The main difference is the treatment of the parallel streaming and acceleration
terms in equation (2.10). For electrons, these terms of the gyrokinetic Vlasov equation
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a [m] R0 [m] r0/a Ba [T] ι(r0) − r0
ι(r0)

dι
dr
(r0)

0.494 5.485 0.8 2.604 0.910 -0.107

Table 1: Basic quantities of the magnetic configuration and the flux surface selected for
the simulations. From left to right: minor radius, major radius, selected flux surface,
reference magnetic field given by (2.5), rotational transform and global magnetic shear.

scale up to a factor
√
mi/me with respect to the other terms. This imposes severe

restrictions on the time step size in explicit methods when performing simulations
with kinetic electrons. GENE treats these terms explicitly, while stella computes them
implicitly, allowing to handle kinetic electrons using a time step size only slightly smaller
than the one employed in simulations with adiabatic electrons, greatly reducing the
computational cost. This will be clearly shown in section 4, where simulations with kinetic
electrons are presented. Finally, different boundary conditions have been used by each
code in linear simulations. Whereas stella employs a zero incoming boundary condition
on the fluctuating distribution function, ĝk⊥,j(zmin, v∥ > 0) = ĝk⊥,j(zmax, v∥ < 0) = 0,
GENE uses twist and shift boundary conditions (Beer et al. 1995).

3. Configuration and parameters
The flexible set of planar and non-planar coils of W7-X allows a large variety of

magnetic configurations. Depending on the values that some quantities take (by ap-
propriately choosing the currents in the coil system), different names are used for each
configuration. For instance, the value of ι allows to distinguish between high- and low-
iota configurations, in which ι at the boundary is 5/4 and 5/6, respectively, and the
magnetic configuration naturally develops the corresponding island structures. Similarly,
depending on the toroidal mirror ratio† we have high- and low-mirror configurations.
The standard configuration (in which all planar coil currents are set to zero and the non-
planar coil currents are set to the same value) and the high-mirror configuration feature
particularly reduced levels of neoclassical transport and bootstrap current, respectively.
These facts, in part, explain why they are the configurations most commonly employed
for experiments and simulations (for a detailed description of the physical and technical
features of W7-X configurations see Geiger et al. (2015)). In this work, we will use a
high-mirror configuration. For future electromagnetic extensions of this benchmark and
because W7-X aims at operating at high ⟨β⟩ (Klinger et al. 2019), we have considered a
high-mirror equilibrium with ⟨β⟩ ≈ 3%. Specifically, the equilibrium is based on a fixed-
boundary VMEC-calculation. This means that it does not use the coils definition file
mgrid but employs a simplified high-mirror vacuum configuration boundary. Some basic
quantities of this magnetic configuration and the flux surface selected for our simulations
are listed in table 1. In Appendix A, the input parameters necessary to produce this
fixed-boundary equilibrium with VMEC are provided.

In stellarators, different magnetic field lines on a flux surface are not equivalent. In
general, gyrokinetic simulations run on different flux tubes lead to different results. For
this reason, this work includes simulations in two different flux tubes, the one that extends

† The toroidal mirror ratio is defined as b01 ≡ B01/B00 in a Fourier representation Bmn of the
magnetic field strength, where m and n are, respectively, poloidal and toroidal mode numbers.
In different configurations of W7-X this ratio can range, approximately, from 0 to 0.1.
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Figure 1: Schematic view of the magnetic field lines α0 = 0 (solid black line) and α0 =
−ιπ/5 (solid green line) extended along the five field periods of W7-X. The magnetic
field strength is represented in the background.
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Figure 2: 3D view of the surface r0/a = 0.8 (a), together with the field line α0 = 0
(solid black line), the field line α0 = −ιπ/5 (solid green line) and the last closed flux
surface r0 = a as a semi-transparent halo. Details of two toroidal cuts of the flux surface
r0/a = 0.8 are also given, showing a bean-shaped section (b) and a triangular section
(c).
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Figure 3: Normalized geometric quantities in the range ζ− ζ0 = [−2π, 2π] for the surface
r0/a = 0.8 along the field lines α0 = 0 (solid black line) and α0 = −ιπ/5 (dashed
green line). The magnetic field strength is represented in (a); the projections of b̂×∇B
and B× κκκ along the binormal direction are represented in (b) and (c), respectively; the
projections of b̂ × ∇B and B × κκκ along the radial direction are represented in (d) and
(e), respectively.

along the widely simulated field line α0 = 0 and the less common choice α0 = −ιπ/5.
The field line α0 = 0 is centered with respect to the so-called equatorial plane, θ = 0,
and the bean-shaped toroidal plane ζ = 0, hence the name bean flux tube. The field line
α0 = −ιπ/5 is centered with respect to the equatorial plane and the triangular toroidal
plane ζ = π/5, hence the name triangular flux tube. A schematic view of these field lines
for the flux surface r0/a = 0.8 is given in figure 1, where they are represented on a (θ, ζ)
plane with the magnetic field strength referred to the color scale. A 3D view of the surface
r0/a = 0.8 is shown in figure 2 (a) together with a sketch of our choice of flux coordinates
and the field lines α0 = 0 and α0 = −ιπ/5. Figures 2 (b) and 2 (c) show some details of
figure 2 (a). The geometric quantities required to solve equations (2.10) and (2.11) for
the mentioned flux tubes are represented against the ζ coordinate, centered with respect
to ζ0 = ζ(θ = 0), in figures 3 (a)-(e). In figure 3 (a) it is observed that the magnetic
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Flux tube
[
Nm

θ , NM
θ

]
a/LTi a/Lni Nv∥ Nµ Nk⊥,j ∆tvth,i/a Compared

Test 1. bean [1 , 6] 3 1 36 24 Off stella 0.15 γ(kx), ω(kx)
GENE 0.14 γ(ky), ω(ky)

Test 2. triangular [4 , 6] 3 1 36 24 Off stella 0.15
γ(kx), ω(kx)GENE 0.14

Test 3. bean [2 , 8] 0 3 36 24 Off stella 0.04 γ(ky), ω(ky)
GENE 0.004 |φ̂k⊥ |(z)

Test 4. bean [4 , 4] 0 0 256 32 Off stella 0.15 ⟨Re(φ̂k⊥)⟩z(t)GENE 0.1

Test 5. bean†† [1 , 1] 3 1 60 24 On stella 0.09 Qi(t)

GENE 0.09
∑

ky
Qi(kx, ky)∑

kx
Qi(kx, ky)

Table 2: Set of parameters used in each test. From left to right: flux tube, minimum and
maximum number of Nθ, normalized ion temperature and density gradients, number of
divisions in the grid of v|| and µ, presence of nonlinear term, time step size and quantities
compared with both codes.

field strength is symmetric with respect to ζ = ζ0. This symmetry is also seen in the
quantities

(
b̂×∇B

)
·∇α and (B× κκκ) ·∇α, which are represented in figures 3 (b) and 3

(c), respectively. In figures 3 (d) and 3 (e) we see that (B× κκκ)·∇r =
(
b̂×∇B

)
·∇r, as is

the case for any ideal MHD equilibria. In what follows, we will refer to the direction of ∇α
as binormal direction and to the direction of ∇r as radial direction. The description of the
flux tubes is complete with the specification of their length, which has been defined as the
number of turns in the poloidal direction,Nθ. This length is chosen to correctly resolve the
electrostatic potential φ̂k⊥ along the flux tube. Since the localization of the electrostatic
potential varies with the wavenumber, different values of Nθ have been considered in
each test. The maximum and minimum values of Nθ, NM

θ and Nm
θ , respectively, needed

in each test are indicated in table 2, together with other parameters that define the
simulations. These include the normalized ion temperature and density gradients†

a/LTi := −a (lnTi)′ (3.1)

and

a/Lni
:= −a (lnni)′, (3.2)

the number of divisions in the velocity grid (Nv|| , Nµ), the presence of nonlinear term
(Nk⊥,j), the time step size used for the calculation of the most unstable mode in each
simulation and the different quantities compared in each test, where γ refers to the growth
rate, ω refers to the real frequency, ⟨·⟩z means a line average and Qi is the ion heat flux.
It is important to remark that we have always considered 128×Nθ divisions in the grid of
z. In addition, Zi = 1 and Ti/Te = 1 have been assumed. In what follows, the results of

† The normalized electron temperature and density gradients are set to zero,
a/LTe = a/Lne = 0, for every test with adiabatic electrons, which excludes test 3. The values
given to these quantities in test 3 will be specified in section 4.

†† Nonlinear results obtained with stella in the triangular flux tube are also included in
section 5.
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Figure 4: ITG stability map corresponding to test 1. It shows the growth rate computed
with the code stella in the bean flux tube as a function of kx and ky.

the tests are expressed in the coordinates {x, y, z} used by stella, i.e., the ones defined
in expressions (2.6) and (2.7) with z = ζ.

4. Linear simulations
To perform a linear flux-tube gyrokinetic simulation, both codes solve the system

of equations consisting of (2.10) and (2.11) dropping the nonlinear term of (2.10) and
assuming ĝk⊥ and φ̂k⊥ to be proportional to exp [(γ − iω)t], where γ and ω are the
growth rate and real frequency of each mode. In this section, four different linear tests are
presented. In tests 1 and 2, ion-temperature-gradient-driven modes (ITGs) are simulated.
In test 3, density-gradient-driven trapped-electron-modes (TEMs) are computed. Finally,
the simulations of test 4 include the collisionless relaxation of a zonal electrostatic
potential.

The linear properties of ITGs and TEMs in stellarators have been reported in a large
number of studies by means of linear gyrokinetic simulations. Kornilov et al. (2004)
studied the ITG structure and its stability in W7-X with the global particle-in-cell code
EUTERPE. This code has also been used to model the effects of radial electric fields on ITG
modes for the geometries of W7-X and the Large Helical Device (LHD) in Riemann et al.
(2016). Xanthopoulos & Jenko (2007) and Proll et al. (2013) used the code GENE to study
the effect of changes in the density gradient and temperature ratio on ITGs and TEMs
and to look at the stability properties of W7-X, comparing with other devices. GENE has
also been used in Proll et al. (2015) to investigate how stellarators can be optimized with
respect to TEMs and in Alcusón et al. (2020) to analyze the growth rate of the instability
as a function of the temperature and density scales for different configurations of W7-X.
A theoretical study about the effects of ITGs and TEMs in non-axisymmetric devices
and, particularly in W7-X is summerized in Helander et al. (2015). Recently, in Sánchez
et al. (2021), the codes EUTERPE, GENE, stella and GENE-3D have been compared in order
to assess the differences on the linear properties of ITGs and the zonal flow relaxation
that arise when different computational domain, namely, flux tube, full flux surface and
radially global domain, are considered.
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Figure 5: Linear growth rate (a) and real frequency (b) as a function of ky obtained for
the ITG scenario studied in test 1 using stella (open circles linked by a solid red line)
and GENE (open triangles linked by a dashed blue line) in the bean flux tube. The inset
of figure (b) shows the structure of the modes (kxρi, kyρi) = (0, 1.3) (green line) and
(kxρi, kyρi) = (0, 2.1) (black line) together with some bad curvature regions (shaded in
red).

4.1. Test 1. Linear ITG simulations in the bean flux tube
In this test, a linear ITG driven by a normalized ion temperature gradient a/LTi = 3

with a normalized ion density gradient a/Lni
= 1 and adiabatic electrons is simulated

in the bean flux tube (see table 2). In order to find the most unstable mode, a map
containing the growth rate values as a function of the radial and binormal wavenumbers
has been produced with stella and shown in figure 4. Note that the ion thermal Larmor
gyroradius, ρi, is used for the normalization of wavevector components and it is defined
as

ρi =
vth,imi

ZieBa
. (4.1)

Two regions of large growth rate can be observed in this map. While Nθ = 1 is enough
to simulate the region with kxρi ≲ 0.5, Nθ = 6† is required to simulate the one including
kxρi ≳ 2 due to the displacement in the z direction of the parallel structure of the modes.
The maximum growth rate found in this map is localized at kyρi = 2.1. The codes GENE
and stella have been used to compare the spectrum along ky for fixed kx and vice-versa,
capturing this wavenumber in both scans.

The comparison of growth rates and real frequencies as a function of ky for fixed
kx = 0 is given in figures 5 (a) and 5 (b), respectively. These figures show an excellent
agreement between stella and GENE. In figure 5 (b) it is seen that the frequency is
positive for every simulated mode. ITG-driven modes are expected to propagate in the
ion diamagnetic direction, i.e. ωω∗,i > 0, where ω∗,i is the ion diamagnetic frequency,
which, with our definitions and conventions, reads

ω∗,i = −sgn(ψt,a)
Tiky

ZieBaLni

. (4.2)

As only positive values of ky are explored in this scan, Lni > 0 (see table 2) and ψt,a < 0
for the selected configuration (see the direction of B and the left-handed system sketched

† These lengths are the required ones if the flux tube is centered at z = 0.
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Figure 6: Linear growth rate (a) and real frequency (b) as a function of kx obtained for
the ITG scenario studied in test 1 using stella (open circles linked by a solid red line)
and GENE (open triangles linked by a dashed blue line) in the bean flux tube. The inset
of figure (b) shows the structure of the modes (kxρi, kyρi) = (0.2, 2.1) (green line) and
(kxρi, kyρi) = (1.7, 2.1) (black line), together with a bad curvature region (shaded in
red).

in figure 2 (a)), we have ω∗,i > 0. This proves that, indeed, in this test ωω∗,i > 0, thus
the studied ITG-driven modes propagate in the ion diamagnetic direction. A closer look
at figure 5 (b) shows a discontinuity in the frequency, which is associated with a change
in the mode structure, defining two different branches of the ITG instability. This can be
observed in the inset of figure 5 (b), which represents, as a function of z, computations
of stella for the the modulus of the electrostatic potential normalized to its maximum
value (|φ̂k⊥ |/|φ̂k⊥ |max) for the modes with kyρi = {1.3, 2.1}. These modes are strongly
localized in the highlighted red bands, which correspond to bad curvature regions, defined
as those where

kyT
′
i

ψ′
t

(
b̂×∇B

)
· k⊥ > 0. (4.3)

If kx = 0 and ky > 0 these regions are the ones where the quantity shown in figure
3 (b) takes positive values. The growth rates and real frequencies as a function of kx,
keeping kyρi = 2.1, can be seen in figures 6 (a) and 6 (b), respectively. As in the ky-
spectra, every mode studied in this scan propagates in the ion diamagnetic direction, as
it can be observed in figure 6 (b). This figure also shows a discontinuity in the frequency,
giving rise to three different branches, located at kxρi ∈ (0, 1.0], kxρi ∈ (1.0, 1.8) and
kxρi ∈ [1.8, 2.7). In the inset of figure 6 (b), the structure of the modes with kxρi =
{0.2, 1.7} computed with stella, belonging to the first and central branches, respectively,
are represented as a function of z. As observed in this inset, the electrostatic potential
associated to the first branch is strongly localized and Nθ = 1 has been sufficient to
capture the parallel structure of this mode. On the other hand, the electrostatic potential
associated to the central branch spreads along z, making it necessary to extend the flux
tube length up to Nθ = 6.
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Figure 7: ITG stability map corresponding to test 2. It shows the growth rate computed
with the code stella in the triangular flux tube as a function of kx and ky.

4.2. Test 2. Linear ITG simulations in the triangular flux tube
In this test, a linear ITG instability driven by a normalized ion temperature gradient

a/LTi = 3 with a normalized ion density gradient a/Lni = 1 and adiabatic electrons is
simulated in the triangular flux tube (see table 2) .

As in the previous test, in order to find the most unstable mode, a map of the growth
rate for each pair (kx, ky) has been produced with stella, see figure 7. As in the bean
flux tube, the most unstable mode in this map is localized at kyρi = 2.1. Interestingly,
unlike in the bean flux tube, the maximum growth rate does not correspond to a mode
with kx = 0. This figure also shows the triangular flux tube to be equally unstable as
the bean one as γmax

bean/γ
max
triang ≃ 1. The different localization in kx of the most unstable

modes found in figures 4 and 7 implies that special care must be taken when comparing
the linear stability properties of different flux tubes.

A scan along kx, keeping kyρi = 2.1, has been performed with both codes, representing
the growth rates and real frequencies in figures 8 (a) and 8 (b), respectively. Although
not as close as in the bean flux tube, the agreement between stella and GENE is still
remarkable. As in the previous test, these modes propagate in the ion diamagnetic
direction. In this scan, the localization of the electrostatic potential moves to higher
values of z when increasing kx, making it necessary to extend the flux tube length up
to Nθ = 6. The inset of figure 8 (b) includes the parallel structure of the mode with
kxρi = 1.2 obtained with stella, together with the bad curvature region where this
mode is localized.

4.3. Test 3. Linear density-gradient-driven TEM simulations in the bean flux tube
In the third test, kinetic electrons are included. We study linear instabilities driven

by normalized electron and ion density gradients a/Lne = a/Lni = 3. In order to avoid
the presence of temperature gradient driven modes, the electron and ion temperature
gradients have been set to zero, a/LTe

= a/LTi
= 0 (see table 2). We will refer to

modes studied in this subsection as density-gradient-driven TEMs. It is worth noting
(see ∆tvth,i/a in table 2) how the mixed implicit-explicit method employed by stella
allows a larger time step in these simulations than the explicit scheme used in GENE.
This difference in the time step size results in a clear reduction of the total simulated
time. In fact, while GENE has required 703 total CPU hours (5.49 hours running in 128
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Figure 8: Linear growth rate (a) and real frequency (b) as a function of kx obtained for
the ITG scenario studied in test 2 using stella (open circles linked by a solid red line)
and GENE (open triangles linked by a dashed blue line) in the triangular flux tube. The
inset of figure (b) shows the structure of the mode (kxρi, kyρi) = (1.2, 2.1) (green line)
together with a bad curvature region (shaded in red).

processors) to complete the whole simulation, stella has needed 76 total CPU hours
(0.53 hours running in 144 processors) to simulate the same modes. The growth rate and
real frequency values as a function of ky, keeping kx = 0, are shown in figures 9 (a) and 9
(b), respectively. As observed in these figures, there is a remarkable agreement between
the results obtained with stella and GENE. In figure 9 (b) it can be seen that these
modes can propagate both in the electron† and ion diamagnetic directions, depending on
the wavenumber. A closer look at this figure allows to clearly distinguish three different
branches. The electrostatic potentials associated to the modes with kyρi = {0.7, 1.2, 4.7},
belonging each one to a different branch, are represented as a function of z for the whole
length of the flux tube in figures 10 (a), (c) and (e), obtaining a good agreement between
both codes. The same structures found in figures 10 (a), (c) and (e) are represented
in figures 10 (b), (d) and (f), respectively, in a narrower z range, together with the
normalized magnetic field strength and the bad curvature regions. The parallel structure
of the modes belonging to the first branch, in the range kyρi = (0, 1.1], has a particular
shape (figures 10 (a) and 10 (b)), which can be identified with some structures discussed
in Proll (2014). To resolve this electrostatic potential we have increased the flux tube
length up to Nθ = 8 with both codes. In order to study the second branch, in the narrow
range of kyρi = (1.0, 1.5), the flux tube has been extended up to Nθ = 4. Finally, Nθ = 2
has been sufficient for the study of the third branch, covering from kyρi = 1.4 to the end
of the simulated range.

4.4. Test 4. Zonal-flow relaxation in the bean flux tube
Finally, we address the so-called Rosenbluth-Hinton test (Rosenbluth & Hinton 1998),

which consists in the study of the linear collisionless time evolution of the zonal com-
ponents of the potential, i.e. those with ky = 0, from their value at the initial time
t = 0 to their value when t → ∞. The theoretical study of the zonal flow response in
stellarators has been addressed in Sugama & Watanabe (2005); Mishchenko et al. (2008);
Helander et al. (2011); Monreal et al. (2016); Monreal et al. (2017) and Smoniewski et al.

† Since Zi = 1 and Ti/Te = 1, we have ω∗,e = −ω∗,i.
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Figure 9: Linear growth rate (a) and real frequency (b) as a function of ky obtained for
the instabilities studied in test 3 using stella (open circles linked by a solid red line)
and GENE (open triangles linked by a dashed blue line) in the bean flux tube.

(2021). In non-axisymmetric devices, the relaxation of a zonal potential perturbation
typically shows a damped oscillation, reaching a stationary residual level at t → ∞.
The damped oscillation involves two different frequencies with different time scales: the
geodesic acoustic mode (GAM) oscillation (which is also found in tokamaks) and a low
frequency oscillation characteristic of the non-axisymmetric geometry of the stellarator.
This characteristic low frequency oscillation of the time evolution of the potential, only
predicted for kxρi ≪ 1 (Mishchenko et al. (2008); Helander et al. (2011); Monreal et al.
(2017)), has been experimentally identified in the TJ-II stellarator in Alonso et al. (2017).

For simplicity, in the simulations included in this test a/LTi = a/Lni = 0 have
been considered. In addition, as initial condition we have imposed φ̂k⊥(t = 0) to be
a Gaussian function centered in the middle of the flux tube. Four time traces of the line
averaged electrostatic potential normalized to its value at t = 0 have been computed
and represented in figures 11 (a)-(d). In these figures, it can be observed how the results
obtained with both codes for kxρi ∈ {0.05, 0.07, 0.1, 0.3} match remarkably well. As
already mentioned, the four time traces show an initial GAM oscillation at tvth,i/a < 100,
followed, except for figure 11 (d), by a lower-frequency damped oscillation. As observed
in these figures, the frequency of the damped oscillation decreases with increasing kx, in
fact, for kxρi = 0.3, represented in figure 11 (d), this frequency is missing. The residual
level of each time trace is given in the insets of these figures. These plots show that the
residual value of the time traces increases with kx.

5. Nonlinear simulations
In flux tube nonlinear simulations, the codes solve equations (2.10) and (2.11) within a

flux tube that extends in the radial and binormal directions. The parameters that define
the flux tube for the nonlinear test presented in this section (test 5) are listed in table 3.
First nonlinear gyrokinetic simulations in W7-X were reported by Xanthopoulos et al.
(2007), where GENE was used to study the nonlinear ITG-driven heat flux. Since then,
GENE has been widely used to look at the nonlinear properties of turbulence in W7-X
(Xanthopoulos et al. (2011); Helander et al. (2015)). More recently, in Bañón-Navarro
et al. (2020), the effects of ITG turbulent transport in different configurations of W7-X
have been investigated with the global version of GENE, GENE-3D (Maurer et al. 2020).
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Figure 10: Normalized modulus of the electrostatic potential computed with stella
(solid red line) and GENE (dashed blue line) as a function of z over the entire length of
the flux tube for some modes simulated in test 3; specifically, we are representing the
modes (kxρi, kyρi) = (0, 0.7) (a), (0, 1.2) (c) and (0, 4.7) (e). The structures calculated
with stella are shown as solid green lines in narrower z ranges in figures (b), (d) and
(f), respectively, together with the normalized magnetic field strength (grey line) and the
bad curvature regions (shaded in red).

In (Sánchez et al. 2020) the ITG-driven heat flux has been studied using realistic
plasma parameters with the global particle-in-cell gyrokinectic code EUTERPE. Finally,
simulations carried out with stella with all species treated kinetically have been
employed to look at the transport of impurities driven by ITG and TEM turbulence in
W7-X (García-Regaña et al. 2021).
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Figure 11: For test 4, time trace of the line-averaged electrostatic potential normalized
to its maximum value computed with stella (solid red line) and with GENE (dashed blue
line) for the pairs (kxρi, kyρi) = (0.05, 0) (a), (kxρi, kyρi) = (0.07, 0) (b), (kxρi, kyρi) =
(0.1, 0) (c) and (kxρi, kyρi) = (0.3, 0) (d). The insets show a detail of each trace at large
times.

Test 5. lx/ρi ly/ρi Nkx Nky |kx|minρi ky,minρi

stella 99.9 62.8 51 64 0.067 0.100
GENE 131.3 88.6 101 64 0.047 0.071

Table 3: Parameters used by stella and GENE to define the flux tube in test 5. From
left to right: normalized flux tube size in the radial (lx) and binormal (ly) directions;
number of modes in the radial (Nkx

) and binormal (Nky
) directions; smallest positive

wavenumber in the radial (|kx|min) and binormal (ky,min) directions.

5.1. Test 5. Nonlinear ITG-driven heat flux

In this test, a nonlinear calculation of the ITG-driven heat flux is carried out consid-
ering adiabatic electrons. In addition, a normalized ion temperature gradient a/LTi

= 3
and a normalized ion density gradient a/Lni = 1 are assumed (see tables 2 and 3 for the
values of the simulation parameters). The heat fluxes presented in this test are defined
by

Qi =

〈∫
d3v

miv
2

2
vE · ∇rgi

〉
, (5.1)
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Figure 12: Time trace of the normalized ITG-driven heat flux computed with stella
(solid red line) and GENE (dashed blue line) in the bean flux tube for the test 5 ITG
scenario. The inset shows a detail of the time interval tvth,i/a = [1500, 1900], with the
heat flux time average given by the black dashed lines.

where ⟨·⟩ is the flux-surface average, gi is given by (2.8) and vE is the turbulent E ×B
drift. In a flux tube, expression (5.1) takes the form

Qi =
πsgn(ψt,a)

Ba

(∫ zmax

zmin

dz

B · ∇z

)−1 ∫ zmax

zmin

dz

∫ ∞

−∞
dv∥

∫ ∞

0

dµ

[(
v2∥ +

2Bµ

mi

)

∑

kx,ky

(
Im (φ̂k⊥ ĝ−k⊥,i) kyJ0(k⊥v⊥/Ωi)

)(
b̂ · ∇z

)−1
]
. (5.2)

The time trace of the ITG-driven heat flux computed with both codes and normalized
to the ion gyro-Bohm heat flux, QgB,i = niTivth,i(ρi/a)

2, is shown in figure 12. Despite
the different initial evolution, both traces converge to very similar values. To quantify
the difference between the saturated ITG-driven heat flux obtained with each code, an
average over the time interval tvth,i/a = [1500, 1900] has been taken and represented in
the inset of figure 12. The results for the normalized time-averaged ITG-driven heat flux
computed with stella, which is Qi/QgB,i = 2.26 and GENE, which is Qi/QgB,i = 2.47,
represent a difference around 8.5%. This slight difference may be caused by the different
resolution in the flux tube used by each code, see table 3.

In order to provide a more comprehensive study of these results, stella has been used
to compute the contribution of each pair (kx, ky) to the time-averaged ITG-driven heat
flux. In figure 13, it can be observed that the modes which contribute the most to the
heat flux are those with kyρi ≲ 2.0 and |kxρi| ≲ 0.5. To compare these results with GENE
calculations, the time-averaged ITG-driven heat flux is represented as a function of ky,
summing over kx, in figure 14 (a), and as function of kx, summing over ky, in figure 14
(b). These figures show a satisfactory agreement between both codes.

Finally, for the sake of completeness, a simulation in the triangular flux tube performed
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Figure 13: Normalized nonlinear ITG-driven heat flux computed with stella in the bean
flux tube, averaged over the time interval tvth,i/a = [1500, 1900] and represented as a
function of kx and ky.
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Figure 14: Normalized ITG-driven heat flux averaged over the time interval tvth,i/a =
[1500, 1900] computed with stella (open circles linked by a solid red line) and GENE
(open triangles linked by a dashed blue line) in the bean flux tube. It is represented as
a function of ky, summing over kx (a) and as a function of kx, summing over ky (b).

with stella has been included in this section. The parameters selected to carry this
simulation out are the ones collected in tables 2 and 3 for test 5. The time trace of the
normalized ITG-driven heat flux and the contribution of each mode are represented in
figures 15 (a) and 15 (b), respectively. Figure 15 (a) shows the saturated ITG-driven heat
flux in the triangular flux tube to be Qi/QgB,i = 2.22. This value is very similar to the
one obtained in the bean flux tube using stella. The main differences between nonlinear
ITG-driven heat flux calculations in both flux tubes are found in their spectrum, as it can
be seen by comparing the maps given in figures 13 and 15 (b). As in the bean flux tube,
the modes in the binormal direction which contribute the most to the total heat flux in
the triangular flux tube are those with kyρi ≲ 2.0. However, in contrast with the results
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Figure 15: Time trace of the normalized ITG-driven heat flux computed with stella
in the triangular flux tube, together with the heat flux time average over tvth,i/a =
[1200, 1500], represented with a black dashed line (a). This time-averaged ITG-driven
heat flux is also represented as a function of kx and ky (b).

Flux tube twall−clock [h] Nproc tCPU [h]

Bean stella 161 stella 288 stella 46368
GENE 24 GENE 1920 GENE 46080

Triangular stella 115 stella 288 stella 33120

Table 4: Time required to run the nonlinear simulations with GENE in the bean flux tube
and with stella in the bean and triangular flux tubes. From left to right: simulation
wall-clock time in hours, number of processors and total CPU time in hours.

obtained for the bean flux tube, modes in the radial direction with 0.5 ≲ |kxρi| ≲ 1.5
give a large contribution to the total heat flux in the triangular flux tube.

For a complete view of these nonlinear simulations, we have indicated in table 4 the
simulation wall-clock time (twall−clock) required to produce these results. This table also
includes the number of processors (Nproc) in which the codes have been running and
the total CPU time (tCPU) that each simulation has taken, defined as tCPU = Nproc ×
twall−clock. As expected, since we have assumed adiabatic electrons in these nonlinear
calculations, both codes require similar tCPU to perform the presented nonlinear test,
as it is shown in table 4. On the other hand, the time difference when simulating the
triangular and bean flux tubes with stella is attributable to the different time ranges
explored with each simulation, see figures 12 and 15 (left).

6. Summary and conclusions
Due to the increasing interest in stellarator gyrokinetic modelling, fostered by the

results of W7-X first experimental campaigns, it is desirable to have a sufficiently
complete, documented and well verified set of linear and nonlinear gyrokinetic simulations
in W7-X geometry against which present and future stellarator gyrokinetic codes can be
tested and benchmarked. In this paper, such a set of simulations has been provided
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in the form of a comprehensive benchmark between the codes stella and GENE. This
benchmark, consisting of five different tests, has been carried out in a fixed-boundary
high-mirror configuration of W7-X. The linear part of the benchmark has been presented
in tests 1 to 4. ITG instabilities have been studied in the bean and triangular flux tubes
of W7-X in tests 1 and 2, respectively. Comparing these results, it can be concluded that
both flux tubes are equally unstable, but the largest growth rates are found at different
radial wavenumbers. TEM instabilities driven by density gradients have been studied in
test 3, where it has been shown how the mixed implicit-explicit method used by stella
allows to use larger time steps than explicit codes for simulations with kinetic electrons,
resulting in a clear reduction of the total CPU time. In these three tests, the structure of
the electrostatic potential associated with each instability has been given and the growth
rate and real frequency values obtained with stella and GENE have been successfully
compared. In test 4, different time traces of the zonal electrostatic potential relaxation
have been compared. Finally, the nonlinear ITG-driven heat flux and its spectrum have
been calculated in test 5 in the bean flux tube with both codes and, for completeness,
in the triangular flux tube with stella. The computed energy fluxes are similar in both
flux tubes, although the radial modes that give the largest contribution to the total heat
flux are different.
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Appendix A. VMEC parameters to reproduce the studied equilibria
In this appendix, the list of input parameters used to generate the fixed-boundary

VMEC equilibrium used in the present work is provided (see the beginning of section 3):

&INDATA
MGRID_FILE = ’’
LFREEB = F
LWOUTTXT = T
LDIAGNO = T
DELT = 0.9
TCON0 = 2.
NFP = 5
NCURR = 1
MPOL = 12 NTOR = 12



Benchmark of stella against GENE in W7-X geometry 21

NZETA = 36
NS_ARRAY = 9 28 99
NITER = 3700
NSTEP = 100
NVACSKIP = 6
GAMMA = 0.
FTOL_ARRAY = 0. 1.E-10 1.E-14
PHIEDGE = 2.0
BLOAT = 1.
CURTOR = 0.
SPRES_PED = 1.
AM = 179370 -179370
AI = 0.36 -0.062 0.0712 -0.025 0. 0. 0. 0. 0. 0. 0.
AC = 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RAXIS = 5.5395 0.37547 0.01698 0.0014216 0.000027606
ZAXIS = 0. -0.31289 -0.019191 -0.00044262 0.000034742
RBC( 0, 0)= 5.5021E+00 ZBS( 0, 0)= 0.0000E+00
RBC( 1, 0)= 2.8455E-01 ZBS( 1, 0)= -2.4009E-01
RBC( 2, 0)= -5.7247E-03 ZBS( 2, 0)= 1.9753E-03
RBC( 3, 0)= -3.4624E-04 ZBS( 3, 0)= 2.2597E-03
RBC( 4, 0)= -1.4722E-03 ZBS( 4, 0)= 1.7290E-03
RBC(-4, 1)= -7.8450E-04 ZBS(-4, 1)= -7.6096E-06
RBC(-3, 1)= -1.4587E-04 ZBS(-3, 1)= 1.2663E-03
RBC(-2, 1)= 1.5679E-03 ZBS(-2, 1)= 6.9395E-03
RBC(-1, 1)= 1.8726E-02 ZBS(-1, 1)= 1.6401E-02
RBC( 0, 1)= 4.8197E-01 ZBS( 0, 1)= 6.0460E-01
RBC( 1, 1)= -2.1345E-01 ZBS( 1, 1)= 1.9431E-01
RBC( 2, 1)= -2.1789E-02 ZBS( 2, 1)= 1.8594E-02
RBC( 3, 1)= 1.4488E-03 ZBS( 3, 1)= -1.1209E-03
RBC( 4, 1)= 1.4451E-03 ZBS( 4, 1)= -7.5419E-04
RBC(-4, 2)= 1.4744E-04 ZBS(-4, 2)= 1.5260E-04
RBC(-3, 2)= 2.9997E-04 ZBS(-3, 2)= -2.6406E-05
RBC(-2, 2)= 2.0710E-03 ZBS(-2, 2)= -2.4917E-05
RBC(-1, 2)= 1.0333E-02 ZBS(-1, 2)= 7.7931E-03
RBC( 0, 2)= 3.5672E-02 ZBS( 0, 2)= -2.0312E-03
RBC( 1, 2)= 4.3441E-02 ZBS( 1, 2)= 1.9773E-02
RBC( 2, 2)= 6.6787E-02 ZBS( 2, 2)= -4.9779E-02
RBC( 3, 2)= -2.1551E-04 ZBS( 3, 2)= 1.6853E-03
RBC( 4, 2)= -5.9507E-04 ZBS( 4, 2)= 7.7889E-04
RBC(-4, 3)= 1.5743E-04 ZBS(-4, 3)= -2.1339E-04
RBC(-3, 3)= -1.4708E-04 ZBS(-3, 3)= 3.1735E-06
RBC(-2, 3)= -1.2572E-04 ZBS(-2, 3)= 6.1239E-04
RBC(-1, 3)= 1.5997E-03 ZBS(-1, 3)= -2.9522E-04
RBC( 0, 3)= -2.0732E-03 ZBS( 0, 3)= -1.8327E-03
RBC( 1, 3)= -1.1519E-02 ZBS( 1, 3)= -4.6829E-03
RBC( 2, 3)= -2.0190E-02 ZBS( 2, 3)= 6.7910E-03
RBC( 3, 3)= -1.3317E-02 ZBS( 3, 3)= 1.1217E-02
RBC( 4, 3)= 1.2037E-03 ZBS( 4, 3)= -8.0214E-04
RBC(-4, 4)= -3.6955E-06 ZBS(-4, 4)= 1.2264E-04
RBC(-3, 4)= 1.9747E-04 ZBS(-3, 4)= -1.7509E-04
RBC(-2, 4)= 9.2916E-05 ZBS(-2, 4)= 6.5936E-05
RBC(-1, 4)= -4.2286E-04 ZBS(-1, 4)= 2.4530E-05
RBC( 0, 4)= 1.9963E-03 ZBS( 0, 4)= 4.5823E-04
RBC( 1, 4)= -1.2553E-03 ZBS( 1, 4)= 1.7370E-03
RBC( 2, 4)= 8.1636E-03 ZBS( 2, 4)= 8.8024E-03
RBC( 3, 4)= 3.0460E-03 ZBS( 3, 4)= -4.6653E-03
RBC( 4, 4)= 5.0489E-04 ZBS( 4, 4)= -1.5253E-03
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