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Continuous gravitational waves from spinning deformed neutron stars have not been detected
yet, and are one of the most promising signals for future detection. All-sky searches for continuous
gravitational waves from unknown neutron stars in binary systems are the most computationally
challenging search type. Consequently, very few search algorithms and implementations exist for
these sources, and only a handful of such searches have been performed so far. In this paper, we
present a new all-sky binary search method, BinarySkyHouF , which extends and improves upon
the earlier BinarySkyHough method, and which was the basis for a recent search [Covas et al. [1]].
We compare the sensitivity and computational cost to previous methods, showing that it is both
more sensitive and computationally efficient, which allows for broader and more sensitive searches.

I. INTRODUCTION

Continuous gravitational waves (CWs) are long-lasting
and nearly monochromatic gravitational waves, expected
to be emitted by deformed spinning neutron stars (NSs)
due to their resulting time-varying quadrupole moment
[e.g. 2]. Although many CW searches have been per-
formed to date, using data from the LIGO (H1 and L1)
and Virgo (V1) detectors, no detection has been achieved
yet (see [3] for a recent review). The expected CW am-
plitudes are several orders of magnitude smaller than
the compact-binary-coalescence signals currently being
routinely detected. Therefore, the combined analysis of
months to years worth of data is required to accumulate
enough signal-to-noise ratio.

When searching for CWs from known pulsars, all the
phase-evolution parameters are known from electromag-
netic observations, which allows one to perform statis-
tically optimal searches by coherent matched-filtering
with very little required computing power. All-sky CW
searches for unknown neutron stars represent the oppo-
site extreme, where no prior information about the sig-
nals is available, requiring an expensive explicit search
over the phase-evolution parameters.

Furthermore, because the required parameter-space
resolution increases rapidly with longer coherent inte-
gration time, the resulting computing cost explodes and
makes it impossible to analyze longer stretches of data by
coherent matched filtering. This computing cost problem
is pushed to the extreme when searching for unknown
neutron stars in binary systems, as now we also need to
search over the unknown binary orbital parameters [4].
Therefore all-sky searches for unknown neutron stars in
binary systems are the most computationally challenging
type of searches.

The primary strategy followed by computationally-
limited CW searches is to break up the data into shorter
segments that can be coherently analyzed individually
and then combine these coherent results across segments.
These are the so-called semi-coherent methods (see [5] for

a recent review of search methods). The resulting coarser
parameter-space resolution entails a reduced computa-
tional cost, which allows for analyzing larger datasets and
thereby regaining sensitivity. As a result, semi-coherent
methods are typically more sensitive than fully-coherent
matched filtering at a fixed computational budget [6, 7].

The most commonly used coherent detection statistics
are the F-statistic and the Fourier power (for sufficiently
short segments, where a simple sinusoid can approximate
the signal). The F-statistic is obtained by analytically
maximizing the likelihood ratio over the four unknown
amplitude parameters of a CW signal [8, 9]. Although
this statistic was initially thought to be statistically op-
timal, its implicit amplitude priors were later shown to
be unphysical [10]. Using more physical priors results in
a more sensitive Bayes factor, albeit (currently) at an in-
creased computational cost, which is why this is not yet a
viable alternative to the F-statistic for wide parameter-
space searches. However, for short segments compared to
a day, a new detection statistic was recently found [11]
that is more sensitive than F at no extra computing cost,
termed the dominant-response statistic F

AB
.

Using Fourier power over short segments directly as
a coherent detection statistic is computationally cheaper
still, given that no phase demodulation or other addi-
tional calculations are needed. However, one limitation
of this statistic is the constrained maximum coherent
length (about Tseg . 30 minutes), resulting from the ap-
proximation of the signal as a simple sinusoid. Typically
this is expressed as the criterion that the signal power
remains in a single frequency bin (of size 1/Tseg). Fur-
thermore, while demodulated statistics (such as F and
F

AB
) can naturally combine data from several detectors

coherently [9, 11], this is not straightforward to achieve
for short Fourier transforms [12] and is not a common
practice. Therefore, constructing semi-coherent statis-
tics on demodulated coherent statistics is generally more
sensitive and flexible than using Fourier power.

Only two previous all-sky binary pipelines had
been used in searches before BinarySkyHouF [1],
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namely TwoSpect [13], and BinarySkyHough [14].
TwoSpect was the first pipeline to perform an all-sky
CW search for unknown NSs in binary systems [15].
BinarySkyHough is an extension of SkyHough [16]
(an all-sky pipeline for isolated systems) to NSs in bi-
nary systems, which yields higher sensitivity compared
to TwoSpect thanks to its usage of GPU paralleliza-
tion and a more sensitive detection statistic. Two recent
all-sky binary searches [17, 18] deployed BinarySky-
Hough on data from Advanced LIGO’s O2 and O3 ob-
serving runs, although over a reduced parameter space
in frequency and binary parameters compared to the
TwoSpect search.

BinarySkyHough uses short-segment Fourier power
as its coherent detection statistic limiting its attainable
sensitivity (as discussed above). Here we present Bi-
narySkyHouF , an extension of BinarySkyHough,
which features several improvements compared to the
previous pipeline:

• Use of demodulated coherent statistics (such as F-
or F

AB
-statistic) instead of short-segment Fourier

power.

• Directly summing coherent detection statistics (the
typical StackSlide approach [6, 19]) instead of
(thresholded) 1s and 0s as in the classical Hough
algorithm [16].

• Various code-implementation improvements (such
as GPU coalesced memory access) and optimiza-
tions, increasing computational efficiency.

As will be shown in this paper, the new search pipeline is
both more sensitive and more computationally efficient
than BinarySkyHough, i.e., for the same coherent seg-
ment length Tseg and mismatch distribution, it achieves
higher sensitivity at lower computational cost.

A key ingredient of the new pipeline is the use of (low-
order) Taylor-expanded phase parameters to describe the
binary motion over the (short) coherent segments instead
of the physical binary orbital parameters. These Taylor
coordinates allow for a substantial dimensional reduction
and solve the problem of covering the highly-degenerate
per-segment coherent parameter space with an efficient
template bank. However, this approach limits the sensi-
tivity to signals from binary systems with orbital periods
substantially longer than the segment length Tseg.

The development of more sensitive all-sky binary
search methods is of utmost importance since more than
half of all known millisecond pulsars are part of a binary
system1 [20]. Furthermore, accretion from a companion
gives a plausible mechanism to generate an asymmetry
or excite an r-mode with a detectable amplitude in the
current generation of gravitational-wave detectors, as re-
cently discussed in [1].

1 http://www.atnf.csiro.au/research/pulsar/psrcat

This paper is organized as follows: in Sec. II we intro-
duce the approximate signal model used to compute the
F-statistic; in Sec. III we present the new BinarySky-
HouF pipeline and we compare it to its predecessor; in
Sec. IV we show sensitivity comparisons of different de-
tection statistics; in Sec. V we summarize the main re-
sults of this paper and lay out some ideas for future work.

II. SIGNAL PHASE MODEL

A. Physical phase model

Assuming a slowly-varying NS spin frequency, the
phase of a CW signal in the source frame can be expressed
in terms of the Taylor expansion around a reference time
τref , namely

φ(τ) = φ0 + 2π

s∑
k=0

fk
(k + 1)!

(τ − τref)
k+1, (1)

where τ denotes the time in the source frame, and s is
the order of spindown parameters fk needed to accurately
describe the intrinsic frequency evolution. The evolution
of frequency f(τ) and higher-order spindowns f (k)′(τ) is
given by

f(τ) =
1

2π

dφ(τ)

dτ
, and f (k)′(τ) =

dkf(τ)

dτk
, (2)

and the frequency and spindown parameters fk in the
phase model Eq. (1) are defined at the reference time
τref , i.e.,

fk ≡ f (k)′(τ = τref) . (3)

In order to obtain the phase of the signal in the frame of
detectorX, we need to transform it from the source frame
by taking into account the movement of the NS and the
movement of the detector with respect to the solar sys-
tem barycenter (SSB). We absorb the unknown relative
distance of the source with respect to the SSB into the
reference time τref , and here we neglect relativistic effects
such as Shapiro and Einstein delays2 and the transverse
proper motion of the source. We can break the timing re-
lation into two steps, first linking the wavefront-emission
time τ in the source frame to its arrival time t

SSB
in the

SSB frame, namely

τ(tSSB) = tSSB −R(τ), (4)

where R(τ) is the radial distance (in light-travel time) of
the source to the binary barycenter (BB) [4], with R > 0
when the source is further away from us than the BB. In

2 The numerically-implemented phase model includes these effects
for the solar system but not for the binary system.
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the second step we can relate the SSB time to the arrival
time t at detector X by the Rømer-delay expression:

tX
SSB

(t) = t+ ~rX(t) · n̂, (5)

where ~rX(t) is the position vector (in light-travel time)
of detector X with respect to the SSB, and n̂ is the sky-
position unit vector pointing from the SSB to the BB.
The radial distance R of the source to the BB can be
expressed[4] as

R(τ) = ap

[
sinω(cosE − e) + cosω sinE

√
1− e2

]
, (6)

in terms of the eccentric anomaly E, given by Kepler’s
equation

E = Ω (τ − tp) + e sinE, (7)

where ap is the projected semi-major axis of the orbital
ellipse (in light-travel time), Ω = 2π/Porb is the (aver-
age) orbital angular velocity (corresponding to the period
Porb), e is the orbital eccentricity, tp is the time of peri-
apse passage and ω is the (angular) argument of periapse.

For small-eccentricity orbits, this can be approximated
by the (linear in e) ELL1 model[21], namely

R(τ) = ap

[
sin Ψ +

η

2
sin 2Ψ− κ

2
cos 2Ψ

]
+O

(
e2
)
, (8)

in terms of the Laplace-Lagrange parameters η ≡ e cosω
and κ ≡ e sinω and the orbital phase

Ψ(τ) = Ω (τ − tasc) , (9)

using the time of ascension tasc instead of the time of
periapse tp, which (to lowest order in e) are related by
tasc = tp − ω/Ω. Expressions for R up to any order in e
are given in Appendix C of [22].

B. Short-segment (SSB) Taylor coordinates {uk}

Given all-sky binary CW searches need to cover a huge
signal parameter space with finite computing resources,
the longest coherent segment lengths Tseg that can be
used are typically very short (i.e, much shorter than a
day). If we further assume the orbital periods to be much
longer than the short segments, i.e., Tseg � Porb, then
in this short-segment regime we can resort to Taylor-
expanding the phase (in the SSB) around each segment
mid-time tm, similar to what was done in [4, 23], namely

φ(t
SSB

) = φ0 + 2π

kmax∑
k=1

uk
k!

(t
SSB
− tm)k , (10)

which defines the (SSB) Taylor coordinates {uk}kmax

k=1 as

uk ≡
1

2π

dkφ

d tkSSB

∣∣∣∣
tm

. (11)

Note that for segments short compared to a day one
could also define Taylor coordinates in the detector frame
t instead of in the SSB t

SSB
, but this would result in

detector-dependent coordinates that are not suitable for
our present search method. The resulting expressions are
given in App. A for reference.

Inserting the physical phase model of Eq. (1) in the
form φ(t

SSB
) = φ (τ(t

SSB
)), we obtain the phase deriva-

tives3.

u1 = [f(τ) τ̇ ]|tm ,

u2 =
[
f ′(τ) τ̇2 + f(τ) τ̈

]∣∣
tm
,

u3 =
[
f ′′(τ) τ̇3 + 3f ′(τ) τ̈ τ̇ + f(τ)

...
τ
]∣∣
tm
,

...

(12)

where the derivatives τ (k) ≡ dkτ/dtk
SSB

of the source-
to-SSB timing relation τ(tSSB) can be further ex-
panded using Eq. (4), which involves derivatives R(k) ≡
dkR(τ)/dtk

SSB
of the binary radial distance R(τ) of

Eq. (6), which can be expanded in the same form as

R(1) = R′ τ̇ ,

R(2) = R′′ τ̇2 +R′ τ̈ ,

R(3) = R′′′ τ̇3 + 3R′′ τ̈ τ̇ +R′
...
τ ,

...

(13)

in terms of the source-frame time derivatives R(k)′ ≡
dkR(τ)/dτk. This analysis is complicated by the fact
that the binary radial distance R of Eq. (6) is a function
of source-frame (emission) time τ , not the SSB (arrival)
time t

SSB
. In [4, 23] this difficulty could be neglected for

the purposes of computing the parameter-space metric,
where a slow-orbit approximation, i.e., R(τ) ≈ R(t

SSB
),

is sufficient. However, in the present application we want
to preserve higher accuracy for the purpose of using these
coordinates for coherent matched-filtering.

Substituting into the timing derivatives of Eq. (4), we
can now obtain the expressions

τ̇ = [1 +R′]
−1
,

τ̈ = [1 +R′]
−1 (−R′′ τ̇2

)
,

...
τ = [1 +R′]

−1 (−R′′τ̇3 − 3R′′ τ̈ τ̇
)
,

...

(14)

which are explicit because of the iterative backwards de-
pendency of the τ (k) on only lower-order derivatives, i.e.,
τ (k) = τ (k)(τ̇ , τ̈ , . . . τ (k−1)).

3 The general form of these successive chain- and product-rule ex-
pansions is governed by the so-called Faà di Bruno’s formula [24].
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From these expressions we can obtain explicit Taylor
coordinates uk from Eq. (11) as

u1 =
fm

1 +R′m
, (15)

u2 = − fmR′′m

(1 +R′m)
3 +

f ′m

(1 +R′m)
2 , (16)

where for our current applications (such as [1]) only up
to the first- or second-order uk will be needed in practice,
as discussed in Sec. III C 1. Here we defined

fm ≡ f(tm) = f0 + f1 (tm − τref) + . . . ,

f ′m ≡ f ′(tm) = f1 + f2 (tm − τref) + . . . ,
(17)

and

R′m = apΩ [cos Ψm + η cos 2Ψm + κ sin 2Ψm] ,

R′′m = −apΩ2 [sin Ψm + 2η sin 2Ψm − 2κ cos 2Ψm] ,
(18)

where R
(k)′

m ≡ R(k)′(tm) and

Ψm ≡ Ω (tm − tasc) , (19)

assuming the small-eccentricity approximation of Eq. (8),
and neglecting the NS-BB time delay of Eq. (4) as a
higher-order correction, i.e., τ(tm) ≈ tm.

These u1, u2 coordinates have units of Hz and Hz2,
respectively, and depend on the physical parameters
{{fk}, ap,Ω, tasc, e, ω}. Using these coordinates assumes
that we have performed the standard SSB demodulation
of the signal for any given sky position n̂, which is typ-
ically expressed in terms of the right ascension α and
declination δ in equatorial coordinates.

The resulting (constant) parameter-space metric for
the Taylor coordinates {uk} (valid for any signal phase
of the form Eq. (10)) is found in Eq. (57) of [4].

III. BINARYSKYHOUF

In this section we present a summary of the new Bina-
rySkyHouF pipeline and its main advantages over the
former BinarySkyHough.

A. Summary of the previous and new pipeline

The predecessor SkyHough and BinarySkyHough
algorithms are described in more detail in [16] and [14],
here we only provide a short overview summary. Both of
these analyze the frequency-time matrix of short-Fourier-
transform (SFT) power, by searching for “tracks” (corre-
sponding to different source parameters) that are above
the statistical expectation for noise.

SkyHough is limited to searches for signals from iso-
lated systems, while BinarySkyHough is an extension
designed for all-sky searches for unknown neutron stars

in binary systems. Both are extremely fast model-based
pipelines due to the highly efficient algorithms used to an-
alyze the sky-maps and their effective use of look-up ta-
bles (see [14, 16] for details). Furthermore, BinarySky-
Hough leverages the computational advantages provided
by GPUs by parallelizing the most expensive steps in the
algorithm, and thus further massively reducing the run-
time of a search.

A BinarySkyHough search is divided in two consec-
utive stages, using different detection statistics. In the
first stage, a “Hough” weighted sum of 1s and 0s (de-
pending on whether the SFT power crossed a threshold
or not) is calculated, and all of the templates are sorted
by the resulting significance (a normalized Hough num-
ber count with normal distribution, see Eq. (25) of [14]).
The frequency-time pattern used for the tracks in the
first stage is an approximation to the exact one, due to
the usage of the look-up tables (explained in Sec. IV B of
[14]). In the second stage, the refinement stage, a fraction
of the best ranked templates is analyzed again, this time
using a StackSlide weighted sum of SFT power, which
has a higher sensitivity than summing weighted 1s and
0s (e.g., see [19]), and using a more accurate expression
for the frequency-time pattern.

The main idea for the new BinarySkyHouF pipeline
is to use a demodulated coherent detection statistic for
the segments4, such as the F- [8, 9] or F

AB
-statistic [11],

instead of the number count or SFT power, but otherwise
still benefit from the highly-efficient GPU-based Bina-
rySkyHough-type algorithm to combine the coherent
results to a semi-coherent statistic.

Three main benefits arise from using a demodulated
coherent statistic like the F-statistic:

1. Demodulation removes the constraint on the maxi-
mum segment length, as the signal is no longer ap-
proximated as a pure sinusoid. This allows the al-
gorithm to turn increases in computing power into
better sensitivity (shown in Sec. IV C).

2. The per-detector data is combined coherently,
which also reduces the number of coherent seg-
ments needed to combine in the semi-coherent
stage, again improving sensitivity (shown in
Sec. IV A) and reducing computational cost (shown
in Sec. III D).

3. The parameter-space resolution and resulting mis-
match can be controlled as a free parameter (rather
than the fixed 1/Tseg Fourier resolution in SFTs),
which will be discussed in Sec. III C 1.

4 The F-statistic has been used before in combination with the
Hough algorithm, in [25], an all-sky search for isolated sys-
tems using day-long coherent segments, where the (single-stage)
pipeline summed weighted 1s and 0s computed from thresholded
F-statistic values.



5

When combining coherent results to calculate a semi-
coherent detection statistic, it has been shown that ap-
plying per-segment weights can improve the sensitivity
[26]. We will not make a derivation here for the combi-
nation of F5, but in Sec. IV A we show that using weights
also improves the sensitivity for these detection statistics.
The weight w` at segment ` is given by:

w` = K
A` +B`
Sn;`

, (20)

K =
Nseg∑Nseg

`=1 w`
, (21)

A` =
∑
NSFTs

a2, B` =
∑
NSFTs

b2, (22)

where K is a normalization factor, Sn;` is the noise power
spectral density of segment `, and a and b are the antenna
patterns of a detector (evaluated at the mid-time of ev-
ery SFT), where the sum goes over all the SFTs in seg-
ment `. When the segment just has one SFT, we recover
the weights given by Eq. 22 of [14]. For the dominant-
response statistic, we use the following weights:

w` = K


A`+

C2
`

A`

Sn;`
ifA` ≥ B`,

B`+
C2
`

B`

Sn;`
otherwise,

(23)

where C` =
∑
NSFTs

a b.
As discussed in Sec. II B, for computing-cost rea-

sons the coherent segments for all-sky binary searches
need to be very short, which allows us to use a small
number of Taylor coordinates uk to represent the spin-
down and binary orbital motion in the coherent seg-
ments. Using physical parameters, we would need to
build a (at least) 6-dimensional parameter space grid6

over {α, δ, f0, ap,Ω, tasc}, while using the Taylor coordi-
nates we effectively only need to use three (or four) for the
short segments currently considered, namely {α, δ, u1}.
This reduces complexity (the parameter-space metric in
physical parameters would be hugely degenerate for short
segments (cf. [4, 23]) and lowers the resulting computa-
tional cost7.

The uk template bank is constructed as a hyper-cubic
lattice in coordinate space. The code processes the sky

5 Although we leave this for future work, the improvement of sen-
sitivity with weights can be understood from the per-segment
change in signal power, which can vary around one order of mag-
nitude between segments for such short coherent times.

6 In comparison to BinarySkyHough the new code is able to
also search over spindowns and eccentricity in the semi-coherent
stage.

7 Using a Taylor phase approximation to lower the computational
cost of an all-sky binary search has been first explored by the
Polynomial pipeline [27], which did not use physical parameters
for the semi-coherent summation, however, resulting in reduced
sensitivity.

in patches defined by an isotropic grid with cells of fixed
solid-angle, using partial Hough map derivatives [14] to
process the semi-coherent sky mapping. Coherent per-
segment statistics are computed only for the center of
each sky-patch using the corresponding antenna pattern
modulations and weights.

B. Semi-coherent interpolation

In the previous section we obtained the Taylor coor-
dinates uk, which together with the sky position coordi-
nates will be used in the coherent stage in order to calcu-
late the F-statistic values over coordinates {α, δ, {uk}}.
In the semi-coherent stage, on the other hand, we are
using physical coordinates to combine the per-segment
statistics, namely {α, δ, {fk}, ap,Ω, tasc, e, ω}. For every
semi-coherent template, we therefore need to calculate
the appropriate mapping to the corresponding Taylor co-
ordinates {uk} and coherent sky position.

In addition to using different signal parameters, the
semi-coherent template grids also generally need to be
finer than the coherent per-segment grids, which results
in the need to interpolate the coherent results when
combining them semi-coherently (typically using nearest-
neighbor interpolation). This is a generic feature of the
semi-coherent approach (cf. [7, 28]), and in SkyHough-
derived pipelines takes the form of the so-called master
equation [14, 16], linking sky offsets to resulting effective
frequency shifts of the signal.

The SkyHough-type sky interpolation works by
breaking the sky into several sky patches, as mentioned
above, where the center of each patch is used as the coher-
ent sky template for every semi-coherent sky-template in
the same sky patch. The resulting offset in sky-position
between the semi-coherent and coherent template results
in compensating offsets in the {uk} coordinates, general-
izing the Hough master equation.

A simple way to derive the shift in uk coordinates due
to an offset δn̂ in sky position is to use the full detector-
frame Taylor coordinates uXk for each detector X, derived
in the appendix and shown in Eq. (A5). These are valid
as long as the coherent segments are short compared to
a day. Using this we can express the induced shifts δuXk
as

δuX1 = u1 ~v
X
m′ · δn̂,

δuX2 ≈ u1 ~a
X
m′ · δn̂+ 2~vXm′ · δn̂ (−u1R

′′
m + f ′m) ,

(24)

in terms of detector velocity ~vXm′ and acceleration ~aXm′
at the segment mid-time tm′

8. To remove the detector

8 The time tm′ where the detector-related quantities are evalu-
ated is different than the time where the Taylor coordinates are
evaluated: tm = tm′+~rm′ ·n̂d, where n̂d is the coherent demodu-
lation point and we take a mean between the different detectors:
Ndet ~rm′ ≡

∑
X ~rX

m′ .
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FIG. 1. Comparison between the uI1 coordinate per segment
given by Eq. (25) (green line) and the u1 values per segment
that minimize the mismatch (orange points). The sky posi-
tion has been shifted by 0.3 rad in both α and δ. This example
uses one year of data from the H1 detector with segments of
Tseg = 900 s, and a signal with a frequency of f0 = 100 Hz
without spindown and without binary modulation.

dependency we average over detectors, which will be a
good approximation for δu1, given the detector velocity is
dominated by the (detector-independent) orbital motion
of the Earth. On the other hand, the detector accelera-
tion ~aXm in δuX2 is dominated by the Earth’s rotation, so
averaging over detectors might be more dangerous, but
should work well as long as the detectors are not too far
separated, such as for H1 and L1.

Therefore we can arrive at the following generalized
master equations

uI1 = u1 (1 + ~vm′ · δn̂) , (25)

uI2 = u2 + u1 ~am′ · δn̂+ 2~vm′ · δn̂ (−u1R
′′
m + f ′m) , (26)

with detector-averaged velocity Ndet ~v ≡
∑
X ~v

X and ac-
celeration Ndet ~a =

∑
X ~a

X . Eq. (25) agrees with the
previous Hough-on-F-statistic master equation found in
[16] and [25] (with implicit detector averaging).

This is shown in Fig. 1, where the u1 values with the
highest signal power are plotted as a function of segment
time tm for an offset δn̂ = n̂− n̂d between the signal sky-
position n̂ and the coherent demodulation point n̂d. In
addition we plot the predicted track of shifted uI1 given
by Eq. (25). These uI1 values closely follow the path
that minimizes the mismatch. The mismatch in Fig. 1
between the path followed by uI1 and the maximum path
is around 0.1%, whereas the mismatch between the non-
shifted u1 and the maximum path would be around 0.8.

The bounds in each of the Taylor coordinates are found
using Eqs. (25) and (26), by calculating the maximum
possible values over the given physical parameter space.

The Hough semi-coherent summation used in the first
stage of the pipeline uses the following expressions for
computational reasons (due to the look-up table ap-
proach [16]), which approximate Eqs. (25) and (26):

uIH1 = fm(1−R′m) + fH~vm′ · δn̂, (27)

uIH2 = u2, (28)

where

fH ≡ f0H + f1H(tmid − τref) + . . . , (29)

being fkH the values at the middle of the range being
searched and tmid the mid-time of the analyzed dataset.

C. Mismatch

In this subsection we describe and characterize dif-
ferent sources of mismatch for the BinarySkyHouF
pipeline. The mismatch is defined as the relative loss
of signal power, namely

µ = 1− ρ2
r

ρ2
, (30)

where ρ2 is the full signal power (given by Eq. 20 in [11])
and ρ2

r is the signal power recovered by the search.

The total mismatch of the BinarySkyHouF pipeline
has several contributions, which can be separated in co-
herent and semi-coherent mismatches. The main con-
tributions to the coherent mismatch are offsets between
signal and the closest template in the coherent template
grid, and the usage of the (truncated) Taylor coordi-
nates uk, while the semi-coherent mismatch is produced
by signal-template offsets in the semi-coherent grid and
approximations in the interpolation mapping (discussed
in the previous section).

1. Mismatch due to Taylor-coordinate truncation

The usage of a limited number of Taylor coordinates
uk incurs an intrinsic mismatch due to the correspond-
ing approximation of the signal waveform. In practice we
currently envisage using only u1 or at most up to order
u2, which turns out to be sufficient for currently con-
sidered practical all-sky binary searches (similar to the
recent search [1] using only u1) due to computational con-
straints. Therefore we quantify the mismatch and corre-
sponding constraints on the maximum coherent segment
length Tseg due to truncation to order u1 or u2.

The mismatch µuk
due to omission of order uk (and

higher) can be easily estimated as µuk
∼ gkk u

2
k using

the metric gkl in uk-space, which is given in Eqs. (56, 57)
of [4]. Using this we can express the mismatch due to
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truncation of uk≥2 or uk≥3 as

µu2
≈ g22 u

2
2 =

π2 T 4
seg

180
u2

2,

µu3
≈ g33 u

2
3 =

π2 T 6
seg

4032
u2

3.

(31)

Using a time-average 〈.〉 over segments together with
Eq. (16) for u2 we obtain

〈
u2

2

〉
≈ 1

2f
2
0a

2
pΩ4 + f2

1 (neglect-
ing smaller corrections), and for u3 we can use Eq. (58)
of [4] as an estimate, which yields

〈
u2

3

〉
≈ 1

2f
2
0a

2
p Ω6, and

so we obtain the (segment-averaged) mismatch estimates
as

〈µu2〉 ≈
π2 T 4

seg

360

(
f2

0a
2
pΩ4 + 2f2

1

)
, (32)

〈µu3〉 ≈
π2 T 6

seg

8064
f2

0a
2
p Ω6 , (33)

which illustrate the fact that the segments must be short
compared to the orbital period, i.e., Tseg Ω� 1, in order
for the Taylor-coordinates uk to be a good approxima-
tion, as discussed in [4].

We can rearrange these equations to obtain a con-
straint for the maximum coherent time Tseg allowed for a
given acceptable mismatch contribution 〈µu〉 from Taylor
truncation, namely when using only u1 we find

Tseg,u1 ≤

(
360 〈µu〉

π2
(
f2

0a
2
pΩ4 + 2f2

1

))1/4

, (34)

and similarly for truncation after u2 we obtain the con-
straint

Tseg,u2 ≤
(

8064 〈µu〉
π2f2

0a
2
pΩ6

)1/6

. (35)

These expressions for the maximum coherent time are
illustrated in Fig. 2 as a function of frequency for differ-
ent choices of binary orbital parameters. It can be seen
that when u2 is also used the maximum coherent time
increases by a certain factor.

Fig. 3 further shows a test of the mismatch given by
Eq. (32), by generating 1000 different signals with a fre-
quency of 300 Hz and random orbital parameters log-
uniformly distributed between [0.1, 1] days and [0.01, 1]
l-s for Ω and ap respectively. For each signal we measure
the perfectly-matched signal power when using physical
coordinates and compare it to the signal power obtained
with Taylor coordinates up to order u1. The correspond-
ing measured mismatch is then compared to the model
prediction of Eq. (32). The figure shows that these equa-
tions correctly predict the measured mismatch, in the
range where the metric approximation is expected to be
accurate (below mismatches of ∼ 0.3).

2. Total mismatch

In the previous subsection we discussed the mismatch
contribution due to using a limited set of Taylor coor-

dinates. Additionally there will be template-bank mis-
matches incurred from the coherent and semi-coherent
template grids. If we count the Taylor-truncation mis-
match µu as part of the coherent mismatch µc, then the
total average (over the template bank) mismatch 〈µ〉 will
be given approximately by the sum of the mean coherent
〈µc〉 and mean semi-coherent mismatch 〈µs〉, as shown in
[7], namely

〈µ〉 ' 〈µc〉+ 〈µs〉 . (36)

From this expression it can be seen that if the mean co-
herent mismatch is reduced while the semi-coherent mis-
match is equal, the total mismatch would decrease.

This is shown in Fig. 4, where the total measured mis-
match can be seen for two different cases, which have dif-
ferent u1 coherent grids but the same semi-coherent grid
(the coherent sky position is the same for both cases, and
it is shifted from the signal value). A decrease in the total
mismatch can be seen for the case where the coherent u1

grid is finer, as predicted by the previous equation. This
represents an improvement over the previous pipeline,
where the coherent frequency grid was fixed to be equal
to the Fourier transform spacing.

3. Maximum spindown and eccentricity

Although BinarySkyHouF is also able to search the
f1 and eccentricity parameters in the semi-coherent sum-
mation, all-sky searches for neutron stars in binary sys-
tems are so computationally expensive that one will usu-
ally not be able to explicitly search over these param-
eters. For this reason, we want to know the values to
which the pipeline is still sensitive in this case, which
will depend on the particular set-up (such as the amount
of data and the coherent time). Here we provide expres-
sions and some tests that help to quantify the limits of a
search to these parameters.

The maximum value of f1 allowed by the search is im-
portant when the astrophysical upper limits are inter-
preted, since this value sets a limit to the maximum el-
lipticity (deformation) or r-mode amplitude that can be
found by a search. This is because a higher value of these
quantities would produce a higher f1 (due to the emission
of gravitational waves), which would not be detectable by
such search.

The semi-coherent grid is constructed by requiring a
maximum mismatch µM. We can estimate the maximum
allowed values by calculating the resolution for these pa-
rameters:

f1;max ≡ δf1 =

√
µM

gf1f1
=

√
45µM

4π2T 2
segT

2
obs

, (37)

emax ≡ δe =

√
µM

gee
=

√
6µM

π2T 2
segf

2
0 Ω2a2

p

, (38)
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FIG. 2. The left plot shows the maximum coherent time that can be used at a given region of the binary parameters and for
a certain mismatch due to the Taylor truncation (we show the results for 〈µu〉 = 0.1 with the lines and 〈µu〉 = 0.4 with the
dashed lines) using only the u1 Taylor coordinate for the coherent demodulation. The right plot shows the same but if the
coherent demodulation is done using the u1 and u2 Taylor coordinates. All the traces have been calculated with f1 = 0, which
makes the resulting Tseg more conservative.

FIG. 3. Measured (averaged over the segments of the search)
against predicted coherent mismatch given by equation (32)
for 1000 injections, using the H1 detector with 1 year of data
and segments of Tseg = 900 s. The black line shows the values
where the predicted and measured mismatch are equal.

where gf1f1 is obtained from [29] assuming that the re-
finement factor is equal to Nseg and that there are no
gaps, and gee is obtained from [4].

It can be seen that for f1 the calculation is straightfor-
ward, while for e there is a dependence on the frequency
and orbital parameters. To calculate a limit, one can
take the parameters that produce the most conservative
eccentricity, or calculate a mean value of the parameter
space boundaries. The eccentricity equation has the ex-

FIG. 4. Mismatch histograms for 1000 injections with random
parameters, using the H1 and L1 detectors with 1 year of
data and segments of Tseg = 900 s. The green (rightmost)
histogram shows the result with a grid resolution of δu1 =
1/Tseg, while the red (leftmost) histogram shows the result
with a finer resolution of δu1 = 0.25/Tseg. Only u1 and a
single sky position are searched in the coherent stage. The
semi-coherent grids are equal for both cases.

act same dependencies as Eq. 43 of [14], while now we
make explicit the dependence on the desired maximum
mismatch.

The previous equations only quantify the mismatch
that would be produced by the f1 and eccentricity val-
ues themselves. When this mismatch is added to the
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FIG. 5. This plot shows the measured mismatch for 1000
injections with random parameters, using the H1 detector
with 1 year of data and segments of Tseg = 900 s. From
left to right, the blue (A) histogram shows signals with
f1 = 0 and e = 0; the red (B) histogram shows signals
with f1 and e log-uniformly respectively distributed between
[−4.7×10−14,−4.7×10−11] Hz/s and [0.2×10−4, 0.2×10−1];
the black (C) histogram shows signals with f1 and e given by
the maximum value; the yellow (D) histogram shows signals
with f1 and e given by twice the maximum value.

mismatch produced by the other parameters, the re-
sults could be slightly different, due to correlations be-
tween some of the parameters. Furthermore, a value
higher than the one given by these expressions does not
mean undetectability, only that the mismatch distribu-
tion would be shifted to higher values, thus decreasing
the sensitivity of the search.

We can compare the mismatch distribution obtained
with the same grid, for four different cases: signals with
f1 = 0 and e = 0; signals with the maximum values; sig-
nals with values in between (with log-uniform distribu-
tions up to the maximum value); signals with double the
maximum value. This is shown in Fig. 5, where it can be
seen that signals with parameters at the maximum value
(the eccentricity maximum has been calculated using the
binary parameters that give the largest eccentricity) in-
crease the mean mismatch by ∼ 0.08, which would reduce
the sensitivity of a search by ∼ 5%.

D. Computational model

In this section we explain how the computational cost
and Random Access Memory (RAM) of our pipeline scale
with different set-up variables, updating and expanding
Sec. VF of [14].

1. Coherent computational cost

Due to the calculation of the F-statistic values, the co-
herent stage will have an additional computational cost,
besides loading the input data and calculating the partial
Hough map derivatives. In order to estimate this cost,
we summarize the content of [30]. The cost of calculating
the F-statistic or its related quantities in segment ` at a
single sky-patch scales with9:

τF ;` = NT;`(Nu1
Ndtermsτcore + τbuffer), (39)

NT;` =

Ndet∑
X=1

NSFT;`,X , (40)

where τcore and τbuffer are fundamental timing constants
that only depend on the hardware and optimization set-
tings (usually τbuffer is approximately one order of mag-
nitude bigger), 2Ndterms + 1 are the number of frequency
bins that are used for the calculation of the Dirichlet
kernel, Nu1 is the number of coherent u1 templates, and
NT;` is the total number of SFTs in segment `. The pre-
vious equation assumed that all Taylor coordinates above
u1 are effectively 0. If a grid of templates is needed for
those coordinates, the cost will scale linearly with the
number of templates higher than u1.

The total coherent computational cost of a single sky-
patch scales with the number of segments:

τF =

Nseg∑
`=1

τF ;ı = NSFT(Nu1Ndtermsτcore + τbuffer). (41)

Since the calculations done for each segment are indepen-
dent from the rest, this can be easily parallelized. We use
an OpenMP loop to take advantage of multi-core CPUs,
which can speed-up the calculation by approximately the
number of used cores.

The total coherent computational cost will scale lin-
early with the number of sky-patches.

2. Semi-coherent computational cost

In the semi-coherent stage the coherent detection
statistics are combined for every different template that
is searched.

The cost of the first stage τH;j over a sky-patch j scales
as:

τH;j = NfsNseg b(Nbinary)gj(Nδ, Nα, δu1 , δs)h(r)τ1, (42)

where Nfs is the number of semi-coherent frequency and
spindown templates, b is a function containing the non-
linear dependency on the number of binary templates

9 Although here we explain the so-called demod implementation,
our pipeline can also use the resamp implementation [30].
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Nbinary, g is a function describing the effective number
of semi-coherent sky points that are needed (due to the
SkyHough algorithm), Nα and Nδ are the number of
right ascension and declination points in each sky-patch,
δs is the semi-coherent sky grid resolution, h is a function
that depends on the threshold r set at the coherent stage,
and τ1 is a fundamental timing constant. The total semi-
coherent cost will scale with the number of sky-patches.

In the previous paper [14] it was assumed that b =
Nbinary and g = NδNα, which left some details out.

The function b depends on the GPU architecture. If we
would use a CPU, it would simply be equal toNbinary, but
if we use a GPU it depends non-linearly on parameters
such as the occupation of the GPU cores and the usage
of shared memory. This can be seen in Fig. 7, where the
non-linear scaling with Nbinary is clear.

The function g is equal or less than NδNα, and it en-
codes the SkyHough-type sky interpolation mechanism,
which depends on the relation between the size of the an-
nulus produced by the Doppler modulations and the size
of the semi-coherent sky grid, as explained in Sec. IVB
of [16]. At a given timestamp, the sky-patches with n̂
more parallel to ~v have wider annulus, which may con-
tain several semi-coherent sky pixels, thus lowering the
number of sky points that need to be taken into account
in the semi-coherent loop. This effect will be different at
each timestamp, and over a long observing run this will
produce an average value between 1 and NδNα for the
function g. This effect gives the SkyHough algorithm a
computational advantage.

The function h is different than 1 for a non-zero thresh-
old r, which substitutes coherent values to 0 when be-
low the threshold, thus reducing the computational cost.

This function is given by h = e−
r
〈r〉 , where 〈r〉 is the

expected value of the coherent detection statistic.
We define the average cost of the first stage 〈τH〉 over

different sky-patches j:

〈τH〉 = NfsNsegb(Nbinary) 〈gj(Nδ, Nα, δu1
, δs)〉h(r)τ1.

(43)

The cost of the second stage τR scales as:

τR = Nsegb(Ncand)Naτ2, (44)

where Ncand is the number of templates that are passed
to the second stage, Na is the number of additional points
around each template that are searched (in case a refine-
ment is done), b is the same function as before, and τ2 is
a fundamental timing constant.

The total semi-coherent computational cost is the sum
of the first and second stage.

3. Total computational cost

In order to estimate the total computational cost of a
search, we add the coherent and semi-coherent costs (we
are neglecting other costs such as loading the data and

FIG. 6. Timing for a single sky-patch of a 0.1 Hz frequency
band. The orange points show the cost of the semi-coherent
stage, while the blue points show the cost of the coherent
stage (including the F-statistic computation and the gener-
ation of the partial Hough map derivatives). We have used
a Tesla V100 and a Intel(R) Xeon(R) Silver 4215 CPU 2.50
GHz (using a single core) to obtain the timings.

writing output to files, since in a realistic scenario they
are negligible):

τ =

NF∑
l=1

NSP;l(τF + 〈τH〉l + τR;l), (45)

where NF is the number of frequency bands that are
needed to cover a certain frequency range, and NSP;l is
the number of sky-patches at frequency band l.
〈τH〉l and τR;l depend on the frequency band since

Nbinary, Nδ, Nα, and Ncand scale with the frequency.
Fig. 6 shows a comparison of the coherent and semi-

coherent costs as a function of the number of binary tem-
plates. It can be seen that the coherent cost stays con-
stant, but the semi-coherent cost increases, as expected.
Previous searches using the BinarySkyHough or Bina-
rySkyHouF pipelines have used Nbinary larger than 105,
so it can be seen that the coherent cost will be a small
fraction of the total cost. If the number of binary tem-
plates is small, the coherent computational cost will have
a non-negligible impact on the total cost. This also hap-
pens for isolated searches, where the search over binary
parameters is substituted with a search over f1 values,
which usually is much less than 105. In these two cases,
calculating the F-statistic might lower the sensitivity or
the span of a search.

When comparing the computational cost to the previ-
ous pipeline, it is important to notice that when using
F-statistic as the coherent detection statistic, the total
computational cost is reduced when compared to using
SFT power for multi-detector searches. This is because
the semi-coherent summing of the power is done over
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FIG. 7. Timing for a single sky-patch of a 0.1 Hz frequency
band. The blue points show the cost of the search for the pre-
vious pipeline using the SFT power as the coherent detection
statistic, the orange points show the cost for the new pipeline,
and the green points show the cost for the new pipeline using
the F-statistic as the coherent detection statistic. The three
searches have used the same number of templates, the same
amount of data (Gaussian noise with equal amount of data
from detectors H1 and L1), and a threshold of 0. We have
used a Tesla V100 and a Intel(R) Xeon(R) Silver 4215 CPU
2.50 GHz (using a single core) to obtain the timings.

∼ NsegNdet values, while the F-statistic generates Nseg

coherent detection statistics (assuming equal timestamps
for all detectors). For this reason, in the semi-coherent
stage the combination of powers will take roughly Ndet

more times than the combination of F-statistic values.
If the template grids are the same in both cases, it can
be seen that the computational cost of a semi-coherently
dominated search using the F-statistic will be reduced.
This improvement can be seen in Fig. 7, where the green
points show the lowering of the computational cost com-
pared to the orange points.

Besides this improvement, we have also modified the
code in order to improve its efficiency10. Fig. 7 shows
a comparison between the old and new code, using the
exact same set-up. It can be seen that as the number
of binary templates is increased (the size of the occupied
RAM is increased), the new code becomes more efficient.
This efficiency improvement is translated to a lowering
of the fundamental timing constant τ1.

10 The speed-up of the code is mainly given by a better usage of
CUDA’s coalesced global memory access.

4. RAM

We want to estimate the RAM required by Bina-
rySkyHouF . To do so, we find the scaling of the data
structures in the code as a function of input parameters
such as the maximum mismatch, the coherent time, and
the size of the data.

The biggest data structures in the code are:

• The partial Hough map derivatives, which hold the
results from the coherent stage:

SP = 6NsegNu1
Nuk≥2

Nsky, (46)

where Nuk≥2
is the number of templates for Tay-

lor coordinates of order higher than 1, and Nsky =
NδNα.

• The per-frequency bin semi-coherent results:

SR = 8NbinaryNsky. (47)

These structures are orders of magnitude larger than the
rest and are enough to give an estimate of the required
RAM.

The main differences with the previous pipeline are:

• The number of frequency bins needed in the partial
Hough map derivatives slightly decreases due to the
coherent sky demodulation.

• Due to the coherent multi-detector combination,
the number of segments is reduced.

• If more than one Taylor coordinate needs to be
used to maintain the mismatch at a certain level,
the RAM increases in order to hold the coherent
results. This will limit the number of Taylor co-
ordinates that can be used at a certain coherent
time.

Another RAM limitation of the code is due to the usage
of CUDA’s shared memory in the GPU kernel functions.
This limits the size of the sky-patches, which is dependent
on the GPU architecture. The shared memory size is
given by:

SS = 4TNsky, (48)

where T is the number of threads per block in the GPU
kernel launch.

IV. SENSITIVITY AND PARAMETER
ESTIMATION

In this section we will estimate the sensitivity of the
new pipeline, and compare it to the previous one. In
order to do this, we will compare different detection
statistics, showing the improvements in sensitivity that
are possible due to the usage of demodulated statistics.
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We are not attempting to estimate the real sensitivity
that these pipelines could have in an actual search, since
that number also depends on other post-processing pro-
cedures, such as clustering or follow-up, which we do not
study in this paper.

To estimate the sensitivity, we will follow the same
common procedure that was used in [14]. For every dif-
ferent setup (amount of data, detectors and their rela-
tive sensitivity, maximum mismatch, coherent time) and
detection statistic we generate Gaussian noise and do a
search to obtain the threshold at a certain false alarm
probability (in the results shown, we use the top tem-
plate as the threshold). Afterwards, we add 6 groups
(each with a different gravitational-wave amplitude) of
1000 randomly distributed signals to the previously gen-
erated Gaussian noise, and perform a separated search
for each signal to calculate the detection statistic values,
which are then compared to the threshold. The detec-
tion probability is then obtained by counting the number
of detected signals and dividing by the total number of
signals. This is done for every different detection statis-
tic. The signals that we add have a random isotropic
orientation, a random isotropic sky position, a random
f0 between [100, 100.1] Hz, and a random Porb and ap

between [15, 60] days and [10, 40] l-s, respectively.
The detection statistics that we want to compare are

the Hough number count (given by Eq. 25 of [14]), the
power (given by Eq. 26 of [14]), the F-statistic (given
by Eq. 23 of [11]), and the dominant-response statistic
(given by Eq. 34 of [11]). For each of these statistics
we also compare their weighted versions. We show the
results for a single set-up, but we have tried set-ups with
different amount of data and mismatch distributions and
have obtained similar results.

A. Comparison of detection statistics

In this subsection we show a comparison of different
detection statistics. The left plot of Fig. 8 shows the sen-
sitivity of two unweighted and three weighted detection
statistics when using two detectors, while the the right
plot shows the comparison when using three. Both plots
show that the most sensitive statistic is the weighted
dominant-response statistic. For the two detectors case,
the sensitivity of the power and F-statistic is within the
statistical errors, but the right plot shows that for more
than two detectors the F-statistic is more sensitive, as
expected from the smaller number of degrees of freedom
of the background distribution, since the power statis-
tic combines semi-coherently the coherent per-detector
results, while the F-statistic combines coherently the co-
herent per-detector results. For this reason, for two de-
tectors the number of degrees of freedom is equal for both
statistics, while for more than two detectors it is less for
the F-statistic. The plot also shows that the detection
statistics improve their sensitivity (for this short coher-
ent time) when weights are applied. From these results

the advantage of being able to use the F-statistic or the
dominant-response statistic is clear.

We also compare the parameter estimation of the
weighted detection statistics. To do this, we select the
template with the highest detection statistic, and com-
pare its parameters with the parameters of the artificial
signal. We do this for the six different searched dimen-
sions, and only for the signals that have been detected.
The results are shown in Fig. 9. It can be seen that
the different detection statistics show a very similar be-
haviour. It can also be seen that for all the detection
statistics, more than 90% of the signals are recovered
within one bin.

B. Refinement stage

Our pipeline consists of two stages, where a percent-
age of the templates with the highest detection statis-
tic are reanalyzed in the second stage with accurate uIk

expressions, and possibly with a mismatch refinement.
The BinarySkyHough pipeline used the second stage
to reanalyze the templates with a more sensitive detec-
tion statistic, using the weighted power instead of the
weighted number count.

In order to do a fair comparison with the previous
pipeline, we need to compare the new detection statis-
tics with the weighted number count with a second stage
where the weighted power is used. The sensitivity of this
procedure depends on the percentage of templates that
is passed to the second stage. If it is high enough, at a
realistic low false alarm probability the sensitivity of the
search would be given by the statistic used at the second
stage, thus increasing the sensitivity. For a candidate
to count as detected when using a second stage, we also
require that the detection statistic of the first stage is
higher than the threshold set by the last candidate that
was sent to the second stage.

Fig. 10 shows the comparison of the weighted number
count without a second stage with the result when 1%
of the templates have been passed to the second stage.
It can be seen that the sensitivity of the weighted num-
ber count (we have used a threshold of 3.211, the optimal
value) is within the uncertainty errors of the weighted
power. This shows that due to the second stage, the
previous pipeline sensitivity was effectively given by the
weighted power statistic. It can also be seen that the
sensitivity of the weighted dominant-response statistic is
slightly improved with the refinement stage, due to the
usage of the exact uIk equations. As the right plot of
Fig. 8 showed, for more than two detectors the sensitivi-
ties of these detection statistics would be more different.

11 In our case the expectation value of the power statistic is 2, while
in [16] the expected value was 1. This is the reason for the factor
of 2 difference.
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FIG. 8. Detection probability as a function of the sensitivity depth for 5 different detection statistics. The points have been
slightly displaced in the x-axis to ease visibility. The error bars show the 95% binomial confidence interval. The left plot shows
the results using Gaussian noise from the H1 and L1 detectors, while the right plot shows the results using Gaussian noise from
the H1, L1, and V1 detectors. All detectors have the same amplitude spectral density and one year of data. We have used a
coherent time of 900 s.

FIG. 9. Parameter estimation for 3 different weighted detec-
tion statistics. We show the cumulative distribution for 1000
artificial signals, joining together the 6 different searched pa-
rameters. The plot shows the results using Gaussian noise
from the H1 and L1 detectors. All detectors have the same
amplitude spectral density and one year of data. We have
used a coherent time of 900 s.

C. Increasing the coherent time

One of the main advantages of the new pipeline is the
possibility of extending the coherent time while maintain-
ing the same mismatch. While extending the coherent
time increases the computational cost, it also increases
the sensitivity of the search. For a large number of seg-

FIG. 10. Detection probability as a function of the sensitivity
depth for five different detection statistics. The points have
been slightly displaced in the x-axis to ease visibility. The
error bars show the 95% binomial confidence interval. The
plot shows the results using Gaussian noise from the H1 and
L1 detectors. All detectors have the same amplitude spectral
density and one year of data. We have used a coherent time
of 900 s.

ments, the sensitivity of a StackSlide search scales as

N
−1/4
seg [7]. If we assume that the false alarm probabil-

ity stays constant, it can be seen that in order to double
the sensitivity of a search the coherent time needs to be
multiplied by 16.

In this section we compare the sensitivity between a
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FIG. 11. Detection probability as a function of the sensitivity
depth for 6 different detection statistics. The points have
been slightly displaced in the x-axis to ease visibility. The
error bars show the 95% binomial confidence interval. The
plot shows the results using Gaussian noise from the H1 and
L1 detectors. All detectors have the same amplitude spectral
density and one year of data. We have used a coherent time
of 900 s and 3600 s.

search with a coherent time of 900 s and a search with
3600 s, with the same maximum mismatch parameters.
For this comparison we have added signals from a differ-
ent region of the binary parameter space: random Porb

and ap between [0.785, 0.8] days and [0.5, 0.6] l-s respec-
tively. In this region of the parameter space several u2

templates are needed in order to maintain the same co-
herent mismatch for the coherent time of 3600 s, while
all searches with 900 s do not need any u2 template.

Fig. 11 shows the results by comparing the dominant-
response detection statistic for these two coherent times,
and also for a search with the long coherent time but
without searching for additional u2 templates. The im-
provement in sensitivity (taking into account the in-
creased number of templates) due to using a longer coher-
ent time is clear, both for the weighted and unweighted
cases. For the unweighted detection statistics, the max-
imal improvement due to a 4 times increase in coherent
time would be around 1.41, which is approximately what
is observed in the figure. It can also be seen that as
the coherent time increases, the improvement from us-
ing a weighted detection statistic decreases (for constant
Gaussian noise), since the different segments contribute
more equally to the total signal power as the segment
duration approaches one sidereal day. The figure also
shows that when the longer coherent time is used, but
no u2 templates are searched in the coherent stage, the
sensitivity decreases due to the larger mismatch.

V. CONCLUSIONS

In this paper we have presented an improved pipeline
to search for continuous gravitational waves from neu-
tron stars in binary systems. The new BinarySkyHouF
pipeline is an update of the BinarySkyHough pipeline
and represents an improvement over many different as-
pects. The new pipeline can cover the same parameter
space at a reduced computational cost. The usage of the
F-statistic or other related statistics allows the increase
of the coherent time, which improves the sensitivity and
gives more flexibility to the pipeline. Furthermore, the
per-detector data can be coherently combined, which fur-
ther reduces the computational cost (by a factor Ndet,
assuming equal amount of data per detector), and im-
proves the sensitivity for searches with more than two
detectors.

The new pipeline is able to limit the mismatch in the
coherent stage, thus allowing us to perform a low mis-
match search if desired. The pipeline could be used
to do a semi-coherent search on a reduced frequency or
sky region with more sensitivity due to less mismatch
and higher coherent time, while with the previous Bi-
narySkyHough pipeline this was not possible. The
eccentricity, argument of periapse, and first frequency
derivative can now also be explicitly searched. For this
reason, this pipeline can also be used to followup candi-
dates from different types of searches, or from an all-sky
isolated pipeline which gives a range of binary parameters
to follow-up.

BinarySkyHouF still has some limitations. The Tay-
lor coordinates used in the coherent stage only allow the
search over orbital periods longer than a certain value re-
lated to the coherent time, as shown in Sec. III C 1, thus
reducing the possibilities of a search over the shortest or-
bital periods with long coherent times. Furthermore, the
RAM usage also limits the number of Taylor coordinates
that can be used, thus limiting the maximum coherent
time in certain regions of the parameter space.

Further research could lead to some improvements that
might be applied to this pipeline. For example, the usage
of the full Taylor expansion developed in App. A, or the
usage of a non-zero threshold or a smaller amount of seg-
ments at the first stage. Further enhancements could be
produced by reducing the mismatch in the second stage,
by refining the grid and searching for additional tem-
plates. In the future it would be interesting to obtain an
optimization algorithm that calculates the optimal maxi-
mum mismatch and coherent time given a certain amount
of data and computational budget. Another venue for
further research is to find how to optimally combine the
semi-coherent results, since this is not known. We also
want to explore the performance and advantages of other
coherent detection statistics, such as ones that are robust
to non-Gaussian noise features [31].
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Appendix A: Detector-frame Taylor coordinates

In Sec. II we introduced short-segment SSB Taylor co-
ordinates {uk}, defined by the Taylor expansion of the
signal phase in the SSB frame around each segment mid-
point. Here we show how similar detector-frame Taylor
coordinates {uXk } can be expressed for the phase evolu-
tion in the frame of detector X, which additionally in-
cludes the phase modulation due to the detector motion.

In complete analogy to Eq. (10) we can write the
Taylor-expansion in detector arrival time t around a mid-
time tm:

φX(t) = φ0 + 2π

kmax∑
k=1

uXk
k!

(t− tm)k , (A1)

with the detector-frame Taylor coordinates {uXk }
kmax

k=1 de-
fined as:

uXk ≡
1

2π

dkφX

dtk

∣∣∣∣
tm

, (A2)

in terms of the timing relation between source-frame
(emission) time τ and detector-frame (arrival) time t,
obtained by combining Eqs. (4) and (5):

τX(t) = τ(tX
SSB

(t)) = t+ ~rX(t) · n̂−R(τX). (A3)

The expressions Eq. (12) are formally identical, with the
SSB derivatives τ (k) replaced by detector-time deriva-
tives τX(k) ≡ dkτX/dtk, which are found as

τ̇X = [1 +R′]
−1

(1 + ~̇rX · n̂),

τ̈X = [1 +R′]
−1
(
~̈rX · n̂−R′′ τ̇X2

)
,

...
τ X = [1 +R′]

−1
(...
~r
X · n̂−R′′ τ̇X3 − 3R′′ τ̈X τ̇X

)
,

...
(A4)

which generalizes Eq. (14).
We can write the first two orders explicitly as

uX1
fm

=
1 + ~vXm · n̂

1 +R′m
,

uX2 =
fm

1 +R′m

(
~aXm · n̂−R′′m

(
uX1
fm

)2
)

+ f ′m

(
uX1
fm

)2

,

(A5)

with the definitions of Eqs. (17) and (18) (for small ec-

centricity and a single spindown), and ~vXm ≡ ~̇rX(tm),

~aXm ≡ ~̈rX(tm) and detector velocity and acceleration at
the segment mid-time tm, respectively. Again, these co-
ordinates have units of Hz and Hz2 respectively, but now
also depend on the detector X and on the sky position n̂
of the signal.

Assuming no spindown f1 = 0, a circular orbit (e = 0),
and a non-relativistic orbital velocity apΩ� 1, Eq. (A5)
yields an approximate equation for the frequency-time
pattern, namely

uX1 ≈ f0 (1 + ~vXm · n̂) (1− apΩ cos Ψm)

≈ f0 + f0 ~v
X
m · n̂− f0 apΩ cos Ψm,

(A6)

which is the same as Eq. (15) of [14], evaluated at segment
mid-time tm.
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