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The gain and loss in photonic lattices provide possibilities for many functional phenomena. In this Letter,
we consider photonic topological insulators with different types of gain-loss domain walls, which will
break the translational symmetry of the lattices. A method is proposed to construct effective Hamiltonians,
which accurately describe states and the corresponding energies at the domain walls for different types of
photonic topological insulators and domain walls with arbitrary shapes. We also consider domain-induced
higher-order topological states in two-dimensional non-Hermitian Aubry-André-Harper lattices and use
our method to explain such phenomena successfully. Our results reveal the physics in photonic topological
insulators with gain-loss domain walls, which provides advanced pathways for manipulation of non-
Hermitian topological states in photonic systems.

DOI: 10.1103/PhysRevLett.129.053903

Introduction.—Aphotonic topological insulator (PTI) is a
photonic crystal that behaves as an insulator in its interior
while its boundaries provide robust transport channels.
According to the photonic band theory and the bulk-
boundary correspondence, when a PTI is coupled to another
system that resides in a different topological phase, the
adjacent part, called the domain wall, will provide topo-
logical channels [1–3], which support topological states
[4–10], or even higher-order topological states [11–19]. The
existence of such channels is protected by the bulk proper-
ties of PTIs, leading to their robustness against disorders.
The above phenomena have been confirmed in various types
of PTIs, including those characterized by Chern numbers
[20,21], spin Chern numbers [22], valley Chern numbers
[23,24], or bulk polarization [25]. PTIs’ characteristic
properties have been widely used in low-loss waveguides,
robust delay lines, and topological light sources [26–30].
Nevertheless, these configurations usually have difficulties
with flexible control of topological states.
As non-Hermitian effects can be useful in practical

applications, the frontiers of topological materials and
devices research extend into non-Hermitian systems
[31–36]. Unlike electronic systems, optical electromagnetic

waves transmitting in materials can exhibit gain or loss
responses, providing a functional platform for quantitively
controlling non-Hermitian effects. It has been reported that
adding certain gain and loss in unit cells can lead to a
topological phase transition in photonic lattices [37–40].
These systems still have translational symmetries, which
allow us to study their properties by topological band
theory. Just like the Hermitian case, topological states will
appear at the domain wall when combining two topological
distinct systems, for example, a non-Hermitian PTI and its
Hermitian, topological trivial counterpart. Recently, it has
been shown that a single gain-loss domain wall in a gauge
field system can support topological edge states, while two
domains that make up the domain wall are topological
equivalent [41]. However, it usually requires solving non-
Hermitian matrices with large dimensions to study such
phenomena due to the lack of translational symmetry. So
far, there is no general and simple method to analyze PTIs
with gain-loss domain walls, especially in systems with
multidomain walls and in a broader range of topological
systems.
In this Letter, we consider a PTI with several gain-loss

domains. We show that localized states will appear at
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domain walls when we increase the difference of gain and
loss between adjacent domains. Such a phenomenon can be
understood by the coupling of topological states of different
domains. Based on this, we construct effective
Hamiltonians and develop a fitting method to determine
it, which gives accurate descriptions of these states and the
corresponding energies. The above method also reveals
domain-induced higher-order topological states in certain
kinds of PTIs. As a concrete verification, we use a cross-
shaped domain wall to generate corner states in a two-
dimensional(2D) Aubry-André-Harper (AAH) lattice
[20,42,43] (as a representative of Chern insulators) and
use effective Hamiltonians to explain its properties.
Model.—To illustrate our basic ideas, consider a block of

Hermitian PTI. One can introduce a gain or loss effect in
different regions such that the PTI is partitioned into several
domains by gain-loss domain walls. From another per-
spective, the Hamiltonian of such a non-Hermitian PTI can
be written as H ¼ P

i HG;i þ
P

j HL;j þ
P

H0
ij, where the

subscriptsG and L represent “gain” and “loss,” i and j label
different domains, and the interaction between two
domains is denoted by H0. Now suppose that in each
domain, gain (or loss) just provides a constant on-site
imaginary potentialþ iγið−iγjÞ. This will just result in a
pure imaginary shift in the spectra of HG;iðHL;jÞ.
Therefore, HG;iðHL;jÞ also supports topological edge states
individually due to the topological nature of the PTI, even
with non-Hermiticity. We will next show that the behaviors
at domain walls can be succinctly described by the coupling
of these non-Hermitian topological states. We choose the
AAH model as a concrete example of a PTI characterized
by the Chern number to verify the effective Hamiltonian.
Our method can also be used for other models. Detailed
numerical analyses of the Su-Schrieffer-Heeger model [25],
the valley-typed [24] and the C6v-typed [22] photonic
crystals in both topological and trivial cases are provided
in the Supplemental Material, Sec. I [44].
Domain-induced edge states.—Consider a 1D AAH

chain with a tight-binding Hamiltonian

H1D ¼
XN

n¼1

ðΩn þ iγnÞc†ncn þ
XN−1

n¼1

ðtc†ncnþ1 þ H:c:Þ; ð1Þ

where c†nðcnÞ is the creation(annihilation) operator on the
nth site. Ωn ¼ V cos½2πβðn − qÞ þ ϕ� is the on-site poten-
tial and an offset q is introduced in the cosine modulation
[18]. γn represents the on-site gain or loss term. In the
Hermitian case(γn ¼ 0), the above Hamiltonian reflects
properties of a 2D Chern insulator with a synthetic ϕ
dimension. To construct the domain wall, we set γn ¼ γ1
for n ≤ N1 and γn ¼ −γ2 for the remaining part [see
Fig. 1(a)]. Without loss of generality, we choose γ1 ¼ γ2 ¼
γ > 0 since we can always do this by setting the zero point
of the imaginary potential as ðγ1 þ γ2Þ=2. We will normal-
ize all quantities with t unless specified otherwise. For this

choice, Eq. (1) can be written as H1D ¼ HG þHL þH0,
H0 ¼ tc†N1

cN1þ1 þ H:c:, according to our basic model.
Figure 1(b) shows parts of the real and imaginary ϕ
spectrums with parameters N ¼ 48, N1 ¼ 23, V ¼ 3,
β ¼ 1=3, q ¼ 2, and γ=t ¼ 0.8, 1.2, respectively. As γ=t
increases, we find in the ϕ spectrum that certain bands
gradually appear in the band gap around ϕc ¼ 5π=3. There
exists a critical γc (γc=t ≈ 0.94). When γ ≥ γc the emerging
bands form an intersection in the middle of the band gap at
ϕc. Six representative points are selected and the corre-
sponding normalized field distributions are given in
Fig. 2(c), which clearly show that these bands represent
the states localized at the domain wall.
To explain such phenomenon, eigenenergies of the right

edge mode of HG and the left edge mode of HL are shown
in Fig. 1(b) in orange and purple dot lines, which satisfy
HGψG ¼ ðω1 þ iγÞψG,HLψL ¼ ðω2 − iγÞψL. One can see
that we have ω1 ¼ ω2 at ϕc. Also, close to ϕc, we find that
dispersion relations of the two emerging bands have a
square root form when γ ¼ γc [Fig. 1(c)]. The behaviors at
the domain wall can be understood by considering the
coupling of edge channels ofHG;L. Define ψ ¼ ðψG;ψLÞT ,
we give the effective Hamiltonian

Heff ¼
�
ε1 þ iγeff κ

κ� ε2 − iγeff

�
: ð2Þ

Here, nondiagonal elements of Heff are conjugate pairs
because the system is reciprocal. At ϕ ¼ ϕc, we should
have ε1 ¼ ε2. Notice we also have ω1 ¼ ω2 ¼ ω at this

FIG. 1. (a) Schematic diagrams of the 1D-AAH model with
non-Hermitian domain walls. (b) Part of the ϕ spectrum of non-
Hermitian 1D-AAH chain described by Eq. (1). Domain-induced
edge states are colored in red (blue), whose wave functions
concentrate in the left(right) region of the domain wall. Inner plot:
corresponding imaginary parts of the spectrum. (c) At γ ¼ γc, the
dispersion relations of two domain-induced bands have the
square root form.
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point, a proper choice is to set ε1;2 ¼ ω1;2. As for γeff, we
choose γeff ¼ γ since all states of subsystem HGðHLÞ
have this gain(loss). The effective Hamiltonian modeling
the domain wall is PT symmetric only at ϕ ¼ ϕc,
and its two basis for the solution space are given by
ψ� ∝ e−iωteE∓tðc�; 1ÞT . Here E∓ ¼∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − κ2
p

, c� ¼
ð−iγ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − γ2

p
Þ=κ. Two domain-induced edge states

are given by c�ψG þ ψL. When jγj < jκj, we have
jcþj ¼ jc−j ¼ 1, which results in states A and B. While
for jγj > jκj, we have jc−j > 1, jcþj < 1, resulting in
state A0 and B0, respectively. Furthermore, notice that a
variation in ϕ leads to a 2D topological charge pumping in
the synthetic dimension [43]. For ψG, such pumping
accumulates charges at the boundary, while for ψL the
boundary charges tend to disperse into the bulk. From this
perspective, the net accumulation of charges at the domain
wall is zero for section jγj < jκj and nonzero for section
jγj > jκjwhen varying ϕ, which yields γc ¼ jκj is actually a
phase transition point. In the case ϕ ≠ ϕc, ω1 ≠ ω2, ψ is
always made up of unequal ψG;L, resulting in states
C and D.
The value of coupling coefficient κ is determined

through a fitting method. Notice that ψG;L are exponentially
localized at each side of the domain wall with ψG ¼
AGðnÞeαGðn−N1Þ and ψL ¼ ALðnÞe−αLðn−N1−1Þ, n ¼ 1; 2;…
; N, AGðn > N1Þ ¼ BLðn ≤ N1Þ ¼ 0. αG;L are the penetra-
tion depth and can be calculated from the envelope of ψG;L.
To get a fine-tuning of κ, we introduce

φGðnÞ ¼ ψG þ BGðnÞe−λαGðn−N1Þ;

φLðnÞ ¼ ψL þ BLðnÞeλαLðn−N1−1Þ; ð3Þ

with BGðn ≤ N1Þ ¼ BLðn > N1Þ ¼ 0, BGðn > N1Þ ¼
ψGðN1Þ,BLðn ≤ N1Þ ¼ ψLðN1 þ 1Þ. λ is a fittingparameter
describing the ratio between the exponential decay of the
wave function on the two sides of the domain wall [see
Fig. 2(a)]. Then fitting of κ is now turned into the fitting of λ,
and their relation is given by

κðλÞ ¼ hφGjH1Djγ¼0jφLi: ð4Þ

Here, using Hermitian Hamiltonians implies that the cou-
pling strength is not affected by the non-Hermitian term, as
has been shown in previous works [45–47]. We quantify the
differences between the eigenvalues given by H1D and Heff
with different λs near the phase transition point and we find
λ ≈ 9 gives the best match (see the Supplemental Material
Sec. II [44]). Figure 2(b) compares theE − γ=t relation of the
two domain-induced edge states at ϕ ¼ 5π=3 and ϕ ¼
5.15π=3 and Fig. 2(c) compares six representative eigen-
states. Our effective Hamiltonian provides a correct physical
picture. Though we only show the fitting results in limited
parameter regimes, ourmethodcanalsobeapplied tobroader
ranges of ϕ’s and γ’s.
Domain-induced corner states.—This kind of method

can also be applied to analyze domain walls in higher-order
topological insulators. Consider a 2D AAH lattice with
Hamiltonian

H2D¼
XNx

n¼1

XNy

m¼1

ðΩn;mþ iγn;mÞc†n;mcn;m

þ
XNx−1

n¼1

XNy−1

m¼1

ðtxc†n;mnnþ1;mþ tyc
†
n;mcn;mþ1þH:c:Þ; ð5Þ

where c†n;mðcn;mÞ is the creation(annihilation) operator on
the ðn;mÞ site. Ωn;m ¼ Vx cos½2πβxðn − qxÞ þ ϕx� þ
Vy cos½2πβyðm − qyÞ þ ϕy� provides the on-site potential.
γn;m represents the on-site gain/loss term. We set γn;m ¼ γ
for n ≤ N1, m ≤ N2, and n > N1, m > N2ðregion II; IVÞ
while γn;m ¼ −γ for the remaining parts(region I, III) such
that the domain walls form a cross structure located at
ðN2; N1Þ [Fig. 3(a)]. The parameters are chosen as
Nx ¼ Ny ¼ 30, N2 ¼ N1 ¼ 16, Vx ¼ Vy ¼ 3, βx ¼ βy ¼
1=3, and tx ¼ ty ¼ t ¼ 1. In the Hermitian case (γn;m ¼ 0),
Eq. (5) can be written as H2D ¼ Iy ⊗ H1D;x þH1D;y ⊗ Ix,
thus reflecting properties in a four-dimensional (4D)
parameter space ðx; y;ϕx;ϕyÞ. Eigenstates of H2D are
the direct product of two eigenstates of H1D,
jψ2Di ¼ jψ1D;xi ⊗ jψ1D;yi. This idea provides us with
the principle to determine a subspace, in which H2D can
support topological corner states, in the whole 4D phase

FIG. 2. (a) Schematic plot of constructing φ. (b) Comparison of
eigenvalues of domain-induced edge states given by H1D (solid
lines) and Heff with λ ¼ 9 (discrete circles). (c) Comparison of
normalizedfielddistributionsofsixrepresentativedomain-induced
edge states. Only six sites around the domain wall are shown.
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space [18,44,48]. In the non-Hermitian case, by treating the
gain or loss term as a perturbation, we can conclude that
domain-induced corner states must appear in the neighbor-
ing of the related subspace; that is, around ϕx ¼ ϕy ¼ π=3
for the above parameters.
Figure 3(b) shows part of the 2D ϕ spectrums of H2D on

the plane ϕx ¼ ϕy with γ=t ¼ 1.7 and 2.1. We only
highlight the corner states localized strongly at the middle
four sites, even if there are many localized states supported
by such domain walls (see the Supplemental Material,
Sec. IV [44]). It can be seen that a bridge-shaped inter-
section gradually forms in the band structure when increas-
ing γ=t. There is always a near flat band (colored black,
band 4), whose wave function is supported equally in
region I and III. When γ is small, states related to bands 1, 2
concentrate in region II and IV, respectively. For each ϕ
there is one state left, we color it green (band 3). When
increasing γ, bands 1, 2, 3 approximately overlap in the
center, resulting in three new bands 10, 20, and 30. Several
typical states are shown in Fig. 4(b) (see Supplemental
Material Sec. III for more detailed field distributions at
different ϕx’s [44]).
Just like what we did in the 1D case, H2D can be

written as H2D ¼ P
4
i¼1 Hi þ

P
4
i;j¼1H

0
ij. The effective

Hamiltonian H2D
eff can be constructed by considering the

coupling of four corner channels (ψ i, i ¼ 1–4) that make
up the cross-shaped domain walls. ψ i satisfies Hiψ i ¼
ðωi � iγÞψ i (“þ” for i ¼ 2, 4 and “−” for i ¼ 1, 3). The
coupling coefficient between ψ i and ψ j is given by
κijðλÞ ¼ hφijH2Djγ¼0jφji. φi can be constructed from ψ i

by introducing an exponential decay outside the related
subsystem, just like the 1D case [see Fig. 4(a)]. Here, we

turn a six-dimensional fitting of κijs into the fitting of a
single parameter λ, since the four subsystems are divided
from one bulk. Figure 4(b) shows the value of jκijj when
varying λ. The results allow us to set jκ13j ¼ jκ24j ¼ 0 and
jκ12j ¼ jκ14j ¼ jκ23j ¼ jκ34j for preliminary theoretical
analysis. Since we have ω1 ¼ ω3 ¼ ωðϕÞ for all ϕs [see
Fig. 4(c)], H2D

eff always has an eigenstate with probability
density ð1=2; 0; 1=2; 0ÞT, whose eigenvalue is ω − iγ. This
kind of state is related to band 4 observed above. The
remaining states can be considered as a trade-off between
two effects. Close to ϕx ¼ π=3, we also have ω2 ≈ ω4 ≈ ω,
makingH2D

eff nearly PT symmetric. When increasing γ,H2D
eff

becomes PT broken, which leads to bands 10–30. Besides,
away from ϕx ¼ π=3, the difference between ω2 and ω4

becomes relevant, promoting asymmetric effects and
results in band 1 and 2. When ϕx > ð<Þπ=3, we have
ω2 > ð<Þω4, so the upper and lower relation of band 1
and 2 exchange at the two sides of ϕx ¼ π=3. Figures 4(d)
and 4(e) compare the E − γ=t relationship of the four
target states and field distributions of typical domain-
induced corner states given by H2D and H2D

eff with λ ¼ 9.5.
We achieve precise descriptions by adjusting only one
parameter λ.

FIG. 4. (a) Schematic plot for constructing assistant states φs in
the 2D case. (b) Relations between κij and λ. Some quantities
have been shifted by a constant for a better distinction. (c) ω’s at
different ϕx’s. We always have ω1 ¼ ω3. (d) Comparison of
eigenvalues of four domain-induced corner states given by H2D

(solid lines) and Heff
2D with λ ¼ 9.5 (discrete circles). (e) Com-

parison of normalized field distributions of four chosen states
around the intersection.

FIG. 3. (a) Layout of a 2D-AAH model with a cross-shaped
domain wall. (b) Real and imaginary ϕ spectrum of Eq. (5) on the
plane ϕx ¼ ϕy in the neighborhood of ϕx ¼ π=3. Only domain
induced corner states are colored. Inner plot: The enlarged
drawing of the gray dot-dash box.
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We finally show that our method is also applicable for
behaviors at domain walls with different positions and
shapes. Figure 5 shows a configuration, where several
domains form 4 domain corners a, b, c, and d. These
domain corners support domain-induced localized states in
different subspaces of ðϕx;ϕyÞ. Domain corners a–c are
similar towhatwe have studied here, except for the positions
of crossings. A P3-typed state is found in each case. As for
case d, the related behavior should be analyzed by consid-
ering the coupling of an L-shaped loss domain and the
adjacent square gain domain. Furthermore, by flexibly
controlling the shapes and gain or loss of each domain,
we can design systems with specific physics. For example, a
third order exceptional point composed of domain-induced
corner states. Detailed analyses of non-cross-shaped domain
walls are shown in the Supplemental Material Sec. V [44].
Conclusion.—We have proposed a universal method to

construct effective Hamiltonians. They can give faithful
descriptions of the eigenenergies and field distributions of
domain induced states, after determining their parameters
through our fitting scheme. The method can also be
extended to higher dimensional cases and other types of
PTIs. We point out that such localized states in PTIs are
protected by the topology of the related Hermitian system.
We also simulate non-Hermitian AAH arrays for possible
experimental realizations of the domain-induced states. The
results are shown in the Supplemental Material Sec. VI [44].
The basic principle of our method, that is, behaviors at gain-
loss domain walls can be understood via the coupling of
subsystems, can be adapted to broader cases, for example,
gain-loss domain walls with different positions and shapes
in nonreciprocal bulk or trivial photonic crystals, except for
possible changes in details of the fitting processes.
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