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Nonuniform elastic strain is known to induce pseudo-Landau levels in Dirac materials. But these
pseudo-Landau levels are hardly resolvable in an analytic fashion when the strain is strong, because
of the emerging complicated space dependence in both the strain-modulated Fermi velocity and the
strain-induced pseudomagnetic field. We analytically characterize the solution to the pseudo-Landau
levels in experimentally accessible strongly bent graphene nanoribbons, by treating the effects of
the nonuniform Fermi velocity and pseudomagnetic field on equal footing. The analytic solution is
detectable through the angle-resolved photoemission spectroscopy (ARPES) and allows quantitative
comparison between theories and various transport experiments, such as the Shubnikov-de Haas
oscillation in the complete absence of magnetic fields and the negative strain-resistivity resulting
from the valley anomaly. The analytic solution can be generalized to twisted two-dimensional
materials and topological materials and will shed a new light on the related experimental explorations
and straintronics applications.

Introduction.– Landau levels [1] act as the canonical
response of the orbital motion of electrons to the applied
magnetic field and are the reason behind so many macro-
scopic quantum phenomena, such as the quantum Hall ef-
fect [2], quantum oscillations [3], and quantum anomalies
[4–11]. The formation of Landau levels in Dirac materi-
als such as graphene or Weyl semimetals, intriguingly,
does not necessarily rely on magnetic fields as long as an
appropriate elastic strain is applied [12–26]. Such strain
displaces the Dirac cones in a space-dependent fashion
analogous to magnetic fields and can thus induce low-
energy pseudo-Landau levels that support quantum os-
cillations [27, 28] as well as the chiral anomaly and the
associated chiral magnetic effect [29, 30]. In the simplest
and most flexible Dirac material – graphene, the exper-
imentally implementable strain can be as large as 27%
[31, 32], and may be of various patterns, such as bend
[33–35], twist [31, 36], and other simple uniaxial ones
[37, 38].

Unfortunately, the pseudo-Landau levels induced by
the aforementioned strain patterns are dispersive and
thus are not directly interpretable by the standard Dirac
theory established for the ordinary dispersionless Lan-
dau levels. For weak strain, the pseudo-Landau level
dispersions are often overlooked for simplicity until a re-
cent study [38] analytically solves such dispersions in a
uniaxially strained graphene nanoribbon with a nonuni-
form Fermi velocity but a uniform pseudomagnetic field.
Nevertheless, understanding how pseudo-Landau levels
disperse in the presence of strong strain is a much more
complicated problem remaining largely unexplored. This
is presumably because the pseudo-Landau levels are ex-
pected to occupy a large portion of the Brillouin zone
with increased strain; and the standard procedure solv-
ing pseudo-Landau levels using linearized Hamiltonians

[15, 16, 20–22, 33, 34, 37, 38] at the Brillouin zone corners
consequently fails.

In this Letter, we present an approach to give ana-
lytic solution to the pseudo-Landau levels in bent zigzag
graphene nanoribbons under strong strain. Our ground
is that the hidden chiral symmetry [39] effectively maps
the graphene nanoribbon unit cell [Fig. 1(a)] into a
Su-Schrieffer-Heeger model [40] at any momentum kx.
For strain-free graphene nanoribbons, the Su-Schrieffer-
Heeger topological end modes for certain kx’s consti-
tute the well-known zero-energy edge states. For bent
graphene nanoribbons, the bipartite hoppings in the Su-
Schrieffer-Heeger model are spatially modulated; and one
of the zero-energy topological end modes is pushed into
the bulk [Fig. 1(b)] and becomes a domain wall mode sep-
arating the topological and trivial sectors of the unit cell.
We elaborate that this zero-energy state centered at the
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FIG. 1. (a) Schematic plot of an undeformed zigzag graphene
nanoribbon. The yellow shadow marks the unit cell with bi-
partite hoppings in aj ↔ bj and bj ↔ aj+1. (b) Schematic
plot of a circularly bent graphene nanoribbon. The strain cre-
ates in the bulk a domain wall (dashed) at which the bipartite
hoppings are identical. The localized domain wall state is the
zeroth pseudo-Landau level |ψ0(y)〉 by nature.
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domain wall is the zeroth pseudo-Landau level by nature.
In the vicinity of the domain wall (i.e., the common guid-
ing center of the pseudo-Landau levels), we restore the
eigenvalue problem into an analytically solvable standard
Dirac equation through linearizing the model Hamilto-
nian. In contrast to the standard linearization around
Brillouin zone corners, our linear expansion is conducted
in real space. It thus treats the strain-modulated Fermi
velocity and the strain-induced pseudomagnetic field on
equal footing to give an accurate analytic solution to the
pseudo-Landau levels in a wide range in the Brillouin
zone. The analytic solution allows us to further explore
the pseudo-Landau-level-mediated transport exemplified
by the Shubnikov-de Haas oscillation in the absence of
magnetic fields and the negative strain-resistivity result-
ing from the valley anomaly. Our techniques are trans-
plantable to a variety of materials such as the twisted bi-
layer graphene and Dirac matter and may pave the way
to straintronics applications.

Model.– We model a strain-free zigzag graphene
nanoribbon [Fig. 1(a)] with the tight-binding Hamilto-
nian

H =
∑
kx,y

b†
kx,y+

δy
6

[2t1,2 cos( 1
2kxδx)+t3ŝδy ]a

kx,y− δy6
+H.c.,

(1)
where δx =

√
3a and δy = 3

2a with a = 1.42 Å being
the lattice constant of the honeycomb lattice; ŝδy is a
shift operator satisfying ŝδyakx,y = akx,y+δy ; and t1,2 = t
(t3 = t) is the hopping parameter along bond α1,2 (α3)
with t = −2.8 eV [41]. In the presence of bend [Fig. 1(b)],
the hopping parameters are spatially modulated (Sec. SI
of Ref. [42])

t1,2 → t exp
{
g
[
1−

√
3
4 (1 + λy)2 + 1

4

]}
≡ t(y), (2)

where λ is the curvature of nanoribbon and g = 3.37 is
the Grüneisen parameter [43]. In the weak strain limit
λy < λW � 1, a common practice [13–15, 21, 28, 33,
37, 38] is to estimate t(y) to the linear order as t(y) ≈
t(1− 3

4gλy). The subsequent linear expansion of Eq. (1)
around the Brillouin zone corners kη = (η 4π

3
√
3a
, 0) gives

hηq = ~vηx(qx − η g
2aλy)σx + ~vηyqyσy, (3)

where η = ±1 is the valley index, (vηx, v
η
y ) = 3ta

2~ (−η, 1) is
the Fermi velocity, and q = k− kη is measured from the
Dirac points. The strain-induced pseudomagnetic field
can be read off as Bη

z = η g~
2eaλ, leading to dispersionless

pseudo-Landau levels Eηn = ±
√

2n|eBη
z~vηxvηy |. However,

such flat pseudo-Landau levels are insufficient to char-
acterize the low-energy electronic structure consisted of
slightly dispersive bands [Fig. 2(a)], because higher-order
terms [e.g., O(qyqx), O(λqx), and O(λqyqx)] in the ex-
pansion of Eq. (1) are also expected to affect the energy
spectrum to the linear order of qx. Supplemented by
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FIG. 2. Strain-induced pseudo-Landau levels in a bent
graphene nanoribbon of width W = 192 nm and bend cur-
vature λ = 0.642µm−1. (a) Numerically calculated bands
(solid) in the vicinity of the K point k = (− 2π

3δx
, 0) with

theoretically proposed flat pseudo-Landau levels Eηn (dotted)
overlaid. The color code represents ȳ. The inset is to better
illustrate the marked band whose flat sector is blocked due
to degeneracy. (b) The same numerical bands overlaid by the
slightly dispersive pseudo-Landau levels Eηn(qx) (red solid).
The blue curves mark the maximally displaced Dirac cones.

these higher-order terms, hηq is modified to

hηq = ~ṽηx(qx − η g
2aλy)σx + ~ṽηyqyσy, (4)

where the Fermi velocity becomes nonuniform with ṽηx =
vηx(1− 3

4λgy) and ṽηy = vηy (1+ 1
2ηqxa− 1

4λgy− 3
8ηqxaλgy),

but the pseudomagnetic field is intact to the lowest or-
der of y. The spectrum of hηq comprises of slightly dis-

persive pseudo-Landau levels Eηn(qx) = Eηn(1 + 3
2ηaqx)1/2

[38], which indeed better capture the energy bands in
Fig. 2(b). It is worth noting that Eηn(qx) only character-
izes the bulk bands bounded between the two maximally
displaced Dirac cones εDC

max = ±~ṽηx(qx− η g
2aλy)|y=±W/2,

while dispersive marginal bands and flat edge bands ap-
pear in and outside the maximally displaced Dirac cones,
respectively (Sec. SIII of Ref. [42]). The positions of the
energy bands are reflected by the average of the position
operator ȳ.
Band topology analysis.– We first determine the posi-

tions of pseudo-Landau levels in the real space by ana-
lyzing the band topology of a bent graphene nanoribbon
with a generic strain strength. According to Eqs. (1)
and (2), at a given momentum kx, the unit cell of the
nanoribbon is a Su-Schrieffer-Heeger model [40] with in-
tracell hopping 2t(y) cos( 1

2kxδx) and intercell hopping t.

For momenta |kx| ≤ 2
δx

arccos( 1
2e
−g/2), a domain wall

appears at

l0 = 1
λ

{√
4
3{1 + g−1 ln[2 cos( 1

2kxδx)]}2 − 1
3 − 1

}
, (5)

where the two hoppings are identical. The position of
the domain wall has a profound influence on the band
topology. For λ = 0, the domain wall can only be located
within the nanoribbon at the Dirac points. For |kx| > 2π

3δx

(|kx| < 2π
3δx

), the unit cell becomes a topological (trivial)
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FIG. 3. Phase diagrams of a bent graphene nanoribbon of a
generic width W . (a) An undeformed nanoribbon with λ =
0. (b) A moderately bent nanoribbon with λW = 0.263.
(c) A critically bent nanoribbon with λcW = 0.534. (d) A
maximally bent nanoribbon with λmaxW = 0.696. In each
panel, the blue curve between the dashed lines marks the
position of the Su-Schrieffer-Heeger domain wall [Eq. (5)]; and
the green (orange) patch above (below) the blue curve labels
the topological (trivial) segment of the nanoribbon unit cell.
The topological segments also produce zero-energy edge states
as indicated by the bold red lines at both the stretched edge
(y = W/2) and the compressed edge (y = −W/2).

Su-Schrieffer-Heeger chain [Fig. 3(a)]. For 0 < λ < λc,
where λc = 2

W {[ 43 (1+g−1 ln 2)2− 1
3 ]1/2−1} = 0.534W−1,

the domain wall is located within the nanoribbon at
the momenta satisfying k−max ≤ |kx| ≤ k+

max, where
k±max = 2

δx
arccos{ 12 exp[g(1∓ 3

4λW + 3
16λ

2W 2)1/2 − g]}.
The upper (lower) sector of the unit cell is topological
(trivial), giving rise to an end mode and a domain wall
mode at the charge neutrality point [Fig. 3(b)]. The end
modes at all allowed momenta constitute a dispersionless
band representing the edge state located at the stretched
zigzag edge, while the domain wall modes result in a
flat bulk band, which must be interpreted as the zeroth
pseudo-Landau level, since no other bulk states are ex-
pected to be dispersionless. For the momenta |kx| > k+

max

(|kx| < k−max), the unit cell realizes a purely topological
(trivial) Su-Schrieffer-Heeger model [Fig. 3(b)]. When λ
is increased to λc, the pseudo-Landau levels from the two
valleys merge at the Brillouin zone center. The topolog-
ical end modes on the stretched edge consequently con-
stitute a flat band traversing the whole Brillouin zone
[Fig. 3(c)]. Such a flat band persists [Fig. 3(d)] when λ
is further increased to λmax = 0.696W−1 corresponding
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FIG. 4. (a) Band structure (blue) of a bent graphene nanorib-
bon of width W = 511 nm and maximal bend curvature
λmax = 1.36µm−1. The red curves are the pseudo-Landau
levels predicted by Eq. (7). (b) The energy differences be-
tween various analytically proposed pseudo-Landau levels
[εn(kx), Eηn(qx), and Eηn] and the numerical energy bands in
panel (a) are plotted as solid, dashed, and dot dashed curves,
respectively. Left (right) inset enlarges the energy differences
associated with εn(kx) and Eηn [Eηn(qx)] in the vicinity of the
K point (dotted).

to the maximal bond elongation ∼ 27% [31, 32].
Pseudo-Landau levels under strong strain.– In the pres-

ence of strong strain, the pseudo-Landau levels spread
extensively in the Brillouin zone. The continuum Dirac
theories [Eqs. (3) and (4)] obtained by linearizing the
lattice Hamiltonian in the vicinity of the Brillouin zone
corners consequently fail; and neither the Fermi velocity
nor the pseudomagnetic field can be well defined. How-
ever, since the pseudo-Landau levels are well localized
states, their dispersions can be in principle resolved by
studying the physics in the vicinity of their guiding cen-
ters, which are the domain wall [Eq. (5)] in our case.
Around the domain wall, the strain-modulated Hamilto-
nian [Eqs. (1) and (2)] is restored to a standard Dirac
Hamiltonian

hkx,y = Ω(y − l0)σx − itδy∂yσy, (6)

where Ω = [ 34λgt(1 + λl0)]/
√

3
4 (1 + λl0)2 + 1

4 . The re-

sulting dispersive pseudo-Landau levels are (Sec. SIV of
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FIG. 5. Strain-induced quantum oscillations in a bent graphene nanoribbon of width W = 192 nm. (a) Numerically calculated
bands (solid) at λ = 0.642µm−1 in the vicinity of the K point with maximally displaced Dirac cones (dotted). (b) Analytic
band structure artificially constructed from Eqs. (7) and (8) resembles the numerical band structure in panel (a). Quantum
oscillations of (c) DOS, (d) conductivity, (e) thermopower at fixed bend curvature λ = 0.642µm−1. Quantum oscillations
of (f) DOS, (g) conductivity, (h) thermopower at fixed chemical potential µ = 0.112 eV. In panels (c)-(h), the blue (red)
curves represent the observables calculated from numerical (analytic) band structure in panel (a) [panel (b)] using Eq. (9); the
parameter L = 2.45× 10−5 V/K2; and the data are broadened by convolving in energy a Lorentzian of width δε = 5.6 meV to
simulate the effects of disorder and finite temperature.

Ref. [42])

εn(kx) = ±
√

2n|Ωtδy| = ±
3t

2

√
ngλa

√
4
3 − 1

3f2
kx

, (7)

where fkx = 1 + 1
g ln[2 cos( 1

2kxδx)]. Equation (7) is our
key result characterizing the dispersions of the pseudo-
Landau levels at large (as well as small) λ. Its validity is
justified by its good match to the numerically calculated
energy bands in a wide range of momenta for a maximally
bent graphene nanoribbon [Fig. 4(a)]. While Eq. (7) is
derived from a nearest-neighbor model, we generalize it
in Sec. SVI of Ref. [42] to incorporate various realistic
effects such as the Semenoff mass [44–47], the spin-orbit
coupling [48–50], the electric fields [51–58], and the next-
nearest-neighbor hoppings [59].

We are surprised to find that the pseudo-Landau levels
characterized by Eq. (7) deviate from the slightly disper-
sive ones Eηn(qx) even in the vicinity of the Brillouin zone
corners [Fig. 4(b)], where they are expected to exhibit
similar accuracy in fitting the numerics. More surpris-
ingly, the deviation persists even in the weak strain limit
(Sec. SV of Ref. [42]). This is because the linearization
t(y) ≈ (1 − 3

4λgy) overlooks in Eq. (2) the higher-order
terms [e.g., O(λ2y2)], which can alter the pseudomag-
netic field without impacting the Fermi velocity to the
linear order of qx (Sec. SV of Ref. [42]). This finding
suggests that the widely used strain-modulated hoppings
with linear space-dependence [13–15, 21, 28, 33, 37, 38]
are inadequate in characterizing the pseudo-Landau level
dispersions.

Pseudo-Landau-level-mediated transport.– To investi-
gate the transport of the bent graphene nanoribbon, we
also aspire to quantitatively understand the marginal en-
ergy bands spliced to the pseudo-Landau levels. Through
the perturbation theory, we here treat such bands as
pseudo-Landau-level-gapped chiral fermions with mass
εn(kl,rn ), where kln (krn) marks the left (right) end of the
n-th pseudo-Landau level at the valley K. Explicitly, the
approximated dispersions read (Sec. SVIII of Ref. [42])

εln(kx) =

√
t2
[
1− cos( 1

2kxδx)

cos( 1
2k
l
nδx)

]2
+ [εn(kln)]2, (8a)

εrn(kx) =

√
t2
[
1− cos( 1

2kxδx)

cos( 1
2k
r
nδx)

]2
+ [εn(krn)]2. (8b)

We note that Eqs. (7) and (8) together with flat edge
bands at the neutrality point constitute an artificial band
structure [Fig. 5(b)] highly mimicking the numerical one
[Fig. 5(a)]. It thus should phenomenologically capture
the transport of the numerical energy bands as well.

To substantiate our claim, we evaluate the density of
states (DOS), electrical conductivity, and thermopower
through [60, 61]

g(µ, λ) =
∑
n

∫
dkx
2π

δ[εan(kx)− µ], (9a)

σxx(µ, λ) = e2
∑
n

∫
dkx
2π

(van)2τanδ[ε
a
n(kx)− µ], (9b)

Sxx(µ, λ) = −π
2k2BT

3e

d

dµ
lnσxx(µ, λ), (9c)
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where εan(kx) denotes the artificial bands [Fig. 5(b)] com-
posed of Eqs. (7) and (8); and τan = τn[εan(kx), λ] is the
relaxation time in the Boltzmann formalism [Eq. (9b)]
and may be estimated as τan ≈ C/g(µ) with the param-
eter C determined by the scattering potential (Sec. SIX
of Ref. [42]).

For a fixed bend curvature λ = 0.642µm−1, the ana-
lytically calculated DOS, conductivity, and thermopower
from Eq. (9) are consistent with their counterparts nu-
merically evaluated from the tight-binding Hamiltonian
[Eq. (1)] with t(y) substituting for t1,2 [Figs. 5(c)-5(e)],
justifying the validity of our approximated dispersions
[Eq. (8)]. All the three quantities exhibit a series of peaks
and dips when the chemical potential µ cuts through the
dispersive pseudo-Landau levels. At a fixed chemical po-
tential µ = 0.112 eV, a scanned bend curvature pushes
the pseudo-Landau levels through µ, resulting in a peri-
odic electron population featured by the oscillating DOS
[Fig. 5(f)]. The conductivity thus exhibits an unusual
Shubnikov-de Haas oscillation in the complete absence
of magnetic fields [Fig. 5(g)]. The oscillatory behavior
is further passed to the Seebeck coefficient [Fig. 5(h)]
through the Mott relation [Eq. (9c)].

It is worth noting that for certain values of λ that make
the n-th pseudo-Landau level partially occupied, the con-
ductivity σxx(µ, λ) decreases with an increasing 1/λ, im-
plying a negative strain-resistivity analogous to the neg-
ative magnetoresistivity in the chiral magnetic effect of
Weyl semimetals [4–11]. This negative strain-resistivity
is closely related to the dispersive pseudo-Landau lev-
els [Eq. (7)], which play the same role as the chiral ze-
roth Landau levels in Weyl semimetals. Indeed, the par-
tially filled n-th pseudo-Landau level contributes a bulk
conductivity σxxb (µ, λ) ∼ ( dεndkx )2µ, which is an increas-
ing function of λ (Sec. SIX of Ref. [42]). The pseudo-
Landau-level-mediated intervalley transport reflects the
non-conservation of the valley charge η, i.e., the val-
ley anomaly [38], which is a direct manifestation of the
(1 + 1)-dimensional chiral anomaly [62].

Conclusions.– We analytically resolve the pseudo-
Landau level dispersions in a strongly bent graphene
nanoribbon and investigate their transport exemplified
by the zero-field quantum oscillations and the negative
strain-resistivity arising from the valley anomaly. Our
findings may pave the way to graphene straintronics de-
vices in the strong strain paradigm, which remains largely
unexplored. Our techniques are transplantable to twisted
two-dimensional materials and topological materials, es-
pecially the twisted bilayer graphene [63], Dirac super-
conductors [64–68], and bosonic “semimetals” [69–74],
where pseudo-Landau levels have been reported.
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