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Abstract
Stone artifacts are critical for investigating the evolution of hominin behavior—they are among our only proxies for hominin 
behavior in deep time. Hominin cognition and skill are often inferred by reconstructing the technical decisions hominins 
made throughout the knapping process. However, despite many advancements in understanding how hominins knapped, 
some of the key factors involved in past flake production cannot be easily/readily derived from stone artifacts. In particular, 
the angle at which the knapper strikes the hammer against the core to remove the flake, or the angle of blow, is a key com-
ponent of the knapping process that has up to now remained unmeasurable on archeological assemblages. In this study, we 
introduce a new method for estimating the angle of blow from the ventral surface of flakes. This method was derived from 
a controlled experiment that explicitly connects fracture mechanics to flake variability. We find that a feature of the flake’s 
bulb of percussion, what we call the bulb angle, is a measurable indicator of the angle of blow. Our experimental finding is 
further validated in two additional datasets from controlled and replicative knapping experiments. These results demonstrate 
the utility of continuing to link flake variation with technical decision-making to fracture mechanics. In addition, they also 
provide a useful and relatively simple means to capture a currently invisible aspect of hominin stone tool production behavior.
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Introduction

Much of what is known about the evolution of hominin 
cognition and behavior is derived from the study of stone 
tools. Today, researchers routinely employ a wide array of 
analytical approaches to reconstruct the technical decisions 
and processes underlying hominin knapping strategies in the 
past (Pelegrin 1993; Boëda 1995; Texier and Roche 1995; 
Roche et al. 1999; Delagnes and Roche 2005). Knapping 
is without a doubt a complex motor process that involves 
interactions of different body parts (Susman 1998; Biryu-
kova and Bril 2008; Bril et al. 2010; Geribàs et al. 2010; 
Nonaka et al. 2010; Williams et al. 2012; Rein et al. 2013), 
and archeologists have come to recognize the importance of 
understanding this dynamic process by combining methods 
such as replicative experiments, refitting, and other techno-
logical approaches (Eren et al. 2016). A key aspect of these 
technological approaches is in underlining the importance 
of manual gestures and knapping actions in lithic reduc-
tion (Forestier 1992; Pelegrin 1993; Texier and Roche 
1995; Roche et al. 1999). Knappers need to flexibly apply 
different manual gestures along the knapping sequence to 
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effectively navigate the changing interactions among differ-
ent functional parameters, including configurations of the 
striking platform and various force application variables like 
the hammer striking speed and angle (Roussel et al. 2009; 
Geribàs et al. 2010; Rein et al. 2013; Vernooij et al. 2015; 
Baena et al. 2017; Cueva-Temprana et al. 2019). Some stud-
ies of modern knappers suggest that these gestural skills 
and “know-hows” may be acquired through learning and 
practice, highlighting the significance of cultural transmis-
sion in hominin stone tool making (Lycett 2013; Morgan 
et al. 2015; Lycett et al. 2016; Pargeter et al. 2019). There 
are also studies that suggest that the technical “know-how” 
required for making early stone tools can be acquired via 
individual learning (Tennie et al. 2016, 2017; Snyder et al. 
in press). Moreover, because knapping actions ultimately 
depend on the biomechanics of the human musculoskeletal 
structure, increasingly researchers have focused on examin-
ing the relationship between stone percussive activities and 
hominin skeletal morphologies (Rolian et al. 2011; Marzke 
2013; Macchi et al. 2021).

One component of knapping gestures that has been 
repeatedly observed to be critical in controlling the flaking 
process is the angle at which the hammer strikes the core, 
or the angle of blow (e.g., Hellweg 1984, Fig. 1). It has been 
said that striking a hammer perpendicularly straight into the 
core runs the risk of crushing the platform and generating 

step fractures and incipient cones, while increasing the angle 
of blow by tilting the platform and swinging the hammer in 
an arc helps facilitate flake detachment (Whittaker 1994: 
95). Importantly, variation in the angle of blow has been 
shown to be one of the main parameters that separate novice 
from expert knappers (Vernooij et al. 2015). For instance, 
experimental studies carried out by Geribàs et al. (2010) 
and Cueva-Temprana et al. (2019) both showed that novices 
tend to prefer striking the hammer in a more direct angle of 
blow, while experts can effectively control different striking 
angles to achieve a desired result (Geribàs et al. 2010; Rein 
et al. 2013; Cueva-Temprana et al. 2019). The importance 
of controlling the angle of blow also varies with the knap-
ping strategy and goals. For instance, the ability to apply 
appropriate angles of blow has been shown to be critical in 
biface production, especially during biface thinning (Shipton 
2018).

Varying the angle of blow also appears to affect vari-
ous characteristics of a detached flake such as its linear 
dimensions, bulb of percussion, and the presence of plat-
form lipping. The controlled flaking experiment by Speth 
(1972, 1975) described that flakes made with larger angles 
of blow are generally shorter and have a less prominent bulb 
of percussion than those produced under a more direct ham-
mer strike (Soriano et al. 2007). Several studies have also 
shown that in addition to producing a less prominent bulb 

Fig. 1   Schematic illustration of bulb angle and its comparison with 
interior platform angle on a flake from its profile view. The Hertzian 
cone generated from the hammer blow is represented by the triangle 
beneath the hammer, and α refers to the Hertzian cone angle, which is 
approximately 136 degrees in soda-lime glass. The bulb angle is the 
angle between the flake’s platform and the extruding side of its Hert-
zian cone, as is marked in dark blue. (a) Showing that the Hertzian 
cone’s central line remains perpendicular to the platform when angle 

of blow is zero, the bulb angle should be 158 degrees. Platform depth 
(PD) and exterior platform angle (EPA) are also shown in the figure; 
(b) showing the case when the Hertzian cone is completely pushed to 
the platform, the bulb angle should equal the Hertzian cone angle; (c) 
showing the case when the Hertzian cone is tilted into the core, the 
theoretical bulb angle should be greater than 158 degrees; (d) show-
ing interior platform angle as defined in Dibble and Whittaker (1981)
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of percussion, a more oblique hammer strike may increase 
the chance of platform lipping (Bataille and Conard 2018; 
Schmid et al. 2019, 2021). Speth argued that this might 
be due to the limited stress exerted on the platform by the 
higher angles of blow. Similarly, Hellweg (1984) noted that 
increasing the striking angle during knapping would lead to 
the detachment of shorter flakes. In a later experiment using 
a similar controlled flaking setup to that of Speth’s (1972), 
Dibble and Whittaker (1981) found no obvious impact from 
the angle of blow on flake dimensions, though the authors 
suggested that the negative outcome may be related to 
confounding variables in the experimental design. More 
recently, using a more developed mechanical flaking appa-
ratus, Dibble and Rezek (2009) showed that flakes produced 
from higher angles of blow are indeed smaller in mass. The 
same pattern was reported by Magnani et al. (2014), who 
found that flake linear dimensions such as length and width, 
relative to platform depth, decreased as the angle of blow 
increased. In other words, two identically prepared cores 
struck in identical locations with identical hammers will 
produce two different flakes depending on the angle of blow.

Despite its known effect on various flake attributes, there 
has been no direct way of measuring the angle of blow from 
the lithic artifacts themselves. Crabtree (1972) suggested 
that the angle of blow could be reconstructed by the inte-
rior platform angle of the detached flake, yet Dibble and 
Whittaker (1981) showed that this is not the case in their 
controlled experiment. More recently, Magnani et al. (2014) 
described the angle of blow as archeologically invisible and 
suggested that any inference about the angle of blow will 
have to be derived from its effect on flake attributes such as 
bulb size and flake shape. However, these attributes are also 
under the influence of other independent knapping factors, 
and so reconstructing the angle of blow from these attributes 
will be difficult. As a consequence, the angle of blow is rou-
tinely left out of archeological applications of flake attrib-
ute analysis and, to a certain extent, general flake formation 
models. For instance, in a series of controlled experiments, 
Dibble and colleagues tested for and recognized the influ-
ence of the angle of blow on flake attributes (Dibble and 
Rezek 2009), yet they inevitably focused on the effects of 
exterior platform angle (EPA) and platform depth (PD), both 
of which are directly observable on flakes, to summarize 
flake size and shape (Dibble and Whittaker 1981; Dibble 
and Pelcin 1995; Dibble and Rezek 2009; Rezek et al. 2011; 
Magnani et al. 2014; Leader et al. 2017; Dogandžić et al. 
2020). While the EPA-PD model of flake formation, where 
flake mass is modeled as a function of the combined effect 
of exterior platform angle and platform depth, has been 
proven valid in both experimental and archeological assem-
blages (Lin et al. 2013; Režek et al. 2018; Braun et al. 2019; 
Dogandžić et al. 2020), it remains unclear how the angle of 
blow fits into this model. To begin tackling this question, it 

is necessary to first address the challenge of measuring the 
angle of blow directly from stone flakes.

In this study, we turned to fracture mechanics and the 
basic principles of brittle solid fracture to study the vis-
ible traces that the angle of blow produces on the detached 
flake. In the fracture mechanics literature, it has been repeat-
edly shown that an oblique hammer blow (i.e., a non-zero 
angle of blow) will tilt the Hertzian cone so that its central 
line is no longer perpendicular to the platform (Lawn et al. 
1984; Chaudhri and Chen 1989; Salman et al. 1995; Suh 
et al. 2006; Chaudhri 2015). Modern knappers have also 
noted the possible relationship between the angle of blow 
and the angle of the Hertzian cone (Hellweg 1984; Whit-
taker 1994; Waldorf 2006). As shown in Fig. 1, the Hertz-
ian cone is tilted relative to the platform surface when the 
hammer strike is not perpendicular to the platform. Because 
the Hertzian cone initiates the formation of the bulb of per-
cussion, it should be possible to detect the change in the 
Hertzian cone’s orientation, brought on by varying hammer 
strike angles, in the initial angle of the bulb of percussion 
on a flake’s interior surface. Specifically, this angle, which 
we refer to hereafter as the bulb angle, is measured immedi-
ately at the intersection between a flake’s platform and the 
protruding side of the Hertzian cone before it bends back 
to form the bulb of percussion (Fig. 1, Fig. 2). Defined this 
way, a bulb angle of 90 degrees indicates a flat interior sur-
face of the flake with no visible bulb of percussion. As this 
angle increases from 90 degrees, the Hertzian cone becomes 
more apparent, and the bulb becomes more prominent. Note 

1 cm

(a)

(b)

(c)

bulb angle

Point of percussion

Fig. 2   Bulb angle identified on a flint flake from this study. (a) Show-
ing the zoom-out view of bulb angle on the profile side of the flake 
with a 1-cm scale bar; (b) and (c) showing zoomed-in views of the 
flake’s platform and partial bulb of percussion. The point of percus-
sion is marked by the white dot
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that the bulb angle is different from the interior platform 
angle, which has been defined as the angle between the plat-
form and the flake’s ventral surface without considering the 
curvature of the bulb of percussion (Dibble and Whittaker 
1981, Fig. 1d).

Key here is that Hertzian cone angles are constants within 
each raw material type. In the case of soda-lime glass, it has 
been shown experimentally that the Hertzian cone angle is 
approximately 136 degrees (Roesler 1956; Lawn et al. 1974; 
Kocer and Collins 1998). That means, when the central line 
of the Hertzian cone is perpendicular to the platform, the 
angle between either edge of the cone and the platform is 22 
degrees (180 degrees in a flat platform, minus a 136-degree 
cone, divided by the two sides the cone intersects a plane). 
Theoretically then, a flake detached with a zero angle of 
blow from a soda-lime glass core should have a bulb angle 
of 158 degrees (i.e., 136 degrees from the Hertzian cone 
plus 22 degrees between the inner edge of the cone and the 
platform surface; see Fig. 1a). Based on observations made 
in previous fracture mechanics studies (Lawn et al. 1984; 
Chaudhri and Chen 1989; Salman et al. 1995; Suh et al. 
2006; Chaudhri 2015), we hypothesize that as the angle of 
blow increases, the Hertzian cone will pivot outward towards 
the core’s flaking surface, causing the bulb angle to decrease. 
Take the hypothetical scenario illustrated in Fig. 1b as an 
example, here the greater angle of blow causes the Hertzian 
cone to pivot into the flake to the point that the inner edge of 
the cone becomes aligned with the platform surface. In this 
scenario, we would expect the flake to exhibit a bulb angle 
that equals the Hertzian cone angle (i.e., 136 degrees). If, 
on the other hand, the hammer strike is into the core (i.e., 
negative angles of blow, Fig. 1c), the Hertzian cone will tilt 
away from the flake and into the core instead. In this case, 
we should see a more prominent blub of percussion and a 
bulb angle that is greater than 158 degrees.

Material and methods

Experimental design

To test our hypothesis of the relationship between bulb angle 
and angle of blow, we first conducted a controlled experi-
ment using a “drop tower” setup to systematically investigate 
the effect of angle of blow on bulb angle. This experiment is 
henceforth referred to as the drop tower experiment. Drop 
tower setups were used in controlled flaking experiments 
from the 1970s to the 1990s (Speth 1972, 1975; Dibble 
and Whittaker 1981; Dibble and Pelcin 1995). This type of 
setup is effective for controlling both the striking location 
and angle of blow for a flaking event. As shown in Fig. 3, 
the drop tower used in our experiment adopts the design 
from these previous studies. Additionally, a commercially 

available self-leveling two-way (up and down) gravity-con-
trolled laser (Huepar 621CR) was used to ensure precision 
of the strike location. A steel ball bearing with a diameter 
of 16 mm was used as the hammer. We were able to achieve 
a strike location precision of about 2 mm. This precision 
impacts mainly our ability to control the platform depth. 
For each set of angles of blow, we varied platform depth 
from around 7 (± 2 mm) up to 20 mm (± 2 mm). Plate (soda-
lime) glass with a thickness of 10 mm was used as the core 
material. The plate glass was cut with a diamond blade wet 
saw to prepare an exterior platform angle of 65 degrees for 
all cores. A total of 103 flakes (henceforth the drop tower 
dataset) were made using the plate glass cores with angles 
of blow ranging from − 20 to 60 degrees in 10-degree inter-
vals. To control the angle of blow, glass cores were secured 
in a clamping vice which allowed for the relative position 
of the core platform to be altered (Fig. 3). In other words, 
in this type of setup, the angle of blow is altered by pivot-
ing the core platform surface relative to a horizontal plane. 
We positioned a digital angle gauge on the flake platform to 
measure the angle between the flake platform and the hori-
zontal, which is equal to the angle of blow. More information 
regarding the setup is provided in the Supporting Informa-
tion. We measured the bulb angle (see below) and platform 
depth on each of the flakes coming from this experiment.

To verify the results from the drop tower experiment, we 
measured the bulb angle on 3D models of glass flakes pro-
duced with known angles of blow by Dibble and colleagues 
in previous controlled experiments (Dibble and Rezek 2009; 

Fig. 3   The drop tower setup 
used in this study. The laser 
level is not shown in the photo
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Rezek et al. 2011; Magnani et al. 2014; Leader et al. 2017; 
Dogandžić et al. 2020). This dataset is henceforth referred to 
as the Dibble dataset. Flakes from this dataset were selected 
to have no broken platforms, clear bulbs of percussion, and 
no platform lipping and were made with a steel hammer. 
These flakes were scanned and landmarked following pro-
tocols outlined in Archer et al. (2018). Low-quality scans, 
here defined as having a file size of less than 5 MB, were 
excluded because the detail of the platform was insufficient 
to make a reliable measurement of the bulb angle. In total, 
we obtained reliable data on 53 flakes from the Dibble 
collection with angles of blow of 0, 5, 10, 20, 30, and 40 
degrees. These flakes were made on cores with exterior plat-
form angles varying from 65 to 95 degrees with a 10-degree 
interval, though the majority of flakes have either a 65- or 
75-degree exterior platform angle. Note that these angle 
of blow intervals in the Dibble dataset are different from 
that used in the drop tower experiment. More information 
regarding the 3D flake models is provided in the Supporting 
Information.

To test whether the bulb angle was sensitive to changes in 
the angle of blow in a less controlled setting, we conducted 
a blind test on a small set of flintknapped flakes produced 
at the Max Planck Institute for Evolutionary Anthropology. 
This dataset is henceforth referred to as the MPI dataset. 
To produce this dataset, two knappers (SPM and JR) each 
produced two sets of flakes using hard hammer percussion 
on two flint nodules from the Bergerac region of southwest 
France. Cobble hammerstones of varying sizes were used. 
The first set (n = 16) was made by the knappers consciously 
tilting the core to strike with the highest angle of blow that 
resulted in a flake removal. The second set (n = 16) was 
made with a deliberate effort to strike as directly or perpen-
dicularly as possible into the platform (i.e., a zero angle of 
blow). In total, 64 flakes were produced between the two 
knappers, and each flake was given a random ID number 
along with the name of the knapper and the intended level 
of angle of blow as either “high” or “low.” After excluding 
flakes with visible multiple Hertzian cones near the point 
of percussion, broken platforms, and broken bulbs near the 
point of percussion, 44 of the 64 flakes were selected for 
analysis. Of these 44 flakes, 14 were made from a nodule 
of black flint, and 30 flakes were made from a yellow flint 
nodule. Without prior knowledge of the associated knapper 
and angle of blow designation (high or low), one of us (LL) 
measured the bulb angle on the 44 flakes. These bulb angle 
values were merged with the MPI dataset using the random 
ID number once all of the flakes had been measured.

Measuring the bulb angle

For the flakes in the drop tower and MPI datasets, the 
bulb angle was measured with a manual goniometer with 

1-degree precision as the angle between the platform surface 
and the extruding side of the Hertzian cone before it extends 
and integrates into the bulb of percussion. It should be noted 
that the measurement can be prone to measurement error due 
to the extremely small size of the Hertzian cone (the typical 
length of a Hertzian cone observed on the glass flakes in the 
drop tower dataset is about 1 to 2 mm), the platform curva-
ture, and the overall curvature of the flake interior surface. 
While the Hertzian cone angle is mostly determined by the 
Poisson’s ratio of the raw material (Roesler 1956; Frank and 
Lawn 1967; Kocer and Collins 1998), the size of the Hertz-
ian cone is determined by a number of factors including the 
mechanical properties of both the hammer and the core, the 
size and shape of the hammer, and the applied force for flake 
removal (Fischer-Cripps 2007). It is also common for the 
Hertzian cone crack growth to alter its trajectory and forms 
a cone crack kink due to changes in the stress field as the 
crack propagates. This kinked growth inevitably increases 
the angle between the extended crack path and the contact 
surface (Kocer and Collins 1998; Fischer-Cripps 2007; 
Marimuthu et al. 2016). To avoid measuring bulb angle with 
the altered (kinked) Hertzian cone crack, we carefully posi-
tion the joint of the goniometer at the point of percussion 
with one leg of the goniometer lying on the flake’s platform 
surface and the other leg positioned against the extruding 
side of the Hertzian cone, at the very beginning of the flake’s 
bulb of percussion (approximately 1 to 2 mm from the point 
of percussion, Fig. 4).

To further minimize measurement error and bias (Dibble 
and Rezek 2009), the bulb angle on each of the flakes in the 
drop tower dataset was measured on three separate occa-
sions, and the bulb angle on each of the flakes in the MPI 
dataset was measured on four separate occasions (with no 
prior knowledge of the previous measurement results). The 
average of these measures was used in the final analysis. 
We also calculated the standard error (the standard devia-
tion of bulb angle divided by the square root of the count 
of the total bulb angle measurements), standard deviation, 
and coefficient of variation of bulb angle for each flake in 
the two datasets. The bulb angle standard error captures the 
likely discrepancy between the actual average bulb angle 
calculated from the three measurements and the theoretical 
average bulb angle to be calculated from an infinite number 
of measurements. The standard deviation and coefficient 
of variation of bulb angle evaluate the variability of bulb 
angle for each flake. All three measurements help us esti-
mate how accurately and reliably bulb angle is measured 
using a goniometer.

Two methods were used to measure the bulb angle from 
the 3D flake models in the Dibble dataset. The first method is 
referred to as the vector calculation method and uses scripts 
written in Python (Van Rossum and Drake 2011) and R (R Core 
Team 2020). In this method, first, we reorient each flake mesh 
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such that the point of percussion (P0) is positioned at the origin 
point (0, 0, 0), the platform is coincident with the XY plane, 
the profile (longitudinal) section of the flake is perpendicular 
to the YZ plane, and the flake extends into negative Z space 
(Fig. 5a). Second, we extract the profile section (YZ) and 
intersect it with a circle centered at (0, 0) with a radius of 1, 
2, or 3 mm. The points where the circle intersects the flake 
profile are labeled P1 and P2 (as marked in Fig. 5a). The bulb 
angle is then the angle between the vectors P0P1 and P0P2. The 
vector calculation method returns bulb angle with a precision 
of 0.01 degrees. The second method that we used for measuring 

the bulb angle, which is referred to as the virtual goniometer 
method, uses the MeshLab (Cignoni et  al.  2008) Virtual 
Goniometer Plugin developed by Yezzi-Woodley et al. (2021). 
To use the virtual goniometer, we first aligned the flake mesh 
following the above procedure described in step one of the 
vector calculation method. After that, we loaded the aligned 
flake mesh into MeshLab (Cignoni et al. 2008) and specified 
a patch centered at the flake’s point of percussion using the 
Virtual Goniometer Plugin with a 1-, 2-, or 3-mm radius 
(Fig. 5b). As shown in Fig. 5b, the patch was then automatically 
divided by the platform edge of the flake: one half of the patch 

Fig. 4   Illustration of how the 
bulb angle is measured on a 
flake with a goniometer. (a) 
shows how the goniometer is 
placed on the flake to measure 
bulb angle, and (b) and (c) 
present a zoomed-in view of 
the bulb angle on a flake. Note 
that the 3D model of the flake 
used in the illustration is from 
the Dibble dataset, and it is for 
illustration purposes only

Bulb angle
measured by
the goniometer

(a) (b)

(c)

Fig. 5   Illustration of the two measurement methods on a 3D flake 
model from the Dibble dataset. (a) In the vector calculation method, 
bulb angle on the flake is defined as the angle between vectors P0P1 
and P0P2. (b) In the virtual goniometer method with the Virtual Goni-

ometer Plugin for MeshLab loaded (Yezzi-Woodley et al. 2021), bulb 
angle is defined as the angle between the red and blue patches marked 
on the flake model
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on the flake’s platform (colored in blue) and the other half on 
the flake’s bulb of percussion (colored in red). The bulb angle 
was measured as the angle between these two sub-patches by 
the Virtual Goniometer Plugin with a precision of 1 degree.

As previously discussed, the Hertzian cone is a small-
sized feature, and its crack can be susceptible to a kinked 
growth. In addition, the measurement of an angle on a 3D 
object is influenced by the location of the two end points that 
are chosen along the intersecting planes to form the angle 
from its vertex (Key et al. 2018; Valletta et al. 2020). It is 
thus important to determine the location of the end points 
of bulb angle from the point of percussion (the vertex of 
bulb angle). This helps ensure that bulb angle records the 
angle between the Hertzian cone crack and the platform 
surface before the cone crack kinks or extends to form the 
bulb of percussion to reflect the angle of blow to the great-
est extent. To investigate the effect of end point location on 
bulb angle, we systematically compare the difference in bulb 
angle measured using the three intersection circle radii (1, 2, 
and 3 mm) for both 3D methods.

Statistical comparison

The experimental data were analyzed in three parts. First, 
for the Dibble dataset, we compared the difference in bulb 
angle measured with all three intersection circle radii for 
both 3D methods. Second, we considered the relationship 
between the measured bulb angle values and their associated 
hammer angle of blow across the three datasets. We used the 
Kruskal–Wallis test (also known as the one-way ANOVA 
on ranks), which assumes no particular distribution of the 
data, to examine whether there is a statistically significant 
difference in bulb angle between the angle of blow groups. 
Given our model and our sample sizes, our expectation was 
that there would be a noticeable, statistically significant dif-
ference in bulb angle between angle of blow groups wherein 
higher angles of blow produce lower bulb angles. Third, we 
use the linear regression model (ordinary least squares) to 
examine in addition to the angle of blow, whether changes 
in exterior platform angle and platform depth have a signifi-
cant effect on bulb angle. For the drop tower dataset, only 
platform depth is included as an independent variable since 
exterior platform angle is a constant of 65 degrees. For the 
Dibble dataset, both exterior platform angle and platform 
depth are included as independent variables. Bulb angle is 
the response variable in both linear models. Given the frac-
ture mechanics model, our expectation was that neither exte-
rior platform angle nor platform depth has a significant effect 
on bulb angle. In all tests of statistical significance, we use 
a 0.05 level of probability for rejecting the null hypothesis.

We also apply linear regression to evaluate the useful-
ness of the bulb angle as an independent flake attribute for 

explaining variation in flake size, namely mass. Previous 
studies have shown that the mass of a flake can in part be 
explained by the exterior platform angle (EPA) and platform 
depth (PD). Based on this relationship, which is referred 
henceforth as the EPA-PD model, we construct three sets of 
linear regression models using the data obtained from the 
Dibble dataset. The first model is a baseline EPA-PD model 
that includes only EPA and PD as the independent vari-
ables, with flake mass as the response variable. The second 
model builds on the baseline model by including the known 
angle of blow as an additional predictor into the model. This 
model establishes the additional explanatory power of the 
angle of blow when accounting for variation in flake mass. 
Then, to evaluate how well the bulb angle acts as a proxy for 
the angle of blow, a third set of linear models are constructed 
by substituting the bulb angle measurements in place of the 
angle of blow as a predictor variable. Two separate models 
are constructed for the two different methods of measur-
ing the bulb angle from the 3D flake models. Based on the 
three sets of models, we examine two questions. First, by 
comparing the first and second linear models, we examine 
whether the inclusion of the angle of blow helps improve the 
performance of the baseline EPA-PD model in predicting 
flake mass. Second, by comparing the second and third set 
of linear models, we assess if the bulb angle can serve as a 
reliable proxy measurement for the angle of blow.

For all linear models, the response variable, flake mass, 
was transformed to its cube root so that its dimensionality 
is comparable to the independent variables. As explained 
in Dibble and Rezek (2009), compared to the single-
dimensional flake attribute platform depth, flake mass is 
a three-dimensional attribute similar to flake volume. It 
is thus important to bring these two variables to the same 
dimensionality for conducting analysis using linear models. 
Models were examined for their residual distribution, lever-
age, Cook’s distance, and variance inflation factor. Model 
comparison was done using the ANOVA test. A significance 
level of 0.05 was used to assess whether the models with 
additional terms reduce the unexplained variability in flake 
mass. All other data analyses in this study are conducted in R 
(R Core Team 2020). All files needed to reproduce the results 
reported here and an explanation of the data are included 
in the Supporting Information and have been uploaded to 
Github (https://​github.​com/​lili0​824/​bulb_​angle).

Results

Evaluating the bulb angle measurement

For the drop tower dataset, the average standard error of bulb 
angle is 0.77 degrees (Fig. 4.1 in SI). That is, the overall 
possible discrepancy between the measured bulb angle and 

https://github.com/lili0824/bulb_angle
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the theoretical bulb angle is less than 1 degree. The overall 
standard deviation of bulb angle within each grouping of 
angle of blow is less than 3 degrees (Table 5.1 in SI 1). The 
overall coefficient of variation of bulb angle within each 
grouping of angle of blow is less than 25% (Table 5.1 in SI 
1). For the Dibble dataset, the average bulb angle within 
each grouping of angle of blow systematically decreases as 
the intersection circle radius increases for both measuring 
methods (Fig. 4.2 and Table 5.3 in SI 1).

Drop tower dataset

For the drop tower dataset, there is a significant difference 
in bulb angle between the angle of blow groups (Fig. 6, 
Kruskal–Wallis test, H = 84.709, p < 0.01). The flakes pro-
duced with a zero angle of blow have an average bulb angle 
of 152.1 (± 1.91) degrees, which is not far off from the 158 
degrees that we initially predicted based on Hertzian cone 
formation when the hammer strikes perpendicularly to the 
platform surface in soda-lime glass (Fig. 1a). As the angle 
of blow increases (i.e., the hammer strikes more obliquely), 
the bulb angle becomes smaller. As the angle of blow tilts 
to 40 degrees or more, the average bulb angle appears to 
stabilize at around 137 degrees. Again, this minimum bulb 
angle fits well with our predicted value of 136 degrees for 
when the Hertzian cone tilts to the point where one side of 
the cone is aligned with the platform surface (Fig. 1b). The 
regression model used to predict bulb angle with the angle 
of blow and platform depth can be found in SI 1. While the 
overall regression was statistically significant (R2 = 0.78, F 

(2, 98) = 173.9, p < 0.001), only the angle of blow accounts 
for variability in bulb angle (p < 0.001).

Dibble dataset

Here we will report the results of bulb angle measured 
with the 1-mm intersection circle for the two 3D meth-
ods. The same significant relationship between the angle 
of blow and the bulb angle as measured by both the vector 
calculation (Kruskal–Wallis test, H = 25.037, p < 0.01) and 
the virtual goniometer (Kruskal–Wallis test, H = 24.698, 
p < 0.01) methods is observed in the Dibble dataset (Fig. 7, 
see Table 5.2 in SI 1). Using the vector calculation method, 
the average bulb angle is 150.3 (± 5.4) degrees for flakes in 
the zero angle of blow group and is 135.3 (± 6.1) degrees 
for flakes in the 40-degree angle of blow group. Using the 
virtual goniometer method, the average bulb angle is 152.8 
(± 4.7) degrees for flakes in the zero angle of blow group and 
is 134.3 (± 8.4) degrees for flakes in the 40-degree angle of 
blow group. Overall, the vector calculation method tends to 
return a smaller average bulb angle value than the virtual 
goniometer method (Fig. 8, see also Table 5.2 in SI 1). It 
should be noted that the standard deviation of bulb angle 
in the Dibble dataset is bigger than that in the drop tower 
dataset (Table 5.1 and Table 5.2 in SI 1). Unlike with the 
drop tower dataset, the maximum angle of blow represented 
in the Dibble dataset is 40 degrees. As such, we were not 
able to examine if the bulb angle reaches a plateau once the 
angle of blow tilts beyond 40 degrees.

The regression models used to predict bulb angle cal-
culated using both the vector calculation and the virtual 
goniometer methods can be found in SI 1. For the vector 

Fig. 6   Boxplot showing that 
bulb angle decreases as angle of 
blow (AOB) increases for flakes 
in the drop tower dataset
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calculation bulb angle model, the overall regression was sta-
tistically significant (R2 = 0.50, F (3, 49) = 16.31, p < 0.001). 
Both the angle of blow (p < 0.001) and platform depth 
(p = 0.01) were shown to significantly predict bulb angle. 
However, these two variables are correlated in the Dibble 
dataset. For the virtual goniometer bulb angle model, the 
overall regression was statistically significant (R2 = 0.48, 
F (3, 49) = 15.24, p < 0.001). Only the angle of blow was 
shown to significantly predict bulb angle (p < 0.001). There 
was also a significant correlation between the angle of 

blow and platform depth (adj. R2 = 0.19, F (1, 51) = 13.59, 
p < 0.001).

MPI dataset

For the MPI dataset, the average standard error of the bulb 
angle is 0.7 degrees (see also Fig. 4.3 in SI 1). Figure 9 
shows the distribution of bulb angle measured in this data-
set. The average bulb angle for flakes is 132 degrees made 
with a high angle of blow and is 135.7 degrees for flakes 
made with a low angle of blow (see also Table 5.4 in SI 
1). There is a significant difference in bulb angle between 
the knapper-assigned high and low angle of blow groups 
(Fig. 10, Kruskal–Wallis test, H = 9.11, p < 0.01).

Linear modeling

Using flakes from the Dibble dataset, Fig. 11a compares the 
actual flake mass to those predicted by the baseline EPA-
PD model (Table 1). While the baseline model performs 
relatively well (R2 = 0.59), it is clear that the flakes made 
with a lower angle of blow tend to have their mass under-
estimated, and the flakes made with a higher angle of blow 
tend to have their mass overestimated by the EPA-PD model. 
In comparison, when the known angle of blow is included 
as a predictor in addition to EPA and PD, the explanatory 
power of the model increased considerably (R2 = 0.81), pre-
dicted flake masses are much closer to their actual values, 
and the over- and underestimation by the angle of blow are 
no longer present (Fig. 11b). An ANOVA test shows that the 
addition of angle of blow to the EPA-PD model significantly 

Fig. 7   Dotplot with error bar 
that indicates one standard 
deviation summarizing the rela-
tionship between bulb angle and 
angle of blow for flakes in the 
Dibble dataset (measured with 
the 1-mm intersection circle). 
Flakes measured with the vector 
calculation method are colored 
in gray. Flakes measured with 
the virtual goniometer method 
are colored in yellow. The black 
dot represents the mean bulb 
angle
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improves the model’s performance (p < 0.001, see also 6.4 
in SI).

Figure 11c and d show the relationship between the actual 
versus the predicted flake mass based on the EPA-PD model 
and the inclusion of the bulb angles measured by the two meth-
ods with the 1-mm intersection circle. While the improvement 
in R2 is not as strong as what we observed earlier with the use 
of the actual angles of blow values, the addition of the bulb 
angles still substantially increased the explanatory power of 
the linear model (Table 1). This observation is reflected by the 
ANOVA tests showing that adding the bulb angle (measured 

with both the vector calculation and the virtual goniometer 
methods) as a predictor of EPA and PD does significantly 
increase the amount of flake mass variation accountable by 
the linear model (p < 0.001, see also 6.4 in SI).

Discussion

Reconstructing knapping gestures from the archeological 
record is an important pathway to understanding the early 
knappers’ tool use behavior. Up to now, the angle of blow 

Fig. 9   Histogram showing the 
distribution of bulb angle with 
overlaying density curve for 
all flakes analyzed in the MPI 
dataset
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has been considered to be archeologically invisible (Mag-
nani et al. 2014). In this study, we hypothesized that the 
angle of blow can in fact be gauged by the immediate angle 
between the striking platform and the protruding side of 
the Hertzian cone, what we referred to as the bulb angle. 
The results across all three datasets examined here support 
the hypothesis by showing that the bulb angle does indeed 
correlate with the angle of blow. Increasing the angle of 
blow during flake removal (i.e., greater tilt) causes the bulb 
angle to decrease, while a lower angle of blow (i.e., more 

direct) results in higher bulb angle values. Importantly, this 
relationship is consistent among flakes made from differ-
ent raw materials (soda-lime glass and flint) and under both 
mechanical and flintknapping experiments, suggesting that 
the correlation between the bulb angle and the angle of blow 
can be generalized to other flake formation settings.

The relationship between the bulb angle and the angle 
of blow is warranted by the fracture mechanics of Hertzian 
cone formation (Zeng et al. 1992; Kocer and Collins 1998; 
Gorham and Salman 2005; Marimuthu et al. 2016). Despite 

Fig. 11   Comparison of the 
actual flake mass and mod-
eled flake mass in the Dibble 
dataset with a 95% confidence 
interval, n = 53. (a) Actual to 
predicted flake mass using the 
basic EPA-PD model, (b) actual 
to predicted flake mass using 
the EPA-PD-AOB model, (c) 
actual to predicted flake mass 
using the EPA-PD-BA (vector 
calculation) model, and (d) 
actual to predicted flake mass 
using the EPA-PD-BA (virtual 
goniometer) model
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Table 1   Summary statistics of 
the different EPA-PD models

Basic EPA-PD model EPA-PD-AOB 
model

EPA-PD-BA (VC) 
model

EPA-PD-BA 
(VG) model

R2 0.59 0.81 0.78 0.75
Adj. R2 0.56 0.79 0.76 0.72
F statistics 25.41(2,36) 49(3,35) 42.04(3,35) 34.17(3,35)
p value  < 0.001  < 0.001  < 0.001  < 0.001
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its close relevance to flake formation, the field of fracture 
mechanics has had relatively little impact on lithic studies, 
likely owing to its mathematically laden nature and possibly 
to diverging goals. As previously discussed, earlier fracture 
mechanics-based controlled lithic experiments in the 1970s 
and 1980s emphasized testing ideas that directly come from 
the fracture mechanics literature. Unfortunately, results from 
these studies were not well applied to the actual archeologi-
cal record (Speth 1972; Cotterell et al. 1985; Cotterell and 
Kamminga 1987). Although several studies have incorpo-
rated the orientation of the Hertzian cone to infer handed-
ness of the knappers (Rugg and Mullane 2001; Bargalló and 
Mosquera 2014; Dominguez-Ballesteros and Arrizabalaga 
2015), they did not establish a direct link between features 
of the Hertzian cone and the relevant knapping gestures. 
Instead, more recent controlled experiments have largely 
focused on assessing the empirical effects on flaking out-
comes from knapping parameters that are under the direct 
control of knappers (Dibble and Whittaker 1981; Dibble and 
Pelcin 1995; Pelcin 1996; Dibble and Rezek 2009; Rezek 
et al. 2011; Magnani et al. 2014; Leader et al. 2017; Mraz 
et al. 2019; Dogandžić et al. 2020). This knapper-guided 
approach aims to establish statistical relationships between 
independent factors (e.g., EPA and PD) and dependent flake 
attributes, which can then be applied to infer past technologi-
cal patterns from archeological finds (Davis and Shea 1998; 
Shott et al. 2000; Clarkson and Hiscock 2011; Muller and 
Clarkson 2014, 2016).

Here we expand on this knapper-guided approach by tak-
ing previous observations about the effect of the angle of 
blow and then incorporating fracture mechanics theory to 
help develop and test a hypothesis about the relationship 
between the angle of blow and the bulb angle. Importantly, 
the fracture mechanics model of Hertzian cone formation 
allowed us to make simple yet explicit predictions about 
what the bulb angles should be under different angles of 
blow. To this end, the experimental results show a relatively 
good agreement with these predicted values. For example, in 
the drop tower dataset, the average bulb angle on soda-lime 
glass flakes made with a zero angle of blow is 152 degrees, 
which is close to our theoretical prediction of 158 degrees 
based on the empirical value of the Hertzian cone angle for 
soda-line glass.

Compared to the drop tower dataset, the bulb angle val-
ues among the Dibble dataset associated with a zero angle 
of blow are a little lower (148.4 and 150.3 degrees) when 
measured with the 1-mm intersection circle radius. The 
bulb angle values, however, are significantly lower across 
all angles of blow groups when measured with larger inter-
section circle radii of 2 mm and 3 mm (Table 5.3 in SI 1). 
This is likely because the larger intersection circle radii cap-
ture the curvature beyond the original Hertzian cone crack 
when measuring bulb angle. The resulting bulb angle is 

thereby not an accurate representation of the angle between 
the Hertzian cone crack and the platform surface, leading 
to the rather big discrepancy as we observe in the Dibble 
dataset. The use of the 3D models for the Dibble dataset 
also involved additional sources of error associated with the 
scanning and model processing procedure. In particular, the 
area of the flake at which the bulb angle was measured has a 
relatively complex morphology, such that minor variation in 
scan quality and levels of smoothing may substantially influ-
ence the measurements taken. Future studies should evaluate 
the influence of scan quality on the accuracy and precision 
of the bulb angle measurement. In the remaining discussion 
of results from the Dibble dataset, we will use the bulb angle 
values measured with the 1-mm intersection circle, which 
more accurately reflect the effect of the angle of blow on the 
orientation of the Hertzian cone.

For the drop tower dataset, the bulb angle stabilized 
at around 138 degrees once the angle of blow reached 40 
degrees and beyond. This angle is close to the constant Hert-
zian cone angle of 136 degrees in soda-lime glass. As we 
outlined earlier in Fig. 1b, this minimum bulb angle likely 
represents the maximum tilt that the Hertzian cone can 
achieve when one side of the cone comes up against the 
platform surface. When the angle of blow reaches past 40 
degrees, the Hertzian cone cannot tilt up any farther, and the 
bulb angle becomes plateaued at a value that is close to the 
Hertzian cone angle constant. However, we were not able to 
verify this hypothesis further with the Dibble dataset, as the 
sample size of the flakes in the Dibble dataset made with an 
angle of blow larger than 40 degrees is too small to allow 
meaningful statistical comparison. Future studies should 
thus investigate whether there is a similar threshold in the 
angle of blow at which point the bulb angle stabilizes under 
different knapping conditions and raw materials. There are 
also other differences between the Dibble dataset and the 
drop tower experiment that may influence the Hertzian cone 
formation. While most fracture mechanics studies that inves-
tigate Hertzian cone formation are conducted with spherical 
indenters (Frank and Lawn 1967; Chaudhri and Chen 1989; 
Fischer-Cripps 2007; Marimuthu et al. 2016), a flat-bevel 
ended hammer was used in the experiments that created the 
Dibble dataset. The non-spherical hammer tip may cause 
additional complications in the Hertzian cone formation 
(Fischer-Cripps 2007).

For both the drop tower dataset and Dibble dataset, the 
bulb angle linear models show that the angle of blow is the 
only variable that could significantly predict bulb angle, 
for the most part. The only exception is that in the Dib-
ble dataset, platform depth appears to also influence bulb 
angle (when measured using the vector calculation method) 
in addition to the angle of blow. However, it should be noted 
that there is a significant correlation between the angle of 
blow and platform depth in the Dibble dataset because of 
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the way the experiments were structured in the first place 
(i.e., not all angles of blow were attempted for all platform 
depths). For this reason, platform depth also correlates with 
bulb angle, and there is no reason to think that platform 
depth influences bulb angle.

Though the results of the blind test on the MPI data show 
that bulb angles on high and low angles of blow flakes differ 
from each other on average, it is clear that relaxing the con-
trols of the previous experiments makes the differences less 
apparent. One point of caution concerns the use of hammer-
stones in the experiment. These were not strictly controlled 
between strikes. While the size of the hammer does not change 
the Hertzian cone angle for a particular raw material type, it 
may influence how the cone responds to changes in the strike 
angle. Similarly, changes in the platform surface morphology 
may also alter the intended angle of blow. We also think it is 
likely that despite their intention to use specifically either a 
low or high angle of blow, the knappers might differ in their 
consistency as they rotated the core or adjusted their swing 
such that the angle changed in the opposite direction of their 
intention. It is possible, for instance, that while the arrange-
ment of the core and overall arm movement should have led 
to a high angle of blow, for instance, small adjustments in the 
wrist orientation at strike may have lowered the angle.

It is important to emphasize here that the Hertzian cone 
angle varies by raw material. Specifically, it seems that the 
Hertzian cone angle is related to the mechanical properties 
of the material, such as the Poisson’s ratio (Frank and 
Lawn, 1967; Kocer and Collins, 1998; Roesler, 1956). Raw 
materials with a larger Poisson’s ratio, or those that are stiffer, 
have a larger cone angle (Olivi-Tran et al. 2020). As a result, 
we expect that the bulb angle produced when striking a core 
with a zero angle of blow will vary by raw material type. A 
larger Hertzian cone angle will result in a larger bulb angle 
for any given angle of blow. Similarly, the point at which 
the bulb angle plateaus with the angle of blow will vary as 
well. In fact, raw materials with larger Hertzian cone angles 
should plateau sooner, and the range of angles of blow that 
can be measured on these materials will be more limited. On 
the contrary, raw materials with smaller Hertzian cone angles 
will allow a greater range of angles of blow to be measured. 
This potential discrepancy in the range of bulb angle 
variation in different raw materials could further complicate 
our interpretation of actual archeological assemblages 
where raw material types vary. For now, until the Hertzian 
cone angle is known for the appropriate raw material types, 
comparisons in bulb angles are best done within a given raw 
material type. Drawing on information from the available 
fracture mechanics studies, it is also possible to estimate 
the range of variation of the Hertzian cone angle for a raw 
material with known mechanical properties such as Poisson’s 
ratio (Chaudhri 2015; Olivi-Tran et al. 2020).

The linear model results show that the angle of blow is 
an important knapping parameter that can help improve our 
ability to explain flake variation using independent flake 
variables, such as exterior platform angle and platform 
depth. The current EPA-PD model of flake formation 
derived from the controlled experiments by Dibble and 
colleagues only addresses a portion of the variation in 
flake size and shape (Dibble and Rezek 2009; Rezek et al. 
2011; Magnani et al. 2014; Leader et al. 2017; Dogandžić 
et al. 2020; McPherron et al. 2020). The EPA-PD model 
often performs less well when applied to less controlled 
experimental replication assemblages and archeological 
assemblages. Although several studies have attempted to 
improve the EPA-PD model by adding other attributes 
such as platform width, platform area, and platform shape 
(Dibble 1997; Davis and Shea 1998; Shott et al. 2000; 
Clarkson and Hiscock 2011; Lin et al. 2013; Dogandžić 
et al. 2015; Shott and Seeman 2017; Režek et al. 2018; 
McPherron et  al. 2020), the ability of the model and 
its variants to accurately predict the original flake size 
is still limited. In their paper on the topic, Dibble and 
Rezek (2009) found that exterior platform angle, platform 
depth, and angle of blow all influenced flake mass, yet 
the angle of blow was mostly dropped from subsequent 
presentations of the model because the parameter could 
not be measured on the flakes themselves (see also Shott 
and Seeman 2017). Our results show that the inclusion of 
the angle of blow into the EPA-PD model significantly 
improved the model performance. More importantly, we 
further showed that substituting bulb angle for angle of 
blow resulted in a similar improvement in model’s R2, 
indicating that the bulb angle is a useful proxy for gauging 
the angle of blow used to make flakes.

Here we have been looking at the effect of exterior 
platform angle, platform depth, and the angle of blow on 
flake mass as a measure of how well our model of how flakes 
form and how they vary is working. However, the EPA-PD 
model’s key feature of predicting the original blank size can 
facilitate the analysis of stone tool reduction by quantifying 
mass loss in addition to traditional methods such as studying 
the morphological features, scar density, and cortex ratio of 
stone tools (Dibble 1987; Rolland and Dibble 1990; Kuhn 
1990; Braun et al. 2008; Shipton and Clarkson 2015). As 
discussed in many studies, an accurate measurement of the 
degree of reduction is crucial for studying the curation and 
use life of stone tools (Binford 1973; Shott 1996; Shott et al. 
2000; Clarkson and Hiscock 2011). By offering an improved 
estimation of the original blank size, the EPA-PD-BA model 
contributes to the study of stone tool curation and use life, 
which also provides insight into understanding hominin 
mobility and site occupation.
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Conclusions

Our findings, for the first time, demonstrate a quantitative method 
for measuring the angle at which knappers strike the hammer 
during flake removal, or the angle of blow, from a measurable 
flake attribute—the bulb angle. While both researchers and mod-
ern knappers have long noted the significance of this parameter 
in successful flake removal and in learning skill of knapping, up 
to now the variable has been largely considered to be invisible in 
the archeological record. The ability to gauge the angle of blow 
among archeological flakes by using the bulb angle opens a range 
of new research opportunities to study how hominins managed 
this important component of force delivery in knapping stone 
flakes over the past 2–3 million years. Importantly, given that 
the angle of blow has been repeatedly shown to be an important 
factor in the learning of stone working among modern knappers, 
quantifying changes in the angle of blow among Paleolithic flake 
assemblages may offer new insights into the evolution of human 
technology and cultural transmission.

It is important to keep in mind that the bulb angle meas-
urement may be complicated by other sources of variation. 
Not only is the bulb angle a small-sized feature that can be 
prone to measurement error, but factors such as raw material, 
hammer size and shape, and the initial nodule condition may 
also all contribute to variation in the bulb angle. As with 
any newly developed methods, we urge for more studies to 
test the reliability of the bulb angle, especially under more 
diverse experimental settings. Lastly, our study shows that 
incorporating fracture mechanics provides promising insights 
and inspirations to translate different knapping behaviors to 
tangible flake attributes (McPherron et al. 2020). To this end, 
exploring force delivery variables such as striking force and 
hammer size and velocity from a fundamental perspective of 
flaking mechanics can be a fruitful avenue forward, helping 
to establish connections between quantitative flake attributes 
with the dynamic manual gesture and knapping techniques 
of past hominins.
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