
Supplemental Material: Superconductivity of repulsive spinless fermions with
sublattice potentials

Yuchi He,1 Kang Yang,2 Jonas B. Hauck,1 Emil J. Bergholtz,2 and Dante M. Kennes1, 3

1Institut für Theorie der Statistischen Physik, RWTH Aachen University and
JARA—Fundamentals of Future Information Technology, 52056 Aachen, Germany

2Department of Physics, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden
3Max Planck Institute for the Structure and Dynamics of Matter,
Center for Free Electron Laser Science, 22761 Hamburg, Germany

(Dated: January 4, 2023)

I. SUPPLEMENTAL MATERIAL

A. Schrieffer-Wolff transformation

The ground state at filling n = 1 is given by all A sites occupied. We use the Schrieffer-Wolff transformation to
find the low-energy physics when extra electrons are brought in by doping. The Hamiltonian is comprised of a kinetic
part Hk which creates high-energy excitation and an interaction part HU which controls the zero-doping state. The
Schrieffer-Wolff transformation is to eliminate the high-energy kinetic Hamiltonian order by order through a unitary
transformation exp(iS)

H ′ = eiSHe−iS = H + [iS,H] +
1

2
[iS, [iS,H]] + . . . . (S1)

The transformation operator is expanded in the order of t/V or t/U , S = S1 + S(2) + . . . . For this purpose, we

decompose the kinetic Hamiltonian into the terms preserving the interaction H
(0)
00 and those creating higher energy

excitations H̃k. The aim of S(1) is to eliminate those components H̃k

[iS(1), HU ] = −H̃k, Hk = H
(0)
00 + H̃k and [H̃k, HU ] ̸= 0, [H

(0)
00 , HU ] = 0 . (S2)

The SW transformed Hamiltonian to the order of t2/U is given by the sum [iS(1), Hk] + [iS(1), [iS(1), HU ]]/2 =

[iS(1), H̃k]/2+[iS(1), H
(0)
00 ]. The effective theory is obtained by projecting this expression to the state with A occupied.

To obtain S(1), it is more convenient to decompose Hk into different ladder operators of the onsite potential and the
nearest-neighbor repulsion. We do this first for the hopping process from an A site to a nearby B site. It increases the
onsite potential by D. The nearest-neighbor repulsion brought by this process depends on the number of neighbors
of A and B, δE = (nB − nA)V . With these observations, the kinetic Hamiltonian is decomposed as

Hk =
(
H

(0)
00 +HA

)
+

(∑
m,n

H+
m,n +H−

m,n

)

=

t′∑
ij

c†i,Bcj,B + t′
∑
ij

c†i,Acj,A

+

t ∑
j,r,m,n

PB
m,j+rc

†
j+r,Bcj,AP

A
n,j + t

∑
j,r,m,n

PA
m,j−rc

†
j−r,Acj,BP

B
n,j

 , (S3)

where the next-nearest-neighbor hopping includes terms preserving HU and those connecting states with different

distributions of A particles. The operators P
A/B
m,j are projection into the state where the particle A/B at unit cell j

has m neighbors occupied. They can be written in terms of the sum over the product operators
∏

r nr
∏

r′(1− nr′),
where r, r′ are the occupied/unoccupied neighbors. Notice that m,n cannot be larger than N − 1, where N is the
number of nearest neighbors in this lattice, as the hopping operators in the middle of Eq. (S3) always eliminate one
neighbor. One can verify the following commutation relations

[HU , H
±
m,n] = [±D + (m− n)V ]H±

m,n. (S4)
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With these relations, we can define the leading order transformation for the AB hopping to be

iS
(1)
AB =

∑
m,n

H+
m,n

D + (m− n)V
−

H−
m,n

D − (m− n)V
. (S5)

Such similar expressions S
(1)
AA, S

(1)
BB can also be obtained for the AA,BB hopping with different numbers of neighbors

occupied. So S(1) is comprised of operators that create excitations of HU . The observation is that those S
(1)
AA, S

(1)
BB

terms annihilate the state with all A sites occupied. So their contribution to the second order expansion [iS(1), H̃k]/2

vanishes after the projection. What are left are terms diagonal in HU . The resulting expression [iS(1), H
(0)
00 ] ≃ t′t/U

is off-diagonal in the ground state of HU . It will be further eliminated to the order 1/U2 by the second-order SW
transformation. So we can neglect it at the order of 1/U . The Hamiltonian is simplified to a quadratic form of H±

m,n.
As the low energy physics is obtained by projecting H ′ to the state with all A sites occupied, this requires the total
excitation should have equal numbers of + and − and the sum of m − n should vanish. As H−

m,n annihilates the
low-energy manifold, it ends up with the following equation

H ′
eff = −

∑
m′,n

H−
m′,m′+N−nH

+
N,n

D + (N − n)V
. (S6)

As the occupation on site A must be conserved, there are two situations in the above summation. When the bond
operators in H−

m′,m′+N−n and H+
N,n are taking the same one, we obtain density interaction terms. When they differ,

we have hopping terms for B fermions. It is more convenient to write out the Hamiltonian for the four neighbors
around one A site. Choosing (i, j, k, l) to be the four neighbors of a particle A, we have the following terms for the
density interaction part

HU
4 =− 4t2

D + 3V
(1− ni)(1− nj)(1− nk)(1− nl), (S7)

HU
3 =− 3t2

D + 2V
(1− ni)(1− nj)(1− nk)nl + PM, (S8)

HU
2 =− 2t2

D + V
(1− ni)(1− nj)nknl + PM, (S9)

HU
1 =− t2

D
(1− ni)njnknl + PM, (S10)

where PM means distinct combinations obtained by permuting i, j, k, l. For the hopping processes from i → j, we
need that the A particle has neighbor i occupied before the hopping and j occupied after the hopping. These terms
are given by

Hk
3 =

t2

D + 2V
c†i,Bcj,B(1− nk)(1− nl) + PM, (S11)

Hk
2 =

t2

D + V
c†i,Bcj,Bnk(1− nl) + PM, (S12)

Hk
1 =

t2

D
c†i,Bcj,Bnknl + PM. (S13)

Similarly, PM means distinct combinations obtained by permuting i, j, k, l
Now we collect the contributions together. We have two-body, three-body and four-body interactions:

H ′
U,eff =

∑
ij

U2ninj +
∑
ijk

U3ninjnk +
∑
ijkl

U4ninjnknl. (S14)

The summation of i, j, k, l is defined by counting the different two-, three- and four-combinations of the neighbors
around every A site. So the two-body interaction along the diagonal of the square lattice should be counted twice.
Their coefficients are given by

U2 = − 2t2

D + V
+

6t2

D + 2V
− 4t2

D + 3V
, (S15)

U3 = − t
2

D
+

6t2

D + V
− 9t2

D + 2V
+

4t2

D + 3V
, (S16)

U4 =
4t2

D
− 12t2

D + V
+

12t2

D + 2V
− 4t2

D + 3V
. (S17)
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The effective hopping Hamiltonian can be assisted by the other two neighbors around each A site

H ′
k,eff =

∑
ij

λ0c
†
i,Bcj,B +

∑
ijk

λ1c
†
i,Bcj,Bnk +

∑
ijkl

λ2c
†
i,Bcj,Bnknl, (S18)

where the hopping parameters are

λ0 =
t2

D + 2V
(S19)

λ1 =
t2

D + V
− t2

D + 2V
(S20)

λ2 =
t2

D
− 2t2

D + V
+

t2

D + 2V
. (S21)

All the parameters as a function of V/D are plotted in Fig. S1.
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FIG. S1. Parameters of the large-D effective theory of the
square lattice model.

B. Continuum theory for low doping

The effective inverse mass tensor at the two valleys are

m−1
± = a2

(
4t′B ∓ 2tB 0

0 4t′B ± 2tB ,

)
(S22)

where the subscript + (−) denotes the valley located at
(0, π) ((π, 0)). Recall that the two valleys being minimum
is given by the condition |t′B/tB | > 0.5. We see that the
mass tensor is diagonal in the coordinate we choose, and
there is mass anisotropy for each valley.

We introduce the center-of-mass coordinates: δr =
r+−r−,R = m̄+r++ m̄−r−, where m̄± = m±/Tr(m±).
The (first-quantized) kinetic Hamiltonian of the two par-
ticles can be written as (∇T

δrµ
−1∇δr + ∇T

RM
−1∇R)/2.

We find that the relative inverse mass tensor µ−1 is
isotropic: µ−1 = µ−1

0 I, where µ−1
0 = (8a2t′B) and I is

the 2×2 identity matrix. The continuum approximation
of the two-particle problem is similar to that of the hon-
eycomb model [1]. The two-particle binding energies can

be calculated in the center-of-mass reference frame [1]:

Ebp = ebp[e
2π/(µ0|g|) − 1]/µ0, (S23)

where µ0 = (8a2t′B)
−1 is the relative mass. The result

is independent of the specific value of tB (t′ in the full
model) as long as the ground states of single fermion
[two fermions] are in the (0, π) or (π, 0) [(π, π)] momen-
tum sector, consistent with the microscopic Hamiltonian
being independent of tB in the two-particle (π, π) sec-
tor. We fit ebp using exact data in the small V/D region
and plot the continuum effective result together with the
exact result in Fig. S2. Different from the honeycomb
model, the binding energies will drop for large V because
|g| will decay to zero for large V instead of converging to
a constant.

To extract coefficients of interaction in the continuum
theory, we write the correlated hopping as

λ1
∑
i,j,k

c†i c
†
jcjck =λ1

∑
i,j,k,

k,k′,q,σi

ψ†
σ1,k−qψ

†
σ2,k′+qψσ3,k′ψσ4,k

× e−i(Kσ1
+k−q)·ai−i(Kσ2

−Kσ3
+q)·aj

× ei(Kσ4
+k)·ak , (S24)

where ai is taken from the four vectors connecting A
to its nearest B neighbours. The variables k,q,k′ are
taken to be much smaller than |K+ − K−|. Similarly,
the repulsion term is rewritten as

U2

∑
ij

c†i c
†
jcjci =U2

∑
i,j,q,
k,k′,σi

ψ†
σ1,k−qψ

†
σ2,k′+qψσ3,k′ψσ4,k

× e−i(Kσ1−Kσ4−q)·ai−i(Kσ2−Kσ3+q)·aj .
(S25)

The continuum interactions between different valleys and
inside the same valley are given by taking appropriate
combinations of σi and their anti-symmetrized partners.
The result of inter-valley interaction has been given

in the main text. Now we consider intra-valley interac-
tion with finite doping. We consider the weak interacting
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FIG. S2. Binding energies and bound states sizes of two
fermions for the effective square lattice model with two val-
leys. The dashed line denotes the continuum effective theory
with one fitting parameter given by matching small V/D data.

limit and discuss the interaction between modes on the
Fermi surface of a valley, for example, the + valley. Here
the momenta are defined as the deviation to (0, π). In
general, we have.∑

k,k′,q

g(k,k′,q)ψ†
+,k−qψ

†
+,k′+qψ+,k′ψ+,k (S26)

We focus on two-particle scattering with net zero devia-
tion to K+ and small doping (momenta is small enough
to perform Taylor expansion).∑

q1,q2

g̃(q1,q2)ψ
†
+,q1

ψ†
+,−q1

ψ+,−q2ψ+,q2 (S27)

Set q1 = q2 and q1 = −q2 respectively, we can ob-
tain the density-density interaction, ∝ [2λ1(q

2
1,x− q21,y)+

U2(q
2
1,x + q21,y)]n+(q1)n+(−q1). With the Fermi surface

shape close to an eclipse with the long axis along the
y direction, and λ1 ≈ U2 for V/D < 1 (Fig. S1), such
interaction in most momenta is attractive.

C. Few-particle-doping binding energy with finite
D/t

Here, we discuss few-particle-doping binding energies
of the full model with finite D/t = 10, 5. The binding
energies, in the unit of t2/D, are in general smaller for
smaller D/t . However, even for D/t = 5, we find no
substantial difference for inferred stable pairing region,
compared to the effective model with D/t = ∞.

As an alternate of binding energy per particle, we rep-
resent the results as binding energies for forming bound
states with composites. For two-particle and three-
particle bound states, the existence of bound states can
be seen from a positive Eb,1,1 = 2E1 − E0 − E2 and
Eb,1,2 = E1+E2−E0−E3 respectively. These quantities
are plotted in Fig. S3. Binding energy per particle can
be deduced from them. The existence of three-particle
bound states does not mean that three-particle bound

FIG. S3. Binding energies. The binding energies of two
fermions are shown in the first row from left to right for the
honeycomb lattice model and the square lattice model with-
out t′ term and for t′ = λ0. Correspondingly, the binding
energies for a fermion pair and a fermion to form a three-
fermion bound state are shown in the second row. The plot
scale of the Eb,1,1 of square lattice models is smaller than oth-
ers’.
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FIG. S4. Binding energy extrapolation. We show an example
of extrapolation to obtain Fig. 3 in the main text and Fig. S3
The data are taken from ED for V/D = 0.8, t′ = λ0 of the
square lattice.

states are more favored than pairs for dilute doping. Fa-
vored bound states have the largest binding energy per
particle.

Some details of the numerical implementation are as
follows. For the full (effective) lattice models, we ob-
tain the ground-state energies En of finite systems us-
ing DMRG (exact) diagonalization. To accurately com-
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pute binding energies, we need system sizes larger than
the sizes of the bound states. We estimate the finite-
size errors by doing 1/N extrapolation for data of the
two largest systems we obtain. The extrapolated data in
Fig. S3 have errors smaller than the size of markers. The
periodic boundary condition is implemented in the exact
diagonalization, which enables reading the momentum
quantum numbers. DMRG is less efficient to deal with
periodic conditions along two directions and we thus only
implement a periodic boundary condition in one direction
while implementing an open boundary condition on the
other. In this case, to correctly calculate the bulk bind-
ing energy, we find it essential to eliminate the low-energy
edge modes. Such modes can be understood by consider-
ing the potential and interaction part of the Hamiltonian
Eq.(1):

∑
⟨i,j⟩ V ninj +

∑
i∈B Dni. As A sublattice is al-

most fully-filled, if a fermion on B sublattice is located
at the open boundary rather than in the bulk, it feels
less repulsion from the fermions on B sublattice. Conse-
quently, these configurations have lower energy. We find
that introducing additional potential terms V ni on the
boundary of B sublattice can eliminate low-energy edge
modes.

D. Weak-coupling results

In the weak coupling regime, we apply a truncated
unity functional renormalization group approach. The
FRG flavor we employ is a method to construct unbi-
ased single and two-particle interactions from a set of
flow equations. While three- and four-body interactions
are not counted as objects themselves, they are partially
included via virtual processes in the two-particle interac-
tion. We use a sharp energy cutoff [2], thus the critical
energy scale can be interpreted as a critical temperature
modulo an unknown scaling factor. We calculate the ver-
tex on a 24×24 momentum mesh for both lattices, with a
refinement for the bubble integration mesh of 45×45. On
the square lattice, we include the 25/29 nearest neighbors
in the truncated unity per site within the unit cell for the
honeycomb/square lattice. We use a Bogacki–Shampine
adaptive integrator for the integration of the flow equa-
tions, allowing for a maximal absolute error of 10−2 per
integration step. The results of the FRG simulations are
visualized in Fig. S5. To distinguish different phases,
we inspect the behavior of the maximal eigenvalues of
each channel during the flow in combination with an in-
spection of the dominant eigenvectors at the end of the
flow. These eigenvectors encode symmetries and specific
types of instability. In the case of py/px we find the two
eigenvectors to be exactly degenerate. In the real space

representation we define px/y = sign(v⃗x/y · d⃗)δv⃗x/y,d⃗
with

v⃗x = (1, 0), v⃗y = (0, 1) and d⃗ is the vectorial distance
between two sites. To distinguish all possible linear com-
binations cos(θ)px+e

iϕ sin(θ)py we perform a single-step
mean-field calculation and compare the free energy of

(a) (b)

(c) (d)

FIG. S5. Results of the FRG simulations for the three differ-
ent setups and visualization of the f -wave superconductivity.
We abbreviate a flow to strong coupling without divergent
susceptibility as SCT, and a divergence of the f -wave compo-
nent of the pairing susceptibility as f -SC. The y-axis displays
the critical energy scale, which is linearly dependent on the
critical temperature. The x-axis displays the doping. (a)
shows the results for a square lattice with t′ = λ0 and (b) the
square lattice with t′ = 0 results. (c) shows the results for
the honeycomb lattice. In all simulations, we kept D = 10
and varied V in the given range. (d) visualizes the different
superconducting order parameter symmetries encountered, as
visualized by the eigenvector of the effective two-particle in-
teraction at the orbital at the Fermi level. The upper left
shows an f -wave on the honeycomb lattice, the upper right
shows a dx2−y2 -wave on the square lattice. The lower two
plots correspond to the degenerate pair px and py with weak
admixture of other dependencies.

each starting configuration, as can be seen in Fig. S6.
To calculate the Chern number in the gapped phase, we
employ the method described in Ref. [3].

E. Details of infinite DMRG calculations

We obtain approximate ground states of the Hamil-
tonian Eq.(1) defined on infinite cylinders. We do this
by optimizing infinite matrix product states via two-site
iDMRG algorithm [4]. We implement the conservation
of particle numbers, thus the phase diagram Fig. ?? is
constructed in terms of doping densities ν. The accuracy
of infinite matrix product states can be improved by in-
creasing its bond dimensions (χ, size of the matrices);
With efficient optimization, to reach a given accuracy, the
required computational resource (e.g. χ) is exponentially
large in cylinder circumference. Infinite matrix product
states are constructed to be exactly translationally in-
variant by M lattice unit vector along the axial direc-
tion. To implement exact particle number conservation
for doping density ν = p/q (irreducible fraction),M must
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FIG. S6. Free energy minimization in the square lattice with
t′ = λ0, using cos(θ)px + eiϕ sin(θ)py as starting values. The
combination with the smallest free energy is 1

2
(px + ipy)

be integer multiples of q/Ly. (Ly is the number of lat-
tice unit vectors around the cylinder.) To be compatible
with the possible spontaneous breaking of translational
symmetry (e.g., charge-density-wave state), M has to be
compatible with the enlarged unit cell. As mentioned
in the main text, we estimate of correlation lengths of
single-particle and pair to infer superconductivity. See
Ref. [5, 6] for the definition and extraction methods for
one-dimensional correlation lengths. Here, we define the
correlation length from the correlation along the axial
(infinite) direction. We denote them estimated using
bond dimension χ as ξ1(χ) and ξ2(χ) respectively; the
larger the bond dimension, the more accurate the esti-
mation.

[1] V. Crépel and L. Fu, New mechanism and exact theory of
superconductivity from strong repulsive interaction, Sci-
ence Advances 7, eabh2233 (2021).

[2] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden,
and K. Schönhammer, Functional renormalization group
approach to correlated fermion systems, Rev. Mod. Phys.
84, 299 (2012).

[3] T. Fukui, Y. Hatsugai, and H. Suzuki, Chern numbers in
discretized brillouin zone: Efficient method of computing
(spin) hall conductances, Journal of the Physical Society
of Japan 74, 1674 (2005).

[4] I. P. McCulloch, Infinite size density matrix renormal-
ization group, revisited, arXiv preprint arXiv:0804.2509
(2008).

[5] Y. He, D. Pekker, and R. S. K. Mong, One-dimensional re-
pulsive hubbard model with mass imbalance: Orders and
filling anomaly, Phys. Rev. B 104, 195126 (2021).

[6] V. Zauner, D. Draxler, L. Vanderstraeten, M. Degroote,
J. Haegeman, M. M. Rams, V. Stojevic, N. Schuch, and
F. Verstraete, Transfer matrices and excitations with ma-
trix product states, New Journal of Physics 17, 053002
(2015).

https://doi.org/10.1126/sciadv.abh2233
https://doi.org/10.1126/sciadv.abh2233
https://doi.org/10.1103/RevModPhys.84.299
https://doi.org/10.1103/RevModPhys.84.299
https://doi.org/10.1143/jpsj.74.1674
https://doi.org/10.1143/jpsj.74.1674
https://doi.org/10.1103/PhysRevB.104.195126
https://doi.org/10.1088/1367-2630/17/5/053002
https://doi.org/10.1088/1367-2630/17/5/053002

	Supplemental Material: Superconductivity of repulsive spinless fermions with sublattice potentials
	Supplemental Material
	Schrieffer-Wolff transformation
	Continuum theory for low doping
	Few-particle-doping binding energy with finite D/t
	Weak-coupling results
	Details of infinite DMRG calculations

	References


