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0νββ Zerfall im minimalen links-rechts symmetrischen Modell:

In dieser Arbeit berechnen wir die differentielle Zerfallsrate von 0νββ im mini-
malen links-rechts-symmetrischen Modell (mLRSM) im Rahmen einer effektiven
Feldtheorie bei niedrigen Energien. Wir studieren die grundlegende Modellbil-
dung des mLRSM aus der Literatur und leiten die Massenskalen der beteiligten
Teilchen ab. Diese Massen sowie die Kopplungen des Modells spielen eine
entscheidende Rolle im 0νββ-Prozess, um die Zerfallsamplituden zu berechnen.
Wir geben die Amplitude jedes Diagramms an und berechnen die differentielle
Zerfallsrate. Das Herleitungsverfahren vom Modell zur Zerfallsrate ist für Stu-
denten hilfreich, um die Beziehung zwischen theoretischen Modellen und Experi-
menten zu verstehen und dient als Ausgangspunkt für weiterführende Forschung.
Am Ende zeigen wir die resultierenden Ausdrücke der differentiellen Halbwert-
szeiten, Einzelelektron-Spektren sowie der Winkelkorrelationen, die aus den ver-
schiedenen Beiträgen resultieren.

0νββ decay in the minimal left-right symmetric model:

In this thesis we calculate the differential decay rate of 0νββ in the minimal
left-right symmetric model (mLRSM) using the low energy effective approach.
We study the fundamental model building of the mLRSM from the literature
and derive the mass scales of the involving particles. These masses as well as
the couplings of the model play a crucial role in the 0νββ process for amplitude
derivations. We give the amplitude of each diagrams and calculate the differential
decay rate. The derivation procedure from the model to the differential decay
rate is helpful for students to understand the relation between theoretical models
and experiments, and it can be duplicated in studying different models. In the
end, we show the differential decay rate spectra, angular correlation spectra, and
the half-life expressions.
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1 Motivation and Introduction

The Standard Model (SM) [1] is a milestone of the development of theoretical particle
physics, which describes particles and the behaviors of particles under strong, weak
and electromagnetic forces [2]. The latter two have been unified into electroweak
mechanism which performs a more elegant explanation for leptons [3, 4, 5]. Devel-
oped in the early 1970s, the SM has successfully become established as a well-tested
physics theory after extensive precise experiments, especially high energy colliding
experiments with large colliders such as LHC and LEP [6].

However, starting in the 1970s, physicists began to search for more precise sym-
metries to explain the physics beyond the SM (BSM) [7]. One of the phenomena,
though the neutrino oscillation had not been conclusively confirmed at that time,
promotes theories for massive neutrinos [8]. This phenomenon is not included in
the SM theory, where neutrinos are Dirac particles and are assumed to be mass-
less. The massive neutrinos, which are electrically neutral fermions, provide a hint
that neutrinos can be Majorana particles [9]. Accordingly, the question of whether
neutrinos are Majorana or Dirac particles becomes a crucial aspect in the search
for new BSM physics [10]. In theoretical perspective, physicists have created sev-
eral models to match the existing or upcoming experimental results, including those
that are gauge invariant with Majorana particles. The most propitious candidate
experiment for studying massive Majorana neutrinos is the neutrinoless double beta
decay (0νββ) which indicates the violation of lepton number conservation. It is
necessary to derive the decay rate of the 0νββ decays in order to put constraints on
new physics parameters and to distinguish the underlying mechanism of the lepton
number violation physics [11, 12]. The expressions of the decay rate depend on the
choice of different models and mechanisms [13]. These predictions play a significant
role in understanding the deep mechanism of neutrinoless double beta decay. How-
ever, people will only know whether the models are worthy or not once the process
is observed [14]. In this thesis, we will calculate the neutrinoless double beta decay
rate under the the minimal left-right symmetric model and give constrains on the
effective Lagrangian couplings.

In chapter 2, we will talk about the mass mechanism of neutrinos and review the
Dirac and Majorana type neutrino terms in the SM. A few pages are added to the
last part of chapter 2 to explain the neutrino oscillation. In chapter 3, we will review
the model building of the minimal left-right symmetric model (mLRSM) and derive
the lepton and boson mass scales. Calculations are mainly performed in chapter 4,
where we show the explicit calculation for tree-level differential decay rate under the
mLRSM. We will give the numerical values of the phase space factors for 136Xe, and
draw the single electron kinetic energy spectrum and the angular correlation. One
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could also find some useful tools for doing the calculation in the Appendix I.

Prerequisite

1. We are using the natural unit [15] where

ℏ = c = 1 (1.1)

where ℏ is the reduced Planck constant. ℏ = h
2π

, h is the Planck constant [16]. c is
the speed of light. In this case, the electron mass is

me = 9.109× 10−31kg ≈ 0.511MeV (1.2)

2. The relativistic 4-dimensional metric tensor we are using is:

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (1.3)

Sometimes it is written as ηµν , η
µν in Minkowski coordinates. Define gamma matrices

in 4-dimensional space γµ = (γ0, γ1, γ2, γ3). They satisfies the anticommutation
relation,

{γµ, γν} = γµγν + γνγµ = gµνI4×4 (1.4)

The transformation of the upper or lower indices is through the metric acting on
the gamma matrix: γµ = gµνγ

ν = γµ = (γ0,−γ1,−γ2,−γ3), where the same in-
dex is so-called the “dummy index” and stands for Einstein summation [17], e.g.
γµγ

µ = gµνγ
µγν = gµνγµγν = γ0γ

0 + γ1γ
1 + γ2γ

2 + γ3γ
3. The upper and lower

Lorentz indices are sometimes called the contravariant and covariant indices, re-
spectively [18]. In different representations, gamma matrices have different content.
Define the additional fifth gamma matrix γ5 = iγ0γ1γ2γ3 or γ5 = iγ0γ1γ2γ3, and i is
the imaginary unit. γ5 matrix is Hermitian γ5

†
= γ5 and the square equals identity

(γ5)2 = I4×4. These can be found in quantum field theory books, e.g. [19, 20, 21].
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2 Neutrino Mass

The “Neutrino” was first postulated by Wolfgang Pauli in 1930 in his letter “Liebe
Radioaktive Damen und Herren” [22]. He introduced this electric neutral particle
with mass similar to the electron mass to explain the energy and the momentum
conservation in beta decay. In 1956, the electron neutrino was first discovered by
Reines and Cowan in the inverse beta process from a nuclear reactor [23]. When
the muon neutrino was later observed in pion decay in 1962 at Brookhaven National
Laboratory [24, 25], the concepts of lepton families became more acceptable in theo-
retical models [26]. Finally in the 1970s, the combination of electroweak interaction
theory and the strong interaction theory gave the birth of the SM [27, 28]. In this
chapter, we will review the theories of the neutrino mass from an overview perspec-
tive instead of a historical one. We will introduce the SM and consider how we can
add neutrino masses to fix the model. In order to better understand the neutrino
mass, we will review the neutrino oscillation and the neutrino mixing matrix (PMNS
matrix) in section 2.5. For historical review, see [29].

2.1 The Standard Model Lagrangian Revisited

In this discussion, we only take into account the electroweak interactions and leave
the strong interactions for a minute, which means that the symmetry group con-
sidered here is SU(2) × U(1). More precisely, due to the unobserved right-handed
current, people built up the chiral asymmetry that places the left-handed particles
into doublets and right-handed particles into singlets, i.e. the symmetry group is
SU(2)L × U(1)Y . The conserved charge is Q = I3 + Y/2, where I3 is the isospin
and Y is the electroweak hypercharge. The Lagrangian in this case contains the
kinetic terms (gauge boson fields, fermion fields, Higgs bosons), the Yukawa terms,
and the potential terms. We can write down the Lagrangian with three generations
of fermions as follows (only in SU(2)L × U(1)Y ) [30],

L = Lg + Lf + LH + LY + V (Φ) (2.1)

where “g”, “f”, “H”, and “Y” represent the gauge, fermions, Higgs, and Yukawa,
respectively. There is no term for gluon color field interaction since we only consider
the symmetry group SU(2)L × U(1)Y . We can define each terms separately. The
first terms is the gauge fixing of the bosons fields,

Lg = −1

4
W µνWµν −

1

4
BµνBµν (2.2)
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2.1 The Standard Model Lagrangian Revisited

where W,B are gauge bosons and W µν,a = ∂µW ν,a − ∂νW µ,a, Bµν = ∂µBν − ∂νBµ

are the field strength tensor. The second term is the fermion kinetic term with gauge
fixing, and it is defined as

Lf =
∑

i=e,µ,τ

Li,Li /DLi,L +
∑

i=1,2,3

Qi,Li /DQi,L

+
∑

i=e,µ,τ

li,Ri /Dli,R +
∑

i=u,c,t
or i=d,s,b

qi,Ri /Dqi,R
(2.3)

and we use the standard notation /D ≡ γµDµ, where γµ is the gamma matrix. The
covariant derivative is given as

D = ∂µ + igSM
σ⃗

2
·Wµ + g′SM

Y

2
(2.4)

where Y is the hypercharge (one need not to be confused with the Yukawa couplings).
σ⃗ = (σ1, σ2, σ3) are Pauli matrices. The left-handed fermion fields are,

Le,L =

(
νe
e

)
L

Lµ,L =

(
νµ
µ

)
L

Lτ,L =

(
ντ
τ

)
L

(2.5)

Q1,L =

(
u
d

)
L

Q2,L =

(
c
s

)
L

Q3,L =

(
t
b

)
L

(2.6)

while the corresponding right-handed singlets are qu,dj,R and lj,R where q, l represent

quarks and charged leptons respectively. u, d are up type and down type quarks. L is
defined in the usual way as L = L†γ0. The fields with chiral indices are expressed by
acting with the chiral projection operator PL.R on the original fields. For example,
the left-hand field of an arbitrary fermion field Ψ is PLΨ = ΨL. The projection
operator is defined through the gamma-5 matrix: PL,R = 1∓γ5

2
. The Higgs kinetic

term is defined as,

LH = (DµΦ)†(DµΦ) (2.7)

The Higgs field Φ is a doublet with hypercharge YΦ = 1 in order to contract with
the left-handed doublets in the Lagrangian. The Yukawa term is defined as

LY =−
∑

i,j=e,µ,τ

(
Y l
ijLi,LΦlj,R + Y l

ij

∗
lj,RΦ†Li,L

)
−
∑

i=1,2,3
j=u,c,t

(
Y u
ijQi,LΦquj,R + Y u

ij
∗quj,RΦ†Qi,L

)
−
∑

i=1,2,3
j=d,s,b

(
Y d
ijQi,LΦqdj,R + Y d

ij

∗
qdj,RΦ†Qi,L

)
(2.8)
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2 Neutrino Mass

where Y l,u,d
i,j are the Yukawa couplings. The potential term contains information

about the environment, or more precisely, the “vacuum”. This term gives the po-
tential field with which the other fields interact. From the simplest renormalizable
“ϕ4” toy model, we know the potential term has O(N) symmetry and indicates
a non-trivial vacuum expectation value (VEV) [19]. This non-trivial VEV leads
to a so-called spontaneous symmetry breaking (SSB) mechanism, which automati-
cally generates the mass of the gauge bosons. We use the ϕ4 potential in the O(2)
symmetry here,

V (Φ) =
1

2
µ2Φ†Φ +

λ

4
(Φ†Φ)2 (2.9)

where Φ† = (ϕ†
1, ϕ

†
2). We can find global minima when the potential satisfies ∂V

ϕ1
=

∂V
ϕ2

= 0. That is,

|ϕ1|2 + |ϕ2|2 = −µ
2

λ
(2.10)

which indicates a massless field and a massive field in the polar coordinates. Let us

define the vacuum Higgs field under the operator Q̂ = Î3 + Ŷ
2

is Φ =
(
ϕ+ ϕ0

)T
and

only the neutral field ϕ0 gains the VEV due to the conservation of the electric charge.

In this way we can solve the VEVs from Equation (2.10): Φ0 =
(

0
√
−µ2

λ

)T
. In

O(N) SSB, we have the VEV Φ0 = (0, 0, ..., v)T where there are N − 1 zeros. The
O(N) symmetry is hidden and leaves only O(N − 1).

2.2 Higgs Mechanism and Lepton Masses

A widely accepted model about how leptons gain their masses is through the Higgs
mechanism. The Higgs field Φ has a non-trivial VEV due to SSB. For convenience,
we can define the Higgs field in the Lagrangian (2.1) in the unitary gauge. Since the
potential (2.9) and the minima condition (2.10), we can arbitrarily choose the form

Φ(x) =

(
0

v + h(x)

)
(2.11)

and the expectation value is

⟨Φ⟩ =

(
0
v

)
(2.12)

where v =
√
−µ2

λ
is the chosen solution from (2.10). If we are only interested in the

masses of gauge bosons, we should introduce the Higgs field VEV into (2.7). The
gauge fields W 1

µ ,W
2
µ ,W

3
µ , Bµ turn into W±

µ , Zµ, Aµ after the Higgs mechanism [20].
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2.3 Dirac Mass for Neutrinos

The fermions masses are generated from Yukawa terms (2.8) with the Higgs VEV.
It is proper to use the form (2.12) to contract with the SU(2) gauge field Wµ in
fundamental representation and the lepton doublet in one generation. When we put
the VEV back into Equation (2.8), we can obtain:

L l
Y = −v

∑
i,j=e,µ,τ

li,LY
l
ijlj,R + h.c. (2.13)

where we only write down the Yukawa term for leptons (the superscript l ≡ lepton).
The lepton states have conventionally three generations, and the Yukawa couplings
then form a 3× 3 matrix. To diagonalize the Yukawa matrix, we need the transfor-
mation,

lmL,R = U l†
L,RlL,R =

emµm

τm


L,R

(2.14)

and the transformation of the conjugate lepton state lmL,R = lL,RU
l
L,R. We have used

the superscript m to represent the mass state leptons. In this way, the Yukawa
matrix transforms as U l†

L Y
lU l

R = Y lM , where Y lM is a 3 × 3 diagonal matrix, and
the entries are yle,µ,τ . The small l in the superscript is for charged leptons. The pure
lepton mass term then reduces to the form

L D
ml

= −v
∑

α=e,µ,τ

ylαlαlα (2.15)

where lα ≡ lαL + lαR. We use lα instead of lme,µ,τ (to get rid of m) to simplify the
expression. In the SSB and Higgs mechanism processes, only the charged leptons
gain masses through Yukawa couplings and non-trivial VEVs. The neutrinos are
Dirac type and remain massless [30]. In general, we introduce a Higgs field h(x)
with zero VEV in the position basis, see Equation (2.11). Then the full Lagrangian
of the lepton mass term is

L D
Ml

= −v
∑

α=e,µ,τ

ylαlαlα −
∑

α=e,µ,τ

ylαlαlαh(x) (2.16)

where the second term is the Higgs-lepton interaction vertex. It shows that the
vertex should contain a coefficient proportional to the Yukawa couplings, or more
detailed, the mass of the leptons.

2.3 Dirac Mass for Neutrinos

Neutrinos are neutral fermions. In a very natural way of thinking, we can add
a right-handed neutrino singlet similar to the right-handed charged lepton and the
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2 Neutrino Mass

neutrino gains mass through the same Higgs mechanism procedure (with the Yukawa
couplings) as we did in the last section. This does not change the symmetry SU(2)L×
U(1)Y of the theory and it is so-called the fixing of the SM for the neutrino mass, or
the Dirac neutrino mass. The Lagrangian is enlarged by the right-handed neutrino
singlet term,

L D
leptonmass = −

∑
i,j=e,µ,τ

Y l
ijLi,LΦlj,R + Y ν

ijLi,LΦ̃νj,R + h.c. (2.17)

where we introduce a new Higgs field Φ̃ ≡ iσ2Φ
∗ with hypercharge YΦ̃ = −1. σ2 =(

0 −i
i 0

)
belongs to the Pauli matrix. Φ̃ provides the same potential as Φ, but with

VEV ⟨Φ̃⟩ =
(
v 0

)T
instead. The neutrino singlet νR is defined as

νR =

νeRνµR
ντR

 (2.18)

Then the mass term becomes,

L D
ml

= −(v + h(x))
∑

α=e,µ,τ

ylαlαlα − (v + h(x))
∑

i=1,2,3

yνi νiνi (2.19)

where the different Yukawa couplings yνi generate the neutrino masses. yνi are entries
of the diagonalized Yukawa matrix Y νM . The neutrino field νi is νi ≡ νiL + νiR, i =
1, 2, 3. Equation (2.19) differs from Equation (2.16) only by adding the correspond-
ing neutrino term. The subscript 1, 2, 3 stands for the neutrino mass eigenstates,
and we have the flavor-mass eigenstates defined via:

νlL =
3∑

i=1

UL
li νiL νlR =

3∑
i=1

UR
li νiR (2.20)

where the transformation matrix UL,R are unitary and so-called the PMNS mixing
matrix (the Pontecorvo-Maki-Nakagawa-Sakata matrix) [31, 32]. The right-handed
neutrino is named the ’sterile’ neutrino, where B.Pontecorvo first gave this name for
its almost unobservable property [32]. Sterile neutrinos have zero isospin since they
are SU(2)L singlets. Their hypercharge also need to be zero since the hypercharge
of the Higgs field and the charged lepton field have already matched. The sterile
neutrino is neutral with the definition of Q [32]. This result leads to a fact that sterile
neutrinos do not participate in electroweak interactions. Also, they are obviously
leptons and hence do not take part in the strong interactions. Thus, in SM, SU(3)C×
SU(2)L×U(1)Y , the sterile neutrinos only interact with the Higgs field and the active
neutrinos through Yukawa interactions. One important question we should ask here
is if the Dirac mass term is gauge invariant or not. First, Let us consider a local

12



2.3 Dirac Mass for Neutrinos

Field SU(2)L U(1)Y Q

LL =

(
νL
lL

)
2 -1

(
0
−1

)
lR 1 -2 -1
νR 1 0 0
Φ 2 1 1

Φ̃ 2 -1 -1

Table 2.1: Electroweak fields assignment in the SM

gauge transformation G(θa(x), η(x)) under SU(2)L×U(1)Y . G is a 3+1 parameters
transformation where the SU(2)L local gauge is θa(x) = (θ1(x), θ2(x), θ3(x)). The
gauge transformation G is

G(θa(x), η(x)) = eiθa(x)
τa
2
+iη(x)Y

2 (2.21)

where τa
2

are the generators of the SU(2) group. τa is actually the Pauli matrix. With
the lepton hypercharge YlL = −1, YlR = −2, YνR = 0, the gauge transformations are
given as

Lg
lL = ei

θa(x)
2

τa−i 1
2
η(x)LlL lgR = e−iη(x)lR νglR = νlR

L
g

lL = LlLe−(i
θa(x)

2
τa−i 1

2
η(x)) l

g

R = lReiη(x) νglR = νlR
(2.22)

The gauge transformations of the Higgs field are

Φg = ei
θa(x)

2
τa+i 1

2
η(x)Φ Φ̃g = ei

θa(x)
2

τa−i 1
2
η(x)Φ̃ (2.23)

Combining with (2.22) and (2.23), the gauge transformation of the Lagrangian (2.17)
is

L Dg
leptonmass =−

∑
i,j=e,µ,τ

Y l
ijL

g

i,LΦglgj,R + Y ν
ijL

g

i,LΦ̃gνgj,R + h.c.

=−
∑

i,j=e,µ,τ

Y l
ijLi,Le−(i

θa(x)
2

τa−i 1
2
η(x))ei

θa(x)
2

τa+i 1
2
η(x)Φe−iη(x)lj,R

+ Y ν
ijLi,Le−(i

θa(x)
2

τa−i 1
2
η(x))ei

θa(x)
2

τa−i 1
2
η(x)Φ̃νj,R + h.c.

=L D
leptonmass (2.24)

The lepton mass Lagrangian we build in this way is SU(2)L × U(1)Y local gauge
invariant. For explicit reading, these field assignments are shown in Table 2.1.
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2 Neutrino Mass

2.4 Majorana Mass and the Seesaw Mechanism

Apart from the Dirac type particle, neutrinos could also be Majorana particles.
The Majorana particle is defined in such a way that the particle and the antiparticle
coincide [9, 33]. Let us first discuss the antiparticle expression. Antiparticles have
opposite charge number and chirality, while remain the same mass with respect
to the correspondent particle. In order to transit transfer between particles and
antiparticles, we can define the particle-antiparticle operator as Ĉ [34].

Ĉ : Ψ −→ Ψc ≡ CΨ
T

(2.25)

where the charge conjugate matrix C satisfies:

C(γµ)TC−1 = −γµ C(γ5)TC−1 = γ5 C†C = 1 (2.26)

for Dirac spinors. These relations ensure that the field Ψc is Lorentz covariant [35].
One important point as Evgeny Kh. Akhmedov mentioned in his paper [34] is that,
one should not be confused with the charge conjugate operator C and the particle-
antiparticle operator Ĉ. Although they are equivalent for Dirac and Majorana
spinors, they are not the same for chiral fields. The particle-antiparticle conjugate
operator will change the chirality, but the charge conjugate operator does not. Find
the details here [34]. The charge conjugate operator acting on the fields of Dirac
spinors in this way is [19]

CΨ(x)C = −i(Ψγ0γ2)T

CΨ(x)C = (−iγ0γ2Ψ)T
(2.27)

which means that the charge conjugate operator satisfies the form C = −iγ0γ2 in
the Dirac representation. The definition and the properties of C tell us that only
neutral particles can be Majorana type. For the Dirac type particles masses, only the
ΨLΨR+ΨRΨL term survives because of the projection operator property PLPR = 0.
One question is what the mass term looks like for Majorana fields. For example, we
have the particle-antiparticle conjugate for left-handed field,

Ψc
L = (PLΨ)c = C(PLΨ)

T
= C[(PLΨ)†γ0]T = C[Ψ†γ0PR]T

= CPRΨ
T

= PRCΨ
T

= (Ψc)R = ΨR (2.28)

where the Ĉ operator transforms the left-handed chirality to the right-handed chi-
rality. So, for Majorana neutrinos, we could have a mass term formed by νcLνL+h.c..
We can build the Lagrangian by only using νL. Combined with the kinetic term, we
have the Lagrangian for Majorana neutrinos,

L M
ν =

∑
i

[1
2

(νiLi/∂νiL + νciLi/∂ν
c
iL)− 1

2
mM

i (νciLνiL + νiLν
c
iL)
]

(2.29)
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2.4 Majorana Mass and the Seesaw Mechanism

where we use the fact (∂µνciL)iγµν
c
iL = −νciLiγµ∂µνciL from the partial integration

with the boundary condition that
∫
d4x∂µ(νciL)iγµν

c
iL) = 0 [36]. We only think of

the singlet Majorana neutrinos which do not interact with the gauge field doublet.
i is summed over generations. mi are the entries of the diagonalized MM

3×3 matrix.
The fields follow the same transformation as the Dirac neutrinos, see Equation
(2.20). Define a neutrino field νMi = νiL +νciL, and this is obviously a Majorana field
νMi = (νMi )c. Then the pure Majorana mass term goes to

L M
mν

= −1

2

3∑
i=1

mM
i ν

M
i ν

M
i (2.30)

where we consider the conventional three generations. Detailed discussion of the
spinors under particle-antiparticle operator is given in section (4.3.1) and in Ap-
pendix E when we derive the neutrino propagators. This Majorana fields in (2.29)
will not be invariant under a global U(1) transformation eiΛ.

νML
Λ−→ eiΛνML νcL

Λ−→ (eiΛνML )c = e−iΛvcL (2.31)

The conjugate then transforms as νcL
Λ−→ νcLeiΛ. We can write the Majorana mass

term in Equation (2.29) under this arbitrary global transformation.

−1

2
mM

i (νciLνiL + νiLν
c
iL)

Λ−→ 1

2
mM

i (νciLeiΛeiΛνiL + νiLe−iΛe−iΛνciL) (2.32)

This means the Majorana neutrino term is not globally invariant under the U(1)
symmetry. The Majorana term (2.29) violates the conservative charge number which
is the lepton number given by the Nöther theorem, i.e. the lepton number is not
conserved with the Majorana neutrino term. Let us consider about what if we put
the Dirac term and the Majorana term together. One can find it in many text
books [30, 35, 36]. Combining Equation (2.19) and (2.30), we have:

L D+M
mν

= −
3∑
i

(mD
i ν

D
i ν

D
i +

1

2
mM

i ν
M
i ν

M
i ) (2.33)

In Equation (2.30), the Majorana field is expressed only in the left-handed fields
νL, ν

c
L. In order to complete the combination with the Dirac neutrino consistently,

we must add the right-handed correspondence, i.e. νR. Then we can form the Dirac
neutrino and the Majorana neutrino with the same chirality to a doublet,

L D+M
mν

= −νDLM
DνDR −

1

2
(νML M

M
L (νML )c + (νMR )cMM

R νMR ) + h.c. (2.34)
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2 Neutrino Mass

where MD and MM are non-diagonalized mass matrices for the Dirac and Majorana
neutrino. Define the doublet and its conjugate,

nL =

(
νL
νcR

)
nL =

(
νL νcR

)
nc
L =

(
νcL
νR

)
(2.35)

with this we form the two types of neutrino field into a matrix term.

L D+M
mν

= −1

2
nLM

D+Mnc
L + h.c.

= −1

2

(
νL νcR

)( MM
L MD

(MD)T MM
R

)(
νcL
νR

)
+ h.c. (2.36)

where MD is supposed to be real and the term νcR(MD)TνcL is equivalent to νLM
DνR.

νcR(MD)TνcL = −(νLC
TMD(C−1)TνR)T = −(νLCM

DC−1νR)T = νLM
DνR (2.37)

where we use CT = −C, (C−1)T = −C−1 and the expression:

νcL = CνT = (νL
T )†C†γ0 = [(νTL )∗γ0]†C†γ0 = νTLγ

0C−1γ0 = −νTLC−1 (2.38)

The block matrix in Equation (2.36) is a 6 × 6 matrix. There are not only mixing
of generations inside each 3× 3 blocks, but also mixing between the Dirac neutrinos
and the Majorana neutrinos. After the diagonalization, we should end in:

L D+M
mν

=
1

2
U †nLm

D+M(U †nL)c + h.c. = −1

2
νD+MmD+MνD+M

= −1

2

6∑
i=1

mD+M
i νiνi (2.39)

where νD+M = n
(m)
L + n

(m)
L

c
= (ν1, ν2, . . . , ν6)

T is defined in the mass eigenstates.
The transformation matrix U is also a 6×6 matrix. The mixed nL field transforms as
nlL =

∑6
i=1 Ulin

(m)
iL . The Dirac-Majorana mixed Lagrangian is definitely not global

U(1) invariant, since we have shown that the Majorana term already violates the
global symmetry, see (2.32). In the SM, it is not possible to find a global invariant
Majorana term. But physicists have made such terms in the BSM, for example
in the left-right symmetric model [37]. Equation (2.39) has shown the Dirac and
Majorana es in the mass eigenstate. However, the mass expressions mD+M

i could
be derived in a more explicit structure. A physically instructive way is to consider
the simplest one generation case. Let us start from Equation (2.34) and omit the
superscript “M” of the Majorana case for simplicity. The Lagrangian in this case
becomes

L D+M
m = −mDνLνR −

1

2
mLνLν

c
L −

1

2
mRνcRνR + h.c. (2.40)
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2.4 Majorana Mass and the Seesaw Mechanism

where mL,mR,mD are assumed to be real. Then we have the mass matrix:

MD+M =

(
mL mD

mD mR

)
(2.41)

Use the eigenfunction MD+MA = λA to solve the eigenvalues in order to diagonalize
the mass matrix. It is equivalent to find the solutions of the quadratic function
λ2−(mL+mR)λ−m2

D+mLmR = 0 which comes from the determinant det(MD+M−
λ12×2) = 0. The eigenvalues are denoted as m1,m2, and the expressions are

m1 =
1

2
(mL +mR)− 1

2

√
(mR −mL)2 + 4m2

D

m2 =
1

2
(mL +mR) +

1

2

√
(mR −mL)2 + 4m2

D

(2.42)

Another way to diagonalizing (2.41) is to transform the neutrino flavor states into
mass eigenstates. Any real symmetric 2× 2 matrix can be diagonalized through the
similarity transformation of an unitary matrix U , i.e. m = U †MD+MU . Then we
can easily choose the transformation matrix proportional to a rotational matrix in
2-dimension. This constrains the matrix to an orthogonal matrix, and then gives

m = UTMD+MU , where U = η
1
2

(
cos θ sin θ
− sin θ cos θ

)
and η2 = 1 is the proportional

factor. Explicitly, we have

UTMD+MU = η2
(

cos θ − sin θ
sin θ cos θ

)(
mL mD

mD mR

)(
cos θ sin θ
− sin θ cos θ

)
=

(
1
2 (mL +mR)− 1

2 (mR −mL) cos 2θ −mD sin θ − 1
2 (mR −mL) sin 2θ +mD cos 2θ

− 1
2 (mR −mL) sin 2θ +mD cos 2θ 1

2 (mL +mR) +
1
2 (mR −mL) cos 2θ +mD sin θ

)
(2.43)

where the mixing angle θ should satisfy the condition that makes the off-diagonal
entries equal zero, that is, −1

2
(mR −mL) sin 2θ +mD cos 2θ = 0. Then we have

tan 2θ =
2mD

mR −mL

(2.44)

Compared to Equation (2.42), we should have

1

2

√
(mR −mL)2 + 4m2

D =
1

2
(mR −mL) cos 2θ +mD sin θ (2.45)

which gives a simple choice of condition for cos 2θ and sin 2θ.

sin 2θ =
2mD√

(mR −mL)2 + 4m2
D

; cos 2θ =
mR −mL√

(mR −mL)2 + 4m2
D

(2.46)
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2 Neutrino Mass

The transformation of the neutrino states is expressed explicitly as

νD+M = U †nL + (U †nL)c

= η
1
2

(
cos θ sin θ
− sin θ cos θ

)†(
νL
νcR

)
+ η

1
2

(
cos θ − sin θ
sin θ cos θ

)†(
νcL
νR

)
(2.47)

and, e.g. for the left-handed part, we have(
cos θ − sin θ
sin θ cos θ

)(
νL
νcR

)
=

(√
η1ν1L√
η2ν2L

)
(2.48)

and this gives

νL = cos θ
√
η1ν1L + sin θ

√
η2ν2L

νcR = − sin θ
√
η1ν1L + cos θ

√
η2ν2L

(2.49)

where ν1L and ν2L are mass eigenstates. It is necessary to say that the relation
(2.44) still works for pure Majorana cases with two flavors mixing. For instance,

in the νµ, ντ case, we would have the mass matrix MM =

(
mµµ mµτ

mτµ mττ

)
, which is

similar with the matrix (2.41). The mixing angle θµτ between νµ and ντ satisfies
tan 2θ = 2mµτ

mττ−mµµ
. The flavor eigenstates νµL, ντL have the same expressions in

terms of the mass eigenstates as in (2.49).

At the Tokyo conference in 1981, the Japanese physicist Tsutomu Yanadiga pro-
posed a mass mechanism called the “seesaw mechanism” [38]. This mechanism au-
tomatically gives an explanation of the smallness of the neutrino mass with respect
to the charge-lepton mass in the corresponding generation by introducing heavy
right-handed Majorana neutrinos. Now introduce the main assumptions of the eas-
iest seesaw mechanism [36]: 1) The Dirac type neutrino mass is much smaller than
the right-handed Majorana neutrino mass mD ≪ mM ; 2) the left-handed Majorana
neutrino should result in zero mass mM

L = 0. The mathematical reason for these
assumptions is that from the mass Equation (2.19) and (2.30), there is no constraint
for the right-handed neutrino mass mR, and the Dirac neutrino is proportional to
the Higgs VEV. Physically, νR is singlet with zero hypercharge, and its mass is ar-
bitrary in the SM symmetry. Let us begin with the one generation. Using these two
assumptions, we can reduce the mass expression in (2.42).

m1,2 =
1

2
(mR +mL)∓ 1

2

√
(mR −mL)2 + 4m2

D

= mR[
1

2
(1 +

mL

mR

)∓ 1

2

√
(mR −mL)2

m2
R

+
4m2

D

m2
R

]

≈ mR[
1

2
(1 +

mL

mR

)∓ 1

2
(1 +

m2
D

m2
R

− mL

mR

)] (2.50)
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2.4 Majorana Mass and the Seesaw Mechanism

take the absolute value,

m1 ≈
m2

D

mR

≪ mD

m2 ≈ mR ≫ mD

(2.51)

The mixing angle also reduces under the assumptions,

tan 2θ =
2mD

mR −mL

≈ 2mD

mR

≪ 1 (2.52)

use the approximation if θ ≪ 1, sin θ ≈ tan θ ≈ θ,

⇒ θ ≈ mD

mR

≪ 1 (2.53)

insert the angle into Equation (2.49), the neutrino states have the form,

νL ≈
√
η1ν1L +

mD

mR

√
η2ν2L

νcR ≈ −
mD

mR

√
η1ν1L +

√
η2ν2L

(2.54)

If we set η1 = −1, η2 = 1, it shows how the Dirac and Majorana states relate to
the heavy neutrino states (real part). The diagonalization of the mass matrix has a
brief picture: (

mL mD

mD mR

)
dia−→

(
m2

D

mR
0

0 mR

)
(2.55)

the two eigenvalues satisfy m1m2 = m2
D with one mass goes higher and the other one

goes lower. It looks like a “seesaw”. The mathematics behind this is that any 2× 2
block matrix whose off-diagonal parts are much smaller than one of the diagonal
parts will end in two “seesaw” like eigenvalues that one of them is larger than the
other one. Now let us go to three generations and suppose all three generations of
the left-handed Majorana neutrinos have zero mass. The mass matrix is

MD+M =

(
0 MD

(MD)T MR

)
(2.56)

where MD and MR are 3× 3 matrices. For the matrix MR, we can see that

νRMRν
c
R = (νRMRν

c
R)T = νRC

TMT
RνR

T = νRM
T
Rν

c
R (2.57)

which leads to

MR = MT
R (2.58)
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2 Neutrino Mass

To diagonalize this matrix (2.56), we can introduce a unitary block matrix U =(
13×3 W1

W2 13×3

)
and diagonalize through m = UTMD+MU . W1,W2 are two 3 by 3

matrices that satisfy W1W
†
1 = W2W

†
2 = 1,W1 = −W †

2 due to UU † = 1.(
1 W1

W2 1

)(
0 MD

(MD)T MR

) (
1 W †

2

W †
1 1

)
=

(
W1(M

D)T + (MD +W1MR)W †
1 W1(M

D)TW †
2 +MD +W1MR

(MD)T +W2M
D +MRW

†
1 (MD)T +W2M

D +MR

)
(2.59)

and the off-diagonal block should be zero. That is

W2 = −M−1
R (MD)T ± ... ≈ −M−1

R (MD)T (2.60)

where ... is the rest part and may have the form
√

((MD)TMD)2/(M2
R
) − 4(MD(MD)T )(MD)T )/MR

which is imaginary if MR is much smaller than MD. Using the relation between W1

and W2, we obtain

W1 = −W †
2 = [(MD)T ]†(M−1

R )† (2.61)

So the diagonalized matrix under the same approximation is:

m ≈
(
−MDM−1

R (MD)T 0
0 MR

)
(2.62)

After the seesaw mechanism, we have two kinds of neutrinos with light masses and
heavy masses. This implies that there should exist another kind of particle with a
very heavy mass to explain the smallness of neutrinos mass neutrino masses in the
SM. It is easy to show, if the mass scale of the light Majorana neutrino is ∼ 10−6eV
and the lepton mass scale is around electron mass mD ∼ 0.511MeV, the mass scale
of MR is approximately 2.6× 108GeV. This seesaw mechanism is historically called
“the type I seesaw”. Type I seesaw mechanism is characterised by a Higgs-lepton
pair with a heavy neutrino singlet. The singlet does not have mass constraints so
that we would have MR ≫ mD. Furthermore, there are type II and type III seesaw
mechanisms. The type II seesaw mechanism introduces a Higgs bidoublet and two
Higgs scalar triplets for Higgs-lepton pairs with a right-handed doublet that forms
SU(2)R symmetry. This is mostly used in the LRSM (left-right symmetric model)
and we will discuss it in detail in chapter 3. In the type III seesaw mechanism,
fermion triplets have been taken into account. To revisit the popular three types,
see these: [39, 40, 41]. Moreover, there are other kinds of seesaw types, e.g. inverse
seesaw mechanism, linear seesaw mechanism (review here [40] and its references),
universal seesaw mechanism [42, 43], etc.
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2.5 Neutrino Oscillations

2.5 Neutrino Oscillations

Neutrino oscillation provides the experimental fact that the neutrinos are massive
particles. Takaaki Kajita and Arthur B. McDonald won the 2015 physics Nobel
price due to their pioneering observations of neutrino oscillations [44]. The exper-
iments of searching neutrino oscillation has been underway for several years. The
measurements of the solar electron neutrino flux was started from the 1970s in the
Homestake Chlorine Detector [45]. Lederman et al. first discovered the muon neu-
trino in 1962 in the Brookhaven experiment [25]. This provides solid evidence of
the theory of mixing flavor states [31]. The theory of neutrino oscillation was first
proposed by Pontecorvo in the 1950s, where he considered it as an analogy to kaon
oscillations [46, 47]. The theory we widely use today for neutrino oscillation is the
plane wave approximation standard theory that was developed by Eliezer and Swift,
Fritzsch and Minkowski, Bilenky and Pontecorvo from 1975 to 1976 [30, 48, 49, 50].

In this section, we will briefly derive the standard theory of neutrino oscillation
and discuss the mixing matrix. Let us begin with the leptonic charge current

jccαL(x) =
∑
l

llL(x)γανlL(x)

=
∑
i

liL(x)U l†
L γ

αUν
LνiL(x)

=
∑
i

liL(x)γαUνiL(x) (2.63)

where the leptonic charge current jccα (x) is defined from the gauge boson-lepton
interaction term,

L CC
lepton = −gSM

2
jccαL(x)W+

α + h.c. (2.64)

where we have used (2.14) and (2.20) in (2.63). The lepton transformation matrices
are distinguished by the use of the superscript l, ν. The relation between neutrino
flavor states and mass states is (2.20). Ignoring the chirality and using the Dirac
notation, we have the following.

|νl⟩ =
3∑
i

Uli |νi⟩ (l = e, µ, τ) (2.65)

where we consider the conventional three generations. The eigenstates are orthonor-
mal

〈
νl/i
∣∣νl′/j〉 = δll′/ij. Since the mass operator and Hamiltonian operator are

commute, they have the same eigenstates. We have the eigenfunction

H |νi⟩ = Ei |νi⟩ (2.66)

Inserting this into the Schrödinger equation and assuming the plane wave time
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evolution, we can obtain the states at some time (t)

|νl(t)⟩ =
3∑
i

Ulie
−iEit |νi⟩ (2.67)

Then we can also use the transformation (2.20) to express the mass states on the
basis of flavor eigenstates. Taking into account the unitary matrix Uli, we have

|νl(t)⟩ =
∑

l′=e,µ,τ

( 3∑
i

Ulie
−iEitU∗

l′i

)
|νl′⟩ (2.68)

Equation (2.68) gives the relation between two flavor representations with time
evolution from 0 −→ t. Therefore, with the time flow t > 0, the massive neutrino
flavor states become the superposition of all the flavor states. Additionally, there
is neutrino mixing if the transformation matrix U is non-diagonal. The transition
probability from the state l to l′ in time period t is then

Pνl→νl′
(t) = |⟨νl′ |νl(t)⟩|2 =

3∑
i,j

UliU
∗
l′iU

∗
ljUl′je

−i(Ei−Ej)t (2.69)

If we consider the small mass of the active neutrinos, the dispersion relation of the
neutrino will be

E = |p⃗|(1 +
m2

i

2|p⃗|
+ o(2)) ≈ E +

m2
i

2E
(2.70)

the energy difference is

Ei − Ej ≈
∆m2

ij

2E
∆m2

ij ≡ m2
i −m2

j

(2.71)

Usually, the propagation time is not obtained in the oscillation experiments; instead,
the distance between the source and the detector is measured. In the natural unit,
the propagating time of an ultra-relativistic neutrino is approximately the propa-
gating distance t ≈ L

c
= L. Finally, the transition probability goes to

Pνl→νl′
(L,E) =

3∑
i,j

UliU
∗
l′iU

∗
ljUl′je

−i
∆m2

ijL

2E (2.72)

This shows that the phase shift of different flavor states determines the oscillation.
The probability (2.72) also yields that the masses observed from the oscillation
experiments are only the mass scales of squared-mass difference. The different orders
of mass scales of m1,m2,m3 depend on ordering scenarios. For instance, normal
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ordering gives ∆m2
A > 0 while inverted ordering implies ∆m2

A < 0 (“A” stands
for atmosphere neutrinos). The mass spectrum and the orderings are independent
of whether the neutrinos are of the Dirac or Majorana type [51]. However, the
above derivation of neutrino oscillation is only in the quantum mechanics level and
the plane wave approximation is assumed as well. A more general theory occurs
in quantum field theory that includes S-matrix sandwiched in the initial and final
states [30]. One can even take wave package instead of the plane wave approximation
to obtain a more precise result [52, 53]. Let us next determine the transformation
matrix U in Equation (2.63), and this is also the matrix combination UU∗ from
(2.72).

The Standard Parametrization of the PMNS Matrix

We have studied the diagonalization of the mass matrix in section 2.4, where the
entries of the diagonalized mass matrix are eigenvalues in the mass eigenstate. The
transformation matrix UL transforms states between the flavor eigenstate and the
mass eigenstate; e.g. see Equations (2.20 and 2.47). This matrix being an element
of the Lie group can have an exponential form of expression, which leads to the
fact that it can be expressed by angles and phases. For any n × n unitary matrix
in a SU(N) group, there are n2 independent parameters in total. In the Dirac

field case, the rotations are in the off-diagonal triangle parts and have n(n−1)
2

free

parameters, and therefore the phases have n2 − n(n−1)
2

= n(n+1)
2

parameters. But
not all the phases are physical. The transformation from flavor to mass eigenstates
in the charged current follows Equation (2.63). The PMNS matrix U is defined by
U ≡ U l†

LU
ν
L. It is equivalent to redefine a lepton wave function l′ = eiϕl to cancel one

column of phases in the transformation matrix, while a neutrino function ν ′ = eiϕ

to extract one row of free phase from U . In this case, these phases can be chosen
to be “zero” [54, 55]. The total redundant free phases in U is 2n − 1, and the

physical phases are n(n+1)
2
− (2n− 1) = (n−1)(n−2)

2
. For two generations, U is a 2× 2

matrix, and there are nθ = 1, nϕ = 3 angle and phase parameters, respectively, and
nD
ϕ = 0 physical phase. For three generations, we have nθ = 3, nϕ = 6, nP

ϕ = 1. It
is explicitly shown later that the phase parameters also indicate the CP-violation.
Consider the Dirac charged lepton current under CP-transformation. We can obtain
the current from Equation (2.1). Take one generation in SU(2) for example,

Llepton = −gSM
2

(
νe e

)
L
γα
(

W 3
α W 1

α − iW 2
α

W 1
α + iW 2

α −W 3
α

)(
νe
e

)
L

(2.73)

In the form of three generations, we then have

L CC
lepton = −gSM√

2

∑
i

liL(x)γαUνiL(x)W+
α −

gSM√
2

∑
i

νiL(x)γαU †liL(x)W−
α (2.74)
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where W± = 1√
2
(W 1 ± iW 2). According to [34, 36], the CP transformations of the

Dirac lepton fields and the gauge boson fields in Dirac representation are [19, 36]

(CP )lL(x)(CP )−1 = γ0ClL
T

(x′)

(CP )νL(x)(CP )−1 = γ0CνL
T (x′)

(CP )W+
α (CP )−1 = W−

α

(2.75)

The CP-transformation of the Hermitian conjugate fields is

(CP )liL(x)(CP )−1 = γ0CliL(x′)
T

= −lTiL(x′)C−1γ0 (2.76)

and it is the same for the neutrino conjugate field. Using these transformations,
we are able to do the CP-transformation of Equation (2.74). Since the Lagrangian
terms are singlets, we finally have

(CP )L CC
lepton(CP )−1

= −gSM√
2
νiL(x′)UTγαliL(x′)W−

α −
gSM√

2
liL(x′)(U †)TγανiL(x′)W+

α (2.77)

where we use the property of C and gamma matrices. Compared to Equation (2.74)
we find that, the charged leptonic current Lagrangian is CP invariant only if we
have:

U = (U †)T U † = UT (2.78)

this is nothing more than

U = U∗ (2.79)

This tells us, in the SM, if we expect that the Dirac fields are CP-invariant, the
mixing matrix needs to be Real. Now we consider a possibly explicit three gen-
erations mixing matrix (n = 3). For the three independent angles, we can easily
choose the rotational angle in the three orthogonal planes. Assume the initial state:
(|1⟩ , |2⟩ , |3⟩)T , and we will rotate it around three axes in three steps. Step one,
introduce θ12 around the third axis |3⟩.|1⟩|2⟩

|3⟩

(1)

=

 cos θ12 sin θ12 0
− sin θ12 cos θ12 0

0 0 1

|1⟩|2⟩
|3⟩

 (2.80)

the superscript (1) stands for the “first” state that transforms after θ12. Step two,
add the angle θ13 around |2⟩. Conventionally, we also add the phase shift with the
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rotation of θ13 |1⟩|2⟩
|3⟩

(2)

=

 cos θ13 0 sin θ13 e−iδ

0 1 0
− sin θ13 eiδ 0 cos θ13

|1⟩|2⟩
|3⟩

(1)

(2.81)

In the last step, rotate θ23 around |1⟩|1⟩|2⟩
|3⟩

(3)

=

1 0 0
0 cos θ23 sin θ23
0 − sin θ23 cos θ23

|1⟩|2⟩
|3⟩

(2)

(2.82)

Multiply the three matrices together and we find the mixing matrix

U =

 cos θ12 sin θ12 0
− sin θ12 cos θ12 0

0 0 1

 cos θ13 0 sin θ13 e−iδ

0 1 0
− sin θ13 eiδ 0 cos θ13

1 0 0
0 cos θ23 sin θ23
0 − sin θ23 cos θ23


=

 c13c12 c13s12 s13e
−iδ

−s23s13c12eiδ − c23s12 −s23s13s12eiδ + c12c23 s23c13
−c23s13c12eiδ + s23s12 −c23s13s12eiδ − s23c12 c23c13

 (2.83)

where we redefine sin θ12 ≡ s12, cos θ13 ≡ c13, ... for simpler notation. This is so-called
the “the standard parametrization” [34]. From the discussion above we notice that,
the CP conservation for the Dirac fields will leave the phase shift zero δ = 0. In
the other hand, it is a way of finding the CP-violation by observing the non-trivial
phase shift in mixing of Dirac particle states.

It is however a bit different in the Majorana case. Remember that the Majorana
field in the SM fixing is not gauge invariant, which means that the neutrino fields
cannot be performed by a rephasing, i.e. the term νcLνL +h.c. will change (after the

rephasing). Thus, the physical independent phases are in total nM
ϕ = n(n+1)

2
− n =

n(n−1)
2

= nθ. In the two generations case, we have nθ = 1, nM
ϕ = 1, while there is

nθ = 3, nM
ϕ = 3 for three generations. Since the Majorana particles are their own

antiparticles, we should have the equality

(CP )νiL(x)(CP )−1 = (CP )νciL(CP )−1 (2.84)

and this gives

η∗γ0CνiL
T (x′) = ηC(γ0)TC−1CνiL

T (x′)

⇒ η∗γ0CνiL
T (x′) = −ηγ0CνiLT (x′) (2.85)

where we use C(γ0)TC−1 = −γ0. And this implies that

η∗ = −η ⇒ η = ±i (2.86)
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2 Neutrino Mass

where η is the CP transformation phase space factor value. This will end in U∗ = ±U
in the CP transformation of charged current, which means the mixing matrix is
pure Imaginary/Real if CP conserves. Thus, it is straightforward for us to write a
Majorana mixing matrix [54]

UM = USM SM =

1 0 0
0 eiδ1 0
0 0 ei(δ2+δ)

 (2.87)

There are three phase shifts δ, δ1, δ2. In fact, one can randomly create the Majorana
mixing matrix if only all the entries include at least a phase shift. To satisfy CP-
invariance, we have

e2iδ1,2 = ±1 and e±2iδ = ±1 (2.88)
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3 The Minimal Left-Right Symmetric Model

3.1 Basics of the Model: Why “Left-Right”

When we say “the Standard Model”, we are talking about the Yang-Mills gauge the-
ory for quark-gluon fields which is precisely a SU(3) symmetry for colors SU(3)C ,
combined with the electroweak interactions of the left-handed SU(2)L×U(1)Y sym-
metry which we have discussed in the last chapter. Namely, SU(3)C × SU(2)L ×
U(1)Y in total. Strictly speaking, the mass generated by the right-handed singlet
neutrino is also “beyond” the SM. In the SM we only have massless neutrino and
right-handed singlet charged lepton. However, “beyond” is accurately said to mean
that the symmetry group is larger than the SM’s. For those singlets introduced in
the SM we prefer to call them the fixing of the SM.

A natural way of thinking the BSM is to find higher symmetry which includes
the SM physics and can reduce to the SM in specific circumstances [56, 57]. The
smallest symmetry in this way is the mLRSM (minimal left-right symmetric model),
SU(3)C × SU(2)L × SU(2)R × U(1)X . This model has been studied for more than
30 years, and there are many higher symmetry versions. But they have the same
basic idea: to create a parity restored model that will be violated by spontaneous
mechanism.

We have mentioned in this simplest BSM that the parity is restored at first and
violated when the model spontaneously breaks into the SM. This could explain the
universal parity asymmetry in the SM, which is one of the reasons people build
mLRSM [58, 59]. The Majorana neutrinos are not generated in the singlets but in a
gauge invariant way, which makes the observation possible in this scenario. This also
gives constraints on the mass scale of heavy neutrinos and also offers explanations for
the hierarchy problem between light neutrinos and charged leptons, mνl ≪ ml [60].
The mLRSM in this way is a simple, natural extension of the SM and will reduce
to the SM through spontaneous symmetry breaking by a large right-handed VEV.
The rough graph of the process is

SU(3)C × SU(2)L × SU(2)R × U(1)X
⟨∆R⟩−−−→

SU(3)C × SU(2)L × U(1)Y
⟨Φ⟩−−→

SU(3)C × U(1)EM

(3.1)

We begin from the Lagrangian of the mLRSM. Consider the minimal symmetry
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3 The Minimal Left-Right Symmetric Model

group as SU(2)L × SU(2)R × U(1)X , where X = B − L is baryon number minus
lepton number, which is conserved in this model [61]. Same as in the SM, the
SU(3)C group for color fields under strong interaction is not taken into account. In
this way, we have seven gauge fields, three W a

L and three W a
R for left- and right-

handed SU(2)L,R and Bµ for U(1)X . The superscript a stands for the generators
of the su(2) lie algebra. In this larger symmetry group, the right-handed neutrinos
are introduced to form the correspondent right-handed doublet with the existing
right-handed charged leptons. The left- and right-handed fermions are considered
to have the same symmetry group in the LRSM. This naturally leads to the fact
that the parity is conserved in the LRSM. In one of the processes, the parity is
violated spontaneously through the Higgs mechanism due to the unequal VEVs of
the left- and right-handed Higgs fields (in our case are Higgs triplets) [57, 58, 59].
Readers will find the explicit calculations of Higgs mass and gauge boson mass in
the subsequent sections. The Lagrangian of the model should contain both Dirac
terms and Majorana terms for fermions in order to give es in the seesaw mechanism.
We can then write the full Lagrangian without the strong interaction terms of the
gluon as [60, 62],

L = Lg + Lf + LH + LY + V (ϕ, ϕ̃,∆L,∆R) (3.2)

where “g”, “f”, “H”, and “Y” represent the gauge, fermions, Higgs, and Yukawa
under the mLRSM, respectively. We have used the same subscript as in the SM,
but each terms are definitely not equivalent. Let us define each Lagrangian in (3.2).
The bosonic gauged Lagrangian is defined as

Lg = −1

4
W µν,a

L W a
L,µν −

1

4
W µν,a

R W a
R,µν −

1

4
BµνBµν (3.3)

where the field strength tensor has the same expressions as in the SM, W µν,a
L,R =

∂µW ν,a
L,R− ∂νW

µ,a
L,R, B

µν = ∂µBν − ∂νBµ. The fermion kinetic term with gauge fixing
is defined as,

Lf =
∑

Ψ=Q,L

{
Ψ̄Liγ

µ(∂µ + igL
σ⃗

2
· W⃗L,µ + ig′

X

2
Bµ)ΨL

+ Ψ̄Riγ
µ(∂µ + igR

σ⃗

2
· W⃗R,µ + ig′

X

2
Bµ)ΨR

} (3.4)

The Higgs kinetic term with gauge fixing is defined as

LH = Tr
[
(Dµϕ)†(Dµϕ) + (Dµ∆L)†(Dµ∆L) + (Dµ∆R)†(Dµ∆R)

]
(3.5)
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3.1 Basics of the Model: Why “Left-Right”

Field SU(3)C SU(2)L SU(2)R U(1)X

QL 3 2 1 1
3

QR 3 1 2 1
3

LL 1 2 1 -1
LR 1 1 2 -1
ϕ 1 2 2 0

ϕ̃ 1 2∗ 2∗ 0
∆L 1 3 1 2
∆R 1 1 3 2

Table 3.1: fundamental representation Fields degrees in mLRSM

the Yukawa term for both Dirac type and Majorana type is defined as,

LY =−
∑

Ψ=Q,L

{
Ψ̄LiΓ

Ψ
ijϕΨRj + Ψ̄LiΓ̃

Ψ
ijϕ̃ΨRj + h.c.

}
−
∑

Leptons

{
Lc
LiGL,ijiσ2∆LLLj + Lc

RiGR,ijiσ2∆LLRj + h.c.
} (3.6)

where ϕ̃ = σ2ϕ
∗σ2. σ⃗ are the generators of the su(2) algebra, i.e. Pauli matrices in

fundamental representation. ϕ̃ is a gauge fixing field to ensure gauge invariance. In
SU(2), ϕ and ϕ̃ are bidoublets, and ∆L,R are triplets of the scalar fields, in order
to contribute in fermions masses. The sum over Q and L is the quark and lepton
doublet on the basis of the flavor eigenstates,

QL =

(
u
d

)
L

≡
[
3, 2, 1,

1

3

]
LL =

(
vl
l

)
L

≡
[
1, 2, 1,−1

]
(3.7)

QR =

(
u
d

)
R

≡
[
3, 1, 2,

1

3

]
LR =

(
vl
l

)
R

≡
[
1, 1, 2,−1

]
(3.8)

where u and d are up types and down types quarks, respectively. We think about
three generations of quarks and leptons. l = e, µ, τ . The numbers in the square
brackets represent the correspond symmetries in the mLRSM group. For example,
in the fundamental representation (or spinor representation), this number is 2s+ 1
the degree of the group where s is the correspond spin (quarks have a color field of
3 degrees, the correspondent of the spin-1 gauge field).

Physically, these numbers in Table 3.1 show whether the fields take part in the
interaction of the symmetry group or not. Left quarks take place in the color field
and the left-handed electroweak field, but do not have any degree in the right-handed
field. In other words, they participate in the strong, weak, and electromagnetic
interactions. And the last number gives the magnitude of the interaction in the
symmetry group. It is the conserved charge number, and in mLRSM it is X = B−L
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3 The Minimal Left-Right Symmetric Model

coincidentally. Lc in Lagrangian LY is the particle-antiparticle conjugate field of
L and the definition is in Equation (2.25). Its Lorentz invariant conjugate Lc is
defined in Equation (2.38). V (ϕ, ϕ̃,∆L,∆R) is the possible potential. ΓΨ

ij, ∆Ψ
ij,

GL,R,ij are matrices for flavor mixing (the dummy subscripts here represent the
flavor states). C−1 is the inverse of the charge conjugate operator. We will start
from the interaction potential to calculate the VEVs.

3.2 Higgs Potential

We have mentioned that for any symmetry group larger than O(1), there could be
spontaneous symmetry breaking (SSB) that generates Goldstone bosons through
non-trivial VEVs of the scalar fields. In the SM, there is a Higgs scalar field which
has non-zero VEV, that breaks the electroweak symmetry SU(2)L × U(1)Y to elec-
tromagnetic symmetry U(1)EM , where the three gauge bosons W,Z “eat” the Gold-
stone bosons to gain masses and leave the fourth gauge field massless which is the
photon field [21]. The first step we need to take is to calculate the VEVs. Similarly
in the ϕ4 toy model (see section 2.1), the VEVs can be obtained by solving equations
of motions with respect to the Higgs fields ∆L,R and ϕ,

∂V (ϕ, ϕ̃,∆L,∆R)

∂∆L

=
∂V (ϕ, ϕ̃,∆L,∆R)

∂∆R

= 0;
∂V (ϕ, ϕ̃,∆L,∆R)

∂ϕ
= 0 (3.9)

By doing this, we first need to write down the explicit form of the potential, which
should include all possible Hermitian combinations of the four Higgs fields and its
interactions. The result is the following [60, 63],

V (ϕ, ϕ̃,∆L,∆R)

=−
2∑
i,j

µ2
ijTr[ϕ†

iϕj] +
2∑

i,j,k,l

λijklTr[ϕ†
iϕj]Tr[ϕ†

kϕl] +
2∑

i,j,k,l

λ′ijklTr[ϕ†
iϕjϕ

†
kϕl]

− µ2Tr[∆†
L∆L + ∆†

R∆R] + ρ1
{

(Tr[∆†
L∆L])2 + (Tr[∆†

R†R])2
}

+ ρ2
{

Tr[∆†
L∆L∆†

L∆L] + Tr[∆†
R∆R∆†

R∆R]}+ ρ3Tr[∆†
L∆L∆†

R∆R]

+
2∑
i,j

αi,jTr[ϕ†
iϕj](Tr[∆†

L∆L] + Tr[∆†
R∆R])

+
2∑
i,j

βi,j(Tr[∆†
L∆Lϕiϕ

†
j] + Tr[∆†

R∆Rϕ
†
iϕj]) +

2∑
i,j

γi,jTr[∆†
Lϕi∆Rϕ

†
j] (3.10)

where the summation indices 1, 2 stands for summing over the Higgs fields ϕ1 ≡
ϕ, ϕ2 ≡ ϕ̃. ϕ, ∆L and ∆R represent Higgs bosons. We add a more explicit version
of the potential that shows every term in the summation in the Appendix A.

Higgs triplets are defined to couple with the Majorana terms of lepton doublets.
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3.2 Higgs Potential

The only possible non-zero VEVs come from the neutral components of the matrices.
The left-handed Higgs triplet can generally be defined as

∆L =

(
∆11 ∆12

∆21 ∆22

)
(3.11)

In the mLRSM, the total charge also contains the third component of the right-
handed SU(2)R isospin. Now acting this charge operator Q̂ = IL3 + IR3 + 1

2
X̂ on

the triplet and the vacuum, we would have

Q̂∆L |0⟩ = [Q̂,∆L] |0⟩+ ∆LQ̂ |0⟩ = [IL3,∆L] |0⟩+ ∆LQ̂ |0⟩

=
[(1 0

0 −1

)(
∆11 ∆12

∆21 ∆22

)
−
(

∆11 ∆12

∆21 ∆22

)(
1 0
0 −1

)]
|0⟩+ 2

(
∆11 ∆12

∆21 ∆22

)
|0⟩

= 2

(
∆11 2∆12

0 ∆22

)
|0⟩ (3.12)

where we can see that there is only one zero entry, which could be a possibility for
the non-trivial VEV. Thereby, the VEVs of the Higgs triplets can be

〈
∆L

〉
=

(
0 0
νL 0

) 〈
∆R

〉
=

(
0 0
νR 0

)
(3.13)

Acting the operator to the Higgs bidoublet, we obtain the VEVs as well.

〈
ϕ
〉

=

(
κ 0
0 κ′

)
〈
ϕ̃
〉

=

(
0 −i
i 0

)(
κ∗ 0
0 κ′∗

)(
0 −i
i 0

)
=

(
κ′∗ 0
0 κ∗

) (3.14)

Now we insert all the VEVs into the potential (3.10) and use the shorthand writing
(A.2) to calculate the trace. After some algebras, we have

V (
〈
ϕ
〉
,
〈
ϕ̃
〉
,
〈
∆L

〉
,
〈
∆R

〉
)

=− µ2
1(|κ|

2 + |κ′|2)− 2µ2
2(κ

∗κ′
∗

+ κ′κ) + λ1(|κ|2 + |κ′|2)
+ 2λ2(κ

∗κ′
∗

+ κ′κ)(|κ|2 + |κ′|2) + λ3[(κ
∗κ′

∗
+ κ′

∗
κ∗)2 + (κ′κ+ κκ′)2]

+ λ4(κ
∗κ′

∗
+ κ′

∗
κ∗)(κ′κ+ κκ′) + λ′1(|κ|

4 + |κ′|4) + λ′2(κ
∗κ′

∗
+ κ′κ)(|κ|2 + |κ′|2)

+ 2λ′3|κ|
2|κ′|2 − µ2(|νL|2 + |νR|2) + (ρ1 + ρ2)(|νL|4 + |νR|4) + ρ3|νL|2|νR|2

+ (α1 + α3)(|κ|2 + |κ′|2)(|νL|2 + |νR|2) + 2α2(κ
∗κ′

∗
+ κ′κ)(|νL|2 + |νR|2)

+ β1|κ|2(|νL|2 + |νR|2) + β2(|νL|2 + |νR|2)(κκ′ + κ∗κ′∗) + β3|κ′|2(|νL|2 + |νR|2)
+ γ1(ν

∗
LνR + ν∗RνL)κκ∗ + γ2(ν

∗
LνRκκ

′ + ν∗LνRκ
∗κ′

∗
) + γ3(ν

∗
LνR + ν∗RνL)κ′

∗
κ′

(3.15)
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3 The Minimal Left-Right Symmetric Model

For simplification, we assume that VEVs κ, κ′, νL, and νR are real numbers. This
means that we neglect the phase shift between VEVs or assume that they have the
same phase. After making this simplification, we obtain

V (κ, κ′, νL, νR) = −µ2
1(κ

2 + κ′
2
)− 4µ2

2κκ
′

+ λ1(κ
2 + κ′

2
)2 + (4λ2 + 2λ′2)(κ

2 + κ′
2
)

+ (8λ3 + 4λ4 + 2λ′3)κ
2κ′

2
+ λ′1(κ

4 + κ′
4
)

− µ2(ν2L + ν2R) + (ρ1 + ρ2)(ν
4
L + ν4R) + ρ3ν

2
Lν

2
R

+ [(α1 + α3)(κ
2 + κ′

2
) + 4α2κκ

′](ν2L + ν2R)

+ (β1κ
2 + 2β2κκ

′ + β3κ
′2])(ν2L + ν2R)

+ 2(γ1κ
2 + γ2κκ

′ + γ3κ
′2)νLνR (3.16)

The next step is to find the fields conditions at the global minimum. Put the VEVs
in the Equation (3.9). The first derivatives with respect to the VEVs of the Higgs
triplet are the following, where we suppose νL,R ̸= 0.

∂V

∂νL
= 2µ2νL + 4(ρ1 + ρ2)ν

3
L + 2[ρ3ν

2
RνL + 2(α1 + α3)(κ

2 + κ′
2
) + 4α2κκ

′]νL

+ 2[β1κ
2 + 2β2κκ

′ + β3κ
′2]νL + 2(γ1κ

2 + γ2κκ
′ + γ3κ

′2)νR = 0 (3.17)

∂V

∂νR
= 2µ2νR + 4(ρ1 + ρ2)ν

3
L + 2[ρ3ν

2
LνR + 2(α1 + α3)(κ

2 + κ′
2
) + 4α2κκ

′]νL

+ 2[β1κ
2 + 2β2κκ

′ + β3κ
′2]νR + 2(γ1κ

2 + γ2κκ
′ + γ3κ

′2)νL = 0 (3.18)

Also we need to check if the second derivatives are positive in order to reach the
minimal potential. Multiply the first and the second equations with νR and νL
respectively, and subtract them. After doing some algebra, we finally arrive at
either one of the constraints of the VEVs [64],

(a) νL
2 = νR

2 or (3.19)

(b) νLνR =
2(γ1κ

2 + γ2κκ
′ + γ3κ

′2)

4(ρ1 + ρ2)− 2ρ3
(3.20)

The first constraint is a trivial one, and the parity does not violate after the SSB of
the left-right symmetry. We will discuss the constraints of mass scale and the VEVs
scale after finishing the calculation of WL,R mixing from the Higgs mechanism of
gauge fields interacting with leptons. We can also do the same procedure for κ and
κ′, and the constraint is:

(c) κκ′ =
(4α2 + 2β2)(ν

2
L + ν2R) + 2γ2νLνR
4γ′1

(3.21)

In fact, apart from the neutral fields which can generate the non-trivial VEVs, there
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3.2 Higgs Potential

are Higgs scalar charged fields as well. Using the charge operator eigenfunction
(3.12), we can define the general Higgs triplet assignments as

∆ =

(
1√
2
δ+ δ++

δ0 − 1√
2
δ+

)
(3.22)

where we consider the SU(2) triplet

∆ =
1√
2
ταδα =

1√
2

(
δ3 δ1 − iδ2

δ1 − iδ2 −δ3

)
(3.23)

One can also use minus sign in the superscript, since positive and negative fields
have the same mathematical features. The Higgs potential (3.10) gives the self
interaction of Higgs fields. If the CP invariance is taken into account, all the β, γ
coefficients in (3.10) will be set to zero. This also provides an advantage that less
number of parameters can keep simple for the fine tuning or even remove it [65]. In
order to discuss the scalar propagator, it is necessary to calculate the mass scale of
the left- and right-handed charged Higgs fields. The masses of the charged Higgs
fields come from the terms that contain ∆L,∆R in (3.10). These terms are

− µ2Tr[∆†
L∆L + ∆†

R∆R] + ρ1
{

(Tr[∆†
L∆L])2 + (Tr[∆†

R∆R])2
}

+ ρ2
{

Tr[∆L∆L]Tr[∆†
L∆†

L] + Tr[∆R∆R]Tr[∆†
R∆†

R]
}

+ ρ3Tr[∆†
L∆L]Tr[∆†

R∆R]

+ ρ4
{

Tr[∆L∆L]Tr[∆†
R∆†

R] + Tr[∆R∆R]Tr[∆†
L∆†

L]
}

+ α1Tr[ϕ†ϕ](Tr[∆†
L∆L] + Tr[∆†

R∆R])

+ α3Tr[ϕ̃†ϕ̃](Tr[∆†
L∆L] + Tr[∆†

R∆R])

+ α2Tr[ϕ†ϕ̃+ ϕ̃†ϕ](Tr[∆†
L∆L] + Tr[∆†

R∆R]) (3.24)

We insert the VEVs of the bidoublet Higgs fields directly, and for mass discussion
we only keep the quadratic terms of δ++

L,R with the Higgs triplet VEVs δ0L,R. Suppose
the fields and the VEVs are all real, and satisfy the approximation νR ≫ νL and
νR ≫ κ, νR ≫ κ′, we obtain

=− µ2(δ++2
L + δ++2

R ) + 2(ρ1 + 2ρ2)(δ
0
L
2
δ++2
L + δ0R

2
δ++2
R ) + ρ3(δ

0
L
2
δ++2
R + δ0R

2
δ++2
L )

+ 8ρ4δ
0
Lδ

0
Rδ

++2
L δ++2

R + (α1 + α3)(κ
2 + κ′2)(δ++2

L + δ++2
R ) + 4α2κκ

′(δ++2
L + δ++2

R )

=− µ2(δ++2
L + δ++2

R ) +
(
δ++
L δ++

R

)(ρ3δ0R2
+ κ0 4ρ4δ

0
Lδ

0
R

4ρ4δ
0
Lδ

0
R 2(ρ1 + 2ρ2)δ

0
R
2

+ κ0

)(
δ++
L

δ++
R

)
(3.25)

The superscript 2 stands for square. In the last line, the terms with δ0L
2

have been
neglected since δ0L refers to the left-handed Higgs VEV νL. Redefine a simpler
shorthand κ0 ≡ (α1 + α3)(κ

2 + κ′2) + 4α2κκ
′. The mass of the charged Higgs fields

33



3 The Minimal Left-Right Symmetric Model

are

m2
δ±±
L

=− µ2 +
1

2
(ρ3ν

2
R + 2(ρ1 + 2ρ2)ν

2
R + 2κ0)−

1

2

√
∆ (3.26)

m2
δ±±
R

=− µ2 +
1

2
(ρ3ν

2
R + 2(ρ1 + 2ρ2)ν

2
R + 2κ0) +

1

2

√
∆ (3.27)

where ∆ is the discriminant,

∆ =(ρ3ν
2
R + 2(ρ1 + 2ρ2)ν

2
R + 2κ0)

2

− 4[(ρ3ν
2
R + κ0)(2(ρ1 + 2ρ2)ν

2
R + κ0)− 16ρ24νLνR] (3.28)

the square root can be reduced due to the approximation, that is

√
∆ ≈ ρ3ν

2
R − 2(ρ1 + 2ρ2)ν

2
R (3.29)

put this back and finally we obtain the mass scale

m2
δ±±
L

=− µ2 + 2(ρ1 + 2ρ2)ν
2
R + 2κ0 (3.30)

m2
δ±±
R

=− µ2 + ρ3ν
2
R + 2κ0 (3.31)

Since the kinetic mass (if without the potential) is −µ2 > 0, the mass scale of both
left- and right-handed double-charged Higgs fields are at least νR, i.e. the mass scale
of both fields are very large. The procedures for searching for masses of Higgs scalars
are identical. We can also figure out the mass expressions for Higgs bidoublet with
respect to coefficients and VEVs [64, 65]. The crucial aspects of the calculation are
the approximations and the arguments such as “the CP-invariance” [66].

3.3 Higgs Kinetic Terms

Let us do Higgs mechanism very carefully term by term and see explicitly how the
gauge bosons W µ

L,R and Bµ “eat” the Goldstone bosons and gain masses in mLRSM.
Practically, we can write down the explicit forms of the covariance derivative in the
Lagrangian (3.2) [62]

Dµϕ = ∂µϕ+ ig(
σ⃗

2
· W⃗Lϕ− ϕ

σ⃗

2
· W⃗R) (3.32)

Dµ∆L = ∂µ∆L + ig[
σ⃗

2
· W⃗L, ∆L] + ig′

X

2
Bµ∆L (3.33)

Dµ∆R = ∂µ∆R + ig[
σ⃗

2
· W⃗R, ∆R] + ig′

X

2
Bµ∆R (3.34)

where we assume that the chirality symmetry is restored in this model: gL = gR ≡ g.
In Equation (3.32), one can choose “Left-Right” or “Right-Left” (“dash” stands for
minus sign). This will not make a difference to the result, since we are interested in
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3.3 Higgs Kinetic Terms

the trace. We can see this from the explicit derivation of the first bosonic kinetic
term in the Appendix B.

The gauge-scalar boson interaction expressions are derived from the kinetic term
of the Lagrangian. In the calculating of the neutrinoless double decay rate, we need
the coupling of the Higgs triplet-gauge boson interaction which can be obtained by
inserting the Higgs field (3.22) into the trace,

Tr[(Dµ∆L)†(Dµ∆L)] + Tr[(Dµ∆R)†(Dµ∆R)] (3.35)

After doing calculations (for explicit derivations, see Appendix B), we arrive at the
interaction,

−g2(W+
LµW

+,µ
L +W−

LµW
−,µ
L )δ0Lδ

++
L − g2(W+

RµW
+,µ
R +W−

RµW
−,µ
R )δ0Rδ

++
R (3.36)

where W± = 1√
2
(W 1 ±W 2). The coupling of the W -W -H++ vertex is proportional

to −g2δ0L/R. After the mass mechanism from inserting the VEVs, the coupling is

−g2νL/R, where νL/R is the VEVs of left- or right-handed Higgs triplets. In some
literature [65, 67], the VEVs in (3.13) are defined as

νL/R√
2

, and the couplings are

− g2√
2
νL/R. In the next step we insert the VEVs and decouple the mixing fields to

obtain the mass scale of the gauge bosons. The traces of the kinetic terms finally
become

Tr
[
(Dµϕ)†(Dµϕ) + (Dµ∆L)†(Dµ∆L) + (Dµ∆R)†(Dµ∆R)

]
=

g2

2
(κ2 + κ′

2
+ 2ν2L)W+

L,µW
−,µ
L +

g2

2
(κ2 + κ′

2
+ 2ν2R)W+

R,µW
−,µ
R

+
g2

4
(κ2 + κ′

2
+ 4ν2L)W 2

3L +
g2

4
(κ2 + κ′

2
+ 4ν2R)W 2

3R

− g2

2
(κ2 + κ′

2
)W3LW3R − g2κκ′W−

L,µW
+,µ
R − g2κκ′W−

R,µW
+,µ
L

− 2gg′(ν2LW3L,µBµ + ν2RW3R,µB
µ) + g′

2
(ν2L + ν2R)BµB

µ (3.37)

The explicit calculation is found in the Appendix B. The mass scales of WL and
WR are proportional to ν2L and ν2R respectively. In the last line of (3.37), we enter
the hypercharge number X[∆L,R] = 2 that belongs to the U(1)X symmetry from
table 3.1. One can directly take the hypercharge number in the first place in (3.34).
However, the fields Wµ and Bµ in (3.37) are coupled with each other. They are not
pure mass terms.

3.3.1 Masses of the Gauge Bosons

We need to decouple the interactions, i.e., to transform the gauge boson states to the
mass eigenstates. We have W+,W− mixing terms and W3L,W3R, B mixing terms,
so there are more than one transformation matrices. We start from the charged
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gauge bosons W+,−
L,R .

g2

2
(κ2 + κ′

2
+ 2ν2L)W+

L,µW
−,µ
L +

g2

2
(κ2 + κ′

2
+ 2ν2R)W+

R,µW
−,µ
R

− g2κκ′W−
L,µW

+,µ
R − g2κκ′W−

R,µW
+,µ
L

=
(
W+

L W−
R

)(g2

4
(κ2 + κ′2 + 2ν2L) −1

2
g2κκ′

−1
2
g2κκ′ g2

4
(κ2 + κ′2 + 2ν2R)

)(
W+

L

W−
R

)

+
(
W−

L W+
R

)(g2

4
(κ2 + κ′2 + 2ν2L) −1

2
g2κκ′

−1
2
g2κκ′ g2

4
(κ2 + κ′2 + 2ν2R)

)(
W−

L

W+
R

)
(3.38)

where we use the equivalent

W 2
1L,R +W 2

2L,R = W+
L,R

2
+W−

L,R
2

= 2W+
µL,RW

−,µ
L,R (3.39)

The superscript 2 is for square and we have put the component indices 1, 2, 3 into
subscript for easy reading. Use similarity transformation SMS−1 = Mdia to diago-
nalize the mixing matrix. Transformation matrix S belongs to SO(2) for real mixing
matrix. Gauge bosons transform as(

W+
L

W−
R

)
=

(
cos ξW − sin ξW
sin ξW cos ξW

)(
W+

1

W−
2

)
(3.40)(

W−
L

W+
R

)
=

(
cos ξW − sin ξW
sin ξW cos ξW

)(
W−

1

W+
2

)
(3.41)

where ξW defined as the mixing angle between two W matrix. Insert this back into
the mass mixing term.(

cos ξW sin ξW
− sin ξW cos ξW

)(
g2

4
(κ2 + κ′2 + 2ν2L) −1

2
g2κκ′

−1
2
g2κκ′ g2

4
(κ2 + κ′2 + 2ν2R)

)(
cos ξW − sin ξW
sin ξW cos ξW

)
=

(
mdia

11 mdia
12

mdia
21 mdia

22

)
(3.42)

where the entries are

mdia
11 =

g2

4
(κ2 + κ′

2
+ 2ν2L)c2W +

g2

4
(κ2 + κ′

2
+ 2ν2R)s2W − g2κκ′sW cW

mdia
22 =

g2

4
(κ2 + κ′

2
+ 2ν2L)s2W +

g2

4
(κ2 + κ′

2
+ 2ν2R)c2W + g2κκ′sW cW

mdia
12 = mdia

21 = −g
2

4
(κ2 + κ′

2
+ 2ν2L)sW cW +

g2

4
(κ2 + κ′

2
+ 2ν2R)sW cW

+
1

2
g2κκ′(s2W − c2W )

(3.43)
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where sW , cW are abbreviations of sin ξW , cos ξW respectively. The off-diagonal parts
are expected to be zero mdia

12 = mdia
21 = 0. Dividing cos2 ξW on both sides and doing

some algebra, we have

tan 2ξW =
κκ′

ν2R − ν2L
(3.44)

This is the diagonalization condition of W± mass mixing matrix. It is not hard
to see that W+

1 ,W
+
2 have the same mass as W−

1 ,W
−
2 respectively. Write down the

masses expression with tan 2ξW

M2
W1

=
g2

4
(κ2 + κ′

2
) +

g2

2
cos2 ξW (ν2L + ν2R tan2 ξW − 2κκ′ tan ξW )

M2
W2

=
g2

4
(κ2 + κ′

2
) +

g2

2
cos2 ξW (ν2L tan2 ξW + ν2R + 2κκ′ tan ξW )

(3.45)

Next, let us decouple the mixing of the rest neutral fields in Equation (3.37).

g2

4
(κ2 + κ′

2
+ 4ν2L)W 2

3L +
g2

4
(κ2 + κ′

2
+ 4ν2R)W 2

3R −
g2

2
(κ2 + κ′

2
)W3LW3R

− 2gg′(ν2LW3L,µBµ + ν2RW3R,µB
µ) + g′

2
(ν2L + ν2R)BµB

µ

=

W3L

W3R

B

T g2

4 (κ
2 + κ′2 + 4ν2L)

g2

4 (κ
2 + κ′2) −gg′ν2L

g2

4 (κ
2 + κ′2) g2

4 (κ
2 + κ′2 + 4ν2R) −gg′ν2R

−gg′ν2L −gg′ν2R g′2(ν2L + ν2R)

W3L

W3R

B

 (3.46)

The transformation of the field states has the same structure as the three gener-
ations mixing. Using the standard parametrization without the phase shift, the
transformation isZ1

Z2

A

 =

 c13c12 c13s12 s13
−s23s13c12 − c23s12 −s23s13s12 + c12c23 s23c13
−c23s13c12 + s23s12 −c23s13s12 − s23c12 c23c13

W3L

W3R

B

 (3.47)

where the shorthand is the same as Equation (2.83). It is not easy to diagonalize
Equation (3.46) directly. Besides, we can make some approximations to the VEVs
to simplify the mass matrix. The masses of charged W bosons as well as the neutral
bosons masses in a glance of (3.46) are symmetric in exchange of left and right
indices, which means they have parity conservation. One of the methods to generate
the chirality asymmetry is to suppose that the VEVs are in different hierarchy of the
mass scales. From the mLRSM to the SM, the right-handed gauge fields hide away
and only the left-handed fields remain. In this circumstances, the right-handed VEV
are assumed to be much larger than the left-handed VEV, i.e. νR ≫ νL, and the
mixing betweenWL andWR can be ignored. This approximation will be reconsidered
in the discussion of neutrino masses. Now let us admit the approximations: (1) θ12 =
0 in Equation (3.47) when we ignore the WL,WR mixing; (2) νR ≫ νL, νR ≫ κ ≈ κ′.
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3 The Minimal Left-Right Symmetric Model

The transformation matrix (3.47) then goes toZ1

Z2

A

 =

 c13 0 s13
−s23s13 c23 s23c13
−c23s13 −s23 c23c13

W3L

W3R

B

 (3.48)

and solve the characteristic function to obtain the eigenvalues∣∣∣∣∣∣
g2ν2L − λ 0 −g′ν2L

0 g2ν2R − λ −gg′ν2R
−gg′ν2L −gg′ν2R g′2ν2R − λ

∣∣∣∣∣∣ = 0 (3.49)

and the eigenvalues which are the masses of Z1, Z2, A are

mA =0 (3.50)

mZ1 =
1

2
(g2ν2L + g′

2
ν2L + g2ν2R + g′

2
ν2R)− 1

2

√
∆d (3.51)

mZ2 =
1

2
(g2ν2L + g′

2
ν2L + g2ν2R + g′

2
ν2R) +

1

2

√
∆d (3.52)

where the discriminant ∆d is

∆d = (g2ν2L + gp2ν2L + g2ν2R + g′
2
ν2R)2 − 4(g4ν2Lν

2
R + 2g2g′

2
ν2Lν

2
R) (3.53)

then use the approximation νL ≪ νR, it comes to

mZ1 ≈
1

2
(g2νL

2
+ g′

2
ν2L) (3.54)

mZ2 ≈ g2ν2R + g′
2
ν2R (3.55)

where in our approximations, the mass of the light Z boson depends on the left-
handed Higgs scalar VEV νL and the heavy one is related to νR.

3.4 Quark Sector

The only contribution for quark mass terms is,

−
3∑
i,j

(Q̄LiΓ
Q
ijϕQRj + Q̄LiΓ̃

Q
ijϕ̃QRj + Q̄Riϕ

†ΓQ
ij

†
QLj + Q̄Riϕ̃Γ̃Q

ij
†QLj)

=− κ
(
uL cL tL

)
Γu
(
uR cR tR

)T − κ′ (dL sL bL
)
Γd
(
dR sR bR

)T
− κ′

(
uL cL tL

)
Γ̃u
(
uR cR tR

)T − κ (dL sL bL
)
Γ̃d
(
dR sR bR

)T
+ h.c. (3.56)
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where Γ, Γ̃ are 3 by 3 matrices (Yukawa matrices), and the superscript u, d are
for up types and down types. Define the transformation to the Lagrangian from
flavor states to masses eigenstates. The mass eigenstates of the quarks are quL,R =
(u, c, t)TL,R and qdL,R = (d, s, b)TL,R.

quL,R = Uu
L,R

†Qu
L,R qdL,R = Ud

L,R

†
Qd

L,R

q̄uL,R = Q̄u
L,RU

u
L,R q̄dL,R = Q̄ d

L,RU
d
L,R (3.57)

The matrices U u
L,R

†U u
L,R = U d

L,R
†
U d
L,R = 1 are unitary matrices for diagonalization

transformation. These are part of the CKM matrix V CKM ≡ Uu
LU

d
L
†

(Cabibbo–
Kobayashi–Maskawa matrix [68, 69]) which is defined from the quark current, i.e.

L cc
q = −quLγµV CKMqdLW

+
µ + h.c. (3.58)

This allows us to make an assumption in the left-right symmetric scenario: V CKM ≡
Uu
LU

d
L
†

= Uu
RU

d
R
†
, the right-handed transformation matrix is identical to the left-

handed one. The diagnolization procedure is very similar with what we have done
in the SM. But we have both right-handed and left-handed doublets now.

−κquLUu
L
†ΓuUu

Rq
u
R − κ′qdLUd

L

†
ΓdUd

Rq
d
R − κ′quLUu

L
†Γ̃uUu

Rq
u
R − κqdLUd

L

†
Γ̃dUd

Rq
d
R + h.c.

=− quL(κUu
L
†ΓuUu

R + κ′Uu
L
†Γ̃uUu

R)quR − qdL(κUd
L

†
Γ̃dUd

R + κ′Ud
L

†
ΓdUd

R)qdR + h.c (3.59)

And the diagonalization of the Γ matrices are

Uu,d
L

†
Γu,dUu,d

R ≡Mdiag
u,d Uu,d

L

†
Γ̃u,dUu,d

R ≡ M̃diag
u,d (3.60)

where the parameters of the transformation follow the discussion of the standard
parametrization. The masses of up quarks and down quarks are proportional to the
VEVs,

mu,c,t = κMdiag
u,c,t + κ′M̃diag

u,c,t

md,s,b = κ′Mdiag
d,s,b + κM̃diag

d,s,b

(3.61)

Thus, for the not-exact SU(2) symmetry of u-quark and d-quark, the mass scale of
quarks κ+ κ′ is much smaller than the mass scale of right-handed bosons νR under
the assumption in the last section. The very high masses scales of top quark and
bottom quark can be provided by the Yukawa couplings.

3.5 Lepton Sector

There are two types of mass terms that contribute to leptons. One is the Dirac
masses that couple with the bidoublet Higgs field, and the other one is the Majo-
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3 The Minimal Left-Right Symmetric Model

rana masses couple with left- and right-handed Higgs triplets. The mass scale of
neutrinos of any BSMs is a crucial property to combine experiments and theories.
In the SM symmetry, the pure Dirac neutrinos are massless due to the lepton num-
ber conservation and global gauge invariance. The existence of massive neutrinos
is consistent with the lepton number violation. The lower bound of the massive
neutrino mass scale shows the observation possibility of these neutrinos. For other
reasons, the heavy neutrinos could be a hint for why light neutrino masses are much
smaller compared to the charged leptons. We have seen in the previous section that
the smallness of the light neutrino masses under the seesaw mechanism is generated
due to the large mass of the heavy neutrino. Now let us derive the expression of the
masses of charged leptons and neutrinos in the mLRSM.

The Dirac neutrino masses

The Dirac neutrino masses are available for νLνR + νRνL term. The derivation
procedure is the same as the one for quarks in section 3.4. But the transformation
we introduce here should have different values in the entries. They form the PMNS
matrix in the lepton charged current, as we have done in the SM case, see Equation
(2.74). The mass terms using the mass basis are

−νiL(κMν
D + κ′M̃ν

D)νiR − lL(κM l
D + κ′M̃ l

D)lR + h.c. (3.62)

where the diagonalized mass matrices for the neutrino mass are

Mν
D ≡ Uν

L
†ΓνUν

R M̃ν
D ≡ Uν

L
†Γ̃νUν

R (3.63)

M l
D ≡ U l

L

†
ΓlU l

R M̃ l
D ≡ U l

L

†
Γ̃lU l

R (3.64)

The transformation matrices have the same structure as those of the SM. The PMNS
matrix from the lepton-W±

LR current is: UPMNS = U l†
LU

ν
L = U l†

RU
ν
R (the left- and

right-handed transformation matrices are equivalent) [30]. There is no difference for
how the three flavor generations νe, νµ, ντ mixing from different models, unless other
type of neutrinos are taken into account. We have the Dirac neutrino masses and
charge-lepton masses [70]

mνi = κMν
D,i + κ′M̃ν

D,i (3.65)

mli = κM l
D,i + κ′M̃ l

D,i (3.66)

where the subscript i runs over 1, 2, 3 of the mass eigenstates and the corresponding
entries. The pure Dirac neutrino mass depends on the VEVs of the Higgs bidoublet
and the Yukawa couplings. The masses of charged leptons differ from the neutrinos’
only in Yukawa couplings. One can choose a condition where charged leptons and
Dirac neutrinos have a similar mass scale.
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The Majorana neutrino masses

From Equation (2.25) to (2.28), we introduce the charge conjugate operator and
the Majorana field. The charge conjugate operator is representation dependent,
and in this thesis we are using Dirac spinors. Remember, the gamma matrices
and the charge conjugate matrix only act on the neutrino wave function under
the Lorentz transformation (for the wave function ϕ(x) for example, there are two
spinors solution of Dirac equation and for each there are two components, so 4 in
total). We do not need to consider it explicitly in the Higgs mechanism, where the
SU(2)L,R doublets couple the SU(2) triplet ∆L,R. The Majorana terms with the
Hermitian conjugates of Equation (3.2) are

L M
Y =−

∑
Leptons

{
GL,ijLc

Liiσ2∆LLLj +GR,ijLc
Riiσ2∆RLRj

}
−
∑

leptons

{
GL,ijLL,iiσ2∆L(LL,j)

c +GR,ijLR,iiσ2∆R(LR,j)
c
}

(3.67)

where we directly use iσ2∆L,R instead of σ⃗ · ∆⃗LR since only the σ2 component
remains when entering the VEVs. σ2 is the Pauli matrix with imaginary entries.

Here we take: σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. We also have iσ2δL =(

δ0L − 1√
2
δ+L

− 1√
2
δ+L −δ++

L

)
and the right-handed counterpart. The explicit form of (3.67)

contains a 6× 6 matrix

L M
Y =−

(
νceL νcµL νcτL ecL µc

L τ cL
)
GL6×6

(
νeL νµL ντL eL µL τL

)T
−
(
νceR νcµR νcτR ecR µc

R τ cR
)
GR6×6

(
νeR νµR ντR eR µR τR

)T
+ h.c. (3.68)

where the 6× 6 matrices GL6×6,GR6×6 are,

GL6×6 =

(
G11Lδ

0
L13×3 G12L(− 1√

2
δ+L13×3)

G21L(− 1√
2
δ+L13×3) G22L(−δ++

L 13×3)

)
(3.69)

GR6×6 =

(
G11Rδ

0
R13×3 G12R(− 1√

2
δ+R13×3)

G21R(− 1√
2
δ+R13×3) G22R(−δ++

R 13×3)

)
(3.70)

G11L,G12L,G21L,G22L is the Yukawa coupling matrices, and each of them is a
3 × 3 matrix. The first block in the block matrix produces the mass matrix for
neutrinos. As we can see, the charged leptons do not couple with the first block,
which means that they do not contain the Majorana mass. The fourth block matrix
G22L generates the interaction of the charged leptons and the charged Higgs scalars,
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3 The Minimal Left-Right Symmetric Model

where we can calculate the coupling of the lepton-Higgs vertex. The vertex depends
on the Yukawa matrix,

L l−h
Y =

∑
α,β

G22L,αβδ
++
L lcL,αlL,β +

∑
α,β

G22R,αβδ
++
R lcR,αlR,β + h.c. (3.71)

where α, β = e, µ, τ . In the SM, we have an assumption that the Dirac neutrino mass
is at the scale level of charged leptons. Here we can reach this by assuming that all
the Yukawa matrices are equivalent, i.e. G11L = G12L = G21L = G22L ≡ GL. In
order to determine the Yukawa matrix, we require the mass terms with the VEVS
inserting into the Lagrangian. Let us explicitly calculate this:

L M
Y =− 1

2
νL
(
νceL νcµL νcτL

)
GL

(
νeL νµL ντL

)T
− 1

2
νR
(
νceR νcµR νcτR

)
GR

(
νeR νµR ντR

)T
+ h.c.

=− 1

2
νLM

M
L

3∑
i

(νciLνiL + νiL(νiL)c)− 1

2
νRM

M
R

3∑
i

(νciRνiR + νiR(νiR)c)

(3.72)

where MM is the diagonalized matrix from G, and since the flavor mixing matrix
G is supposed to be real, the diagonalizations of G and G† give the same result:

MM
L = U l†

LGLU
l
L. In the model without parity asymmetry, the Yukawa matrices

GL and GR can be chosen to be the same. But we will still have the subscripts in
the later derivations for clearer reading. The mass couplings of the left- and right-
handed neutrinos in the field theory perception are νLM

M
L , νRM

M
R respectively. The

Yukawa matrix can then be written as

GL,R = UMdiag
L,R U

† (3.73)

where U is the neutrino mixing matrix. Continue from Equation (3.72) and define
a combination of the neutrino fields and its conjugate,

NL = νL + νcL NR = νR + νcR

N c
L = νcL + νL N c

R = νcR + νR
(3.74)

The Majorana mass terms now can be written as

L M
Y =− 1

2
νLM

M
L

3∑
i

N c
iLNiL −

1

2
νRM

M
R

3∑
i

N c
iRNiR (3.75)

Therefore, the masses scales of left(right)-handed neutrinos are proportional to
VEVs νL(νR) and the Yukawa couplings. Let us calculate a bit more, to check

if the fields we define here are really Majorana fields, i.e. CNLC = CNL
T !

= NL.
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By doing this, we take the charge conjugate to NL,

CNLC = CνL
T = CνL

T + CνcL
T

= νL
T
T

+ C(−νTLC−1)T

= νL
T
T

+ C(−(C−1)TνL) = νcL + νL = NL (3.76)

in the last line we use the fact that (C−1)T = −C−1. With the same reason in the
SM, we now put the Dirac neutrino terms and the Majorana neutrino terms together.
For simplicity, the summation symbol has been removed. (I have to apologize for the
inconvenience of notation; νL,R are VEVs of Higgs triplet and those with subscript
i are Dirac neutrino fields.) We can write νR ≡ νcL from Equation (2.28). The
Lagrangian would be

L ν
Y =− νiL(κMν

D + κ′M̃ν
D)νiR − νiR(κMν

D + κ′M̃ν
D)νiL

− 1

2
νLM

M
L N c

iLNiL −
1

2
νRM

M
R N c

iRNiR

=− 1

2

(
νciL νiR

)( νLM
M
L (κMD + κ′M̃D)

(κMD + κ′M̃D) νRM
M
R

)(
νiL
νciR

)
− 1

2

(
νiL νciR

)( νLM
M
L (κMD + κ′M̃D)

(κMD + κ′M̃D) νRM
M
R

)(
νciL
νiR

)
(3.77)

where we ignore the superscript ν of the Dirac mass matrix. The mass matrix is a
6× 6 matrix mixed by the Dirac and Majorana neutrinos. This mixing mass matrix
has the same structure and symmetry as the one in the SM, i.e. “SU(2)L × U(1)Y
with right-handed singlet fixing”. In the mLRSM, there are right-handed coun-
terpart contributions for Dirac es, which come from the “Higgs bidoublet- lepton”
interaction.

The Seesaw Mechanism

Equation (3.77) can be diagonalized to light and heavy neutrinos using the seesaw
mechanism. This is called the type II seesaw mechanism, where the Higgs triplet
with heavy VEVs has been taken into account. First solve the eigenfunction of the
mass matrix. The exact eigenvalues are

mν1 =
1

2
(νLM

M
L + νRM

M
R )− 1

2

√
∆′

mν2 =
1

2
(νLM

M
L + νRM

M
R ) +

1

2

√
∆′

(3.78)

where ∆′ is the discriminant,

∆′ = (νLM
M
L + νRM

M
R )2 − 4νLνRM

M
L MM

R (κMD + κ′M̃D)(κMD + κ′M̃D) (3.79)
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Let us determine the transformation matrix, and write the general diagonalization
of any real 2 by 2 matrix.(

cos θ − sin θ
sin θ cos θ

)
νRM

M
R

(
b a
a c

)(
cos θ sin θ
− sin θ cos θ

)
(3.80)

where the shorthand a, b, c is

a = κMD + κ′M̃D b = νLM
M
L c = νRM

M
R (3.81)

We set the off-diagonal part to zero in order to find the mixing angle θ relation.

tan 2θ =
2a

c− b
cos 2θ =

c− b√
4a2 + (c− b)2

(3.82)

where we consider the same approximations of the VEVs νL ≪ νR, κ+κ′ ≪ νR, and
this leads to c≫ a, c≫ b. With these conditions, the diagonalization matrix could
be written as (

1
√
2a

c−b

−
√
2a

c−b
1

)
(3.83)

then the mass diagonalized matrix is(
b− 2

√
2a2

c−b
0

0 c+ 2
√
2a2

c−b

)
(3.84)

Put back the exact expressions of the shorthand. The masses of neutrinos through
the seesaw mechanism are

mνi ≈ νLM
M
L − 2

√
2(κMD + κ′M̃D)T (νRM

M
R )−1(κMD + κ′M̃D)

mNi
≈ νRM

M
R + 2

√
2(κMD + κ′M̃D)T (νRM

M
R )−1(κMD + κ′M̃D)

(3.85)

or make a further estimation (νL ≈ 0)

mνi ≈
(κMD + κ′M̃D)2

νRMM
R

mNi
≈ νRM

M
R (3.86)

where i is for three generations. M is the short for Mi that gives the entries of the
Yukawa matrix couplings. The seesaw mechanism we have done here is based on the
same mathematics as the SM’s process. For any mixing of two components of fields,
we could do the same procedure. For some other models which introduce additional
fields coupled with neutrinos, the mass matrix will be enlarged to a 3 by 3 matrix or
even to higher dimensions. We will not discuss them here since it is not the major
topic of this thesis, but one can still take a quick glance at section (3.6).
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3.6 Other Left-Right Symmetric Scenarios

The Equation (3.86) implies that the light neutrino-heavy neutrino ratio is ap-
proximately

mνi

mNi

=
(κMD + κ′M̃D)2

(νRMM
R )2

(3.87)

when compare to Equations (3.66) and (3.38) we come to the conclusion that the
ratio in mLRSM under the approximation νR ≫ νL ≈ 0, νR ≫ κ/κ′ is rewritten in
this way:

mνi

mNi

≈ m2
l

m2
WR

(3.88)

where the mass scale of the right-handed gauge boson is proportional to νR. Consider
the electron neutrino, the ratio becomes

mνe

mNe

≈ m2
e

m2
WR

(3.89)

It is not forbidden to choose a heavy neutrino around mNi
≈ 230GeV [60, 64]. If

we want the light neutrino mass smaller than 1eV, we need the right-handed W
boson mass scale to be mWR

≈ 240GeV from Equation (3.89). Therefore, with
the data from the SM experiments for the mass of the left-handed W boson [71],
we have mWR

≳ 3mWL
. The choice of the heavy neutrino mass is then consist to

mNi
≈ mWR

≈ νR [60, 72].

We can also choose different heavy boson scenarios. In the above seesaw mech-
anism, usually we choose νR to be very large, and this leads to a very large right-
handed gauge boson comparing to the left one mWR

≫ mWL
, so that we can ob-

tain a naturally vanished neutrino mass [60]. In the assumption where it is only
νR ≫ κ + κ′, and with the W gauge boson mass (3.45) mWL

≈ κ + κ′, we have

the neutrino mass ratio mν ≈
m2

WL

m2
WR

. Therefore, when the heavy neutrino mass is

supposed to be at the limit of 1GeV, in order to have the light neutrino mass ≲ 1eV,
it requires a very heavy right gauge boson mWR

≈ 104mWL
to mWR

≈ 105mWL
.

3.6 Other Left-Right Symmetric Scenarios

Here we introduce some other LRSMs which have parity restoration at higher sym-
metry in common. Since the Majorana neutrino and the neutrinoless double decay
are not directly detected, one can also imagine a model without Majorana particles.
For instance, (1) in the paper [73], the authors construct an alternative global B−L
number conserved model with two Higgs doublets χL(R) ≡ [1, 1(2), 2(1), 1] instead
of one Higgs bidoublet. There is also a pure scalar field introduced to enlarge the
symmetry by another U(1)χ where they define an additional quantum number ζ to
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3 The Minimal Left-Right Symmetric Model

compensate in X = B − L + ζ. The Dirac es are generated from a two-loop ra-
dioactive diagram and a Dirac seesaw mechanism. (2) In [74], two leptoquarks and
their duals in left-right associated with a new global quantum number have been
introduced. The decaying process of the leptoquarks can explain the baryon number
asymmetry even there is no massive Majorana neutrinos. The neutrino mass is gen-
erated through a Dirac type seesaw mechanism. However, these models under the
minimal left-right symmetry do not approach the hierarchy problem of the standard
electroweak and beyond [75]. In some other models, the parity violation is related
to the spontaneous breaking of baryon and lepton numbers, so as to satisfy the ex-
periment bounds on proton decay [76]. What’s more, there are models with higher
dimensions of symmetry groups, especially the enlarging of the generations such as
SU(4′)× SU(4)L × SU(4)R [56]. Furthermore, there are symmetries in even higher
dimensions, the so-called SUSY (supersymmetry) models, such as MSSM (minimal
supersymmetric extension of the standard model) [77, 78].
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4 Neutrinoless Double Beta Decay

4.1 Review of Double Beta Decay

Before we discuss double beta decay, it is necessary to start from the review of the
single beta decay. The single beta decay is based on the weak interaction where a
neutron transits to a proton state while the mother nucleus emits one electron and
one electron antineutrino. The process can be written at the nuclear level as

(A,Z) −→ (A,Z + 1) + e− + νe (4.1)

where A and Z are the nuclear mass number and the nuclear charge number (or
proton number), respectively. If the mass of the daughter nucleus M(A,Z + 1) is
less than the mother nucleus M(A,Z), the decay process is permitted kinetically.
The mass excess difference between them includes 1) the nuclear binding energy
difference in various charge number Z with same mass number A; 2) the odd or
even character of neutrons and protons in composition; and 3) the nuclear shell
model [79].

M(A,Z)−MA =
1

2
BA(Z − ZA)2 + PA − S (4.2)

where MA is the mass excess of the stable nucleus when Z = ZA. The difference in
binding energies with respect to Z is a parabolic form, and it is called the semiem-
pirical equation [80]. S is the shell model correction term. PA is specified as

PA ∝


−1 even-even

0 even-odd

+1 odd-odd

(4.3)

where “even-odd” refers to even proton number and odd neutron number N = A−Z.
In beta decays, the mass number A of the nucleus is identical before and after the
decay. This will lead to two parabolic functions for the even mass number (even-
even and odd-odd). In the odd mass number case, there is only one parabolic
function. The transitions from the neighbor nuclei always have one proton number
in difference and thereby the single beta decay is the highest possible among other
format of beta decays. However, when the mother nuclei have even A number, two
neighbors with one proton number different come from two parabolas (odd-odd and
even-even), see Figure 4.1. This time, the single beta decay may not be the highest
possible process. When single beta decay is kinetically forbidden, double beta decay
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4 Neutrinoless Double Beta Decay

odd-odd

even-even

52 53 54 55 56
Z

M

Figure 4.1: An example of even mass number beta decay where A = 130. The decay
of the mother nucleus (A,Z) = (130, 53) can decay into two daughter
nuclei (130, 52) and (130, 54). The mass energy of Z = 53 one next to the
minimum is higher than the second neighbor of the minimum Z = 52,
which means the single beta decay from Z = 52 to the Z = 53 cannot
happen spontaneously, instead the decay from nucleus (130, 52) to the
minimum state provides possibility, or in another word, single beta decay
is prohibited.

has a chance to be dominant. The beta decay processes which change two proton
number per time such as (130, 52) −→ (130, 54) are called double beta decay. There
are several types of double decay allowed by the SM mechanism [81].

β−β− : (A,Z) −→ (A,Z + 2) + 2e− + 2νe

β+β+ : (A,Z) −→ (A,Z − 2) + 2e+ + 2νe

ECEC : 2e− + (A,Z) −→ (A,Z − 2) + 2νe

ECβ+ : e− + (A,Z) −→ (A,Z − 2) + e+ + 2νe

(4.4)

The first process acts like two single beta decay adding together. The diagram is in
Figure 4.2. EC stands for electron capture process. Although the double beta decay
process is naturally allowed, the half-lives of the processes are extremely long. The
observations in these decades show that the half-lives range from 1019 to 1024 years.
Here are some example isotopes, see Table 4.1 [55].

T 1
2

is the half-life of the process. Half-lives are defined as the time period from
the original substance decaying to the half amount of the substance. Assume that
we have N(t) unstable nuclei at some time t. The number of decay nuclei in an
infinitesimal time period dt is proportional to the total number of unstable nuclei
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4.1 Review of Double Beta Decay

d

d

u

e−

e−

u

νe

νe

W

W

Figure 4.2: β−β− decay

in t [84].

dN(t)

dt
= −ΓN(t) (4.5)

where Γ is the transition probability or decay constant. This constant depends
on the specific nuclear type as well as on the initial and final states. This can be
calculated approximately using quantum field theory, and so-called “the decay rate”.
Solve the differential equation to obtain

N(t) = N0e
−Γt (4.6)

where N0 is the initial radioactive nuclei number. With the definition of half-life,
we have

1

2
N0 = N0e

−ΓT 1
2

⇒

T 1
2

=
ln 2

Γ
(4.7)

where we can see that the decay rate and the half-life have a linear relation.

Theory

The single beta theory at the nuclear level was first studied by Fermi in his article
in 1934 [85]. The “Übergangswahrscheinlichkeit” (transition probability) depends
on two parts separately multiplying together. One is the nuclear parts with respect
to the initial and final states of neutrons and protons while the other refers to the
electron/neutrino wave functions in relativistic situation (i.e. the solution of the
wave function from the Dirac equation). The first is called nuclear matrix element
(NME) and the latter is phase space factor. This theory of beta decay has been
expanded in β−β− decay with the consideration of the out-going leptons correlations.
In 1935, Maria Göppert Mayer first proposed double beta decay [86]. Reviews of
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4 Neutrinoless Double Beta Decay

Isotopes 2νββ T 1
2
(1021yr) Method 0νββ T 1

2
(1023yr) Method

48Ca 0.064+0.007
−0.006 NEMO-3 > 0.58 CaF2 scint.

76Ge 1.926± 0.094 GERDA > 1800 GERDA
76Ge > 270 MAJORANA
76Ge > 157 Enriched HPGe
78Kr 9.2+5.5

−2.6 BAKSAN
82Se 0.096± 0.003 NEMO-3 > 24 CUPID-0
82Se > 1 NEMO-3
96Zr 0.0235± 0.0014 NEMO-3
100Mo 0.00693± 0.00004 NEMO-3 > 0.95 AMoRE
100Mo 0.007120.00018

0.00014 CUPID-Mo > 11 NEMO-3
116Cd 0.0274± 0.0004 NEMO-3 > 1 NEMO-3
116Cd 0.0263+0.0011

−0.0012 AURORA > 2.2 AURORA
116Cd 0.029+0.004

−0.003 CdWO4 scint. > 1.7 CdWO4 scint.
128Te > 1.1 Cryog. det.
130Te 0.7± 0.09 NEMO-3 > 30 CUORICINO
130Te 0.82± 0.02 CUORE-0
134Xe > 0.87 EXO-200 > 1.1 EXO-200
136Xe 2.38± 0.02 KamLAND-Zen > 110 EXO-200
136Xe 2.165± 0.016 EXO-200 > 2.4 PANDAX-II
136Xe > 2300 KamLAND-Zen
150Nd 0.00934± 0.00022 NEMO-3

Table 4.1: Isotopes of β−β− decay and possible 0νββ process to 0+ ground state.
Data from [55, 82, 83]

the complete theory in recent 30 years are here [87, 88, 89]. We will follow [89] and
write the brief derivations.

The beta decay can be described by the effective weak interaction Hamiltonian
whose Feynman diagram is a four leg effective one.

Hweak =
GF cos θC√

2
(jLµJ

µ
L
† + κjLµJ

µ
R
† + ηjRµJ

µ
L
† + λjRµJ

µ
R
†) + h.c. (4.8)

whereGF is the Fermi constant and cos θC is the Cabibbo-Kobayashi-Maskawa angle.
j, J are leptonic and hadronic currents, respectively. The coupling constants κ, η, λ
are

λ =
(
mW1

mW2
)2 + tan2 ζ

1 + (
mW1

mW2
)2 tan2 ζ

; η =κ = −
[1− (

mW1

mW2
)2] tan ζ

1 + (
mW1

mW2
) tan2 ζ

(4.9)

where mW1 ,mW2 are mass eigenstates similar with (3.41) and ζ = ξW is the mixing
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4.2 The Standard Mechanism

angle in the fixed right-handed current model. If we only consider the left-handed
current in the 2νββ process, the differential decay rate is

dΓ2ν = 2π
∑
i,j

∑
spin

|A2ν |2δ(ϵ1 + ϵ2 + w1 + w2 + EF − EI)
dp⃗1

(2π)3
dp⃗2

(2π)3
dk⃗1

(2π)3
dk⃗2

(2π)3

(4.10)

where A is the matrix element amplitude. p1, p2, ϵ1, ϵ2 are the momenta and energies
of the emitting electrons. w1, w2 are the energies of the emitting neutrinos. If we
only consider the S-wave leptons, the combinations of the angular momentum permit
two transition processes: 0+ → 0+ and 0+ → 2+. The decay rate can be expressed
as leptonic parts and the nuclear interaction parts. With Equation (4.7) we have

(T 2ν
1
2

)−1 =
Γ2ν

ln 2
=
F2νM2ν

ln 2
(4.11)

where F2ν and M2ν are phase space factor and the NME. One can find the detail
derivations of the phase space factor in a review paper [90]. They also numerically
solved the radial wave function of electrons from the Dirac equation under different
assumptions of the nuclear potential. The codes are in another article [91]. We only
show an overview of the 2νββ decay. We will calculate the 0νββ decay rate under
mLRSM in the following sections.

4.2 The Standard Mechanism

In the double beta decay, the neutrinos and electrons are supposed to emit out.
The process can be described as two single beta decays with the correlation of the
out-going leptons. Thus, the diagram in this way looks like setting two single beta
decay together. What if the neutrinos in Figure 4.2 are Majorana particles? The
Majorana particle is its own antiparticle so there will be a neutrino exchange in the
mediate that connects the two single beta decay diagrams (Figure 4.3). This means
that the neutrinos can propagate in the neutrinoless double decay and there will be
no out-going neutrino. The 0νββ process with two out-going electrons is

(A,Z) −→ (A,Z + 2) + 2e− (4.12)

We can use (4.4) to rewrite the other types of processes for 0νββ. Since we do
not know whether the neutrinos are Majorana or Dirac type, any isotopes observed
in double beta decay can be candidates in the neutrinoless double decay, see right
panels of Table 4.1. If the neutrinoless double beta decay rate is not much smaller
than the corresponding double beta decay rate, 0νββ is not suppressed and the
detection is possible. The standard mechanism of neutrinoless double decay refers
to the possible decay under the SM symmetry group with the Majorana neutrino
fixing. In Chapter 2, we add the right-handed singlet to form Majorana neutrinos.
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dL

dL

uL

e−L

e−L

uL

WL

νi Ni

WL

Figure 4.3: The ’standard mechanism’ with two left-handed W bosons

In the standard mechanism, only the left-handed currents are taken into account.
The diagram shows in Figure 4.3, where we consider the light neutrino propagating
in the mediate state since we only have left-handed lepton-boson interaction in the
standard mechanism. One needs to notice that the neutrinoless process is definitely
not a SM process, so the standard mechanism does not equal to the SM mechanism.
Historically, the terminology may come from the fact that the theory of double beta
decay and neutrinoless double decay appeared earlier than LRSM or SUSY [11, 86,
92]. In the past half century, the theories have been studied by several papers. For
a review of the recent study, the readers can find here: [54, 93].

We are interested in the phase space factor and the NME, and we need to calculate
the decay rate. The process of calculating the decay rate is nothing different from the
calculation of physical expectation value, or physical observable multiplied with the
density of states. We consider the low-energy non-thermal decay process, where we
sandwich the Hamiltonian between the initial and final states and integrate over the
whole space. The four dimension momentum is conserved in the process. Explicitly,
we should be aware of the different contribution in each diagram from different
channels. This comes from the exchange of the momenta of the out-going electrons,
while in the non-standard mechanism, this comes from the exchange of chiralities
in each vertex as well. One finds the specific details in every single calculation of
the diagram. The general expression of differential decay rate in Fermi’s golden rule
is [94]

dΓ =
(2π)4

2Ei

|M|2δ4(
∑
i,f

(pf − pi))
∏
f

d3pf
(2π)32Ef

(4.13)

where i, f sum over all the initial states and final states, respectively. M is the
Lorentz-invariant matrix element, or the matrix element. Its physical meaning is
the Lorentz-invariant transition matrix from all initial states to final states. The
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4.2 The Standard Mechanism

matrix element M can be expressed as

|M|2 = (
∏
i,f

2Ei2Ef )|⟨f | A |i⟩|2 (4.14)

where A is the amplitude operator of the process. Now, let us first find A. In a
scattering process, the matrix sandwiched in the initial and final states is usually
called the S-matrix (scattering matrix). This is the correlation function including
the in-going and out-going particles wave functions, propagators, and momentum
conservation couplings (vertices). In order to make our life easier, we can directly
write down it through Feynman diagrams 4.3 in the tree level approximation by
using the Feynman rules (see Appendix E).

In literature, people are mostly using the effective field theory [95]. With some
reasonable approximations , specific Lagrangian can be reduced to an effective La-
grangian which helps the further analytic calculations. The effective Lagrangian are
not perturbatively renormalizable at most of the time, because the couplings usually
have negative mass dimensions. For example, the famous 4-fermion interact picture
in dimension-6 theory is not renormalizable. This problem cannot be avoided, but
one can add fixed couplings and a manual cutoff [96, 97]. When we are talking about
the electroweak theory of the SM, the heavy W/Z bosons naturally give this cutoff
due to their mass scale in the long-range approximation. The mass scales of different
bosons are related to the symmetry of the model, and this is one of the reasons why
people are building models to find the solution of the hierarchy problem. In other
words, it is efficient and mathematically safe to use an effective Lagrangian. Let us
start with the standard case with two left-handed gauge bosons, see Figure 4.3. The
amplitude of this diagram is

A = u(p⃗2)(−
i√
2
γµgLPLV

∗
ud)d(p⃗1) ·

igµν
p2WL
−m2

WL
+ iϵ

·
[
eu(p⃗e1)(−

i√
2
gLγ

νPL)
]
· PL

−iU2
ei(/p+mνi)

p2 −m2
ν + iϵ

PLC ·
[
eu(p⃗e2)(−

i√
2
gLγ

ρPL)
]

· igρσ
p2WL
−m2

WL
+ iϵ

· u(p⃗4)(−
i√
2
γσgLPLVud)d(p⃗3) (4.15)

where u(p2,4), d(p1,3) are the quark wave functions and eu(pe1,e2) is the electron wave
function with one of the spinor components u. /p = γµpµ and p in the propagator
is the neutrino momentum. mν is the neutrino mass (the subscripts in m are not
Lorentz indices. I have to again apologize for the inconvenience sub/superscripts.
We are running out of Greek letters, and this funny phenomenon sometimes happens
in studying physics.). The charge conjugate operator can be eliminate by

C
[
uγµPL

]T
= CP T

L γ
µTuT = PLγ

µCuT = γµPRu
c

= γµPRv (4.16)
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where v is the other spinor. We can also use PLPL = PL and the position exchange
of the gamma matrices, then Equation (4.15) is reduced to

A = (−igL)4 · 1

4
· u(p⃗2)γ

µPLV
∗
udd(p⃗1) ·

igµν
p2WL
−m2

WL
+ iϵ

· eu(p⃗e1)(γ
νPL)×

−i(/p+ U2
eimνi)

p2 −m2
ν + iϵ

· (PLγ
ρ)(eu)c(p⃗e2) ·

igρσ
p2WL
−m2

WL
+ iϵ

· u(p⃗4)γ
σPLVudd(p⃗3) (4.17)

If we consider the propagating energy of the process as 100MeV scale, it is much
smaller than the mass scale of the left-handed W boson which is known as 80GeV.
That is to say, when we are dealing with heavy particle propagators, the mass part
dominates. The momentum part can be ignored by using the method so-called
the “integrate out”. The idea is to integrate out the large scale Λ field from the
path integral of the generating function. We will obtain a effective action that only
depends on the rest field but not on the heavy field, and the effect of the heavy field
is represented in the derivative expansions ordered in the power series of the large
energy scale Λ. The derivations are in the Appendix C. After “integrating out” the
W bosons, we have

Aeff == −i g4L
32m2

WL

V 2
ud · eu(p⃗e1)γµ

U2
eimνi

p2 −m2
ν + iϵ

(1− γ5)γρ(eu)c(p⃗e2) · Jµ
LJ

ρ
L (4.18)

/p disappears since PL changes into PR when passing through odd number of gamma
matrices, see Equations (4.33) and (4.35). In the last equation we use (E.18) to
define the hadronic current J

u(p⃗2)γ
µ(1− γ5)d(p⃗1) ≡ Jµ

L(p⃗2, p⃗1)

u(p⃗4)γ
ρ(1− γ5)d(p⃗3) ≡ Jρ

L(p⃗4, p⃗3)
(4.19)

the effective neutrino mass is much smaller than the possible propagating neutrino
momentum p, thus the momentum dominates in the denominator. Finally we obtain
the effective amplitude

A(LL)
eff = iG2

F (U2
eimνi)V

2
ud · eu(p⃗e1)γµ

1

p2
(1− γ5)γρ(eu)c(p⃗e2) · Jµ

LJ
ρ
L (4.20)

where GF is the Fermi constant, GF =
√

2g2/(8m2
WL

). From Equation (4.20) we
know that the amplitude of the lowest level of the neutrinoless double decay is pro-
portional to the mass scale of the neutrino mass. However, this is not very physical,
unless we insert the amplitude into the initial and final states to calculate the cross
section or rate. In the position basis, the propagator contains the integration of full
momentum space which is part of the NME.

Let us first calculate the “standard mechanism” matrix element. From now on,
we will use the abbreviations LL for the diagram 4.3 and RR, LR-λ, LR-η LH, RH
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for the diagrams from 4.5 to 4.9. The matrix element of the standard mechanism is

⟨f | A(LL)
eff |i⟩

=iG2
F (U2

eimνi)V
2
udNp1

∫
d4x1us(p1)e

ip1·x1γµ

× 1

(2π)4

∫
d4p

e−ip·(x1−x2)

p2
(1− γ5)γρNp2

∫
d4x2v

s′(p⃗2)e
ip2·x2 · ⟨f |T (Jµ

LJ
ρ
L) |i⟩

− (p1 ←→ p2) (4.21)

where we use the shorthand writing p1 ≡ pe1, p2 ≡ pe2. We suppose that the electron
wave functions as plane wave package approximation with spinors us, vs

′
, and s, s′

stand for the spin states. Np1 and Np2 are normalization factor of the electron
wave package functions, Np1,2 = 1

(2π)
3
2
√

p01,2

, and p0 is the energy component of the

4-dimensional momentum. The neutrino propagator is expanded in the position
basis. Use residue theorem to integrate the time component, and take into account
x01 > x02.

lim
ϵ→0

1

(2π)4

∫
d4p

e−ip·(x1−x2)

(p0)2 −m2 + iϵ
=

1

(2π)3

∫
d3p

e−ip0(x0
1−x0

2)ep⃗·(x⃗1−x⃗2)

2p0
(4.22)

For the other time ordered case, we will have x02 − x01 in the nominator. T (Jν
LJ

ρ
L)

is the time ordering of the hadronic current. The last line of (4.21) means the
correspondent matrix element with the momentum exchange of out-going electrons.
Since the correlation function can be solved perturbatively by expansion series of
Hamiltonian in the effective theory, we adjust to the second order perturbation and
introduce the mediate states by inserting the identity operator

∑
n |Nn⟩ ⟨Nn| = 1.

⟨f |T (Jν
LJ

ρ
L) |i⟩ =

∑
n

[
⟨f | Jν

L(x1) |Nn⟩ ⟨Nn| Jρ
L(x2) |i⟩

+ ⟨f | Jν
L(x2) |Nn⟩ ⟨Nn| Jρ

L(x1) |i⟩
]

(4.23)

and we can extract the time component by using the time evolution in Heisenberg
picture.

⟨f |T (Jν
LJ

ρ
L) |i⟩ =

∑
n

[
ei(Ef−En)x0

1ei(En−Ei)x
0
2 ⟨f | Jν

L(x⃗1) |Nn⟩ ⟨Nn| Jρ
L(x⃗2) |i⟩

+ ei(Ef−En)x0
2ei(En−Ei)x

0
1 ⟨f | Jν

L(x⃗2) |Nn⟩ ⟨Nn| Jρ
L(x⃗1) |i⟩

]
(4.24)

En are mediate energies. x0 is the time component, and one can use the variables
separation to draw out the time part. Combine the electron package and neutrino
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4 Neutrinoless Double Beta Decay

propagator, the energy integration is∫ ∞

−∞
dx01dx

0
2e

ip01x
0
1e−ip0(x0

1−x0
2)eip

0
2x

0
2
[
ei(Ef−En)x0

1ei(En−Ei)x
0
2 + ei(Ef−En)x0

2ei(En−Ei)x
0
1
]

(4.25)

Since we have the time ordering, the integration range of (4.25) can be separated to
match the each ordering.∫ ∞

−∞
dx01

∫ x0
1

−∞
dx02e

i(p01−p0+Ef−En)x0
1ei(p

0
2+p0+En−Ei−iϵ)x0

2

+

∫ ∞

−∞
dx02

∫ x0
2

−∞
dx01e

i(p01−p0+En−Ei−iϵ)x0
1ei(p

0
2+p0+Ef−En)x0

2 (4.26)

where in the first term we have x01 > x02, while x02 > x01 in the second term. The final
result of the integral is

(
−i

En + p02 + p0 − Ei − iϵ
+

−i
En + p01 + p0 − Ei − iϵ

) · 2πδ(Ef + p01 + p02 − Ei)

(4.27)

where we use the formula below and the Dirac delta function,∫ ∞

0

dx0ei(a+iϵ)x0

= lim
ϵ−→0

i

a+ iϵ

∫ 0

−∞
dx0ei(a−iϵ)x0

= lim
ϵ−→0

−i
a− iϵ∫ y0

−∞
dx0ei(a−iϵ)x0

= lim
ϵ−→0

−i
a− iϵ

ei(a−iϵ)y0 (4.28)

Combine Equation (4.22)-(4.28) to obtain the matrix element,

⟨f | A(LL)
eff |i⟩

=iG2
F (

3∑
i

U2
eimνi)V

2
ud ·Np1Np2u

s(p1)γµ(1− γ5)γρvs
′
(p2)

×
∫
d3x1d

3x2e
−ip⃗1·x⃗1−ip⃗2·x⃗2 · 1

(2π)3

∫
d3p

e−ip⃗·(x⃗1−x⃗2)

2p0

×
[∑

n

⟨f | Jµ
L(x1) |Nn⟩ ⟨Nn| Jρ

L(x2) |i⟩
En + p02 + p0 − Ei − iϵ

+
⟨f | Jµ

L(x2) |Nn⟩ ⟨Nn| Jρ
L(x1) |i⟩

En + p01 + p0 − Ei − iϵ
]

× 2πδ(Ef + p01 + p02 − Ei)− (p1 ←→ p2) (4.29)

It is not easy to calculate (4.29) further analytically, unless we discuss some approx-
imations [36].
1) Small neutrino mass: p0 =

√
p⃗2 +m2

i ≈ p⃗.
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4.2 The Standard Mechanism

2) Long wave approximation that two electrons are supposed to emit only in S-states
e−ip⃗1·x⃗1−ip⃗2·x⃗2 ≈ 1.
3) Closure approximation: introduce the effective energy of the middle state En.
The middle states are considered effectively.
4) Neglect the kinetic energy of the recoil nucleus in the laboratory frame: Mi =

Mf + p01 + p02 −→ p1,2 + p+ En −Mi =
p01−p02

2
+ p+ En − Mi+Mf

2
≈ p+ En − Mi+Mf

2
.

5) The impulse approximation: J⃗µ
L(x⃗1)J⃗

ν
L(x⃗2) = J⃗µ

L(x⃗2)J⃗
ν
L(x⃗1). And in this ap-

proximation we have [89] Jµ
L(x⃗) ≈

∑
n δ(x⃗ − r⃗n)τn+[gV (q2)gµ0 + gA(q2)σn

i g
µi], where

τ+ = 1
2
(τ1 + iτ2). τi and σi are Pauli matrices. τ+ converts a neutron state to a

proton state. Two left-handed hadronic currents correlation is (contract the indices
of gamma matrices)

J⃗µL(x⃗1)J⃗
µ
L(x⃗2)

=
∑
n,m

δ(x⃗1 − r⃗m)δ(x⃗2 − r⃗n)τn+τ
m
+ [gV (q2)gµ0 + gA(q2)σn

i g
µi][gV (q2)gµ0 + gA(q2)σm

i gµi]

=
∑
n,m

δ(x⃗1 − r⃗n)δ(x⃗2 − r⃗m)τn+τ
m
+ [g2V − (σ⃗n · σ⃗m)g2A] (4.30)

With all approximations and Equation (4.30), the matrix element has the form

⟨f | A(LL)
eff |i⟩ =iG2

F (
3∑
i

U2
eimνi)V

2
ud ·Np1Np2u

s(p1)(1 + γ5)vs
′
(p2)

×
∑
n,m

⟨Nf |
1

(2π)3

∫
d3p

eip⃗·(r⃗n−r⃗m)

p⃗(p⃗+ En − Mi+Mf

2
)
τn+τ

m
+ [g2V − σ⃗n · σ⃗mg2A] |Ni⟩

× πδ(Ef + p01 + p02 − Ei)− (p1 ←→ p2) (4.31)

where we use the Clifford algebra:

γµγρ = gµρ +
1

2
(γµγρ − γργµ) (4.32)

And only the first term of (4.32) contributes. The second term vanishes when con-
tracting with the hadronic currents under the impulse approximation. The exchange
of momentum in the LL case will lead to a factor 2 [89]. Let us generally do it step
by step. Exchange the momentum and do transpose, with the neutrino propagator
vector an additional a minus sign for inverse propagating p⃗⇒ −p⃗

(e(p2)Pα(
γ0p

0 + γ⃗ · p⃗+mν

p2 −m2
)Pβe

c(p1))
T = e(p1)C

TP T
β (
γ0p

0 + γ⃗ · p⃗+mν

p2 −m2
)P T

α e
T (p2)

= −e(p1)Pβ(
−γ0p0 − γ⃗ · p⃗+mν

p2 −m2
)Pαe

c(p2) (4.33)

where Pα,β is the projection operator, α, β can be taken left (L) or right (R). In the
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4 Neutrinoless Double Beta Decay

LL (also in RR) case, the same projection operators will eliminate the momentum
term in the nominator. With the original term, we have

e(p1)Pβ(
γ0p

0 − γ⃗ · p⃗+mν

p2 −m2
− γ0p

0 + γ⃗ · p⃗−mν

p2 −m2
)Pαe

c(p2) (4.34)

α,β=L−−−−→

2e(p1)
mν

p2 −m2
PLe

c(p2) (4.35)

where we obtain the factor 2. It is obvious that the result will be totally different
if we choose LR chirality. We will discuss this in the LR cases. Next, calculate
the integration in (4.31) with respect to the neutrino momentum in the spherical
coordinates to further simplify the matrix element.

1

(2π)3

∫
d3p

eip⃗·(r⃗n−r⃗m)

p⃗(p⃗+ En − Mi+Mf

2
)

=
1

(2π)3

∫ 2π

0

dϕ

∫ π

0

dθ

∫ ∞

0

dpp2 sin θ
eip⃗·(r⃗n−r⃗m)

p⃗(p⃗+ En − Mi+Mf

2
)

=
1

(2π)3

∫ 2π

0

dϕ

∫ ∞

0

dpp2
1

p⃗(p⃗+ En − Mi+Mf

2
)

∫ π

0

dθ sin θei(|p||rnm| cos θ) (4.36)

use Euler’s identity and integrate the two angles,

=
1

(2π)2

∫ ∞

0

dpp2
1

|p||rnm|
2 sin |p||rnm|

p⃗(p⃗+ En − Mi+Mf

2
)

=
1

2(π)2rnm

∫ ∞

0

dp
sin (prnm)

(p⃗+ En − Mi+Mf

2
)

≡ 1

4πR
H(rnm, En) (4.37)

where we define the neutrino potential function:

H(rnm, En) =
2R

πrnm

∫ ∞

0

dp
sin (prnm)

p+ En − Mi+Mf

2

(4.38)

and rnm ≡ rn − rm, p stands for |p⃗|. Then the matrix element (4.31) becomes

⟨f | A(LL)
eff |i⟩ =2iG2

F (
3∑
i

U2
eimνi)V

2
ud ·Np1Np2u

s(p1)(1 + γ5)vs
′
(p2)

×
∑
n,m

⟨Nf |
1

4πR
H(rnm, En)τn+τ

m
+ [g2V − σ⃗n · σ⃗mg2A] |Ni⟩

× πδ(Ef + p01 + p02 − Ei) (4.39)
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4.2 The Standard Mechanism

Define the so-called NME in LL:

M
(LL)
0v = M

(LL)
0v,GT −

g2V
g2A
M

(LL)
0v,F

M
(LL)
0v,GT ≡

∑
n,m

⟨Nf |H(rnm, En)τn+τ
m
+ σ⃗

n · σ⃗m |Ni⟩

M
(LL)
0v,F ≡

∑
n,m

⟨Nf |H(rnm, En)τn+τ
m
+ |Ni⟩

(4.40)

The superscript identifies different cases, here we use superscript (LL) for the LL
case. The subscripts GT and F stand for the Gamow-Teller matrix element and the
Fermi matrix element, respectively [84]. gV (q2), gA(q2) are vector and axial vector
form factors [94], we have [89]

gV (q2 = 0) = 1 (4.41)

gA(q2 = 0) = 1.254 (4.42)

where q2 is the transfer momentum. Using these definitions, the matrix element
becomes

⟨f | A(LL)
eff |i⟩ =iG2

F (
3∑
i

U2
eimνi)V

2
ud ·Np1Np2u

s(p1)(1 + γ5)vs
′
(p2)

g2A
2R

M
(LL)
0ν

× δ(Ef + p01 + p02 − Ei) (4.43)

Then we can do the absolute square of the matrix element and sum over the spin
states of the out-going electrons. The sum over of the spins behaves as the trace.
Add the spinor indices to show it explicitly∑

s,s′

(usa(p1)(1 + γ5)abv
s′

b (p2))
†usa(p1)(1 + γ5)abv

s′

b (p2)

=
∑
s,s′

vs
′

c (p2)(1− γ5)cdusd(p1)usa(p1)(1 + γ5)abv
s′

b (p2) (4.44)

using the spinors’ completeness relations (E.12) and calculating the trace, we will
obtain

1

4
Tr[( /p2 −me)(1− γ5)( /p1 +me)(1 + γ5)] = 2p1 · p2 (4.45)

The full derivations of the trace is in Appendix F. The dot product of 4-dimensional
momenta can also be expressed as

p1 · p2 = E1E2 − p1p2 cos ξ (4.46)

where E1, E2 are the energy of the out-going electrons. Factor 1
4

exists when de-
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4 Neutrinoless Double Beta Decay

tectors cannot distinguish the electron polarization. The leptonic part contains the
electron correlated angle ξ, which is an important observable in experiments. With
(4.45) and 4.46, the square of the matrix element is

∣∣∣⟨f | A(LL)
eff |i⟩

∣∣∣2 =(
3∑
i

U2
eimνi)

2 G4
FV

4
udg

4
A

2(2π)6E1E2R2
(E1E2 − p1p2 cos ξ) ·

∣∣∣M (LL)
0ν

∣∣∣2
· δ(Ef + p01 + p02 − Ei) (4.47)

One more necessity needs to be considered. The out-going electrons in the decay
process will interact with the Coulomb potential of the nucleus. This attractive
electromagnetic force gives a screening effect to the electrons. In the non-relativistic
approximation, we use the Fermi approximation 1

1−e−2πη to approach the effective
nuclear potential. This is done by multiplying the Fermi function with each electron
wave function. The Fermi function is

F (Z,E) =
2πη

1− e−2πη
(4.48)

where η = Zαme

p(1,2)
, Z is the proton number of the mother nucleus and α = 1/137

is the Sommerfeld constant or the fine structure constant. To compensate for the
momentum in η, we need to multiply p1p2 in the formula. Inserting all these back
into the general differential equation (4.13) and considering the momenta differential
p21p

2
2 sin ξdξdp2, we obtain

dΓ0ν
(LL) =|mββ|2

∣∣∣M (LL)
0ν

∣∣∣2G4
FV

4
udg

4
A

(2π)5R2
(E1E2 − p1p2 cos ξ)

× F (Z + 2, E1)F (Z + 2, E2)p1p2 sin ξdξdE2 (4.49)

where |mββ|2 ≡ (
∑3

i U
2
eimνi)

2. The half-life in Equation (4.11) can be expressed as
the integrate of (4.49),

(T 1
2
)−1 =

Γ0ν
(LL)

ln 2
= |mββ|2

∣∣∣M (LL)
0ν

∣∣∣2G(LL)
0ν (Q,Z) (4.50)

where the phase space factor G0ν
(LL) is

G0ν
(LL) =

G4
FV

4
udg

4
A

2 ln 2(2π)5R2

∫ Q

0

dT1

∫ π

0

sin ξdξ(E1E2 − p1p2 cos ξ)p1p2

× F (Z + 2, E1)F (Z + 2, E2)

(4.51)

where T1 = E1 − me, Q = Mi −Mf − 2me, Q is the total decay energy (kinetic
energy released in the decay process). The additional factor 1

2
refers to two identical

out-going electrons in the final states.
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4.2 The Standard Mechanism

4.2.1 Effective Neutrino Mass

As we have already mentioned, the flavor states of neutrinos are

να =
∑
i

U∗
αiνi (4.52)

where U ≡ Umajorana = U∗
α is the Majorana transformation. Instead of the standard

parametrization in 2.5, we will use symmetrical parametrization [98] where each
rotation gains a phase. That is to say, the Majorana phase is not of the form of
(2.87), but additional phases ϕ12, ϕ13, ϕ23 are added to the corresponding rotation
in the first line of (2.83). In this way, we have for U [99]

U = c13c12 c13s12e
−iϕ12 s13e

−iϕ13

−s23s13c12e−i(ϕ23−ϕ13) − c23s12eiϕ12 −s23s13s12e−i(ϕ12+ϕ23−ϕ13) + c12c23 s23c13e
−iϕ23

−c23s13c12eiϕ13 + s23s12e
i(ϕ12+ϕ23) −c23s13s12e−i(ϕ12−ϕ13) − s23c12eiϕ23 c23c13


(4.53)

where the Majorana phase indicates the CP violation. The neutrino mass trans-
formed between the flavor and mass eigenstates is proportional to U2 from Equation
(4.52). Mathematically, if we want to transform to mass eigenstates in mass terms,
e.g. νν, there will be U2 afterward. We have already used it in the derivation for
the differential rate in the last section. The electron neutrino mass in 0νββ with
the linear combination of mass eigenstates will be

⟨mee⟩ ≡ ⟨mββ⟩ =

∣∣∣∣∣∑
i

U2
eimi

∣∣∣∣∣ (4.54)

with the matrix (4.53), we can write

⟨mee⟩ =
∣∣c212c213m1 + s212c

2
13m2e

2iϕ12 + s213m3e
2iϕ13

∣∣ (4.55)

From the neutrino oscillation (section 2.5), we know that masses m1,2,3 cannot be
directly detected from experiments. The oscillation experiments only provide the
mass scale of the differences ∆mij. These experimental data are from atmosphere
neutrinos and solar neutrinos oscillations [100]. When the square difference in the
atmosphere ∆mA is greater than zero, it is normal ordering, and it is inverted
ordering when ∆mA < 0.

normal : m2 =
√
m2

1 + ∆m2
⊙, m3 =

√
m2

1 + ∆m2
A

inverted : m2 =
√
m2

3 + ∆m2
⊙ + ∆m2

A, m1 =
√
m2

3 + ∆m2
A

(4.56)
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4 Neutrinoless Double Beta Decay

where ∆m2
⊙ and ∆m2

A are the solar and atmosphere neutrino mass square difference,
respectively. The hierarchy of the neutrino mass under different ordering are

normal hierarchy : m3 ≃
√

∆m2
A ≫ m2 ≃

√
∆m2

⊙ ≫ m1

inverted hierarchy : m2 ≃ m1 ≃
√

∆m2
A ≫ m3

quasi-degeneracy : m2
0 ≡ m2

1 ≃ m2
2 ≃ m2

3 ≫ ∆m2
A

(4.57)

Physicists usually draw the diagram of ⟨mee⟩ with respect to the lightest neutrino
mass in different ordering and hierarchy to clearly observe the features of the effective
mass. We show a brief plot in Figure 4.4. The figure has been plotted under the
range of the mixing angle θ12, θ13, θ23, atmosphere/solar square mass differences and
the CP violation phase ϕ [101, 102]. The review can be found here: [54].

Normal

10-4 0.001 0.010 0.100 1
10-4

0.001

0.010

0.100

1
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|
[e
V
]

Inverted

Quasi-degenerate

Figure 4.4: Normal: |mee| −m1; Inverted: |mee| −m3. The Quasi-degenerate part
refers to the overlap of the two orderings. The shaded area range is de-
fined by the minimum/maximum effective mass with varying Majorana
phases ϕ12, ϕ13. The values of the parameters c12, c13, s12, s13,∆m

2
⊙,∆m

2
A

are taken from [55].

4.3 0νββ in the Left-Right Symmetric Model

What if we use the mLRSM model to explain the neutrinoless double beta decay?
The mLRSM permits the existence of the Majorana neutrinos which leads to the
exchange of neutrino-antineutrino in the mediate propagation, i.e. it is reasonable
to use mLRSM to calculate the cross section and the decay rate of neutrinoless dou-
ble beta decay. The main work is to calculate the matrix element that sandwiches
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4.3 0νββ in the Left-Right Symmetric Model

with the amplitude from the initial state to the final state. There are assumptions
to make the matrix element physical. For instance, the s-matrix experiences a in-
finitesimal scattering time compared with the initial states coming from the infinity,
and we use the interaction vacuum in the interaction picture. One can find these
prerequisite knowledge in any of the quantum field theory text books in, e.g. [19]. In
the effective theory, one can obtain the dimensionless coupling by using the negative
mass dimension coefficients so as to make the Lagrangian perturbatively renormal-
izable [20].

We use Feynman diagrams to simplify the exploration of the amplitude. We have
already seen from the experiments that the half-life limits of the neutrinoless double
beta decays are really high. The possibility of finding these decays is somehow very
small. So we only calculate the tree-level contributions in this thesis.

4.3.1 Tree-Level Contributions

Consider the neutrinoless double decay at the quark level 2d −→ 2u+2e−1. Therefore
the tree level diagrams should have six legs with two in-going d quarks, two out-
going u quarks, and two electrons. Due to the perturbation renormalizable theory,
there should be four vertices. Here are the brief steps to calculate the Feynman
rules and so as the amplitude: (1) For any given Lagrangian, one can use path
integral to obtain the action and form the generating function. (2) Calculate the
correlative functions by doing the functional derivative. For example, the two-point
Green function is just the propagator. The rigorous process of looking for Feynman
rules is somehow complex and not intuitive. However, we can observe the possible
interactions directly from the Lagrangian (3.2). The kinetic terms have the form of a
linear Green function and give the propagators under the choosing gauge. We could
have fermion propagators, W/Z boson propagators and Higgs scalar propagators
in our Lagrangian. The vertices, which are amputated (without the in-going and
out-going momenta into the vertex), can be found in the fields interaction terms,

e.g. in the lepton kinetic term we have iLγµ(σ⃗ · W⃗µ)L for the lepton-W boson
interactions. This shows a three-leg vertex with two leptons and one W boson.
If we do the derivatives with respect to three fields, we obtain the vertex as well.
In this matter of fact, we will have the interactions: lepton-W/Z boson, lepton-
Higgs triplets, quark-boson, quark-Higgs, boson-boson self-interaction, and boson-
Higgs. We can combine these external legs, propagators, and vertices to find all the
permutations. There are books and papers for Feynman rules, for example, in the
SM there are [30, 103, 104, 105], and in the mLRSM there is [67]. Details of the
calculation of Feynman diagrams, especially the propagator of Majorana neutrinos,
are in Appendix E.

The Feynman rule of the Majorana type propagator has a different form than the
Dirac neutrino propagator. We show the result here, and one finds the derivation
in Appendix E.
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dR

dR

uR

e−R

e−R

uR

WR

νi Ni

WR

Figure 4.5: “Right-Right” case with two right-handed W bosons

L L
νi Ni

PL

−i(/p+mν,N)

p2 −m2
ν,N + iϵ

PLC (4.58)

L L
νi Ni

PL

−iC−1(/p+mν,N)

p2 −m2
ν,N + iϵ

PL (4.59)

Let us draw Feynman diagrams. We have learned in the quantum field theory
course that the Feynman diagrams do not carry physical meanings such as time
flow, reaction flow, reaction procedure, etc. It is only a diagrammatic way to show
the contributions. There are six tree-level diagrams contributions for different in-
termediate propagators. Four of them interact with two W bosons and contain
neutrino propagators, see Figures 4.3,4.5, and 4.6,4.7. The other two include the
Higgs boson as a propagator and W -Higgs interaction, see Figures 4.8 and 4.9.

dL

dR

uL

e−L

e−R

uR

WL

νi Ni

WR

Figure 4.6: “Left-Right” case
λ-Contribution

ξW ⇝

dL

dL

uL

e−L

e−R

uL

WL

νi Ni

WR

WL

Figure 4.7: “Left-Right” case
η-Contribution

Let us determine the amplitude of each diagram. We have discussed the amplitude
of the standard mass mechanism (4.43) in section 4.2. Now let us similarly write
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Figure 4.8: Left-handed charged
Higgs scalar ∆L
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dR

uR
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Figure 4.9: Right-handed charged
Higgs scalar ∆R

down the effective amplitude A of figures 4.5,4.6,4.7,4.8,4.9. We use the superscript
to distinguish these equations. The complete discussion and approximation will be
given when we calculate the differential decay rate in section 4.3.2.

Heavy neutrino propagator (RR case)

Following Equation (4.15) and (4.20), we could write down the effective amplitude
of Figure 4.5.

A(RR)
eff = iG2

F (
mWL

mWR

)4(
U2
ei

mNi

)V 2
ud · eu(p⃗e1)γν(1 + γ5)γρ(e

u)c(p⃗e2) · Jν
RJ

ρ
R (4.60)

where Jν
R, J

ρ
R are the right-handed hadronic currents with (1 + γ5) exchanged in

Equation (4.19). In the heavy neutrino exchange case, the neutrino propagator
can also be integrated out due to its large mass. The propagator therefore reduces
to a constant, i.e. a vertex-like point. Since the Fermi constant GF includes the
left-handed W boson mass, we need a coefficient if we still want to use the Fermi
constant when we integrate out the right-handed W boson. The chirality in each
vertices are right-handed yet identical, which leaves the diagram unchanged after
exchanging the momentum of the out-going electrons. This is the same argument
with that in the LL case.

Light-heavy neutrino mixing (LR case)

There are two main processes: the λ-Contribution and the η-Contribution. The first
aspect we pay attention to is the left-right chirality exchange in the LR process. The
propagator includes light-heavy neutrino mixing. The mixing can be represented
by the neutrinos mixing angle. There are different assumptions of the chirality
exchange propagator. One of those is that the propagator contains both a light
neutrino and a heavy neutrino [35]. The mechanism could be this: the “vacuum”
generates the massive field through SSB. This nonlinear mass is described by the
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mass matrix. In another way of saying, Higgs boson interacts with the neutrino
field to give it mass. Different chiral neutrinos are produced in the process and the
left-right chirality exchange is one of the contributions. In this case, we could think
about one Majorana neutrino nL = (vL, (vR)c) with left-right mixing [36]. They
mix through correlation angle transformed in mass eigenstates, see Equation (3.80).
Under this assumption, we can write the neutrino propagator as

SLR
F = ⟨0| νeL(x1)νeR(x2) |0⟩
≈ ⟨0| ν1L(x1) sin θν1R(x2) |0⟩

≈ − sin θ

∫
d4p

(2π)4
e−ip·(x1−x2)PL

−i(/p+mν)

p2 −m2
ν + iϵ

PRC (4.61)

where we use the mixing,(
cos θ sin θ
− sin θ cos θ

)(
ν1L
ν2L

)
=

(
νeL
νceR

)
(4.62)

and its conjugate, (
cos θ sin θ
− sin θ cos θ

)(
ν1R
ν2R

)
=

(
νceL
νeR

)
(4.63)

ν1, ν2 are mass eigenstates with light and heavy mass, respectively, where we can
see that the right-handed electron-type neutrino gives a coefficient sin θ to the right-
handed light neutrino part ν1R, that leads a sin θ in the propagator. For simplicity,
we only consider one generation. In the general case, if we consider the conventional
three generations, the transformation matrix is a 6× 6 matrix. The transformation
matrix can be written into a block matrix and the mixing angle is still between
the correspondent generations. In (4.61), we also ignore the heavy neutrino contri-
butions since it involves a heavy neutrino mass in the denominator, which leads to
much smaller contributions compared to the light neutrino one. We can also simplify
Equation (4.61) to the effective propagator, and write in the momentum space:

S̃LR
ef ≈ sin θ

i/p

p2
PRC (4.64)

where the in-going neutrinos are considered. The mass part in the nominator of the
neutrino propagator vanishes while the momentum part remains.

PL

−i(/p+mνi)

p2 −m2
νi

+ iϵ
PR =

−i/p
p2 −m2

νi
+ iϵ

PR (4.65)

When we consider about different channels (in 0νββ in our thesis, there are s-channel
and u-channel), we need to exchange the out-going momentum of out-going electrons
(p1 ←→ p2). In the propagator (4.64), this keeps the 0-component and adds a minus
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Figure 4.10: 4 λ-Contributions of LR case

sign to the spatial part.

p0γ0 − p⃗ · γ⃗
p2

− p0γ0 + p⃗ · γ⃗
p2

(4.66)

There are more contributions as well in LR case: the chirality at each vertices in
Figure 4.6 can be L-R or R-L from the upper to the lower. All the contributions
of LR case are in Figure 4.10. From the Figures 4.10a to 4.10d, we write down the
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amplitudes of the correspondent leptonic parts with hadronic currents.

1. u(p1)(1 + γ5)γµ/pγνu
c(p2)J

µ
L(x1)J

ν
R(x2) (4.67)

2. [u(p2)(1 + γ5)γµ(γ0p
0 + γ⃗ · p⃗)γνuc(p1)]TJµ

L(x2)J
ν
R(x1) (4.68)

3. u(p1)(1− γ5)γν/pγµuc(p2)Jν
R(x1)J

µ
L(x2) (4.69)

4. [u(p2)(1− γ5)γν(γ0p
0 + γ⃗ · p⃗)γµuc(p1)]TJν

R(x2)J
µ
L(x1) (4.70)

where the effective amplitude includes the same coefficient iG2
F

m2
WL

m2
WR

V 2
ud

1
p2

. We also

change the Lorentz indices of gamma matrices from contravariant to covariant so
that the indices are placed in the same subscript. This change is mathematically safe
since the amplitude or decay rates are scalars, i.e. all the indices will be contracted.

Next, we consider the η-Contribution. The η-diagrams also contain the exchange
of the different chiral electrons and the chirality exchange of the lepton-boson ver-
tices. Therefore we should also have 4 diagrams similar to Figure 4.10 and the
leptonic part of the two contributions diagram should be identical. The differences
come from: (1) the NME and (2) an additional WL −WR mixing angle ξW from
Equation (3.41). The η-diagrams are in Figure 4.11. We can easily write down the
electron wave function and the hadronic current parts following (4.67) to (4.70):

1. u(p1)(1 + γ5)γµ/pγνu
c(p2)J

µ
L(x1)J

ν
L(x2) (4.71)

2. [u(p2)(1 + γ5)γµ(γ0p
0 + γ⃗ · p⃗)γνuc(p1)]TJµ

L(x2)J
ν
L(x1) (4.72)

3. u(p1)(1− γ5)γν/pγµuc(p2)Jν
L(x1)J

µ
L(x2) (4.73)

4. [u(p2)(1− γ5)γν(γ0p
0 + γ⃗ · p⃗)γµuc(p1)]TJν

L(x2)J
µ
L(x1) (4.74)

where the coefficient iG2
FV

2
ud sin ξW

1
p2

has been taken away just for simplicity.

Charged Higgs scalar intermediate interaction

In Appendix E we give the Feynman rules for the W-Higgs vertex and the lepton-
Higgs vertex. We can assume that the Higgs scalars do not propagate. The scalar
type propagator of Higgs bosons “squeeze” to a point and left the constant which
is proportional to reciprocal of the charged Higgs field. We have obtained the two
charged mass in Equation (3.31). The amplitudes are

A∆L
eff =8iG2

FV
2
ud

1

ν2R

νL
νR
us(p1)YeePLu

s′(p2)JµL(x1)J
µ
L(x2) (4.75)

A∆R
eff =8iG2

FV
2
ud

1

ν2R
us(p1)YeePRu

s′(p2)JµR(x1)J
µ
R(x2) (4.76)

where the VEVs in the nominator come from the W boson-Higgs vertex and Yee is
the first component of the diagonalized Yukawa matrix (E.5) and (E.4). However,
it is not tough to write down the effective amplitude from Feynman rules for all
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Figure 4.11: 4 η-Contributions of LR case

the diagrams. In this section we only give a quick glance at how we can obtain the
effective amplitude. In the next section, we will calculate the scattering matrix and
the differential decay rate step by step.

Combining the diagrams and amplitude expressions, we can match with the 4-
fermions effective Lagrangian. The couplings would include the mechanisms. The
effective Lagrangian can be explicitly calculated from the path integral of the ef-
fective action. However, one can also simply write down the effective Lagrangian
from each diagram, i.e. the 6 dimensional effective Lagrangian should be propor-
tional to uL,RγµdL,RlL,Rγ

µlL,R and the 9 dimensional effective Lagrangian should
be proportional to three currents uL,RγµdL,RuL,RγµdL,ReL,Rγ

µeL,R, where l can be
the charged lepton field or the neutrino field. There is only the first order of the
hadronic currents that the pure V ± A is taken into account. We can define the
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effective Lagrangian as

Leff =
GF√

2
(ϵLLjLµJ

µ
L + ϵRRjRµJ

µ
R + λjRµJ

µ
R + ηjRµJ

µ
L)

+
G2

F√
2mp

(ϵ∆L
jLJLµJ

µ
L + ϵ∆R

jRJRµJ
µ
R) (4.77)

where mp is the proton mass. We have used the Fierz identity in forming the
Lagrangian, more details see Appendix D. The hadronic currents J are defined in
Equations (4.19) and (4.60), and the leptonic currents j are defined as

eγµ(1− γ5)ν ≡ jµL eγµ(1 + γ5)ν ≡ jµR
e(1− γ5)ec ≡ jL e(1 + γ5)ec ≡ jR

(4.78)

The coefficients λ and η are couplings of λ-contribution and η-contribution respec-
tively. They are not the same couplings as those in 2νββ in Equation (4.8). The
couplings in our derivations are

ϵLL =
∑
i

VudUei
mββ

me

ϵRR =
∑
i

VudUei
mp

|mNi
|
m4

WL

m4
WR

λ =
∑
i

VudUei

m2
WL

m2
WR

sin θν η =
∑
i

VudUei sin ξW

ϵ∆L
=
∑
i

Vud
Yeemp

ν2R

νL
νR

ϵ∆R
=
∑
i

Vud
Yeemp

ν2R

m4
WL

m4
WR

(4.79)

where Yee is the electron component of the diagonalized Yukawa matrix in section
3.5, see Equation (3.73). One can also find some hints in other papers, e.g. [12].
These couplings can be constrained by the experimental half-life, see section 4.4.

4.3.2 Derivation of the Decay Rates

The Standard mass mechanism (LL case)

We have shown the derivation of standard mass mechanism decay rate in section
4.2.

Heavy neutrino propagator (RR case)

Let us derive the differential decay rate in the RR case that includes a heavy neu-
trino as the intermediate propagator. The heavy neutrino only appears in the BSM
when the right correspondent symmetries or hyper symmetries are introduced. The
heavy mass we utilize here is proportional to the right-handed Higgs VEVs (3.86)
from the seesaw mechanism. This offers a constraint on the heavy neutrino mass
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scale. Moreover, the argument of the heavy neutrino mass in section (3.5) manifests
mNi

≳ 300GeV, which is much greater than the neutrino momentum. The mass
part dominates in the denominator of the neutrino propagator (E.17) with heavy

mass, p0 =
√
p⃗2 +m2

Ni
≈ mNi

. Effectively, each right-handed propagator provides

a coefficient (
mWL

mWR

)2 since the Fermi constant is with respect to mWL
. Due to the

parity invariant in the mLRSM, the couplings gL and gR are considered equal. In
the RR case, Figure 4.5, the analysis of chirality projection operator is equivalent
to the LL case. It is not difficult to write down the matrix element of the RR case
in perturbation theory. Compared to Equation (4.29), the RR matrix element is
expressed as

⟨f | A(RR)
eff |i⟩ =iG2

F (
mWL

mWR

)4V 2
ud ·Np1Np2u

s(p1)γν(1 + γ5)γρv
s′(p2)

×
∫
d3x1d

3x2e
−ip⃗1·x⃗1−ip⃗2·x⃗2 ·

∑
i Uei

mNi

1

(2π)3

∫
d3peip⃗·(x⃗1−x⃗2)

×
[∑

n

⟨f | Jν
R(x1) |Nn⟩ ⟨Nn| Jρ

R(x2) |i⟩+ ⟨f | Jν
R(x2) |Nn⟩ ⟨Nn| Jρ

R(x1) |i⟩
]

× 2πδ(Ef + p01 + p02 − Ei)− (p1 ←→ p2) (4.80)

Due to the large mass, the propagation will not last too long. The long wave ap-
proximation thereby is still available. The denominator for the nuclear part reduces
to mNi

due to its large mass and is combined with the neutrino part. Additionally,
the two hadronic current correlation remains unchanged for the sign.

J⃗µR(x⃗1)J⃗
µ
R(x⃗2)

=
∑
n,m

δ(x⃗1 − r⃗m)δ(x⃗2 − r⃗n)τn+τ
m
+ [gV (q2)gµ0 − gA(q2)σn

i g
µi][gV (q2)gµ0 − gA(q2)σm

i gµi]

=
∑
n,m

δ(x⃗1 − r⃗n)δ(x⃗2 − r⃗m)τn+τ
m
+ [g2V − σ⃗nσ⃗mg2A] (4.81)

The exchange of the momentum of the out-going electrons in RR case also produce
a factor 2. Next we should redefine the neutrino potential function. Similarly do
the integral as in (4.36).

1

(2π)3

∫
d3peip⃗·(x⃗1−x⃗2) =

memp

4πR
H(RR)(rnm, En) (4.82)

where the definitions of parameters are same as in the LL case (4.36). The electron
mass me and proton mass mp are introduced to keep the NME dimensionless, see
RR case NME (4.85) [12, 106]. The neutrino potential is

H(RR)(rnm, En) =
1

memp

2R

πrnm

∫ ∞

0

p2 sin prnm
p

dp (4.83)
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We can now insert Equation (4.82) and (4.83) into the Equation (4.80). It becomes

⟨f | A(RR)
eff |i⟩ =iG2

F (
mWL

mWR

)4V 2
ud ·Np1Np2u

s(p1)(1− γ5)vs
′
(p2)∑

i U
2
ei

mNi

memp

2R
·
∑
n,m

⟨f |H(RR)(rnm, En)τn+τ
m
+ [σ⃗nσ⃗ng2A − g2V ] |i⟩

δ(Ef + p01 + p02 − Ei) (4.84)

The definition of the NME is unlike the standard mechanism one. This is the
consequence of the large mass scale of the heavy neutrino comparing to the decay
energy.

M
(RR)
0ν = M

(RR)
0v,GT −

g2V
g2A
M

(RR)
0v,F

M
(RR)
0v,GT ≡

∑
n,m

⟨Nf |H(RR)(rnm, En)τn+τ
m
+ σ⃗

n · σ⃗m |Ni⟩

M
(RR)
0v,F ≡

∑
n,m

⟨Nf |H(RR)(rnm, En)τn+τ
m
+ |Ni⟩

(4.85)

Put Equation (4.85) into (4.84), use trace technology and calculate the absolute
square. Although the leptonic part in the RR matrix element has 1−γ5 in difference,
the absolute square of this part is equivalent. The absolute square is∣∣∣⟨f | A(RR)

eff |i⟩
∣∣∣2 =(

∑
i U

2
ei

mNi

)2(
mWL

mWR

)8m2
em

2
p

G4
FV

4
udg

4
A

2(2π)6E1E2R2
(E1E2 − p1p2 cos ξ)

×
∣∣∣M (RR)

0ν

∣∣∣2δ(Ef + p01 + p02 − Ei) (4.86)

define 1
⟨mN ⟩ ≡

∑
i U

2
ei

mNi
. The differential rate is

dΓ0ν
(RR) =

∣∣∣∣ 1

⟨mN⟩

∣∣∣∣2∣∣∣M (RR)
0ν

∣∣∣2m2
em

2
p(
mWL

mWR

)8
G4

FV
4
udg

4
A

(2π)5R2
(E1E2 − p1p2 cos ξ)

× F (Z + 2, E1)F (Z + 2, E2)p1p2 sin ξdξdE2 (4.87)

where E1 = p01, E2 = p02 are electron energies.

Light-heavy neutrino mixing (LR case)

λ-Contribution. We have showed the four contributions in Figure (4.10). The
amplitude of the lepton part with hadronic currents is in Equation (4.70). Let us
first simplify the amplitude. The exchange of the out-going fermions provides an
additional minus sign, which is the same mechanism of changing the field position
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in wick theorem [19]. Therefore, we combine the four equations.

1− 2 + 3− 4

= + u(p1)(1 + γ5)γµ/pγνu
c(p2)J

µ
L(x1)J

ν
R(x2)

− u(p1)(1− γ5)γν(γ0p
0 + γ⃗ · p⃗)γµuc(p2)Jµ

L(x2)J
ν
R(x1)

+ u(p1)(1− γ5)γν/pγµuc(p2)Jν
R(x1)J

µ
L(x2)

− u(p1)(1 + γ5)γµ(γ0p
0 + γ⃗ · p⃗)γνuc(p2)Jν

R(x2)J
µ
L(x1)

(4.88)

The momentum exchange from 1 to 2 also defines the time ordering in the hadronic
current. Combining the first line and the last line, We will have the hadronic current
(1-4) with the potential integral as∫

d3x1d
3x2e

−i(p⃗1·x⃗1+p⃗2·x⃗2)
1

2(2π)3

∫
d3p
[/peip⃗·(x⃗1−x⃗2)

p0
⟨f | Jµ

L(x⃗1)J
ν
R(x⃗2) |i⟩

p⃗+ p02 + En −Mi + iϵ

− (γ0p
0 + γ⃗ · p⃗)e−ip⃗·(x⃗1−x⃗2)

p0
⟨f | Jν

R(x⃗2)J
µ
L(x⃗1) |i⟩

p⃗+ p01 + En −Mi + iϵ

]
(4.89)

We have use the residue theorem 4.22 and thus only the on-shell condition has been
taken into account. In the amplitude ⟨f | A(LR−λ)

eff |i⟩, we need to add the coefficient,
the electron wave function, the chirality operator, and the neutrino mixing angle.
The amplitude is given explicitly in the subsequent calculation. Let us now focus
on the integral. If only the S-wave of 0+ → 0+ is considered, the approximation
e−i(p⃗1·x⃗1+p⃗2·x⃗2) ≈ 1 can be used here as well. However, it is necessary to consider the
first order expansion of the electron wave function: e−i(p⃗1·x⃗1+p⃗2·x⃗2) ≈ 1− i(p⃗1 · x⃗1+ p⃗2 ·
x⃗2) instead of only the zeroth order, if we think about the relativistic correction of
the hadronic current [107]. We will only consider the zeroth order of the expansion
and the p0 component of the neutrino momentum for the pure 0+ → 0+ transition in
this thesis. The spatial component p⃗ provides an odd parity while the two electrons
provide an even parity, which the final states are indeed not 0+ states. Let us
still consider the non-relativistic impulse approximation of the hadronic current, see
Equation (4.30). The integral becomes

1

2(2π)3

∫
d3p
[ γ0e

ip⃗·(r⃗n−x⃗m)

p⃗+ p02 + En −Mi

− γ0e
ip⃗·(r⃗n−r⃗m)

p⃗+ p01 + En −Mi

]
· ⟨f |

∑
n,m

τn+τ
m
+ [gV (q2)gµ0 + gA(q2)σn

i g
µi][gV (q2)gν0 − gA(q2)σm

i g
νi] |i⟩ (4.90)

We can further simplify the integration part to

1

2(2π)3

∫
d3pγ0e

ip⃗·(r⃗n−r⃗m) p01 − p02
(p⃗+ A1)(p⃗+ A2)

(4.91)
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times the hadronic current part, where A1,2 ≡ p01,2 + En −Mi. In the intermediate

process with En, the momentum of the neutrino is usually > 20MeV while A1,2 are
usually only a few MeV [107]. Therefore, the integration (4.91) has the following
relation with the neutrino potential (4.37) in the LL case,

1

2(2π)3

∫
d3pγ0e

ip⃗·(r⃗n−x⃗m) p01 − p02
(p⃗+ A1)(p⃗+ A2)

≈ γ0(p
0
1 − p02)

1

2(2π)3

∫
d3p

eip⃗·(r⃗n−x⃗m)

p⃗(p⃗+ A)

=γ0(p
0
1 − p02)

1

8πR
H(rnm, En) (4.92)

where A ≡ p + En − Mi+Mf

2
. H(rnm, En) is the neutrino potential function in LL

case, see Equation (4.38). Inserting the integral (4.91) into (4.90) and combining
the chirality in Equation (4.88), we have

1

8πR
[(1 + γ5)p

0
1 − (1 + γ5)p

0
2]×H(rnm, En)

× ⟨f |
∑
n,m

τn+τ
m
+ [gV (q2)gµ0 + gA(q2)σn

i g
µi][gV (q2)gν0 − gA(q2)σm

i g
νi] |i⟩ (4.93)

where A1,2 ≡ −p01,2 − En + Mi. We use the same calculation procedure for terms
(3-2) in (4.88). Considering the chirality operator and the Lorentz indices in the
hadronic current, we will obtain

1

8πR
[(1− γ5)p01 − (1− γ5)p02]×H(rnm, En)

× ⟨f |
∑
n,m

τn+τ
m
+ [gV (q2)gν0 − gA(q2)σn

i g
νi][gV (q2)gµ0 + gA(q2)σm

i g
µi] |i⟩ (4.94)

The contraction of the Lorentz indices between the gamma matrices and the cur-
rents is derived using the anticommutation of the gamma matrices from the Clifford
algebra (4.32) and (F.3). Collect all the gamma matrices and use one of the orders
µν as an example,

γµγ0γνJ
µJν =γ0γ0γνJ

0Jν − γkγ0γνJkJν

=γ0γ0γνJ
0Jν + γ0γkγνJ

kJν

=γ0J
0J0 − γ0δjkJ

kJj

=γ0 ⟨f |
∑
n,m

τn+τ
m
+ [g2V (q2)− g2A(q2)(σ⃗m · σ⃗n)] |i⟩ (4.95)

The subscript k refers to the spacial part. In the third line, we also change the
metric gkj = dim{−1,−1,−1} to a delta symbol for the Euclidean summation. The
1
2
(γµγν − γνγµ) part does not give a contribution since the hadronic currents are

commute in the summation. Then we can define the NME with the same form in
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the standard mechanism, see (4.40).

M
(LR)
0ν = M

(LL)
0ν (4.96)

We will keep the indices (LL) and (LR) to make the results clearly match the
processes. Combining Equations (4.93) and (4.94) with the Lorentz indices and the
NMEs, we have

1

4πR
γ0(p

0
1 − p02)g2AM

(LL)
0v (4.97)

Now we retrieve the coefficient and the wave function to obtain the full expression
of the matrix element.

⟨f | A(LR−λ)
eff |i⟩ =G2

F (
m2

WL

m2
WR

)V 2
udg

2
A sin θν ·Np1Np2

1

4πR
(p01 − p02)us(p1)γ0ucs′(p2)

×M (LR)
0ν · 2πδ(Ef + p01 + p02 − Ei) (4.98)

The absolute square of (4.98) after using trace technology is∣∣∣⟨f | A(LR−λ)
eff |i⟩

∣∣∣2 =(
mWL

mWR

)4 sin2 θν
G4

FV
4
udg

4
A

4(2π)6p01p
0
2R

2
(p01 − p02)2(p01p02 + p1p2 cos ξ −m2

e)

×
∣∣∣M (LR)

0ν

∣∣∣2δ(Ef + p01 + p02 − Ei) (4.99)

where the trace technology of the leptonic part is

1

4
Tr[( /p1 +me)γ0( /p2 −me)γ0] = p01p

0
2 + p1p2 cos ξ −m2

e (4.100)

where the coefficient 1
4

is to remove the overcounting of spin permutations. The
differential decay rate is

dΓ0ν
(LR−λ) = sin2 θν(

mWL

mWR

)4
∣∣∣M (LR)

0ν

∣∣∣2G4
FV

4
udg

4
A

2(2π)5R2
(E1 − E2)

2(E1E2 −m2
e + p1p2 cos ξ)

× F (Z + 2, E1)F (Z + 2, E2)p1p2 sin ξdξdE2 (4.101)

where we rewrite the electron energies p01 = E1, p
0
2 = E2.

η-Contribution. From Equation (4.70) and (4.74) we can clearly find out that the
neutrino potential and the trace of the electron spin states of both contributions
are identical. However, there would be a plus sign in between the time ordering of
the hadronic current, since the hadronic part satisfies Jµ

L(x1)J
ν
L(x2) ≡ Jµ

L(x2)J
ν
L(x1)

when contracted with gµν . Thus, we will have the same NMEs as those in the
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4 Neutrinoless Double Beta Decay

standard mechanism LL case (4.40). The amplitude in this way is

⟨f | A(LR−η)
eff |i⟩ =G2

FV
2
udg

2
A sin θν sin ξW ·Np1Np2

1

4πR
(p01 + p02)us(p1)γ0u

c
s′(p2)

×M (LR−η)
0ν · 2πδ(Ef + p01 + p02 − Ei) (4.102)

where the NME is defined as

M
(LR−η)
0ν = M

(LR)
0ν,GT +

g2V
g2A
M

(LR)
0ν,F (4.103)

The GT and F parts of the NME have the same definition as the λ-contribution.
The differential decay rate is

dΓ0ν
(LR−η) = sin2 θν sin2 ξW

∣∣∣M (LR−η)
0ν

∣∣∣2G4
FV

4
udg

4
A

2(2π)5R2
(E1 + E2)

2(E1E2 −m2
e + p1p2 cos ξ)

× F (Z + 2, E1)F (Z + 2, E2)p1p2 sin ξdξdE2 (4.104)

where we again rewrite the electron energies E1,2 ≡ p01,2.

Charged Higgs scalar intermediate interaction

When engage with Higgs scalars, we have two contributions: Figures 4.8 and 4.9.
The transition matrix elements combined with the quation (4.76) and the approxi-
mations becomes

⟨f | A∆L
eff |i⟩ =iG2

FV
2
udg

2
ANp1Np2Yee

1

ν2R

νL
νR

1

R
mempus(p1)(1− γ5)us

′
(p2)

×M∆L
0ν δ(Ef + p01 + p02 − Ei) (4.105)

⟨f | A∆R
eff |i⟩ =iG2

FV
2
udg

2
ANp1Np2Yee(

mWL

mWR

)4
1

ν2R

1

R
mempus(p1)(1 + γ5)us

′
(p2)

×M∆R
0ν δ(Ef + p01 + p02 − Ei) (4.106)

where the NME of process 0+ → 0+ has the similar definition as RR case. This is
obvious since we consider the non-propagating heavy particle mass scale in effective
theory. The differences come from the coupling at the vertices and the mass scale of
the W boson propagator. The left- and right-handed Higgs scalar cases are identical
in the NME as follows.

M
(∆L/R)

0ν = M
(∆L/R)

0v,GT −
g2V
g2A
M

(∆L/R)

0v,F

M
(∆L/R)

0v,GT = M
(RR)
0v,GT M

(∆L/R)

0v,F = M
(RR)
0v,F

(4.107)
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where the minus sign in the first line is for the left current NME and the plus
sign is for the right counterpart. Since the Higgs-lepton vertex coupling provides a
neutrino mass, we only need one mass unit to compensate the unit in phase space
factor, where we set the dimension of the phase space factor to [t−1]. The absolute
squares with trace technology are

∣∣⟨f | A∆L
eff |i⟩

∣∣2 =(Yee)
2m2

em
2
p

1

ν4R

ν2L
ν2R

2g4AG
4
FV

4
ud

(2π)6p01p
0
2R

2
(E1E2 − p1p2 cos ξ)

×
∣∣∣M (∆L)

0ν

∣∣∣2δ(Ef + p01 + p02 − Ei) (4.108)

∣∣⟨f | A∆R
eff |i⟩

∣∣2 =(Yee)
2(
mWL

mWR

)8m2
em

2
p

1

ν4R

2g4AG
4
FV

4
ud

(2π)6p01p
0
2R

2
(E1E2 − p1p2 cos ξ)

×
∣∣∣M (∆R)

0ν

∣∣∣2δ(Ef + p01 + p02 − Ei) (4.109)

the differential decay rates are

dΓ0ν
∆L

=
∣∣∣M (∆L)

0ν

∣∣∣2(Yee)2m2
em

2
p

1

ν4R

ν2L
ν2R

4g4AG
4
FV

4
ud

(2π)5R2
(E1E2 − p1p2 cos ξ)

× F (Z + 2, E1)F (Z + 2, E2)p1p2 sin ξdξdE2 (4.110)

dΓ0ν
∆R

=(
mWL

mWR

)8m2
em

2
p

∣∣∣M (∆R)
0ν

∣∣∣2(Yee)2 1

ν4R

4g4AG
4
FV

4
ud

(2π)5R2
(E1E2 − p1p2 cos ξ)

× F (Z + 2, E1)F (Z + 2, E2)p1p2 sin ξdξdE2 (4.111)

In assumption that νR is really large, the charged Higgs scalar processes are sup-
pressed because of the very small coefficient 1

ν4R
. If we consider the assumption

νR ≫ νL which is used in discussing the smallness mass of the light neutrino, the
decay rate of left-handed charged Higgs mechanism will be really small and thus the
∆L will be suppressed. In the assumption where mWR

≫ mWL
, the right-handed

Higgs scalar process is suppressed due to the very small front factor.

4.4 Phase Space Factors and Nuclear Matrix
Elements

Let us reorganize how we can calculate the differential decay rate. From the Fermi
Golden rule we aware that the decay rate is proportional to the integral of the
transition amplitude. When the initial and final states are settled, we can play
around of any intermediate states that are allowed. However, we need to sum over
all the possible amplitudes in order to obtain a total rate between specific initial
and final states. In neutrinoless double beta decay with six fermions interaction
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4 Neutrinoless Double Beta Decay

u, u, d, d, e, e in the mLRSM, we could have light, heavy, light-heavy mixing, and
Higgs scalars in the middle states. This allows us to write the total amplitude A

A0ν = A(LL) +A(RR) +A(LR) +A∆L +A∆R (4.112)

the transition amplitude square will be∣∣⟨f | A0ν |i⟩
∣∣2 =

∣∣⟨f | A(LL) |i⟩
∣∣2 +

∣∣⟨i| A(LL)† |f⟩ ⟨f | A(RR) |i⟩
∣∣

+
∣∣⟨i| A(LL)† |f⟩ ⟨f | A(LR) |i⟩

∣∣+
∣∣⟨i| A(LL)† |f⟩ ⟨f | A∆L |i⟩

∣∣
+
∣∣⟨i| A(LL)† |f⟩ ⟨f | A∆R |i⟩

∣∣+
∣∣⟨f | A(RR) |i⟩

∣∣2
+
∣∣⟨i| A(RR)† |f⟩ ⟨f | A(LR) |i⟩

∣∣+
∣∣⟨i| A(RR)† |f⟩ ⟨f | A∆L |i⟩

∣∣
+
∣∣⟨i| A(RR)† |f⟩ ⟨f | A∆R |i⟩

∣∣+
∣∣⟨f | A(LR) |i⟩

∣∣2
+
∣∣⟨i| A(LR)† |f⟩ ⟨f | A∆L |i⟩

∣∣+
∣∣⟨i| A(LR)† |f⟩ ⟨f | A∆R |i⟩

∣∣
+
∣∣⟨f | A∆L |i⟩

∣∣2 +
∣∣⟨i| A∆L† |f⟩ ⟨f | A∆R |i⟩

∣∣+
∣∣⟨f | A∆R |i⟩

∣∣2
(4.113)

The terms have only one type of cases of the amplitude such as
∣∣⟨f | A(LL) |i⟩

∣∣2 which
are the pure terms. The terms with two types of amplitudes are called interference
terms, e.g.

∣∣⟨i| A(LL)† |f⟩ ⟨f | A(RR) |i⟩
∣∣. In this thesis, we calculate the effective

amplitude of all the pure terms. One could use the same argument as in the thesis
to calculate the rest coupled terms. This can be done by continuing researches.

Phase space factors

We can now write down the phase space factor for each pure case with differential
decay rate we have come by. Together With the standard mechanism (4.51) and
Equations (4.87), (4.101), (4.104), (4.110) and (4.111), the phase space factors are

G0ν
(LL)(Q,Z) =

G4
FV

4
udg

4
Am

2
e

2 ln 2(2π)5R2

∫ Q

0

dT1

∫ π

0

sin ξdξ(E1E2 − p1p2 cos ξ)p1p2

× F (Z + 2, E1)F (Z + 2, E2)

(4.114)

G0ν
(RR)(Q,Z) =

G4
FV

4
udg

4
Am

2
e

2 ln 2(2π)5R2

∫ Q

0

dT1

∫ π

0

sin ξdξ(E1E2 − p1p2 cos ξ)p1p2

× F (Z + 2, E1)F (Z + 2, E2)

(4.115)

G0ν
(LR−λ)(Q,Z) =

G4
FV

4
udg

4
A

2 ln 2(2π)5R2

∫ Q

0

dT1

∫ π

0

sin ξdξ(E1 − E2)
2(E1E2 −m2

e + p1p2 cos ξ)

× p1p2F (Z + 2, E1)F (Z + 2, E2) (4.116)
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G0ν
(LR−η)(Q,Z) =

G4
FV

4
udg

4
A

2 ln 2(2π)5R2

∫ Q

0

dT1

∫ π

0

sin ξdξ(E1 + E2)
2(E1E2 −m2

e + p1p2 cos ξ)

× p1p2F (Z + 2, E1)F (Z + 2, E2)

(4.117)

G0ν
(∆L)

(Q,Z) =
2G4

FV
4
udg

4
Am

2
e

ln 2(2π)5R2

∫ Q

0

dT1

∫ π

0

sin ξdξ(E1E2 − p1p2 cos ξ)p1p2

× F (Z + 2, E1)F (Z + 2, E2)

(4.118)

G0ν
(∆R)(Q,Z) =

2G4
FV

4
udg

4
Am

2
e

ln 2(2π)5R2

∫ Q

0

dT1

∫ π

0

sin ξdξ(E1E2 − p1p2 cos ξ)p1p2

× F (Z + 2, E1)F (Z + 2, E2)

(4.119)

where we redefine the phase space factors in LL and RR case with additional m2
e

to make the unit in each phase space factors identical. The the Phase space factors
have the dimension of t−1. We can derive this in the LL case as an example, GF has
the unit of the mass m−2, R has m−1, and the integral provides m5. Thus the total
unit in (4.114) is [m−8m2m2m5] = [m] = [t−1]. The half-life without the interference
terms proposed in (4.113) is expressed as

(T 1
2
)−1 =

|mββ|2

m2
e

∣∣∣M (LL)
0ν

∣∣∣2G0ν
(LL) +

m2
p

|⟨mN⟩|2
(
mWL

mWR

)8
∣∣∣M (RR)

0ν

∣∣∣2G0ν
(RR)

+ sin2 θν(
mWL

mWR

)4
∣∣∣M (LR)

0ν

∣∣∣2G0ν
(LR−λ) + sin2 ξW sin2 θν

∣∣∣M (LR−η)
0ν

∣∣∣2G0ν
(LR−η)

+ |Yee|2
m2

p

ν4R

ν2L
ν2R

∣∣∣M (∆L)
0ν

∣∣∣2G0ν
(∆L)

+ (
mWL

mWR

)8|Yee|2
m2

p

ν4R

∣∣∣M (∆R)
0ν

∣∣∣2G0ν
(∆R) (4.120)

where we write the phase space factor as G ≡ G(Q,Z) for simplification. One
can also write the Yukawa coupling Yee as the heavy neutrino mass mNi

[12], see
section 3.5. However, we will keep the Yukawa coupling here. We can see that
the coefficients match with the coefficients in the effective Lagrangian (4.77). The
coefficients of each term can be constrained by comparing the experimental limit of
the half-life with the theoretical result of NMEs and phase space factors [12]. We
can calculate the phase space factors numerically from Equations (4.114-4.119). The
NMEs are not calculated in the thesis, so we would take from the literature [106].
In order to take the NME numerical result, we should redefine our NMEs and phase
space factors to match the form in the literature. The half-life expression will not
change, i.e. we only define the NMEs with/without some constant numbers by
dividing/multiplying the numbers to the phase space factors. After values of NMEs
and phase space factors are obtained, we can keep only one of the term in (4.120)
and force other terms to zero to get the upper limit of the coefficients. The upper
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4 Neutrinoless Double Beta Decay

NME PSF Coupling

M
(LL)
0ν 3.12 G0ν

(LL) 0.96 |mββ| < 0.19 eV

M
(RR)
0ν 213.13 G0ν

(RR) 0.96 ϵRR < 4.60× 10−8

M
(LR)
0ν 3.12 G0ν

(LR−λ) 5.20 λ < 1.64× 10−7

M
(LR−η)
0ν 2.00 G0ν

(LR−η) 40.6 η < 7.31× 10−8

M
(∆L)
0ν 213.13 G0ν

∆L)
3.85 ϵ∆L

< 2.30× 10−8

M
(∆R)
0ν 213.13 G0ν

∆R) 3.85 ϵ∆R
< 2.30× 10−8

Table 4.2: Numerical results of NMEs, phase space factors (PSF), and couplings for
136Xe. We have set the component of the CKM matrix Vud ≡ cos θC to
1. The original numerical value of M0ν,GT and M0ν,F are taken from this
paper [106]. The NMEs and the couplings are dimensionless, and the unit
of phase space factors is 10−14yr−1, where yr refers to years.

limit indicates how possible the mechanism will take place in 0νββ process. In
the standard mechanism coupling ϵLL in (4.79), if the relation Vud = Uee = 1 is
taken [68, 108], we can obtain a upper limit of the mass of the electron neutrino.
The numerical results of 136Xe are in Table 4.2.

Nuclear matrix element

The NME is usually complicated to calculate analytically and needs to be obtained
from numerical simulations and sensitivity experiments [109, 110]. In this thesis,
we only consider the S-wave emitted electron wave functions S 1

2
, i.e. the first order

contributions. The zero spin change of the S-wave suggests the only 0+ → 0+

transition, where the hadrons contain only vector and axial vector currents. In a
more precise derivation, the P wave P 1

2
is also considered as the second order for

0+ → 0+, where we have the hadronic currents with the different combinations of
the emitted electron wave functions [89].

√
2S1S2 : g2V − g2Aσ⃗1 · σ⃗2
2S1S2 : g2V ∓ g2Aσ⃗1 · σ⃗2

(S1P2 − P1S2)r12/R : g2V ± g2A(
1

3
σ⃗1 · σ⃗2 − 2S12)

(S1P2 + P1S2)r+12/R : gV gA(σ⃗1 − σ⃗2) · (r̂12 × r̂+12)

2S1S2 : gV gAr̂12 · (σ⃗ ×D2 − σ⃗ ×D1)

(4.121)

where Si and Pi denote the electron radial wave functions of S 1
2

and P 1
2

respectively.
These wave functions are combinations of solutions of the Dirac equation of out-
going electron wave functions with specific nuclear potential [89, 90]. The notation
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4.5 Energy Spectra and Angular Correlations

is r̂ ≡ r⃗
|r⃗| . The vector operators are defined as

r⃗+nm =r⃗n + r⃗m

Snm =(σ⃗n · r̂nm)(σ⃗m · r̂nm)− 1

3
σ⃗n · σ⃗m

(4.122)

D is the nuclear recoil current,

Dn =V (1)
n + (

gW
gV

)W (0)
n

=
p⃗n + p⃗′n − iµβσ⃗n × (p⃗n − p⃗′n)

2M

(4.123)

where µβ = κβ + 1, and κβ = 3.70 is the isovector anomalous magnetic moment
of the nucleon. V and W stands for the vector current and the weak magnetism
current, respectively. A well established method for NME calculations is the QRPA
(quasiparticle random phase approximation), see References [106, 111, 112].

4.5 Energy Spectra and Angular Correlations

The single electron kinetic energy spectra and the angular correlation are two useful
measurable quantities in 0νββ decay [113]. They can be used to classify the decay
processes and the contributions of theories [114]. Let us explicitly derive the formula.
We can divide a dE2 on both sides of the differential decay rate equations for each
case and integrate the correlation angle. After the integration, there will be only
one parameter which is one of the electron energy. On the other hand, one can
integrate the differential decay rate with respect to the energy and the correlation
angle then perform a derivative with respect to the energy to obtain a energy depend
differential decay rate spectrum. Let us take the standard mass mechanism cases
for an instance. Divide dE2 by Equation (4.49) and integrate the angle ξ,

dΓ0ν
(LL)

dE2

=|mββ|2
∣∣∣M (LL)

0ν

∣∣∣2G4
FV

4
udg

4
A

(π)5R2
F (Z + 2, E1)F (Z + 2, E2)2E1E2p1p2 (4.124)

where E1 can be written in terms of E2: E1 = Q + 2me − E2 and E2 = p2 + m2
e.

The NME can be considered as some number which is calculated numerically in
some papers [115, 116, 117]. In this case, the coefficient and the NME as well as the
neutrino effective mass can be normalized to a factor, and the shape of the spectrum
will only depend on the leptonic part,

dΓ0ν
(LL)

dE2

= CLLF (Z + 2, E1)F (Z + 2, E2)2E1E2p1p2 (4.125)
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where CLL is short for the rest multiples of Equation (4.124). In other cases, We
can also rewrite the number parts into factors Ccases, and they are

dΓ0ν
(RR)

dE2

= CRRF (Z + 2, E1)F (Z + 2, E2)2E1E2p1p2 (4.126)

dΓ0ν
(LR−λ)

dE2

= CLR−λF (Z + 2, E1)F (Z + 2, E2)2(E1 − E2)
2(E1E2 −m2

e)p1p2 (4.127)

dΓ0ν
(LR−η)

dE2

= CLR−ηF (Z + 2, E1)F (Z + 2, E2)2(E1 + E2)
2(E1E2 −m2

e)p1p2 (4.128)

dΓ0ν
(∆L)

dE2

=C∆L
F (Z + 2, E1)F (Z + 2, E2)2E1E2p1p2 (4.129)

dΓ0ν
(∆R)

dE2

=C∆R
F (Z + 2, E1)F (Z + 2, E2)2E1E2p1p2 (4.130)

From the above equations we can see that the leptonic parts of the LL, ∆L, ∆R

cases are equivalent. We now show the single electron kinetic energy spectrum
in Figure 4.12 (a)(c)(e) on the left penal. The x-axis is the normalized kinetic
energy (E2 − me)/Q, where Q is the decay energy. Thus in this case, the x-axis
is drawn from 0 to 1 instead of me to Q + me if we choose E2 to be the x-axis.
In the normalized differential decay rate, only the leptonic parts contribute to the
shape of the spectra. In the above five cases, we would only have two different
shape of spectra, drawing in Figure 4.12. The shape of the LR-λ case should be
different from the other cases due to the factor (E1 −E2)

2 [113]. Figures 4.12a and
4.12e shows that the two electrons in these cases have a tendency to gain the same
masses. However, in the λ-contribution shown in Figure 4.12c, the two electrons
are prevented to have the same masses. Next, Let us derive the expression of the
angular correlation. The differential decay rate contains the structure 1± cos θ. In
the standard mechanism (4.49) for example, the differential decay rate contains two
parts E1E2−p1p2 cos ξ that only one part contain the electron coupling angle ξ. We
can define two coefficients as a0 and a1. Then we can rewrite the differential decay
rate as

dΓ0ν

d(cos ξ)dE2

= a0(1 +
a1
a0

cos ξ) (4.131)

where we put all the coefficients and NMEs in a0, a1 in each case. The ratio a1
a0

which
only includes the difference between the cos ξ term and the no-angle term is defined
as the angular correlation factor. For example, in the LL case (4.49) and the LR
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case (4.101) (4.104), this factor is

LL :
a1
a0

= − p1p2
E1E2

(4.132)

LR :
a1
a0

=
p1p2

E1E2 −m2
e

(4.133)

respectively. The angular correlation factor in the RR case and in the charged
Higgs scalar cases (∆L,∆R cases) are exactly the same as the one in the standard
mechanism (LL case), i.e. Equation 4.132. The λ-contribution and η-contribution
have the same angular correlation, Equation (4.133). The angular correlation figures
are presented in the right panel of Figure 4.12. We also take the normalized kinetic
energy as the x-axis. The negative angular correlation as well as Figure 4.12b show
that the two electrons tend to be emitted in the opposite direction in these cases,
while the two electrons in LR cases with positive angular correlation are tend to be
emitted in the same direction. However, the angular correlation in LR cases maybe
not hold in more precise approximation. In the λ-Contribution, the electron wave
function we took is the plane wave function, and only the first term in the expansions
was taken into account, i.e. e−ip⃗1·x⃗1−ip⃗2·x⃗2 ≈ 1. This rough approximation gives the
same angular correlation shape in λ and η cases. One could also use a more precise
approximation that takes the first two orders: e−ip⃗1·x⃗1−ip⃗2·x⃗2 ≈ 1 − p⃗1 · x⃗1 − p⃗2 · x⃗2,
which will provide different angular correlation spectra in the two contributions due
to the factors (E1 − E2)

2 and (E1 + E2)
2 [87, 118].
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(c) “LR-λ” case spectrum
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(d) “LR-λ” case angular correlation
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(e) “LR-η” case spectrum
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(f) “LR-η” case angular correlation

Figure 4.12: (a)(c)(e): normalized differential decay rate spectra. The shapes of the
spectra of LL, RR, LR-η, ∆L, and ∆R are identical. The only differ-
ence is the Ccases value before the normalization. (b)(d)(f): angular
correlation factor. The angular correlation of the λ-Contribution and
the η-Contribution are the same in the zeroth order approximation of
electron wave functions e−ip⃗1·x⃗1−ip⃗2·x⃗2 ≈ 1. If the higher orders of the ex-
pansion series are considered, we will have different angular correlations
in λ and η cases, see [87, 113].

84



5 Summary and Conclusion

In this thesis, we have studied the mLRSM from model building and calculated the
differential decay rate of the 0νββ decay under the mLRSM. The mLRSM has been
naturally introduced when we encountered the right-handed currents and considered
parity restoration at some high-energy scale. This model gives an explanation for
the smallness of the neutrino mass from the type I+II seesaw mechanism. The
charged leptons masses are proportional to the VEVs of the Higgs bidoublet (see
Equation (3.66)). The light neutrino mass can be related to the VEVs of the Higgs
bidoublet divided by the heavy Higgs triplet VEV, see Equation (3.86). Thus, this
possibly indicates the relation of the light neutrino (3.88), which provides a not so
large right-handed W boson that could be observed from experiments.

0νββ being a lepton number violation process is a very practical way to determine
the nature of the neutrinos. The probability amplitude explicitly depends on the
underlying mechanism of 0νββ decay. Therefore, it is worth calculating the differ-
ential decay rate. We have calculated the differential decay rate in the mLRSM in
chapter 4. This decay rate calculation is under the low-energy effective approxi-
mation, where we supposed the propagating energy to be O(100MeV) ≪ mW . We
have shown all the possible tree-level contributions in the mLRSM graphically in
Figure 4.3, and from Figure 4.5 to Figure 4.9. The amplitudes of each process have
been given in section 4.3 by using the Feynman rules given in Appendix E. Then
we derived the differential decay rates and the total decay rates from the transi-
tion probabilities. These expressions can be used to put constrains on the single
interaction coefficients. The numerical values of the phase space factors have been
calculated and are presented in the second column of Table 4.2. We matched the
mLRSM onto the effective low-energy Lagrangian in Equation (4.77). The corre-
sponding low-energy coupling constants are given in Equation (4.79). The numerical
values of the upper limit of these couplings, in the reference to the latest data from
KamLand-Zen, are given in the third column of Table 4.2. The expressions of the
couplings, e.g. in (4.79), depend on the mechanism and the physical models. There-
fore, we are planning to research more proper models and to look for the underlying
mechanism of the BSM in the near future.

We have drawn the single electron kinetic energy spectra and the angular correla-
tion figures in Figure 4.12. The different shape of the λ-contribution in the energy
spectra is due to the factor (E1 − E2)

2. The Figure 4.12a and 4.12e shows that
the two out-going electrons in standard mass mechanism and η-case are more likely
to possess the same energy, while in the λ-case Figure 4.12c, shows that the two
electrons tend to have different energies. The angular correlation of the chirality ex-
change cases (LR cases) has the (1+cos ξ) type while the other cases have (1−cos ξ)
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5 Summary and Conclusion

type correlation, which gives the shape of LR cases (Figure 4.12d and 4.12f) differ
from the standard mechanism (Figure 4.12b). It follows that in the LR case, which
features a positive angular correlation, the two electrons tend to be emitted in the
same direction while in the other cases, the two electrons tend to be emitted in the
opposite direction due to the negative angular correlation.

There are also some aspects that can be improved in a future study. The inter-
ference terms of different diagrams in (4.113) can be calculated in order to obtain a
full half-life expression. The electron wave functions, instead of using the plan wave
approximation, can be solved directly from the Dirac equation. However, the Dirac
equation is difficult to solve analytically, instead, we can solve them numerically
through programming.
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Appendix
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A Explicit Higgs Potential in mLRSM

The full Higgs potential in Equation (3.2) would be (one can also find some other
version here [59, 63, 64, 73],

V (ϕ, ϕ̃,∆L,∆R) = −µ2
11Tr[ϕ†ϕ]− µ2

12Tr[ϕ†ϕ̃+ ϕ̃†ϕ] + λ1111(Tr[ϕ†ϕ])2

+ λ1211Tr[ϕ†ϕ̃+ ϕ̃†ϕ]Tr[ϕ†ϕ] + λ1212
{

(Tr[ϕ†ϕ̃])2 + (Tr[ϕ̃†ϕ])2
}

+ λ1221Tr[ϕ†ϕ̃]Tr[ϕ̃†ϕ] + λ′1111Tr[ϕ†ϕϕ†ϕ]

+ λ′1211(Tr[ϕ†ϕ̃ϕ†ϕ] + Tr[ϕ†ϕϕ̃†ϕ]) + λ′1122Tr[ϕ†ϕϕ̃†ϕ̃]

− µ2Tr[∆†
L∆L + ∆†

R∆R] + ρ1
{

(Tr[∆†
L∆L])2 + (Tr[∆†

R∆R])2
}

+ ρ2
{

Tr[∆L∆L]Tr[∆†
L∆†

L] + Tr[∆R∆R]Tr[∆†
R∆†

R]
}

+ ρ3Tr[∆†
L∆L]Tr[∆†

R∆R]

+ ρ4
{

Tr[∆L∆L]Tr[∆†
R∆†

R] + Tr[∆R∆R]Tr[∆†
L∆†

L]
}

+ α11Tr[ϕ†ϕ](Tr[∆†
L∆L] + Tr[∆†

R∆R])

+ α22Tr[ϕ̃†ϕ̃](Tr[∆†
L∆L] + Tr[∆†

R∆R])

+ α12Tr[ϕ†ϕ̃+ ϕ̃†ϕ](Tr[∆†
L∆L] + Tr[∆†

R∆R])

+ β11(Tr[∆†
L∆Lϕϕ

†] + Tr[∆†
R∆Rϕ

†ϕ])

+ β12(Tr[∆†
L∆Lϕϕ̃

†] + Tr[∆†
R∆Rϕ̃

†ϕ] + Tr[∆†
L∆Lϕ

†ϕ̃] + Tr[∆†
R∆Rϕ̃ϕ

†])

+ β22(Tr[∆†
L∆Lϕ̃ϕ̃

†] + Tr[∆†
R∆Rϕ̃

†ϕ̃])]

+ γ11(Tr[∆†
Lϕ∆Rϕ

†] + Tr[∆†
Rϕ∆Lϕ

†])

+ γ12(Tr[∆†
Lϕ∆Rϕ̃

†] + Tr[∆†
Lϕ̃∆Rϕ

†])

+ γ22(Tr[∆†
Lϕ̃∆Rϕ̃

†] + Tr[∆†
Rϕ̃∆Lϕ̃

†]) (A.1)

where the coefficients satisfy the following relations to ensure the Hermicity and
left-right symmetry, also we change some of the subscript to simplify the writing,

µ12 = µ21 ≡ µ2 λ1111 ≡ λ1 λ1211 ≡ λ2

λ1212 = λ2121 ≡ λ3 λ1221 ≡ λ4 λ′1111 ≡ λ′1
λ′1211 = λ′1121 ≡ λ2 λ′1122 ≡ λ′3 α11 ≡ α1

α12 = α21 ≡ α2 α22 ≡ α3 β11 ≡ β1

β12 = β21 ≡ β2 β22 ≡ β3 γ11 ≡ γ1

γ12 = γ21 ≡ γ2 γ22 ≡ γ3

(A.2)
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Some equivalent terms have been neglected in Equation (A.1). For example, con-
sider the terms Tr[ϕ†ϕ] and Tr[ϕ̃†ϕ̃], for each terms they are Hermitian and can
be regarded as different single terms. However, because of the trace property, we
can see: Tr[(σ2ϕ

∗σ2)
†(σ2ϕ

∗σ2)] = Tr[σ2ϕ
Tσ2σ2ϕ

∗σ2] = Tr[ϕTϕ∗] = Tr[(ϕ†ϕ)∗], if ϕ†ϕ
leaves real, then we have Tr[ϕ̃†ϕ̃] = Tr[ϕ†ϕ]. More practical, if we insert the VEVs,

〈
ϕ
〉†〈

ϕ
〉

=

(
κ∗ 0
0 κ′∗

)(
κ 0
0 κ′

)
=

(
|κ|2 0

0 |κ′|2
)

(A.3)

which is automatically left real. It is obvious to see from the above that the potential
V is complicated in general writing. Thus, it is better to insert the VEVs first and
then discuss which terms are equivalent. Moreover, since we only need the diagonal
elements of the matrices, the VEVs of Higgs bidoublets are rigorously used to tell
if two terms are equivalent. However, the hermicity and parity conjugate symmetry
should be discussed at the first place, i.e. we need to keep the potential Hermitian
and left-right symmetric. For instance, the term −µ2

12Tr[ϕ†ϕ̃ + ϕ̃†ϕ] is Hermitian,
but the single term (ϕ†ϕ̃)† = ϕ̃†ϕ ̸= ϕ†ϕ̃ is indeed not Hermitian.
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B Explicit Calculation of Higgs Kinetic
Terms

The explicit derivation of this interaction from the kinetic term is

Tr[(Dµ∆L)†(Dµ∆L)] + Tr[(Dµ∆R)†(Dµ∆R)]

=Tr
[(
∂µ

(
1√
2
δ+L δ++

L

δ0L − 1√
2
δ+L

)

+
ig

2

(
W1L,µ(δ0L − δ++

L )− iW2L,µ(δ0L + δ++
L ) − 2√

2
δ+L (W1L,µ − iW2L,µ)

2√
2
δ+L (W1L,µ + iW2L,µ) −W1L,µ(δ0L − δ++

L ) + iW2L,µ(δ0L + δ++
L )

)

+ ig′Bµ

(
1√
2
δ+L δ++

L

δ0L − 1√
2
δ+L

))†
×
(
∂µ

(
1√
2
δ+L δ++

L

δ0L − 1√
2
δ+L

)

+
ig

2

(
W µ

1L(δ0L − δ++
L )− iW µ

2L(δ0L + δ++
L ) − 2√

2
δ+L (W µ

1L − iW
µ
2L)

2√
2
δ+L (W µ

1L + iW µ
2L) −W µ

1L(δ0L − δ++
L ) + iW µ

2L(δ0L + δ++
L )

)

+ ig′Bµ

(
1√
2
δ+L δ++

L

δ0L − 1√
2
δ+L

))]
+Tr

[(
∂µ

(
1√
2
δ+R δ++

R

δ0R − 1√
2
δ+R

)

+
ig

2

(
W1R,µ(δ0R − δ++

R )− iW2R,µ(δ0R + δ++
R ) − 2√

2
δ+R(W1R,µ − iW2R,µ)

2√
2
δ+R(W1R,µ + iW2R,µ) −W1R,µ(δ0R − δ++

R ) + iW2R,µ(δ0R + δ++
R )

)

+ ig′Bµ

(
1√
2
δ+R δ++

R

δ0R − 1√
2
δ+R

))†
×
(
∂µ

(
1√
2
δ+R δ++

R

δ0R − 1√
2
δ+R

)

+
ig

2

(
W µ

1R(δ0R − δ++
R )− iW µ

2R(δ0R + δ++
R ) − 2√

2
δ+R(W µ

1R − iW
µ
2R)

2√
2
δ+R(W µ

1R + iW µ
2R) −W µ

1R(δ0R − δ++
R ) + iW µ

2R(δ0R + δ++
R )

)

+ ig′Bµ

(
1√
2
δ+R δ++

R

δ0R − 1√
2
δ+R

))]
(B.1)
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we will have 9 terms inside each trace. We can use the trace sum property to trace
each term one by one. For example, the partial derivative term is combined as

∂µ

(
1√
2
δ+L δ++

L

δ0L − 1√
2
δ+L

)†

∂µ

(
1√
2
δ+L δ++

L

δ0L − 1√
2
δ+L

)
. After calculating the traces of all the

terms and summing together, we have the interactions of the left-handed fields

Tr[(Dµ∆L)†(Dµ∆L)]

= ∂µδ
+
L∂

µδ+L + ∂µδ
0
L∂

µδ0L + ∂µδ
++
L ∂µδ

++
L

+
ig√

2
∂µδ

+
L [W µ

1L(δ0L − δ++
L )− iW µ

2L(δ0L + δ++
L )] +

ig√
2
δ+L∂µδ

0
L(W µ

1L + iW µ
2L)

− ig√
2
δ+L∂µδ

++
L (W µ

1L − iW
µ
2L) + ig′δ++

L Bµ∂µδ
++
L + ig′δ0LB

µ∂µδ
0
L

+
1

2
Bµ[(∂µδ

++
L )δ+L + (∂µδ

+
L )δ++

L ] +
g2

2
W1L,µW

µ
1L(δ0L − δ++

L )2 +
g2

2
W2L,µW

µ
2L(δ0L + δ++

L )2

+ g2δ+2
L (W1L,µ − iW2L,µ)(W µ

1L + iW µ
2L) +

1√
2
gg′W1L,µB

µ(δ0L − δ++
L )δ+L

+
1√
2
gg′W2L,µB

µ(δ0L + δ++
L )δ+L +

1√
2
gg′δ+L δ

0
L(W1L,µ − iW2L,µ)Bµ

− 1√
2
gg′δ+L δ

++
L (W1L,µ + iW2L,µ)Bµ − ig′δ0LBµ∂

µδ0L − ig′δ++
L Bµ∂

µδ++
L − ig′δ+LBµ∂

µδ+L

+
gg′√

2
δ+L (δ0L − δ++

L )BµW
µ
1L −

gg′√
2
δ+L (δ0L + δ++

L )BµW
µ
2L +

gg′√
2
δ+L δ

0
LBµ(W µ

1L + iW µ
2L)

− gg′√
2
δ+L δ

++
L Bµ(W µ

1L − iW
µ
2L) + g′2δ+2

L BµB
µ + g′2δ0

2
LBµB

µ + g′2δ++2
L BµB

µ

(B.2)

The trace of the right-handed Higgs scalar kinetic term is identical in the form as the
left-handed one with only the right-handed subscript in difference. Introduce the
upper and lower gauge fields W±

L,R = 1√
2
(W1L,R±iW2L,R) to simplify the equation. If

we consider the VEVs νL and insert this into the (B.2), we will find the couplings of
the interactions, i.e. the amputated vertex expressions. For instance, the coupling
of the gauge bosons-Higgs three-leg vertex comes from

g2

2
W1L,µW

µ
1L(δ0L − δ++

L )2 +
g2

2
W2L,µW

µ
2L(δ0L + δ++

L )2

=
g2

2

1

2
(W+

LµW
+,µ
L +W−

LµW
−,µ
L + 2W+

LµW
−µ
L )(δ0L

2
+ δ++

L
2 − 2δ0Lδ

++
L )

−g
2

2

1

2
(W+

LµW
+,µ
L +W−

LµW
−,µ
L − 2W+

LµW
−µ
L )(δ0L

2
+ δ++

L
2

+ 2δ0Lδ
++
L )

=g2W+
LµW

−µ
L (δ0L

2
+ δ++

L
2
)− g2(W+

LµW
+,µ
L +W−

LµW
−,µ
L )δ0Lδ

++
L (B.3)
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B Explicit Calculation of Higgs Kinetic Terms

We can collect all the upper and lower terms and decouple to the pure fields com-
positions in order to obtain the mass terms and vertices. The second term of (B.3)
shows that the W±W±δ++

L vertex is proportional to −ig′2νL/R.

Inserting the VEVs into the traces, we have

Tr[(Dµϕ)†(Dµϕ)] = Tr

[
g2

4

(
♢ ...
... ♡

)]
(B.4)

where ♢ and ♡ are equations,

♢ =κ2[(W3L −W3R)2 + 2W+
L,µW

−,µ
L ]− 2κκ′W−

L,µW
+,µ
R

− 2κ′κW−
R,µW

+,µ
L + 2κ′

2
W+

R,µW
−,µ
R (B.5)

♡ =κ′
2
[2W+

L,µW
−,µ
L + (W3R −W3L)2]− 2κκ′W+

R,µW
−,µ
L

− 2κ′κW+
L,µW

−,µ
R + 2κ2W+

R,µW
−,µ
R (B.6)

“...” in the off-diagonal parts do not contribute to the trace, so it is not necessary
to express it. This term becomes

Tr[(Dµϕ)†(Dµϕ)] =
g4

4
(κ2 + κ′

2
)(W µ

3L −W
µ
3R)2 +

g2

2
(κ2 + κ′

2
)W+

L,µW
−,µ
L

+
g2

2
(κ2 + κ′

2
)W+

R,µW
−,µ
R − g2κκ′W−

L,µW
+,µ
R − g2κκ′W−

R,µW
+,µ
L

(B.7)

Similarly, we have for the second kinetic term,

Tr[(Dµ∆L)†(Dµ∆L)] = Tr

[
g2

4

(
(W1L

2 +W2L
2)νL

2 + 4νL
2W3L

2 ...
... νL

2(W1L
2 +W2L

2)

)
+
X

4
gg′
(
−2W µ

3LνL
2 ...

... 0

)
Bµ +

X

4
g′gBµ

(
−2W µ

3LνL
2 ...

... 0

)
+
X2

4
g′

2
BµB

µ

(
νL

2 0
0 0

)]
(B.8)

this is

Tr[(Dµ∆L)†(Dµ∆L)] =
g2

2
ν2L(W1L

2 +W2L
2) + g2ν2LW

2
3L −Xgg′ν2LBµW

µ
3L

+
X2

4
g′

2
ν2LBµB

µ (B.9)
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And the third term,

Tr[(Dµ∆R)†(Dµ∆R)] = Tr

[
g2

4

(
(W1R

2 +W2R
2)νR

2 + 4νR
2W3R

2 ...
... νR

2(W1R
2 +W2R

2)

)
+
X

4
gg′
(
−2W µ

3RνR
2 ...

... 0

)
Bµ +

X

4
g′gBµ

(
−2W µ

3RνR
2 ...

... 0

)
+
X2

4
g′

2
BµB

µ

(
νR

2 0
0 0

)]
(B.10)

Tr[(Dµ∆R)†(Dµ∆R)] =
g2

2
ν2R(W1R

2 +W2R
2) + g2ν2RW

2
3R −Xgg′ν2RBµW

µ
3R

+
X2

4
g′

2
ν2RBµB

µ (B.11)

We can see from the calculations, that the parity of the left and the right is invariant.
Left-handed and right-handed gauge fields are symmetric and commute under “L -
R” or “R - L”. This is also the reason why one can choose either order in Equation
(3.32). The W1,2 terms and W+,− have an equivalent relation,

W 2
1L,R +W 2

2L,R = W+
L,R

2
+W−

L,R
2

= 2W+
µL,RW

−,µ
L,R (B.12)

Sum all three terms, we have

Tr
[
(Dµϕ)†(Dµϕ) + (Dµ∆L)†(Dµ∆L) + (Dµ∆R)†(Dµ∆R)

]
=

g2

2
(κ2 + κ′

2
+ 2ν2L)W+

L,µW
−,µ
L +

g2

2
(κ2 + κ′

2
+ 2ν2R)W+

R,µW
−,µ
R

+
g2

4
(κ2 + κ′

2
+ 4ν2L)W 2

3L +
g2

4
(κ2 + κ′

2
+ 4ν2R)W 2

3R

− g2

2
(κ2 + κ′

2
)W3LW3R − g2κκ′W−

L,µW
+,µ
R

− g2κκ′W−
R,µW

+,µ
L −Xgg′(ν2LW3L,µBµ + ν2RW3R,µB

µ)

+
X2

4
g′

2
(ν2L + ν2R)BµB

µ (B.13)

These were taken into use in the main part of the thesis.
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C “Integrate Out”

The “integrate out” method is widely used in diagrams or processes that contain
large massive mode fields and relatively light modes, where the heavy mode degree
of freedoms can be reduced to the mass point as the first order of the expansion
series [119]. Mathematically, the “integrate out” procedure indicates to extract out
the free terms (terms without the integrating parameter, usually the first term) of
the integral after the Taylor expansion. Let us explicitly derive the formulation by
considering a toy example with two coupled scalars. The Lagrangian density of the
system could be

Lscalar(Φ, ϕ) = ∂µΦ∂µΦ + ∂µϕ∂
µϕ+

1

2
MΦ2 +

1

2
mϕ2 + λΦϕ2 (C.1)

Φ, ϕ are the heavy mode and the light mode, respectively, which we suggest M ≫ m.
The last term λΦϕ2 refers to the couple of the two fields, and may indicate the decay
process from the heavy mode to the light mode. The dimension of both fields are one
power to the mass [ϕ] = [Φ] = m, i.e. the coupling λ in the term has the dimension
to mass instead of dimensionless. The generating functional of the system is

Z[Φ, ϕ] =

∫
DϕDΦe−S[Φ,ϕ] =

∫
Dϕe−Seff [ϕ] (C.2)

We are calculating in the 4-dimensional Euclidean space so a minus sign has been
taken into account in the exponential through wick rotation ix0 → −x0 [19]. We
have ignored the normalization factor for simplification. The action in this way is

S[Φ, ϕ] =

∫
d4x

1

2
(∂µΦ∂µΦ + ∂µϕ∂

µϕ+MΦ2 +mϕ2 + λΦϕ2) (C.3)

the effective action in the generating functional is obtained by integrating the heavy
mode Φ. Now we perform this integral carefully:∫

DΦe−S[Φ,ϕ] =

∫
DΦe−

∫
d4x[Φ(−∂µ∂µ+M2)Φ+λΦϕ2

]e−S0[ϕ] (C.4)

We have used the fact that the integral to the total derivative in the whole area
goes to zero because the Lagrangian satisfies the equations of motions, i.e. the
Euler-Lagrange equation. Define G−1 ≡ −∂µ∂µ +M2, and G is the Green function.

(−∂µ∂µ +M2)G(x− y) = δ(x− y) (C.5)
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where the functional integral with respect to Φ is a general Gaussian integral [20].
We will obtain: ∫

DΦe−S[Φ,ϕ] = Ce−
∫
d4x 1

2
(∂µϕ∂µϕ+mϕ2+ 1

2
λ2Gϕ4) (C.6)

where C = ( (2π)4

det(G−1)
)−

1
2 is the factor of the functional Gaussian integral. The solution

of the differential equation (C.5) in the momentum space is

G(x, y) =
i

p2 +M2
=

1

M2

i

1 + p2

M2

≈ i

M2
(1− p2

M2
+

p4

M4
+ · · · ) (C.7)

where we use the assumption p2 ≪ M2 in the heavy mode. Insert (C.7) into (C.6)
and (C.2), and only consider the first order.

Z[Φ, ϕ] =

∫
Dϕe−Seff [ϕ] ≈ C

∫
Dϕe−

∫
d4x 1

2
(∂µϕ∂µϕ+mϕ2+ 1

2
1

M2 λ
2ϕ4) (C.8)

In this aspect, the effective action in the generating functional is independent on the
heavy mass field Φ. The Φ degree of freedom is contracted into the self-interaction
term coupling 1

2
λ2

M2 . The coupling is dimensionless, which makes the Lagrangian
purterbatively renormalizable. Thus, the effective field is mathematically reason-
able. The effective propagator is widely used in particle physics. In this thesis, the
effective action of a fermion-heavy boson interacting model is

Seff = −GF√
2

∫
ddxddyJµ

L,RJL,R,µ (C.9)

where J = Ψ
aOΨa, and O are the operators representing vector, axial vector,

pseudo-vector, and so on. GF is the Fermi constant. The diagram in this way
reduces to a “4-fermion” self-interact vertex, see Figure C.1.

→ 1

Figure C.1: graphic of “Integrate out” from a fermion-boson full theory to the first
order effective theory

Here are only some basic derivations for the effective action. There are papers
and lecture notes for discussions on the effective theory, for example see [120, 121]
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D Fierz Transformation

Fierz transformation is based on Fierz identity where any bilinear product of two
spinors can be rewritten into a linear combination of the products of bilinear spinors
with the correspondent coefficient. This rewritten is mean to look for the composi-
tion in the spanned space so as to transform the formula and reduce the techniques
calculation. Instructively, Fierz identity allows one to change the spinors position in
a Lagrangian or an amplitude, or some other physical product by choosing the com-
binations and adding the coefficient. Fierz identity was first introduced by Markus
Fierz in his paper for discussing beta decay process [122]. Readers can find the
details in several lecture notes or articles [123, 124, 125]. We mainly follow [123] in
our thesis to show a brief derivation.

The products of two spinors are categorised by various of hadronic and leptonic
currents with different operators. These currents are choosing physically so that they
are Lorentz-invariant bilinear covariant. Define a general product of two spinors as

eaI(12) ≡ ψ1Γ
a
Iψ2 (D.1)

Γa is the operator that determines the type of the product. The subscript I stands
for the type. The conventionally used types are (first words in each line stands for
the product type)

scalar :Γ1
S ≡ 1

vector :Γ1−4
V ≡ γµ

tensor :Γ1−6
T ≡ σµν/

√
2 (µ < ν)

axial vector :Γ1−4
A ≡ iγµγ5

pseudo-scalar :Γ1
P ≡ γ5

(D.2)

where γµ, γ5 are gamma matrices and gamma-5 matrix respectively. And σµν is

σµν =
i

2
[γµ, γν ] (D.3)

where the superscripts in each operator are Lorentz indices. For example, Γ1−4 gives
all the operator with the count from 1 to 4, i.e. Γ1,Γ2,Γ3,Γ4. From the definitions
of five types (D.1), we now define the simplest quadrilinear products

eI(1234) ≡ n2
Ie

a
I(12)eIa(34) (D.4)
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where the coefficients are

nI =


1 I = S, V, P

−i I = A√
2 I = T

(D.5)

With the coefficients we have (D.4)

eS(1234) = (ψ1ψ2)(ψ3ψ4)

eV (1234) = (ψ1γ
µψ2)(ψ3γµψ4)

eT (1234) = (ψ1σ
µνψ2)(ψ3σµνψ4)

eA(1234) = (ψ1γ
µγ5ψ2)(ψ3γµγ5ψ4)

eP (1234) = (ψ1γ5ψ2)(ψ3γ5ψ4)

(D.6)

Now we are going to use Fierz identities to transform the quadrilinears into another
one that contains different order of the spinors in the bilinear products, i.e. transform
the basis of spinors by considering all the linear expansions of operators in the
spanned space. The Fierz transformation of the spinors basis order is expressed as

eI(1234) =
∑
J

FIJeJ(1432) (D.7)

where FIJ are numerical coefficients, and I, J run over S, V, T, A, P . The Fierz
transformation behaves equivalent as basis transformation in matrix algebra where
eI(1234) can be written as the linear combinations of eJ(1432). In order to gain the
coefficient, we first add the matrix indices

n2
IeI(12)abeI(34)cd = n2

J

∑
J

FIJeI(14)adeJ(32)cb (D.8)

then contract with eK(41)daeK(23)bc and relabel the index K → J , we will obtain

FIJ =
n2
I

n2
J

1

16
Tr[Γa

IΓ
b
JΓIaΓJb]

=
n2
I

4n2
J

fIJ (D.9)

where we use the properties of gamma matrices and introduce fIJ

{γµ, γν} = 2gµνI4×4

Tr[Γa
IΓJb] = 4δIJδ

a
b

Γa
IΓ

b
JΓIa = fIJΓb

J

(D.10)

Finally, combine Equation (D.9) and (D.10), we have the coefficients in the matrix
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D Fierz Transformation

form

FIJ =


1
4

1
4

1
8
−1

4
1
4

1 −1
2

0 −1
2
−1

3 0 −1
2

0 3
−1 −1

2
0 −1

2
1

1
4
−1

4
1
8

1
4

1
4

 (D.11)

For instance, the scalar quadrilinear with spinor order (1234) can be rewritten in
the new order (1432) as

eS(1234) =
1

4
[eS(1432) + eV (1432) +

1

2
eT (1432))− eA(1432) + eP (1432)] (D.12)
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E Feynman Rules

Here is the vertices we use in this thesis:

uL(R)

dL(R)

W−
L(R)

− i√
2
γµgL(R)PL(R)V

∗
ud (E.1)

dL(R)

uL(R)

W−
L(R)

− i√
2
γµgL(R)PL(R)V

ud (E.2)

lL(R), νL(R)

νL(R), lL(R)

W±
L(R)

− i√
2
γµgL(R)PL(R) (E.3)

W+
L(R)

W+
L(R)

∆−−
L(R)

− i√
2
g2L(R)νL(R) (E.4)

lcL(R)

lL(R)

∆−−
L(R)

− i√
2νR

Mdiag
ν PL(R) (E.5)

a b
p

W
igab − (1− ϵ)papb

p2

p2 −m2
W − iϵ

(E.6)
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E Feynman Rules

where usually ϵ = 0 is the Landau gauge and ϵ = 1 is the Feynman gauge. One
can choose any gauge, but the physics of the Lagrangian, e.g. EoMs (equations of
motions) will stay unchanged. We will use Feynman gauge in our calculations.

The propagator of the Majorana neutrino is not the same as the Dirac one’s.
We give the propagator and the calculation below. L,R refer to the chirality of
the vertices sandwiching the propagator and PL,R are the correspondent projection
operators. C is the charge conjugate operator. ν,N give the light or heavy neutrinos.

L L
νi Ni

PL

−i(/p+mν,N)

p2 −m2
ν,N + iϵ

PLC (E.7)

Now we derive the neutrino operator from the two point correlation function in
the position basis [103]. Before doing it, let us first derive the Majorana spinors
completeness relation. From the property of the Majorana field we have

Ψ = CΨ
T

= C[(veipx)†γ0]

= C[ve−ipx]T

= CvT e−ipx

= ue−ipx (E.8)

then this implies,

u = CvT (E.9)

also in another way around, we have

v = CuT (E.10)

then the completeness relation goes∑
s,s′

u(p, s)vT (p, s′) =
∑
s,s′

u(p, s)(CuT (p, s′))T

=
∑
s,s′

u(p, s)u(p, ′)CT

= −(/p+m)C (E.11)

where we use normal fermion completeness relation
∑
u(p, s)u(p, s′) = /p + m and

the property CT = −C. Explicitly, the sum over calculation concludes the transpose
of the spinor since u and v are vector like quantities. We can use the same rules to
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obtain the rest relations. Combining with those Dirac spinors’, the relations are∑
s,s′

uT (p, s)v(p, s′) = C−1(/p−M)
∑
s,s′

vT (p, s)u(p, s′) = C−1(/p+M)∑
s,s′

v(p, s)uT (p, s′) = −(/p−m)C∑
s

us(p, s)us(p, s) = /p+m
∑
s

vs(p, s)vs(p, s) = /p−m (E.12)

The two point Green function goes

⟨0|T
(
νlL(x1)νl′L(x2)

)
|0⟩

= ⟨0|T
∫

d3p1
(2π)3

1

2p01

∑
s

[
as(p1)ulL(p1, s)e

−ip1·x1 + a†s(p1)vlL(p1, s)e
ip1·x1

]
·
∫

d3p2
(2π)3

1

2p02

∑
s

[
as(p2)ul′L(p2, s)e

−ip2·x2 + a†s(p2)vl′L(p2, s)e
ip2·x2

]
|0⟩

=

∫
d3p1
(2π)3

1

2p01

∫
d3p2
(2π)3

1

2p02
e−ip1·x1eip2·x2

∑
s,s′

ulL(p1, s)vl′L(p2, s
′)

· ⟨0| as(p1)a†s′(p2) |0⟩+
(
1↔ 2, l↔ l′

)
=

∫
d3p1
(2π)3

1

2p01
e−ip1·x1

∫
d3p2
(2π)3

1

2p02
eip2·x2

∑
s,s′

ulL(p1, s)vl′L(p2, s
′)(2π)32p01δ

3(p⃗1 − p⃗2)

+
(
1↔ 2, l↔ l′

)
=

∫
d3p1
(2π)3

1

2p01
e−ip1·(x1−x2)

∑
s,s′

ulL(p1, s)vl′L(p1, s
′) +

(
1↔ 2, l↔ l′

)
(E.13)

where we use the general quantized wave function of fermions,

νa(x) =

∫
d3p

(2π)3
1

2p0

∑
s

[
as(p)ua(p, s)e

−ip·x + a†s(p)va(p, s)e
ip·x] (E.14)

and the commutation relation,

[as(p1), a
†
s(p2)] = (2π)32p01δ

3
ss′(p⃗− p⃗′) (E.15)

and we also take a |0⟩ = ⟨0| a† = 0. Inserting the completeness relation back into
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E Feynman Rules

the propagator we obtain,

⟨0|T
(
νlL(x1)νl′L(x2)

)
|0⟩

=

∫
d3p1
(2π)3

1

2p01
PL

[
− ( /p1 +mν)PLCe−ip1·(x1−x2) − (− /p1 +mν)PLCeip1·(x1−x2)

]
=

∫
d4p1
(2π)4

e−ip1·(x1−x2)PL

−i( /p1 +mν)

p21 −m2
ν + iϵ

PLC (E.16)

This first-ordered propagator is considered as two in-going neutrino from the electron-
boson-neutrino vertex that “meet” each other to propagate. This is only reasonable
when we are dealing with the Majorana particles. For other cases, e.g. two out-
going νν or one in-going with one out-going νν, the C operator is rearranged in the
equation, and the normal fermion part of the propagator remains the same [103].
The neutrino mass mν is in fact the effective mean mass ⟨mν⟩ =

∑
i U

2
eimνi. The

out-going neutrinos propagator ⟨0|T
(
νlL(x1)νl′L(x2)

)
|0⟩ is

L L
νi Ni

PL

−iC−1(/p+mν,N)

p2 −m2
ν,N + iϵ

PL (E.17)

Equation (E.17) and (E.7) are the propagators in the momentum space. Again
to emphasise, the projection operators come from the vertices in two ending sides
of the propagator. We use the left-handed neutrinos propagator as an example for
the calculation, generally, one does not need to consider about the chirality in the
pure propagator derivation. However, the chirality reduces the expression of the
propagator. Take (E.17) as an example.

PL

−i(/p+mν,N)

p2 −m2
ν,N + iϵ

PLC =
1− γ5

2

−i(/p+mν,N)

p2 −m2
ν,N + iϵ

1− γ5
2

C

=
−i/p(1+γ5

2
) +mν,N(1−γ5

2
)

p2 −m2
ν,N + iϵ

1− γ5
2

C

=
mν,N

p2 −m2
ν,N + iϵ

PLC (E.18)

where we the anticommutative relation of Dirac matrices {γ5, γµ} = γ5γµ +γµγ5 = 0
and (γ5)

2 = 1.
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F Trace Technology

Trace technology is to calculate the completeness summation of spinors. It is the
gamma matrices and its combinations. One can find the mathematical interpretation
and the detailed calculation in text books or lecture notes, for example, see chapter
5 of [19]. There are properties we consider in the trace technology (A,B . . . are
arbitrary square matrices):

Tr[A + B] = Tr[A] + Tr[B] (linearity)

Tr[A] = Tr[AT ]

Tr[ABC] = Tr[BCA] = Tr[CAB] (cyclicity)

(F.1)

The cyclic property works for any number of matrices. Here are traces for gamma
matrices in 4-dimensional Minkowski space.

Tr[1] = 4

Tr[γµ] = 0

Tr[any odd umber ofγµ] = 0

Tr[γµγν ] = 4gµν

Tr[γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gµσgνρ)

Tr[γ5] = 0

Tr[γµγνγ5] = 0

Tr[any odd number ofγµγ5] = 0

Tr[γµγνγργσγ5] = −4iϵµνρσ

Tr[γµγνγµ] = Tr[−2γν ] = 0

Tr[γµγνγργµ] = Tr[4gνρ] = 8

Tr[γµγνγργσγµ] = Tr[−2γσγργν ] = 0

(F.2)

where ϵγ
µγνγργσ

is the Levi-Civita tensor. We also use the Clifford algebra

{γµ, γν} = 2gµνI4×4 (F.3)
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F Trace Technology

The trace of the leptonic part in LL (4.44):∑
s,s′

vs
′

c (p2)(1− γ5)cdusd(p1)usa(p1)(1 + γ5)abv
s′

b (p2)

=( /p2 −me)bc(1− γ5)cd( /p1 +me)da(1 + γ5)ab

=
1

4
Tr[( /p2 −me)(1− γ5)( /p1 +me)(1 + γ5)]

=2
1

4
Tr[ /p1 /p2]

=2(p1 · p2)
=2(E1E2 − p1p2 cos ξ) (F.4)
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[33] José F. Nieves. Electromagnetic properties of majorana neutrinos. Phys. Rev.
D, 26:3152–3158, Dec 1982.

[34] Evgeny Akhmedov. Majorana neutrinos and other majorana particles:theory
and experiment, 2014.

[35] R.N. Mohapatra and P.B. Pal. Massive Neutrinos In Physics And Astrophysics
(Third Edition). World Scientific Lecture Notes In Physics. World Scientific
Publishing Company, 2004.

[36] Samoil Bilenky. Introduction to the Physics of Massive and Mixed Neutrinos,
volume 817. 01 2010.

[37] Jogesh C. Pati and Abdus Salam. Unified lepton-hadron symmetry and a
gauge theory of the basic interactions. Phys. Rev. D, 8:1240–1251, Aug 1973.

[38] Wikipedia. Tsutomu yanagida.

[39] R.N. MOHAPATRA. Seesaw mechanism and its implications. SEESAW 25,
Apr 2005.

[40] Chandan Hati, Sudhanwa Patra, Prativa Pritimita, and Utpal Sarkar. Neu-
trino masses and leptogenesis in left–right symmetric models: A review from
a model building perspective. Frontiers in Physics, 6, 2018.
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amining the light neutrino exchange mechanism of the 0νββ-decay with left-
and right-handed leptonic and hadronic currents. Physical Review C, 92(5),
Nov 2015.

[119] McGreevy. Physics 215c: Quantum field theory (lecture script), 2014.

[120] JEFF ASAF DROR. Effective field theories lecture notes, 2014.

[121] Riccardo Penco. An Introduction to Effective Field Theories. 6 2020.

[122] Markus Fierz. Zur fermischen theorie des β-zerfalls. Zeitschrift für Physik,
104:553–565, 1937.
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