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Quantenfeldtheorie und Phänomenologie in gekrümmter 5D Raumzeit:
Große Eich-Higgs Vereinheitlichung

Theorien mit zusätzlichen Raumzeit Dimensionen, z.B. Randall–Sundrum (RS)
Modelle, bieten interessant Konzepte, um ungelöste Fragen des Standardmodelles
der Teilchenphysik zu beantworten. Zu diesen zählen das Hierarchieproblem, die
Unterschiede in den Fermion Massen und die große Vereinheitlichung der Grund-
kräfte. Darüber hinaus kann das Hierarchieproblem auch dadurch gelöst werden,
dass man das Higgs Feld in die extra dimensionale Komponente eines fünfdimen-
sionalen Eichfeldes einbettet. Dies wird als Eich–Higgs Vereinheitlichung beze-
ichnet und kann auch mit der großen Vereinheitlichung der Grundkräfte zu einer
großen Eich–Higgs vereinheitlichen Theorie (GHGUT) kombiniert werden. In [1]
wurde eine phänomenologisch valide GHGUT vorgestellt, welche auch in dieser
Arbeit untersucht wird, aber viele Resultate haben darüber hinaus Validität. Um
die quantitative Vereinheitlichung der Eichkopplungen zu untersuchen, werden
im ersten Teil dieser Arbeit verschiedene Renormalisierungsmethoden in RS Mod-
ellen aus der Literatur untersucht und miteinander verglichen. Die jeweiligen Vor-
und Nachteile werden herausgearbeitet und auf SU(6) GHGUT angewandt. Im
zweiten Teil werden dann weitere phänomenologische Aspekte der Flavor Physik
sowie Präzisionsmessungen untersucht und mit konventionellen RS Modellen ver-
glichen. Zu diesen Aspekten gehören die Erklärung der Hierarchien in den Fermion
Massen, die Größe von Flavor verändernden neutralen Strömen sowie die elek-
troschwachen Präzisionsparameter.

Quantum Field Theory and Phenomenology in 5D Warped
Space-Time: Gauge-Higgs Grand Unification

Theories with extra dimensions, e.g. warped extra dimensions like Randall-
Sundrum (RS) models, are an interesting direction addressing unresolved ques-
tions in the Standard Model. These include the hierarchy between the Planck-
and electroweak scale, the flavor puzzle, the unification of forces and many more.
In fact, it is possible to solve the hierarchy problem by incorporating the Higgs
field in the extra component of a five-dimensional gauge field. This is known as
Gauge-Higgs Unification and can even be combined with Grand Unified Theories
to form a Gauge-Higgs Grand Unified Theory (GHGUT). Recently [1] proposed
a viable model for GHGUT, which will also be investigated in this thesis, but
many results apply to general RS theories. To study the quantitative unification
of the SM gauge couplings in these models, the first part of this thesis focuses on
the renormalization of GHGUTs and general RS-models. Different regularization
techniques proposed in the literature are introduced, their respective shortcom-
ings and subtleties discussed and then applied to SU(6) GHGUTs. In the second
part, aspects of flavor phenomenology and precision physics in the above model
are investigated, pointing out interesting differences compared to conventional RS
models. These include the generation of hierarchies of the SM fermion masses, the
size of flavor changing neutral currents and constraints from electroweak precision
parameters
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Part I

Introduction: Standard Model and
Aspects of Grand Unification
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The Standard Model (SM) of particle physics is currently the best description of
nature at the subatomic scale. With the discovery of the Higgs boson at the Large
Hadron Collider (LHC) in 2012, all of its content has been confirmed experimentally.
Although, its predictions have been tested and verified countless times, the SM is far
from being a complete explanation of all observations. Several of the shortcomings
of the SM can be addressed in extensions of the SM called Randall-Sundrum (RS)
models, as will be explained in detail later. RS models extend the usual four di-
mensional (4D) space by a finite warped extra dimension. While offering a solution
to the gauge hierarchy problem, RS models also allow for multiple forms of unifi-
cation. First, gauge fields in five dimensions (5D) have an extra component, which
can incorporate the Higgs boson. In fact, because of the finite extra dimension this
Higgs can get a potential dynamically, which triggers electroweak symmetry break-
ing (EWSB). This is known as Gauge-Higgs Unification (GHU). Second, RS models
allow for the reduction of gauge symmetries by choosing appropriate boundary con-
ditions (BC) on the endpoints of the extra dimension. This opens up the possibility
to study Grand Unified Theories (GUT) in this context, which unify the three SM
interactions into one gauge field. In fact it is possible to combine both GHU and
GUTs in to one Gauge-Higgs Grand Unified Theory (GHGUT). Here all three SM
interactions, as well as the Higgs boson, are described by one single gauge field.

One focus of this thesis is to study quantitatively if the unification of the SM gauge
couplings can be achieved in such models. To do this, it is necessary to analyze
how gauge couplings in RS models evolve with the energy scale, a consequence of
renormalization. There exist several methods for this in the literature, but no clear
consensus on the validity of them has been achieved so far. Therefore, in this work we
compare these methods with each other, discuss their advantages and disadvantages,
as well as certain flaws, and point out important differences. This should give a
comprehensive view of the state-of-the-art renormalization in RS models. After
crystallizing out one method, which is suitable to study high scale unification, we
apply it to incarnations of GHGUTs based on the group SU(6). We will be able
to test unification in several incarnations of SU(6) GHGUTs and give a postdiction
for the weak mixing angle.

Another focus of this thesis are phenomenological aspects of GHGUTs. It is
shown how a minimal fermion embedding in SU(6) allows one to describe the flavor
hierarchies. Apart from the masses, also the hierarchies in the Cabibbo-Kobayashi-
Maskawa (CKM) matrix can naturally be achieved in these kinds of models. Further-
more, we will see that there exists an analogous mechanisms to the SM Glashow-
Iliopoulos-Maiani (GIM) mechanism suppressing flavor changing neutral currents
(FCNCs). Comparing the predictions of the process µ → eγ from GHGUTs with
current measurements will allow us to put stringent constraints on the viable pa-
rameter space of GHGUTs. Additionally, we will derive the constraints coming from
electroweak precision tests (EWPT) in detail and compare it with the standard RS
scenario, where the Higgs is localized on the IR brane.

This thesis is organized as follows. The current part serves as a general introduc-
tion and, as we explore extensions of the SM, we will start with a short review on
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the SM itself. There we introduce the necessary concepts and the relevant notation
and afterwards discuss several of its shortcomings to motivate RS theories. We also
review important aspects of renormalization and GUTs. Part II gives an overview
of RS models. We will derive the 5D action of scalar, fermion and gauge fields and
connect them explicitly to 4D fields via a Kaluza-Klein (KK) decomposition as well
as holography. Apart from the KK profiles also the propagators and vertices for
scalars, fermions and gauge fields are given for all possible BCs. The part closes
with an introduction to GHU. Part III presents the concepts of GUTs in RS and
their extensions to GHGUT models. Starting with Part IV the results which have
been achieved during this master thesis are presented. First, to quantify unifica-
tion in GHGUTs, detailed studies of renormalization techniques in RS models are
performed and afterwards, applied to make predictions in SU(6) GHGUTs. This is
followed in Part V by a study of novel features of flavor aspects and precision tests
in GHGUTs. Finally, Part VI summarizes the results and gives a brief outlook.

1 Standard Model

This chapter gives a short summary of the Standard Model (SM) of Particle Physics
[2, 3, 4, 5] and the corresponding notations used in this thesis. More detailed
overviews are available in the literature, see e.g. [6, 7, 8, 9, 10, 11, 12, 13], which are
also the main sources of this summary.

The SM describes very successfully three out of the four known interactions and
all particles which constitute the observed matter. These three interactions are the
electromagnetic force as well the strong and weak nuclear forces. Luckily, the forth
force, gravity, is on the elementary level much weaker than the other interactions
so the SM provides a good explanation of the behaviour of fundamental particles.
Thus a plethora of experiments are in agreement with the predictions of the SM
[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

Mathematically, the SM is modelled by quantum field theories (QFT), which
combine the developments of Special Relativity and Quantum Mechanics. A QFT
consists of fields Φ(x) which are functions of the space-time coordinate x and parti-
cles are viewed as excitations in these fields. To classify these fields, transformations
and their corresponding symmetries play an important role. One differentiates be-
tween external symmetries, i.e. space-time symmetries, and internal symmetries.
The space-time symmetry transformations of the SM are the ones of Special Rela-
tivity: Poincaré transformations [10]. The infinitesimal space-time interval ds in a
frame described by the coordinates xµ is given by1

ds = ηµνdx
µdxν . (1.1)

1Throughout this thesis we use the metric convention (ηµν ) = diag(1,−1,−1,−1) and sum over
repeated indices. Furthermore we work in natural units (ℏ = c = 1).
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The set of linear transformations

x′µ = Λµνx
ν , (1.2)

which leave the Minkowski metric invariant form the group of homogeneous Lorentz
transformations O(1, 3). We only need the subgroup of proper orhochronous Lorentz
transformation SO(1, 3)+, which can be obtained by a continuous change of parame-
ters from the identity. Now, fields in QFTs have to transform under representations
of SO(1, 3)+ [10]. As is common in representation theory we focus on irreducible
representation and look at the ones with the lowest dimension. There exists one
representation of SO(1, 3)+ with dimension one, the trivial representation. The cor-
responding (real or complex) fields ϕ(x) are Lorentz scalars and are thus called scalar
fields. For SO(1, 3)+, it turns out that there are two two dimensional irreducible
representations. They are both complex and referred to as spinoral representations,
one describes a left-handed (LH) Weyl fermion ψL,α the other a right-handed (RH)
Weyl fermion ψR,α. Often one encounters a reducible representation composed of
these two: the Dirac fermion ψ =

(
ψL ψR

)T . The fundamental representation of
SO(1, 3)+ is real and gives rise to 4D vector fields Aµ. There are of course more
representations of SO(1, 3)+, but these are the ones used in the SM.2

Next we focus on internal symmetries, which come in two forms, global and local
symmetries [6]. The transformations of global symmetries are the same at each point
x in space-time, whereas local symmetry transformations do depend on x. We focus
in the following case on local symmetries, also called gauge symmetries, the case for
global symmetries is analogous with the dependence on space-time dropped. There
are many groups G which can be used as internal symmetries but we focus on the
Lie groups SU(N) and U(1). Again quantum fields have to be representations under
these, with the trivial, fundamental and adjoint representation used for the SM. The
specific representations of a field are also referred to as its quantum numbers and
fields, which do not transform trivially, are said to be charged under that specific
gauge group. For a gauge symmetry it is necessary to include a vector field in the
adjoint representation and this field is then called a gauge field. In this group space
scalar/fermion fields, transforming in the fundamental representation, can be seen
as vectors and gauge fields as matrices. Each group has an interaction strength g
associated to it and for SU(N) the transformations are best characterized in terms
of the generators T a of the corresponding Lie algebra. Thus the transformation
read [6]

ϕ(x)→ ϕ(x) (singlet) , (1.3)

ϕ(x)→ eiα
a(x)Ta

ϕ(x) (fundamental) , (1.4)

Aµ(x)→
(
eiα

a(x)Ta)(
Aµ(x) +

i

g
∂µ

)(
eiα

a(x)Ta)†
(adjoint) , (1.5)

2These representations also determine the spin of the corresponding particles. Scalars are spin-0,
fermions spin-1/2, vector bosons spin-1 particles. Note that the term fermion usually describes
any particle with half-integer spin. In this thesis we are only interested in spin-1/2 fermions.
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with similar relations for other fields/charges. For a U(1) symmetry one can re-
place in the above transformation rules the generators T a with a number, e.g. Q.
Interestingly, Q, also called charge, can be chosen for each field differently. This is
often depicted by an index U(1)Q on the group. A QFT can then be constructed by
choosing a set of fields and specifying the corresponding representations.

The group GSM of the SM consists of the (direct) product of three gauge symme-
tries

GSM = SU(3)c × SU(2)L × U(1)Y . (1.6)

SU(3)c describes the strong nuclear force, with the index c standing for color, the
charge of the strong force, and the corresponding QFT is dubbed Quantum Chro-
modynamics (QCD). The combination SU(2)L × U(1)Y is called the electroweak
(EW) force. Later in the text it is shown that the electromagnetic and weak nuclear
forces emerge from this gauge group. Y is the (weak) hypercharge and the index L
refers to the fact that SU(2)L only couples to LH Weyl fermions.

In the SM all matter fields are Weyl fermion fields and one needs one gauge
field for each gauge group of GSM. As we will explain in more detail below, the
SM contains additionally one single complex scalar field, the Higgs doublet, to give
the elementary particles their mass. The matter fields can be grouped into three
different generations (or families), which will only differ by their masses. It is useful
to arrange corresponding fields between generations into a three component vector.
These vectors are in the SM the up-type flavors u = (u, c, t)T , down-type flavors
d = (d, s, b)T , charged leptons e = (e, µ, τ)T and neutral leptons (neutrinos) ν =
(νe, νµ, ντ )

T . Each of those will have a LH and RH field except for neutrinos which
only have LH fields. In the "classical" SM there are no RH neutrinos. While the
RH fields are chosen as singlets under SU(2)L, the LH fields are in the fundamental
representation which combines different types of fermions, the quark doublet qL =
(uL, dL)

T and the lepton doublet lL = (νL, eL)
T . The SU(3)c representations do

not differentiate between LH and RH fermions, but between the quarks u, d and
the leptons e, ν. Only the quarks are charged under SU(3)c while the leptons are
singlets. Each fermion has a non-zero U(1)Y charge Y , called hypercharge.

Moving on, the gauge fields are denoted G,W,B for the gauge groups SU(3)c,
SU(2)L, U(1)Y respectively. They are in the adjoint representation of their respec-
tive group and are not charged under the others. The last ingredient of the SM is
a complex scalar field H, the Higgs doublet, which is charged under SU(2)L and
U(1)Y . Its role is to break the EW symmetry, thereby giving mass to the weak force
carriers. This will be explained in more detail later in this text, but for now we
summarize the SM fields and their quantum numbers in Table 1.1.

The central object of a QFT is the (classical) action S. From it correlation
functions and observables can be calculated in a systematic way, see e.g. [6]. The
action S can be build up in the following way: First construct operators out of the
fields of the QFT and their derivatives. The sum of all operators gives the Lagrange
density L. Finally the integral of L over all of space-time is defined as the action
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spin field representation (SU(3)c, SU(2)L)U(1)Y

1/2

qL
lL
uR
dR
eR

(3,2)1/6
(1,2)−1/2

(3,1)2/3
(3,1)−1/3

(1,1)−1

1
B
W
G

(1,1)0
(1,3)0
(8,1)0

0 H (1,2)1/2

Table 1.1: Representations of SM fields under the SM gauge symmetries

S. For example two of these operators for a scalar field ϕ could be (∂µϕ) (∂
µϕ) , ϕ2.

In general terms linear in the field can be set to zero by a suitable field redefinition
and an overall constant is unobservable (in a theory without gravity). Therefore
one often encounters operators similar to the above quadratic in the fields. The
quadratic ones with derivatives of the fields are referred to as kinetic operators and
the ones without derivatives mass terms. Operators with three or more fields, or
combinations of different fields are considered interactions.

The action of the SM has several useful properties, e.g. unitarity, stability and
causality [6]. Furthermore, S and therefore the combined operators should be in-
variant under all external and internal symmetries (up to a total divergence). One
can now write down the most general Lagrange density consisting of all operators
allowed by the above principles. It turns out there are in general infinitely many of
them and one can systematically write them down if one orders them according to
their mass dimension D. The mass dimension of an operator is the sum of the mass
dimension of its fields and derivatives. Derivatives have a mass dimension [∂] = 1
and from the fact that the actions S should be dimensionless in natural units the
mass dimensions of the fields can be derived. In general scalar and gauge fields
have mass dimensions [ϕ] =

[
Aµ
]
= 1 and fermions [ψ] = 3/2. For any fixed mass

dimension D there are then only a finite number of operators. It is useful to split
them into two parts, the set of operators whose mass dimension is less then four and
the one which is greater than four

L = LD≤4 + LD>4 . (1.7)

In Chapter 3 the consequences of these operators for the so called renormalization
of the theory are laid out further, but it turns out that only theories, where all
operators have a mass dimension D ≤ 4 are renormalizable, and theories containing
higher dimensional operators are non-renormalizable. The SM is definied to be
a renormalizable theory and in the following we write down the finite number of
operators invariant under the local gauge symmetry GSM

LSM = Lferm + LG,W,B + LHiggs + LYukawa . (1.8)
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The first term in (1.8) contains the kinetic terms for the fermions involving the
derivative operator ∂µ. To ensure gauge invariance of this term a coupling to the
gauge bosons must be added. This can conveniently be done in all terms by replacing
the ordinary derivative with the covariant derivative

∂µ → Dµ = ∂µ − igstaGa
µ − igT iW i

µ − ig′Y Bµ . (1.9)

If the field onto which the derivative acts is in the singlet representation we can
set the corresponding generator to zero. For the fundamental representations of
SU(3)c, SU(2)L we take ta = λa

2
, T i = σi

2
respectively. Here λa are the eight Gell-

Mann matrices, σa are the three Pauli matrices (see Appendix A for both) and Y is
the hypercharge of the field in question. The values of the corresponding coupling
constants3 gs, g, g

′ change with the renormalization scale µ (see Chapter 3) and are
given in the MS-scheme at µ = mZ by [14]

gs(mZ) ≈ 1.22, g(mZ) ≈ 0.65, g′(mZ) ≈ 0.36 . (1.10)

Furthermore, it is convenient to place the irreducible 1/2-representations into one re-
ducible representation, the Dirac representation, and then recover the Weyl-fermions
via projectors4 ΨL,R = PL,RΨ, PL,R = 1

2
(1∓ iγ5). Then the fermionic Lagrangian

reads [6]

Lferm = q̄Li /DqL + ūRi /DuR + d̄Ri /DdR + l̄Li /DlL + ēRi /DeR . (1.11)

Here Ψ̄ = Ψ†γ0 and /D = γµDµ. γ are the Dirac matrices satisfying {γµ, γν} = 2ηµν

and their explicit forms, as well as that of γ5, are given in Appendix A. Note that this
Lagrangian does not mix left- and right-handed fields i.e. no mass term is present.
This means that this part has an additional symmetry known as chiral symmetry [8].
Later we will show how a mass term is generated via the Higgs mechanism. Moving
on now, the Lagrangian which includes the kinetic terms for the gauge fields consists
of three parts

LG,W,B = LYM + Lgf + LFP . (1.12)

The first term in (1.12), the Yang-Mills Lagrangian, is constructed from the field-
strength tensors for each gauge field

LYM = −1

4
Ga
µνG

µν
a −

1

4
W i
µνW

µν
i −

1

4
BµνB

µν . (1.13)

These field-strength tensors can be constructed in general from
[
Dµ, Dν

]
[6] and

read

Ga
µν = ∂µG

a
ν − ∂νGa

µ + gsf
abcGb

µG
c
ν , (1.14)

W i
µν = ∂µW

i
ν − ∂νW i

µ + gϵijkW j
µW

k
ν , (1.15)

Bµν = ∂µBν − ∂νBµ . (1.16)
3Later we will also use the notation g3 = gs g2 = g and g1 = g′.
4Note that we use the convention given by (A.1) in Appendix A, which differs slightly from the

usual 4D convention to better describe the 5D aspects of later chapters
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Here fabc, ϵijk are the structure constants of SU(3) and SU(2) respectively. They
specify the structure of the corresponding Lie algebras via[

ta, tb
]
= ifabctc , (1.17)[

T i, T j
]
= iϵijkT k . (1.18)

Note that they are also the matrix components of the generators in the adjoint
representation (tbG)

ac = ifabc, (T jG)
ik = iϵijk.

To properly quantize the theory one has to add a gauge-fixing Lagrangian Lgf

and Faddeev-Popov ghosts LFP [25]. Note that because of gauge symmetry no mass
term for the gauge bosons is written down, but experimentally one finds massive
gauge fields in EW interactions. Masses can only be generated consistently if one
breaks the EW symmetry SU(2)L×U(1)Y spontaneously. In the SM this is done by
the Higgs mechanism [26, 27, 28]. The Lagrangian for the SM-Higgs reads [2, 3, 4]

LHiggs =
(
DµH

)†
(DµH)− V (H) . (1.19)

Apart from the kinetic terms (including the covariant derivative to guarantee gauge
invariance) the SM-Higgs contains a potential V (H). Note that this Lagrangian is
invariant under SU(2)L×U(1)Y (also under SU(3)c). Now for certain forms of the
potential the value for the Higgs field in the vacuum can be non zero. In this case
gauge invariance allows us to write the vacuum expectation value (VEV) of the field
as

⟨H⟩ = 1√
2

(
0
v

)
. (1.20)

Thus the vacuum is no longer invariant under the full SU(2)L × U(1)Y symmetry
but only under a subgroup U(1)EM. Since the symmetry is not broken by the
Lagrangian, but by theVEV, this process is in general referred to as spontaneous
symmetry breaking (SSB) and in the case of the EW symmetry as electroweak
symmetry breaking (EWSB). SU(2)L × U(1)Y contains four generators but the
VEV is only invariant under one linear combination, namely

Q = T 3 + Y , (1.21)

and we will identify this operator with the electric charge of a particle and the
remaining symmetry U(1)EM as the electromagnetic symmetry. To study the con-
sequences of EWSB let us parameterize the full Higgs field by fluctuations around
the VEV via four real fields φi, i = 1, 2, 3 and h

H(x) =
1√
2

(
−i
√
2φ+(x)

v + h(x) + iφ3(x)

)
, (1.22)

where φ± = 1√
2
(φ1 ∓ iφ2). The field h(x) parametrizes massive fluctuations around

the VEV and in the SM it corresponds to the famous Higgs particle, which was
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discovered at the LHC in 2012 [29, 30]. According to the Goldstone theorem [31, 32]
the remaining three generators correspond to three Goldstone bosons which are
unphysical and can formally be removed from the theory thorough a suitable gauge
transformation (unitary gauge). These are the fields φ±, φ3. Of course their degrees
of freedom are not lost, they reappear as the the longuitudinal polarizations of
massive EW bosons. Therefore it is sometimes said that the Goldstone bosons are
"eaten" by the gauge bosons. The masses follow from the interaction of the gauge
fields with the VEV, which can be seen explicitly by plugging (1.22) into (1.19)

L ⊇ g2v2

8

(
(W 1

µ)
2 + (W 2

µ)
2
)
+
v2

8

(
gW 3

µ − g′Bµ

)2
. (1.23)

To diagonalize the mass terms we rotate the fields in accordance to the remaining
symmetry generator (1.21) and with canonically normalized kinetic terms [6](

Zµ
Aµ

)
=

(
cw −sw
sw cw

)(
W 3
µ

Bµ

)
, W±

µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
. (1.24)

Here the sine sw and cosine cw of the weak mixing angle θw are defined via [6]

sw ≡ sin(θw) =
g′√

g2 + g′2
, cw ≡ cos(θw) =

g√
g2 + g′2

. (1.25)

This results in the mass terms

L ⊇ m2
WW

+
µ W

−µ +
1

2
m2
ZZµZ

µ , (1.26)

with the masses for the W - and Z-bosons [6]

m2
W =

g2v2

4
, m2

Z =
(g2 + g′2)v2

4
. (1.27)

The field Aµ remains massless and corresponds to the generator Q, thus can be
identified with the photon field. The electric charges of the fields Z,W± are q = 0,±1
respectively. Expressing the covariant derivative in terms of these fields we find [6]

Dµ = ∂µ − igstaGa
µ − ieQAµ − i

g

cos(θw)

(
T 3 − sin2(θw)Q

)
Zµ

− i g√
2

(
T+W+

µ + T−W−
µ

)
, (1.28)

where the electromagnetic coupling is identified by e = g sin(θw) and we have defined
T± = 1√

2
(T+ ± iT−). At low energies the interaction with the W -bosons reproduce

the Fermi theory with the Fermi coupling constant GF = g2

4
√
2m2

W

.
What remains to look at is the potential V (H). In the SM it is given by

V (H) = −µ2H†H + λ(H†H)2 . (1.29)
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Here values µ2 > 0, λ > 0 allow for a non trivial minimum v2 = µ2

λ
. Putting the

parametrization (1.22) into the potential one can determine the mass of the Higgs
boson m2

h = 2µ2 = λ
2
v2.

Last but not least the Higgs can also give masses to the fermions through Yukawa
interactions. For the coupling between fermions and gauge bosons gauge invariance
implies that the coupling for corresponding fermions across families is the same.
This restriction does not apply to the Yukawa couplings which can be matrices in
flavor space. It is is the only part of the Lagrangian which distinguishes between
different generations. The corresponding Lagrangian is given by [8]

LYukawa = −yiju q̄iLHcujR − y
ij
d q̄

i
LHd

j
R − y

ij
e l̄

i
LHe

j
R + h.c. , (1.30)

where Hc = iσ2H∗ and h.c. denotes the hermitian conjugate. After EWSB the
terms above result in mass matrices mij

f = v2√
2
yijf for the fermion fields

L ⊇ −mij
u ū

i
Lu

j
R −m

ij
d d̄

i
Ld

j
R −m

ij
e ē

i
Le

j
R + h.c. , (1.31)

which needs to be diagonalized to obtain the physical fields. Note that there is no
mass matrix for neutrino fields, they will remain massless in the "classical" SM.
Matrices can always be diagonalized by a bi-unitary rotation

diag(mf1,mf2,mf3) = U †
f,LmfUf,R . (1.32)

This diagonalization can be achieved for all three mass matrices by rotating the
fields via

uL → Uu,LuL , uR → Uu,RuR ,

dL → Ud,LdL , dR → Ud,RdR ,

eL → Ue,LeL , eR → Ue,ReR . (1.33)

For simplicity we will denote the fields after the rotation (also called the mass or
physical basis) by the same letters as the original fields (also called the flavor basis).
It will also be useful to rotate the neutrinos by the same amount as the electron

νL → Ue,LνL . (1.34)

The kinetic part as well as the coupling to photons, gluons and Z-bosons are com-
pletely universal in flavor space and thus are not effected by these unitary transfor-
mations. For the W±-bosons the presence of the generators T± results in mixing
between the different SU(2)L–doublets. The fermionic field redefinitions then lead
to flavour changing currents in the quark sector via the charged W -fields [6]

L ⊇ g√
2
ūiL /W

+
diL+

g√
2
ν̄iL /W

+
eiL+h.c.→ g√

2
(VCKM)

ijūiL /W
+
djL+

g√
2
ν̄iL /W

+
eiL+h.c. ,

(1.35)
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with the Cabibbo-Kobayashi-Maskawa (CKM) matrix

VCKM ≡ U †
u,LUd,L . (1.36)

Since the SM-neutrinos are massless the definition (1.34) eliminates a similar term
in the lepton sector. But in extensions of the SM one can give the neutrinos a
mass and a similar matrix, the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix
VPMNS, can be constructed. The CKM matrix has four independent parameters,
three mixing angles and one phase. The phase parameterizes the amount of CP -
violation in the weak sector.

It turns out that the measured values for the CKM exhibit some hierarchies de-
pending on the generation. Explicitly, one finds [14]

VCKM ∼

|Vud| |Vus| |Vub||Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 =

0.97370 0.2245 0.00382
0.221 0.987 0.0410
0.0080 0.0388 1.013

 ∼
 1 λ λ3

λ 1 λ2

λ3 λ2 1

 ,

(1.37)

where we parametrized the hierarchies by the value λ and so far there is no agreed
upon explanation for this structure. Furthermore, the entries of the PMNS matrix
have no such hierarchies.

Since the CKM matrix only appears in the interaction of the charged W bosons,
there are no FCNCs at tree level. This changes at loop level, where the exchange
of multiple W -bosons, e.g. in so called box diagrams, can give rise to such FCNCs.
The observed suppression of such currents is due to the Glashow-Iliopoulos-Maiani
(GIM) mechanism [33], which is a direct consequence of the unitarity of the CKM
matrix and for equal quark masses the cancellation would be exact.

As mentioned in the beginning, with these ingredients the SM describes success-
fully the particles and interactions around the EW scale. This concludes the short
review of the SM and in the next section we study some of the remaining open
questions of the SM.

2 Problems and Open Questions: The
Standard Model as an Effective Field
Theory

Although the SM very successfully describes nature on a subatomic level, there are
several observations the SM does not explain and topics for which further inside
would be desirable. Here we give an overview of some of the (theoretical) aspects,
which suggests that there is physics beyond the SM.
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First, one might imagine that there are reasons for the values of the 18 free
parameters of the SM. Currently, they have to be determined from experiment,
but deeper a understanding of their origins would be preferred. 13 out of the 18
parameters are the Yukawa couplings of the fermions with the Higgs doublet, which
give the fermion masses and the CKM matrix. The flavor puzzle is the inability
of the SM to explain the values of these parameters in the flavor sector and, since
the differences between the arising fermion masses are relatively large, this becomes
even more puzzling. Similarly, there are three independent gauge couplings in the
SM. As we will see in Chapter 3 these three couplings have approximately the same
value at high energies, which hints to the possibility that the three corresponding
interactions might arise out of one single underlying one. This goes under the name
of Grand Unified Theories (GUT) and will be further explored in Chapter 3. The
last two parameters describe the Higgs potential, which triggers EWSB. There is
currently no more fundamental reason for its form. Furthermore, its tachyonic mass
parameter is the only dimensionfull parameter of the SM. If one considers other
fundamental scales of the universe (see below), there is no apparent reason for it
being around the EW scale. Explicitly, this might introduce a hierarchy problem,
which concerns large differences between scales in a QFT and will be explained in
more details below.

One goal of research could thus be to find successor theories which explain the
origin of these SM parameters. This can be motivated by other deficits of the SM.
There are several topics, already scratched in the chapter above which the SM does
not explain. Most prominently, gravitational interactions are not included in the
SM. They don’t play a role at low energies, but it is believed that around an energy
of MPl =

√
ℏc
GN
∼ 1019GeV/c2, the Planck scale, the effect of gravity must be

included. So far there is no established theory which completely includes the theory
of gravity (General Relativity) and the SM.

Furthermore, the effect of neutrino oscillations has been observed [34], which
implies that neutrinos have a (small) mass, but the "classical" SM describes them
as massless particles. The precise nature of these neutrino masses is unclear.

Some readers are also already aware of the fact, that some of the allowed op-
erators in the gauge sector have been omitted. The ones missing are of the form
θ g2s
64π2 F̃µν F

µν , with the dual field strength tensor F̃µν = εµνρσFρσ . It turns out that
for SU(2)L and U(1)Y such a term has no observable effect [6], but for SU(3)c this is
not the case. As this operator would induce large CP violating effects in the strong
sector, which have not been observed, the corresponding operator coefficient θQCD

has to be very small or zero. As this breaks with the principle of writing down all
allowed operators, this is dubbed the strong-CP problem [35].

There are also certain observations of cosmology which can not be explained by
the particle content provided by the SM. There a new kind of matter, called dark
matter, is proposed to explain the observed structures in space [36, 37, 38, 39].
There is no candidate for this in the SM. Similarly, there is an unknown effect,
called dark energy, which drives the accelerated expansion of the universe [40, 41].
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From cosmology one can also deduce that there is a certain baryon asymmetry in the
universe, we see more particles than corresponding antiparticles, see e.g. [42, 43].
To explain this asymmetry three conditions, the Sakharov conditions [44], must
be satisfied. Although these three conditions are qualitatively fulfilled in the SM,
quantitatively their corresponding effects are to small to explain the observed baryon
asymmetry.

Furthermore, there are also some experimental results from precision measure-
ments, which are in slight tension with the SM. For example there are some anoma-
lies in the B-sector, see e.g. [45], and discrepancies between the theoretical and
measured values of the muon anomalous magnetic dipole moment (g − 2)µ [46].

These considerations suggest that the SM is not the end of the story and there
should exist beyond the Standard Model (BSM) physics. This does not mean that
the SM is invalid, it still describes the experiments of the last decades very well,
rather it should be seen as a low energy effective field theory (EFT) of an underly-
ing more fundamental theory. See e.g. [47, 48] for comprehensive reviews. In such
set-ups the low energy EFT can be obtained from the more fundamental theory by
integrating out the degrees of freedom above a scale Λ. The EFT is then valid up
to this cut-off Λ. This procedure then in general produces also non-renormalizable
operators. It is again useful to order these operators in terms of their mass dimen-
sion. Without any knowledge of the underlying theory the size of the coefficients of
these operators is determined by the cut-off scale Λ. If the mass dimension of the
operator O is D the coefficient scales like Λ4−D in 4 dimensions. The Lagrangian
can then be written as

L = LD≤4 +
∑
i

ci
Λ
O(i)
D=5 +

∑
i

ci
Λ2
O(i)
D=6 + . . . , (2.1)

with the dimensionless Wilson coefficients ci. The operators with D ≤ 4 grow (or
stay the same) with increasing Λ, whereas the operators with D > 4 are suppressed
by more and more powers of Λ. For a large value of Λ this means that at low energies
the renormalizable operators (D ≤ 4) are sufficient to describe these processes.
This could explain why the SM only needs renormalizable operators to describe the
observed experiments with good accuracy. From these we can also conclude that Λ
is larger than the EW scale, but it could be as large as Λ ∼MPl. For the following
discussion we assume a value of Λ ∼ MPl, but any large value of Λ leads to the
same considerations. Note that the SM has only dimensionless parameters, except
for the parameter µ in the Higgs-Sector. This parameter is of the order of the EW
scale which is measured to be v = 246GeV. Now the theory contains two scales
v and MPl which are separated by 16 orders of magnitude and there seems to be
no relation between them. This is the first part of the so called (gauge) hierarchy
problem (HP): why are these two scales so different? The second part of the problem
considers the EFT description above. From an EFT perspective the parameter µ is
to be expected to be of the order of MPl and this would result in a similarly large
Higgs mass. Even if this mass is small (or zero) to begin with, radiative corrections
would lead to an O(MPl) Higgs mass. Note that this does not apply to fermions
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or gauge bosons. Their masses are protected from radiative corrections by chiral
and gauge symmetry respectively. The SM-Higgs does not have such a protection
mechanism. The hierarchy problem might hint to the possibility that new physics
effects emerge at the TeV scale, as this can cut-off the divergencies at this relatively
low scale, thereby solving the problem.

Having stated some of the problems of the SM we turn in the next section to
some of the proposed solutions to these, with an emphasis on the above mentioned
(gauge) hierarchy problem.

2.1 Solutions to the (Gauge) Hierarchy Problem

In this section we present directions which explore BSM physics to try to solve the
above mentioned deficits of the SM. We focus primarily on the (gauge) hierarchy
problem.

One possibility is to entitle the Higgs with a new symmetry to protect it from
large radiative corrections. This is the idea of Supersymmetry (SUSY), see
e.g. [49, 50]. Here every particle is related by a SUSY to a supersymmetric coun-
terpart, bosons are related to fermions and fermions to bosons. Thus the Higgs can
inherit a stable mass from its supersymmetric partner, the Higgsino, because its
fermionic mass is protected by chiral symmetry. The so called Minimal Supersym-
metric Standard Model (MSSM) [51] was the most promising theory in the past,
but the particles it predicts around the EW scale have not been found so far.

Instead of introducing a new symmetry, the dynamical evolution in the early
universe could also lead to a hierarchically small weak scale. This is the idea of
Cosmological Relaxation [52], where an axion-like field ϕ is introduced. Allowing
for soft symmetry breaking of the axion shift symmetry, one can couple ϕ to the
Higgs, without introducing large radiative corrections. The VEV of ϕ can then start
from (large) positive values and decrease during the evolution of the early universe.
Once the VEV of ϕ crosses to negative values the Higgs mass will be tachyonic,
thereby triggering EWSB. In turn the effect of EWSB then stops a further decrease
in the VEV of ϕ fixing the Higgs mass to its current value.

Another possibility are technicolor theories [53, 54]. Here the problem with
the Higgs boson mass are circumvented by using a different mechanism than the
Higgs mechanism to generate the masses of W - and Z-bosons. The mass is still
produced by "eating" Goldstone bosons of a broken symmetry, but this breaking
should be induced by a new sector of strongly interacting fermions. A motivation
for this can be found in QCD. The up- and down-quarks have an approximate
global SU(2)L × SU(2)R symmetry. Due to confinement at energies below ΛQCD ≈
200MeV the theory builds a quark condensate of fermion bilinears. This state breaks
the SU(2)L × SU(2)R down to its diagonal subgroup SU(2)V . Due to Goldstones
theorem the three broken generators correspond to three Goldstone bosons, the
pions. Note that in QCD, because the symmetry is only approximate, they are not
truly massless, but their mass is lower then the typical scale ΛQCD of the theory.
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Technicolor mimics this by introducing so called techni-fermions, which interact by
new strong technicolor force. Here the breaking scale should be around the EW
scale and the corresponding Goldstone modes are absorbed by the EW bosons like
in the SM case. But the simplest models of technicolor are not in accordance with
EWPT [55] and don’t explain the scalar particle discovered in 2012.

Composite Higgs theories [56, 57, 58, 59, 60] can be seen as interpolating be-
tween technicolor theories and the SM Higgs mechanism. On the one hand this
Higgs is a pseudo Nambu-Goldstone boson (pNGB) of a global symmetry, like in
Little Higgs theories [61, 62, 63], and on the other hand it is a composite parti-
cle of a new strongly interacting sector. Similar to the pion in QCD, it would not
receive radiative corrections above its compositness scale and be naturally lighter
than the confining scale. In such scenarios, like the Minimal Composite Higgs Model
(MCHM) [64, 65], the Higgs doublet would be massless at tree level, but because
of the explicit breaking of the global symmetry, loops of SM particles can generate
a Higgs potential. In turn this Higgs potential can break the EW symmetry via
the usual Higgs mechanism. Different from technicolor models, where no separa-
tion of scales exists, the EW scale v is dynamically generated and can be smaller
than breaking scale f of the global symmetry breaking. The degree of misalignment
ξ = v2

f2
is then the usual suppression factor for corrections to SM observables. The

limit, f → ∞ with fixed v, then decouples all other resonances and would produce
the SM Higgs mechanism. In general, natural models predict top partners around
the TeV scale, which have not been observed so far. There are many possible strong
sectors which can lead to a light Higgs bosons but interestingly some of them can
be related to the next class of theories by holography.

Via the AdS/CFT correspondence 4D Composite Higgs theories have a five di-
mensional (5D) dual interpretation. The ability of AdS5 to solve the HP was
shown by Randall and Sundrum [66] and phenomenological models of that kind are
now known as Randall-Sundrum (RS) models. These models furnish the main part
of this thesis and we will explain in detail in Chapter 4 how they solve the HP
through their geometry. Another extra dimensional model, which solves the HP ge-
ometrically, are Arkani-Hamed-Dimopoulos-Dvali (ADD) models [67, 68]. In ADD
only gravity can propagate into the extra dimensions and due to this dilution the
gravitational force appears much weaker (the Planck-mass much larger) then the
other interactions. The real cut-off of the SM could then be much lower.

Before we explore RS theories further in the next part, we first remain in 4D and
review the process of renormalization and regularization and introduce GUTs.
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3 Renormalization of Quantum Field
Theories and Grand Unified Theories

Since this work studies the regularization and renormalization of QFTs in RS-models
this chapter is devoted to explain some of the concepts of regularization and renor-
malization in more detail.

After writing down the classical action S in Chapter 1, there are several methods
to get a fully fledged QFT. Two of the most well known are the Operator Formalism
and the Path Integral Formalism [6]. Both allow one to define correlation func-
tions between quantum fields starting from the classical action. These are the main
quantities in a QFT, since they allow to calculate the so called S-matrix via the
Lehmann-Symanzik-Zimmermann (LSZ) reduction formula [69], which in turn can
be related to cross sections and decay rates. Unfortunately, one cannot calculate
the correlation functions exactly in most cases. In these situations one can then try
to expand these functions in a perturbative expansion in a small parameter, like a
coupling constant, to get an approximate result. Every term in this expansion has a
similar structure and one can use so called Feynman diagrams as a mnemonic device
to write them down systematically. To construct Feynman diagrams one needs ex-
pressions for propagators of the fields involved and vertices connecting them. These
can be derived from the classical action and for a warped 5D theory we do this in
Chapter 8. At a higher order in perturbation theory one also needs to calculate
loops of propagators. In general, this causes problems, which will be illustrated by
the following toy example. We take a single Dirac fermion ψ coupled to an abelian
U(1) gauge symmetry

S =

∫
d4x

[
−1

4
FµνF

µν + ψ̄
(
i
(
/∂ − ig0 /A

)
−m

)
ψ

]
. (3.1)

From this a correlation function, which determines the coupling between the fermion
and the gauge field, can be calculated perturbatively. At first order, or tree-level,
one finds

g−2 = g−2
0 . (3.2)

Thus the coupling is just given by the Lagrangian parameter g0. At the next order
one encounters a loop of fermions entailing the following integral [8]

←−
p −→

q

p+q←−−

←−
p

∝
∫

d4q

(2π)4
Tr
(
γµ(/q + /p+m)γν(/q +m)

)
(q2 −m2)((q + p)2 −m2)

. (3.3)

This is a divergent integral. To deal with this divergence one can use the method of
regularization. Different regularization procedures exist in the literature, for exam-
ple cut-off regularization, dimensional regularization or Pauli-Villars regularization.
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In each case a regularization parameter and possibly a regularization scale is intro-
duced. Via a suitable limit of the regularization parameter the full integral above is
recovered. Here we will use dimensional regularization, which changes the dimension
of Minkowski space from 4 to 4−2ϵ. To keep the mass dimension of the integral fixed
one introduces the regularization scale µ. For certain ϵ the integral then converges
and the result can be analytically continued around ϵ = 0. This gives something
like the following for the coupling, which will now depend on the momentum p of
the external propagators,

g−2(p2) = g−2
0 +

b

16π2

(
1

ϵ
− log

(
p2

µ2

)
+ const.

)
, (3.4)

where b is a numerical coefficient. In the limit ϵ→ 0 this would still give a divergent
result. A solution to this is to renormalize the theory. This divergence gets replaced
by using a renormalized coupling gren.(µ0) at a scale µ0 defined in the following way

g−2
0 = g−2

ren.(µ0) +
b

16π2

(
−1

ϵ
− log

(
µ2

µ2
0

)
+ const.

)
. (3.5)

For which the coupling results in

g−2(p2) = g−2
ren.(µ0)−

b

16π2
log

(
p2

µ2
0

)
+ const. . (3.6)

Now all dependence on the regularization parameter and scale have dropped out
and we can send ϵ → 0. There is a freedom in which constant one absorbs in
the renormalized coupling gren.(µ0), which is the so called renormaliaztion scheme.
Popular choices are the MS-scheme in which the constant is zero or the MS-scheme
in which often appearing constants like the Euler-Mascheroni contant γE and log(4π)
are absorbed, too. From (3.6) it follows that different constants correspond to
different values µ0. For a fixed scale µ0 the value of g−2

ren.(µ0) has to be measured
in an experiment e.g. by measuring the coupling g−2(p2 = µ2

0). The chosen scale
µ0 and thus the renormalization scheme are arbitrary and different choices for them
should not change the physics. Therefore g−2

ren.(µ0) changes in a specific way with
different µ0. This is captured by the renormalization group equation (RGE)

µ0
∂

∂µ0

g−2(p2) = 0 =⇒ µ0
∂

∂µ0

gren.(µ0) = β(gren.) =
b

16π2
g3ren. . (3.7)

The sign of the beta–function β gives interesting insights into the dynamics in the
UV and IR. For β > 0 the coupling grows for higher energies and can even diverge
at some large scale, giving rise to the so called Landau pole. This is the case for
the U(1)Y coupling in the SM, but the predictivity of the perturbative result ends
way before that scale. For β < 0 the coupling becomes stronger in the IR. This
can lead to confinement, where only composite states can be observed, and this is
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exactly what happens for QCD. Furthermore, for high energies the coupling goes to
zero, which allows one to treat the quarks as free particles in these composite states
for scattering experiments. Note also that the EW gauge group is broken at low
energies so there will be no confinement of the weak force.

It turns out that additional divergences appear at higher loop order and in different
correlation functions. Many of them can be dealt with by defining a set of renormal-
ized Lagrangian parameters. If only a finite set of parameters is needed for all pos-
sible divergences, the theory is called renormalizable, otherwise non-renormalizable.
To estimate if a theory is renormalizable one can look of the mass dimension D of the
operators of the Lagrangian. Through quantum corrections operators can produce
other operators, but operators with D ≤ 4 produce only operators with D ≤ 4. On
the other hand operators with D > 4 will in general produce operators of arbitrary
high mass dimension. These are then an infinite set of parameters which need to be
renormalized. Thus only theories, where the operators have mass dimension D ≤ 4,
are renormalizable, otherwise they are non-renormalizable. An EFT is in general
not renormalizable, but if one restricts oneself to a specific order in the EFT cut-off,
a consistent renormalization can be achieved.

Since the SM is per definition a renormalizable theory it only contains operators
with mass dimension four or less. As discussed above, one consequence of renor-
malization is that the three gauge couplings of the SM depend on the energy scale.
Defining1 αi ≡ g2i

4π
this results in the following energy dependence [7]

α−1
3 (µ) = α−1

3 (mZ)−
b3
2π

log

(
µ

mZ

)
, b3 = −7 , (3.8)

α−1
2 (µ) = α−1

2 (mZ)−
b2
2π

log

(
µ

mZ

)
, b2 = −

19

6
, (3.9)

α−1
1 (µ) = α−1

1 (mZ)−
b1
2π

log

(
µ

mZ

)
, b1 =

41

10
, (3.10)

where we used the starting value µ0 = mZ . This evolution is depicted in Figure 3.1,
where one can see that around an energy scale of MGUT ∼ 1014–1016TeV the cou-
plings approximately meet. This could be a hint, that they have some common
origin and this is the starting point of GUTs [70, 71, 72]. The idea is to start with
a larger group and to recover the SM group via SSB. The minimal group which can
lead to the GSM is SU(5). Since SU(6) GHGUTs, which will be studied in this
thesis, share many features with SU(5) GUTs, we will take a closer look at the
original Georgi–Glashow SU(5) model[70], but many aspects of the following dis-
cussion also apply to different GUTs, e.g. GUTs based on SO(10) or E6 [14]. The
three SM gauge fields can be combined in the adjoint representation 24 of SU(5).

1for g1 we include an extra factor 5
3 which will become clear from the discussion about unification

below.
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Figure 3.1: Running of the three SM couplings α3, α2, α1 at one-loop according to
(3.8)–(3.10). The initial values are given by (1.10).

Symbolically we can write [7]

AaµT
a =


SU(3)c X/Y

X/Y SU(2)L


, (3.11)

where SU(3)c and SU(2)L correspond to the upper left 3× 3 and lower right 2× 2
blocks, respectively. We can also identify the hypercharge Y of U(1)Y with one of the
completely diagonal generators, T 24 = c diag(−1

3
,−1

3
,−1

3
,+1

2
,+1

2
) with c2 = 3/5,

via the rescaling

Y =

√
5

3
T 24 . (3.12)

As can be seen by the off-diagonal elements in (3.11) there are additional gauge
bosons, called X/Y bosons, which can be viewed as one complex field with the SM
quantum numbers (3,2)−5/6.
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To get GSM at low energies SU(5) can be spontaneously broken via the Higgs
mechanism by including a new scalar Φ in the 24 of SU(5), which gets a VEV
⟨Φ⟩ = V diag(−1

3
,−1

3
,−1

3
,+1

2
,+1

2
) [7]. For the unification of gauge couplings we

need V ∼ MGUT and thus the X/Y bosons will acquire a mass around this scale.
Interestingly, interactions with the X/Y bosons can violate baryon and lepton num-
ber conservation leading to e.g. proton decay. As proton decay has not been observed
so far, the lifetime of the proton is at least τp/BR(p→ e+π0) > 1.67× 1034 yr [73].
Independent of the model this means for the mass MX of the X/Y bosons: MX ≳
1016GeV.

Moving on to the fermion fields one can observe that one generation of quarks
and leptons exactly fills the 5∗ and 10 representations of SU(5)

5∗ → dcL(3
∗,1)+1/3 ⊕ lL(1,2)−1/2 ,

10→ ucL(3
∗,1)−2/3 ⊕ qL(3,2)+1/6 ⊕ ecL(1,1)+1 . (3.13)

Here the RH SM fields are expressed by their charge conjugates2, such that all fields
are LH, for example ucL ≡ (uc)L = (uR)

c.
This structure does not only explain why quarks interact via SU(3)c and leptons

not, but also why SU(2)L couples only to one chirality, in this case LH fields.
Moreover, the quantization of the hypercharge Y can be explained. Whereas in the
SM these can a priory be any real numbers, the observed fractional charges follow
directly from the hypercharge matrix given in (3.12) acting on the above fermion
fields.

To include the Higgs doublet H, to break the EW symmetry, one is forced to
include further scalar states to fill a complete SU(5) representations. For example
the minimal choice of a 5∗ also includes a scalar triplet φ. The Yukawa interaction
between the full 5∗ and the fermions has two notable consequences. First, since
the quarks and leptons are combined in the multiplets above there will be relations
between the SM masses

mb = mτ , ms = mµ , md = me . (3.14)

Even if renormalization effects are considered there are no such relations between
the measured particle masses3 [74, 75]. Second, the scalar triplet will couple quarks
and leptons leading to proton decay. The corresponding constraint on the triplet
mass Mφ > 1.0 × 1012GeV [14] is weaker than on MX since the first generation
Yukawa couplings are much smaller. The mass of this triplet as well as the Higgs
mass follow from the scalar potential, which includes also the GUT-scalar Φ [7]

V (ϕ,Φ) =− 1

2
m2

ΦTr
(
Φ2
)
+

1

4
λ1Tr

(
Φ4
)
+

1

4
λ2Tr

(
Φ2
)2

+m2
ϕϕ

†ϕ+
1

4
κ1(ϕ

†ϕ)2 − 1

2
κ2ϕ

†Φ2ϕ . (3.15)

2Charge conjugation for a Dirac fermion ψ is defined via ψc ≡ iγ2ψ∗

3To resolve this issue one can for example take a more complicated Higgs sector or one needs to
take into account higher dimensional operators [7]
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Here ϕ is the 5∗ and for the individual masses one finds

m2
H = m2

ϕ −
1

8
κ2V

2 , (3.16)

m2
φ = m2

ϕ −
1

18
κ2V

2 . (3.17)

Thus both masses are expected to be at the order V ∼ MGUT, which can be seen
as a concrete manifestation of the hierarchy problem. Again this also applies to
radiative corrections. Even if the hierarchy problem is solved, there remains an
additional problem for the tree level parameters. As we have seen above the triplet
mass must be large and thus a small Higgs mass can only be achieved if m2

ϕ and
1
8
κ2V

2 cancel to at least sixteen significant digits. This is known as the doublet-
triplet splitting problem [76, 77]. Although this cancellation is technically possible
a deeper reason for this would be desirable.

Having a complete field content we can return on a more quantitative analysis of
the unification of the gauge couplings. Since we started with one group there is only
one gauge coupling and the SM gauge couplings are all equal at tree–level

g = g3 = g2 =

√
5

3
g1 . (3.18)

Note that we included an extra factor
√

5/3 for the coupling g1 of the hypercharge
group U(1)Y since we rescaled the SU(5) generator T 24 in (3.12) by this factor to
get the hypercharge Y . Via renormalization these start to depend on the energy
scale and, if the masses of the X/Y bosons and that of the triplet are of the order
of MGUT, the low energy particle spectrum will be that of the SM. This implies
that the evolution of the couplings will be described by the same coefficients as in
(3.8)–(3.10)

α−1
3 (µ) = α−1(MGUT)−

b3
2π

log

(
µ

MGUT

)
, b3 = −7 , (3.19)

α−1
2 (µ) = α−1(MGUT)−

b2
2π

log

(
µ

MGUT

)
, b2 = −

19

6
, (3.20)

α−1
1 (µ) = α−1(MGUT)−

b1
2π

log

(
µ

MGUT

)
, b1 =

41

6
. (3.21)

In this model the three gauge couplings unify per definition, they have the same

value α−1
1,2,3(MGUT) = α−1(MGUT) ≡

(
g2

4π

)−1

at some scale MGUT. Of course this
contradicts Figure 3.1, where the same RGE coefficients are used together with the
measured low energy gauge coupling. To estimate how good/bad the level of unifi-
cation is one can look at the following: Given the values for α−1(MGUT) and MGUT

one can postdict the three measured low energy gauge couplings. This means one
can use two gauge couplings to determine α−1(MGUT) and MGUT and postdict the
third. In practice one often uses the the fine–structure constant 1/α(mZ) = 127.91
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and the strong coupling α3(mZ) = 0.1187 to give a value for sin2(θW ) [7]. Doing
this for the Georgi–Glashow SU(5) results in sin2(θW )(mZ) = 0.207. Comparing
this with the value sin2(θW )(mZ) = 0.23120 from measurement, this is off by about
10% [7]. Note that at there might be threshold effects at scales where heavy particles
start to contribute, which might improve the unification. In general these effects are
too small for the Georgi–Glashow SU(5) and the models we present in Chapter 13.

Of particular interest in GUT scenarios are supersymmetric extensions since on
the one hand they solve the hierarchy problem and on the other hand improve the
numerical unification of couplings. But SUSY GUTs still suffer from the doublet-
triplet splitting problem and upcoming improvements on the proton decay rate will
push the masses of the X/Y bosons above the ordinary SUSY GUT scale MSUSY

GUT ∼
2× 1016GeV [14].

Another important quantity to look at when discussing running couplings and
GUT groups are the differences of the coupling constants. They will also depend
on the energy scale, and the difference between the runnings of different couplings
is referred to as differential running. Looking at the individual contributions from
gauge bosons, fermions and the Higgs doublet to the running one finds that the
fermion contribution of all three gauge couplings is the same thus dropping out of
the differential running. Geometrically this means all slopes in Figure 3.1 change
by a common value, which does not influence the energy scale at which the graphs
intersect and thus does not change if unification occurs or not. That the SM fermions
do not contribute to the differential running is not that surprisingly when viewed
from a GUT perspective: We saw in (3.13) that the SM fields form complete SU(5)
multiplets. In general it is true that there is no contribution to the differential
running from complete SU(5) multiplets and this will have interesting consequences
on the models we discuss in Chapter 13.

In the course of this work we will see how GHGUTs share many features with
ordinary 4D GUTs, while avoiding some of their problems. In particular, the neces-
sary methods to study high scale unification are investigated and applied to SU(6)
GHGUTs to see if the SM unification can be improved.
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Part II

Theory of Randall-Sundrum
Models
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This part introduces the key concepts of of RS-models, inspired by some excellent
reviews of extra dimension [78, 79, 80, 81, 82, 83, 84, 85, 86]. First it is discussed how
these models solve the hierarchy problem by introducing an extra space dimension to
the usual four space-time dimensions. This is followed by reviewing the description of
higher dimensional fields in this context as well as their relation to four dimensional
fields. The propagators and Feynman rules of five dimensional theories are discussed
and the concept of Gauge-Higgs Unification (GHU) is introduced.

4 RS-Metric and the Solution of the
Hierarchy Problem

Already in 1921 T. Kaluza and O. Klein considered the idea of extra spatial dimen-
sions. Their proposal was to unify the gravitational and electromagnetic forces in a
five dimensional space-time [87, 88]. After the discovery of the other fundamental
interactions this suggestion lost its relevance, but since then extra dimensions have
been an interesting concept for theoretical physics. String Theory, as one of the
candidates to unify all known interactions, requires at least six additional dimen-
sions. Although it is believed that the effects of these extra dimensions from string
theory are not visible at current collider energies they inspired further ideas in that
direction. Arkani-Hamed-Dimopoulos-Dvali (ADD) [67, 68] proposed models with
flat extra dimensions in which gravity could propagate into these, but the other in-
teractions are confined to our usual four dimensional space time. This then explains
the apparent weakness of gravity and the apparent large Planck scale. Later Lisa
Randall and Raman Sundrum thought about models with one additional warped ex-
tra dimension [66]. These models are now called Randall-Sundrum (RS) models and
are the main focus of this thesis. RS showed that a slice of 5D anti-de-Sitter space,
AdS5, which is a dynamical solution to the Einstein equations in 5D, can solve the
HP. Mathematically this space can be described by the usual 4D Minkowski space
together with an finite extra dimension spanning the interval1. There are two useful
parametrizations of the metric [89, 90]

ds2 =
1

k2z2
(
ηµνdx

µdxν − dz2
)
, or ds2 = e−2kr|ϕ|ηµνdx

µdxν − r2dϕ2 , (4.1)

where z ∈ [ 1
k
, 1
T
] or ϕ ∈ [0, π] describe the extra dimensional coordinates and the

coordinates of the usal Minkowski space are labeled by xµ, µ = 0, 1, 2, 3. The scale
k can be seen as the curvature of the AdS5 space and L ≡ krπ is the size of the
extra dimension. We call the first the conformally flat metric and the second one the

1Such an interval can be constructed from an extended space by a process called orbifolding, see
e.g. [82]
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non-factorizable metric of RS. The two descriptions are related by the coordinate
transformation [90]

z =
ekr|ϕ|

k
. (4.2)

In particular, from this the relation T = ke−L follows, which also illustrates an
important feature of the change of scales along the extra dimension. Given a scale
M0 at ϕ = 0 there exists a corresponding scale Mπ at ϕ = π given by [90]

Mπ =M0e
−L . (4.3)

Now, even if all fundamental parameters of the theory are of the order of the Planck
scale (k, 1/r,M0 ∼ O(MPlanck)) the exponential factor in (4.3) can can lead to a large
suppression of Mπ. For example, if L ≈ 37 the scale Mπ is of order T ∼ O(TeV).2 If
one can associate the EW scale v with the scale T on the brane at ϕ = π this might
provide a solution to the HP. One also refers to the brane at ϕ = 0 as the UV-brane
(or Planck-brane) and to the brane at ϕ = π as the IR-brane (or TeV-brane) as
they are associated with the scales k ∼ O(MPlanck) and T ∼ O(TeV) respectively.
By confining the SM fields to the IR-brane RS showed that it is indeed possible to
get a correct Higgs VEV in these models, but it was soon realized that having the
fields propagate in the full 5D bulk can also generate particle masses at the EW
scale [92, 93, 94, 95].

In the next chapters it is described how TeV masses can be generated by bulk
fields, starting with an overview of how one should properly treat bulk fields in
AdS5.

5 Action and Boundary Conditions

This chapter describes how QFTs in AdS5 work. The concepts are almost the
same as in the familiar 4D case, but special care has to be given to the non-flat
metric and the finiteness of the extra dimension. As in 4D the fields are classified
according to their representations of the space-time symmetry. Even though the
space is warped, locally it behaves like a 5D Minowski space, so the representations
can be chosen with respect to a 5D Lorentz symmetry. The trivial, spinoral and
vector-like representations are similarly called scalar, fermion and vector/gauge fields
respectively. These will be studied in turn in the following, starting from the simplest
field, the scalar field.

2This small hierarchy between the scales k and 1/r can in fact be naturally generated, for example
by the Goldberger-Wise stabilization mechanism [91].
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5.1 5D Scalars

Considering for simplicity only the space-time symmetries without any internal sym-
metries, the invariant operators for a real scalar field ϕ can easily be written down.
Looking only at bulk terms quadratic in the field ϕ one can write down the most
general action as [79]

S =

∫
d4x

∫ 1/T

1/k

dz
√
G

(
1

2
GMN (∂Mϕ) (∂Nϕ)−

1

2
m2ϕ2

)
, (5.1)

where GMN is the AdS5 metric and G its determinant. The capital letters M,N run
from 0, 1, 2, 3, 5, where the first four components correspond to the usual Minkowski
space indices µ = 0, 1, 2, 3 and the last one stands for the extra fifth dimension.
From now on we will always use the conformally flat metric. With this the action
can be simiplified to

S =

∫
d4x

∫ 1/T

1/k

dz
1

2k3z3

(
ηµν(∂µϕ)(∂νϕ)− (∂5ϕ)(∂5ϕ)−

1

k2z2
m2ϕ2

)
. (5.2)

To be a proper QFT the variation of this classical action with respect to the field ϕ
has to vanish. Explicitly this reads

δS =

∫
d4x

∫ 1/T

1/k

dz
1

k3z3

(
ηµν(∂µϕ)(∂νδϕ)− (∂5ϕ)(∂5δϕ)−

1

k2z2
m2ϕδϕ

)
=

∫
d4x

∫ 1/T

1/k

dz
1

k3z3

(
−∂2ϕ+ k3z3∂5

(
1

k3z3
∂5ϕ

)
− 1

k2z2
m2ϕ

)
δϕ

+

∫
d4x

[
1

k3z3
(−(∂5ϕ)(δϕ))

] ∣∣∣∣1/T
1/k

, (5.3)

where we used partial integration in the last line. Requiring the action to vanish
under a general variation δϕ implies that both terms have to vanish separately.
The first one is the bulk equation of motion (EoM), which is a generalization of
the Klein-Gordon equation. The second term arises because of the finite extra
dimension and will give boundary conditions (BC) on the fields ϕ. Note that such
a term in principle arises also in 4D, but one generally assumes that the fields and
their derivatives vanish at infinity. Looking at each term individually we find the
EoM for a bulk scalar [79](

−∂2 + k3z3∂5

(
1

k3z3
∂5

)
− 1

k2z2
m2

)
ϕ(x, z) = 0 . (5.4)

The solution to this equation will be discussed at a later point. The BCs at z = 1
k

and z = 1
T

are independent and read

(∂5ϕ)(δϕ)
∣∣
1/k

= 0, (∂5ϕ)(δϕ)
∣∣
1/T

= 0 . (5.5)
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We focus on two possible choices of BCs [79], which both lead to vanishing boundary
terms,

(+) (∂5ϕ)
∣∣
z=1/k,1/T

= 0, or (−) ϕ
∣∣
z=1/k,1/T

= 0 . (5.6)

The BC (+) is called a Neumann BC and the BC (−) is called a Dirichlet BC. To
properly define a QFT we need to choose the BC on each brane. This means there
are four different types of scalar field we can have. Labeling them by their BCs via
(sUV, sIR), si ∈ {±1} they are

ϕ(+,+), ϕ(+,−), ϕ(−,+), ϕ(−,−) . (5.7)

After choosing one of the BCs we can in the future always integrate by parts and
the boundary terms vanish. A similar situation will arise in the case for fermions
and gauge bosons. Note that for the most general action there can also be operators
localized on the branes at the endpoints of the interval. These can then modify the
above BCs.

5.2 5D Fermions

The QFT for fermions can be done in a similar way as in the scalar case above,
but there are important differences due to the non-trivial Lorentz structure. Other
then in 4D the smallest irreducible representation for fermions in 5D is not a two-
component Weyl-fermion but a four-component Dirac fermion. This means every
bulk field contains LH as well as RH components and is therefore non-chiral. It
is useful to define a generalization ΓM of the gamma matrices which connects the
fermion spinor indices with the external space-time indices. In general warped space
they are related to the ordinary flat space ones γa by the so called vielbein eMa , where
a denotes a flat 5d space index. It is defined by [96, 79]

eMa η
abeNb = GMN , (5.8)

and explicitly given for the RS metric by eaM = 1
kz
δaM . The warped space gamma

matrices are then calculated by

ΓM = eMa γ
a , (5.9)

and the flat space gamma matrices are determined similar to the ones in 4D by the
Clifford Algebra (see Appendix A)

{γa, γa} = 2ηab . (5.10)

The solution to this are the familiar Dirac matrices γµ together with the familiar
matrix γ5 (multiplied by a factor i). The necessary inclusion of γ5 reflects the fact,
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that both chiralities need to be included. We will use the following representation
of them if needed

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 =

(
i1 0
0 −i1

)
, (5.11)

where σ0 = σ̄0 = −1 and σi = −σ̄i are the usual Pauli spin matrices. Furthermore in
warped space the covariant derivative include also a connection, the spin-connection,
which in AdS5 acting on a fermion Ψ reads [79]

DµΨ =

(
∂µ +

1

4z
γµγ5

)
Ψ , (5.12)

D5Ψ = ∂5Ψ . (5.13)

The spin connection for scalars has been ignored in the last section, since scalars
are in the trivial representation of the space-time group and therefore their corre-
sponding connection is zero. In general warped spaces the bulk action for a fermion
Ψ including only quadratic operators reads [79]

S =

∫
d4x

∫ 1/T

1/k

dz
√
G

(
i

2
Ψ̄ΓMDMΨ− i

2
DMΨ̄ΓMΨ−mΨ̄Ψ

)
. (5.14)

For AdS5 this simplifies to1 [79]

S =

∫
d4x

∫ 1/T

1/k

dz

(
1

kz

)4
1

2

[
Ψ̄

(
iγµ∂µ + iγ5∂5 − i

2

z
γ5 − c

z

)
Ψ+ h.c.

]
, (5.15)

where we introduced the dimensionless variable c = m
k
. The bulk equation and

boundary terms are best written down in terms of the LH and RH components
Ψ =

(
ΨL ΨR

)T
S =

∫
d4x

∫ 1/T

1/k

dz

(
1

kz

)4
1

2

[
− iΨ̄Lσ̄

µ∂µΨL − iΨ̄Rσ
µ∂µΨR

+ Ψ̄R

(
∂5 −

2

z

)
ΨL − Ψ̄L

(
∂5 −

2

z

)
ΨR +

c

z

(
Ψ̄RΨL + Ψ̄LΨR

)
+ h.c.

]
.

(5.16)

1In usual 4D space the hermitian conjugate (h.c.) can be integrated by parts, thereby giving the
same as the first term, and thus the familiar Dirac action is recovered. As we have seen for
scalars integration by parts on a finite interval leads to important boundary terms which we
will discuss below.
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Varying the action and integrating by parts we find

δS =

∫
d4x

∫ 1/T

1/k

dz

(
1

kz

)4
1

2

[
δΨ̄R

(
−iσµ∂µΨR + ∂5ΨL −

2

z
ΨL +

c

z
ΨL

)
+ δΨ̄L

(
−iσ̄µ∂µΨL − ∂5ΨR +

2

z
ΨR +

c

z
ΨR

)
+ h.c.

]
+

∫
d4x

(
1

kz

)4
1

2

(
δΨ̄RΨL − δΨ̄LΨR + h.c.

) ∣∣∣∣1/T
1/k

. (5.17)

The variation of δΨ̄R and δΨ̄L are independent so we get two coupled bulk EoM [79]

−iσµ∂µΨR +

(
∂5 −

2

z
+
c

z

)
ΨL = 0 , (5.18)

−iσ̄µ∂µΨL +

(
−∂5 +

2

z
+
c

z

)
ΨR = 0 . (5.19)

Looking at the boundary condition we need to require(
δΨ̄RΨL − δΨ̄LΨR + h.c.

) ∣∣∣∣1/T
1/k

= 0 . (5.20)

Considering the case for the UV boundary we notice that all factors vanish by
choosing for the LH component ΨR

∣∣
1/k

= 0. But through the EoM this fixes the
BC for the RH component to

(
∂5 − 2

z
+ c

z

)
ΨL

∣∣
1/k

= 0. In fact these two conditions
are equivalent. Similarly the conditions ΨL

∣∣
1/k

= 0 ⇐⇒
(
−∂5 + 2

z
+ c

z

)
ΨR

∣∣
1/k

= 0

also let the boundary term vanish. Summarizing [79]

(+) :

{
(+)L

(
∂5 − 2

z
− c

z

)
ΨL

∣∣
1/k

= 0

(−)R ΨR

∣∣
1/k

= 0
, (5.21)

(−) :

{
(−)L ΨL

∣∣
1/k

= 0

(+)R
(
−∂5 + 2

z
− c

z

)
ΨR

∣∣
1/k

= 0
. (5.22)

Again we refer to Neumann (+) or Dirichlet (−) BC whether the BC contains a
derivative or not. Thus the BCs of LH and RH fermions are opposite to each other.
If we specify a BC of a general Dirac fermion we always give the LH BC, with an
opposite BC for the RH component implied. If we need to make the BC explicit
for the components we use the indices L/R on the BC. The same applies to the IR
BC. Although we were forced to include a Dirac fermion we can still distinguish LH
and RH components by their BCs. As for the scalar there are four different kinds
of fermions

Ψ(+,+) =

{
ΨL(+,+)L

ΨR(−,−)R
, Ψ(+,−) =

{
ΨL(+,−)L
ΨR(−,+)R

, (5.23)

Ψ(−,+) =

{
ΨL(−,+)L

ΨR(+,−)R
, Ψ(−,−) =

{
ΨL(−,−)L
ΨR(+,+)R

, (5.24)
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and boundary operators can again change the form of the BCs.

5.3 5D Gauge Bosons

In this section we discuss the QFT for vector fields AM in RS space. Different from
the two sections above we consider an internal symmetry group SU(N) for which
AM will be a gauge field with 5D coupling constant g5. The case of a U(1) gauge
field follows from this trivially. The field AM is a matrix in the Lie algebra of SU(N)
and can therefore be expanded in the generators AM = AAMT

A. We will use upper
case letters for the gauge group index for reasons which will become clear later. The
gauge fields transform under an infinitesimal 5D gauge transformations as

AAM → AAM +
1

g5
DAC
M αC , (5.25)

with the covariant derivative in the adjoint representation

DAC
M = δAC∂M + g5f

ABCABM , (5.26)

as opposed to the covariant derivative in the fundamental representation DM =
∂M − ig5T

AAAM . Here g5 is the 5D gauge coupling, how it is related to the 4D
gauge couplings of the SM is presented in Chapter 6. As the gauge transformation
is similar to the 4D case we can define a 5D field strength tensor by

FMN =
i

g5
[DM , DN ] . (5.27)

Note that any warped space connection vanishes in the commutator. Expanding the
field strength in terms of generators FMN = FA

MNT
A we find

FA
MN = ∂MA

A
N − ∂NAAM + g5f

ABCABMA
C
N . (5.28)

From this we can construct a bulk action by [84]

S =

∫
d4x

∫ 1/T

1/k

dz
√
GGMNGPQ

(
−1

4
FA
MPF

A
NQ

)
=

∫
d4x

∫ 1/T

1/k

dz

(
1

kz

)(
−1

4
ηµνηρλFA

µρF
A
νλ +

1

2
ηµνFA

µ5F
A
ν5

)
. (5.29)

This action is invariant under the above gauge transformations. To properly define
a QFT one can perform the Faddeev-Popov procedure, similar to the 4D case, by
adding a gauge fixing action Sgf and the corresponding ghost action Sgh. For this
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we look at the quadratic parts, after integrating by parts one finds

S =

∫
d4x

∫ 1/T

1/k

dz

(
1

kz

)(
− 1

2
ηµνηρλ

(
∂µA

A
ρ ∂νA

A
λ − ∂νAAµ∂ρAAλ

)
+

1

2
ηµν
(
∂µA

A
5 ∂νA

A
5 − 2kz∂5

1

kz
AA5 ∂µA

A
ν + ∂5A

A
µ∂5A

A
ν

))
+

∫
d4x

(
1

kz

)(
ηµν
(
AA5 ∂µA

A
ν

))∣∣∣∣1/T
1/k

. (5.30)

It is common to distinguish between the field Aµ and A5. Aµ behaves like a 4D
Lorentz vector and A5 as 4D Lorentz scalar under 4D Lorentz transformations.
Gauge fixing should also get rid of the mixing term between Aµ and A5 in the bulk.
This can be achieved by the following gauge fixing action, inspired by the Rξ gauges
[89]

Sgf =

∫
d4x

∫ 1/T

1/k

dz

(
− 1

2ξkz

[
ηµν∂µA

A
ν − ξkz∂5

(
1

kz
AA5

)]2)
. (5.31)

Adding this to the action gives

S =

∫
d4x

∫ 1/T

1/k

dz

(
1

kz

)(
− 1

2
ηµνηρλ

(
∂µA

A
ρ ∂νA

A
λ −

(
1− 1

ξ

)
∂νA

A
µ∂ρA

A
λ

)
+

1

2
ηµν
(
∂µA

A
5 ∂νA

A
5 + ∂5A

A
µ∂5A

A
ν − ξkz∂5

(
1

kz
AA5

)
kz∂5

(
1

kz
AA5

)))
+

∫
d4x

(
1

kz

)(
ηµν
(
AA5 ∂µA

A
ν

))∣∣∣∣1/T
1/k

. (5.32)

Now we are in a position to vary the action with respect to the fields Aµ and A5

δS =

∫
d4x

∫ 1/T

1/k

dz

(
1

kz

)
((

ηρλ∂2AAλ −
(
1− 1

ξ

)
ηρνηµλ∂ν∂µA

A
λ − ηρλkz∂5

1

kz
∂5A

A
λ

)
δAAρ

+

(
−∂2AA5 + ξ∂5z∂5

(
1

z
AA5

))
δAA5

)
+

∫
d4x

(
1

kz

)((
ηρλ∂5A

A
λ − ηµρ∂µAA5

)
δAAρ

)∣∣∣∣1/T
1/k

+

∫
d4x

(
1

kz

)((
ηµλ∂µA

A
λ − ξz∂5

(
1

z
AA5

))
δAA5

)∣∣∣∣1/T
1/k

. (5.33)
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The variations with respect to Aµ and A5 are independent so we get the two bulk
EoM (neglecting interaction terms) [84](

ηµν∂2 −
(
1− 1

ξ

)
ηµληρν∂λ∂ρ − ηµνkz∂5

1

kz
∂5

)
AAν = 0 , (5.34)(

−∂2 + ξ∂5z∂5
1

z

)
AA5 = 0 . (5.35)

There are also two independent boundary terms which need to vanish((
ηµν∂5A

A
ν − ηνµ∂νAA5

)
δAAµ

)∣∣∣∣1/T
1/k

= 0,((
ηνµ∂νA

A
µ − ξz∂5

(
1

z
AA5

))
δAA5

)∣∣∣∣1/T
1/k

= 0 . (5.36)

Considering first the UV BC we can make the first term in the first equation vanish
by demanding ∂5AAµ

∣∣
1/k

= 0. The first equation then implies AA5
∣∣
1/k

= 0 and from
these it follows that the second equation is also zero. Alternatively, the first term in
the second equation vanishes for AAµ

∣∣
1/k

= 0 which on the one hand implies that the
first equation vanishes and on the other hand implies ∂5

(
1
z
AA5
) ∣∣

1/k
= 0. Labeling

these two by [84]

(+) :

{
(+) ∂5A

A
µ

∣∣
1/k

= 0

(−)5 AA5
∣∣
1/k

= 0
, (−) :

{
(−) AAµ

∣∣
1/k

= 0

(+)5 ∂5
(
1
z
AA5
) ∣∣

1/k
= 0

. (5.37)

Again we refer to Neumann (+) or Dirichlet (−) BC, respectively, when the BC
contains a derivative or not. Thus the BCs of AAµ and AA5 are opposite to each
other, like in the fermion case. If we specify a BC of a general AAM we always give
the AAµ BC, with an opposite BC for the AA5 component implied. If we need to make
the BC explicit for the components we use the index 5 for AA5 . Doing the same for the
IR BC we have again four possibilities AM(+,+), AM(+,−), AM(−,+), AM(−,−).
Like for scalars and fermions boundary operators can change the form of the BCs.

Since we also included an internal symmetry there is an interesting feature: We
can assign different BCs for fields with different gauge group indices. This splits
the gauge fields and their corresponding generators into four different sets. The
generators of fields that have (+) BC on the UV brane form a subgroup H0 of
SU(N) and the the generators of fields that have (+) BC on the IR brane form a
subgroup H1 of SU(N). The four groups can then be organized by [78]

(+,+) AaM T a ∈ Alg{H = H0 ∩H1} , (5.38)
(+,−) AāM T ā ∈ Alg{H0/H} , (5.39)
(−,+) AȧM T ȧ ∈ Alg{H1/H} , (5.40)
(−,−) AâM T â ∈ Alg{SU(N)/H0} ∩ Alg{SU(N)/H1} . (5.41)
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Thus on the UV brane the symmetry is reduced to H0 and on the IR brane to H1.
Similarly, if we also charge scalar and fermion fields under SU(N) we can assign
different BCs to different components2.

To complete the Faddeev-Popov procedure we derive the ghost action Sgh. This
can be done in a similar way as in the 4D case for the Rσ gauges [6]. The gauge
fixing condition from the above gauge fixing action (5.31) is [89]

GA(A) = ∂µAAµ − ξkz∂5
(

1

kz
AA5

)
. (5.42)

Note that ∂5
(

1
kz
AA5
)

has always the same BCs as AAµ . Thus also the ghost fields will
have the same BCs as AAµ . Varying (5.42) with respect to gauge transformations
(5.25) gives

δGA

δαC
=

1

g5

(
∂µDAC

µ − ξkz∂5
(

1

kz
DAC

5

))
, (5.43)

and results in the ghost action3

Sgh =

∫
d4x

∫ 1/T

1/k

dz

[
1

kz
c̄A
(
−∂µDAC

µ + ξkz∂5

(
1

kz
DAC

5

))
cC
]
, (5.44)

where cA, c̄A are Lorentz scalar, anticommuting, 5D fields with the same BC as AAµ .

6 Kaluza-Klein-Decomposition of 5D
Fields

This and the next chapter are focused on connecting the 5D theories from the last
chapter with the usual 4D fields of the SM. Here we integrate out the extra dimension
in the action. To do this it is useful to expand the dependence of the 5D fields on the
extra dimension in in terms of a set of eigenfunctions, known as a Kaluza-Klein (KK)
decomposition. This is possible since the extra dimension is compact. Consider first
the case of a real scalar field ϕ, which can be expanded into [79]

ϕ(x, z) =
∞∑
n=0

ϕ(n)(x)f
(n)
ϕ (z) . (6.1)

2The scalar/fermion BCs must be consistent with the assignments of the gauge fields to ensure
gauge invariance on the branes

3To perform the manipulations in the Faddeev–Popov procedure it is best to do a KK expansion
(see next chapter) of the gauge fields.
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The fields ϕ(n) are called KK modes and the functions f (n)
ϕ (z) are called KK wave-

functions. Looking at the scalar action and bulk equation of motion we want these
eigenfunctions to satisfy the differential equation [79](

−z3∂5
1

z3
∂5 +

1

k2z2
m2

)
f
(n)
ϕ (z) = (mϕ

n)
2f

(n)
ϕ (z)

=⇒
(
−∂25 +

3

z
∂5 +

1

k2z2
m2

)
f
(n)
ϕ (z) = (mϕ

n)
2f

(n)
ϕ (z) , (6.2)

as well as the orthonormality condition∫ 1/T

1/k

dz

(
1

kz

)3

f
(n)
ϕ (z)f

(m)
ϕ (z) = δnm . (6.3)

Note that we can interpret the above integral as defining a scalar product on this
space. With this identification one can show that the differential operator above
is a hermitian operator. This guarantees that the eigenfunctions f (n)

ϕ exist, form a
complete (orthogonal) set and the corresponding eigenvalues (mϕ

n)
2 are positive. The

BCs of ϕ translate now to conditions on the f (n)
ϕ s, which means also the eigenvalues

(mϕ
n)

2 depend on the BCs. If needed, we will add a subscript f (n)
ϕ,(s,s′), s, s

′ ∈ {+,−}
to indicate the different choices.

Plugging this expansion in the action we get

Sϕ =

∫
d4x

∞∑
n=0

1

2

[
ϕ(n)(−∂2 − (mϕ

n)
2)ϕ(n)

]
. (6.4)

One can see that we now have an infinite spectrum of 4D scalar fields each with a
different mass. Since we can order the eigenvalues (mϕ

n)
2, such that they increase

with n this is also called a tower of KK-modes. Explicit expressions for the KK
wavefunctions and KK masses are given in Appendix B. We reserve the index n = 0
for modes with (mϕ

n=0)
2 = 0 and call this mode a zero mode. It turns out, without

boundary operators, that for the BCs in the last chapter only in the case for a bulk
mass m = 0 and (+,+) BC such a zero mode exists [80]. The KK wavefunction in
this case is constant along the fifth dimension and reads

f
(0)
ϕ,(+,+)(z) =

√
2k3

k2 − T 2
=
√
k

√
2

1−
(
T
k

)2 . (6.5)

That only (+,+) fields have a zero mode will also be true for fermions and gauge
bosons. The first KK mode will in general have a mass around (mϕ

n=1)
2 ∼ T 2 =

O
(
TeV2

)
. This means at low energies, like the ones probed at past colliders, only the

zero mode plays a phenomenological role. If one tries to model the SM with these 5D
fields, the SM fields should then be identified with the zero modes of the 5D fields.
Of course most of these fields should then acquire a small mass (small compared to
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O(TeV)) through some mechanism. This will be discussed in a later chapter. Note
also that the KK decomposition is defined by the free action, interactions, like ϕ4

have to be calculated perturbatively and the interaction strengths are determined
by overlap integrals over the respective KK wavefunctions.

We can do a similar KK decomposition for a fermion Ψ =
(
ΨL ΨR

)T [79]

ΨL(x, z) =
∞∑
n=0

Ψ
(n)
L (x)f

(n)
ΨL,(s,s′)(z) , (6.6)

ΨR(x, z) =
∞∑
n=0

Ψ
(n)
R (x)f

(n)
ΨR,(s,s′)(z) . (6.7)

Looking at the fermion action and bulk equation of motions we want these eigen-
functions to satisfy the following differential equations [79](

∂5 −
2

z
− c

z

)
f
(n)
ΨR,(s,s′)(z) = −mnf

(n)
ΨL,(s,s′)(z) , (6.8)(

−∂5 +
2

z
− c

z

)
f
(n)
ΨL,(s,s′)(z) = −mnf

(n)
ΨR,(s,s′)(z) , (6.9)

as well as the orthonormality conditions

∫ 1/T

1/k

dz

(
1

kz

)4

f
(n)
ΨL,(s,s′)(z)f

(m)
ΨL,(s,s′)(z) = δmn , (6.10)∫ 1/T

1/k

dz

(
1

kz

)4

f
(n)
ΨR,(s,s′)(z)f

(m)
ΨR,(s,s′)(z) = δmn . (6.11)

Again we can interpret the the above integral as defining a scalar product on this
space. With this identification one can show that the differential operator above is a
hermitian operator. This guarantees that the eigenfunctions f (m)

ΨL/R,(s,s′) exist, form
a complete (orthogonal) set and the corresponding eigenvalues (mΨ

n )
2 are positive.

The BCs of ΨL,ΨR now translate to conditions on the f (m)
ΨL/R,(s,s′)s. We will add

a subscript f (m)
ΨL/R,(s,s′), s, s

′ ∈ {+,−} to indicate the different choices. Remember
that ΨL and ΨR have opposite BCs, but we will specify by (s, s′) the BCs for
ΨL. This means f (m)

ΨR,(−,−) refers to the KK wavefunction of a RH fermion with
(−,−) = (+,+)R BCs. Explicit expressions for the KK wavefunctions and KK
masses are given in Appendix B. Note that if we have a solution for f (m)

ΨL,(s,s′) the above
equation completely determine f (m)

ΨR,(s,s′). In fact from the symmetry of the equations
we can get the solution for f (m)

ΨR,(s,s′) from f
(m)
ΨL,(s,s′) by replacing (s, s′) → (−s,−s′)

and c→ −c.
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Plugging this expansion in the action we get

SΨ =

∫
d4x

∞∑
n=0

(
−Ψ

(n)
L iσ̄µ∂µΨ

(n)
L −Ψ

(n)
R iσµ∂µΨ

(n)
R

−mΨ
nΨ

(n)
R Ψ

(n)
L −m

Ψ
nΨ

(n)
L Ψ

(n)
R

)
. (6.12)

One can see that we now have an infinite spectrum of 4D Dirac fermion fields each
with a different mass. Looking first at the LH modes it turns out that a zero mode
solution only exists for (+,+) BCs, but unlike the scalar case for every choice of
the bulk mass parameter c. Because the RH components have the opposite BCs,
there is no corresponding RH zero mode. The action for the zero mode is therefore
an action for a LH massless Weyl fermion. Similarly for (−,−) BCs there is only a
RH zero mode. Even though we started with a non-chiral theory, using the BCs we
can get a chiral theory in the low energy limit. For every SM fermion we thus need
two Dirac fermions in the 5D theory, one for the LH and one for the RH fermions.
Looking at the KK wavefunctions for the zero mode one finds [79]

f
(0)
ΨL,(+,+)(z) =

√
T (kz)2(Tz)−cf(+c) , (6.13)

f
(0)
ΨR,(−,−)(z) =

√
T (kz)2(Tz)+cf(−c) , (6.14)

with the flavor function

f(c) =

√
1− 2c

1−
(
T
k

)1−2c . (6.15)

The dependence of the zero mode wavefunctions f (0)
ΨL/R on the c–parameter is very

important for the running of gauge couplings (see Part IV) and also for flavor phe-
nomenology (see Part V) thus it is instructive to take a closer look at this. By
varying the c–parameter one changes the localization along the extra dimension.
Since the notion of localization is tied to that of distance special care has to be
given to the warped metric. To talk about localization one has to study the wave-
functions compared to a flat space metric and this is done more easily by working
with the non–factorizable form of the metric (see Chapter 4) and define explicitly the
fifth component y ≡ r|ϕ| [85]. The rescaled wavefunctions are plotted in Figure 6.1
for different values of c. One can see that the bulk mass parameter has an influence
on the localization of the zero mode profiles. The LH profiles are localized towards
the UV brane for c > 1

2
and towards the IR brane for c < 1

2
. As the RH solution can

be constructed by flipping c→ −c, the zero mode profile is UV localized for c < −1
2

and IR localized for c > −1
2
.

Moving on to gauge bosons AM . Suppressing the gauge index the KK decompo-
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Figure 6.1: Depiction of the localization of fermion zero mode wavefunctions for the
case of a LH zero mode for different values of the c–parameter. For
values c > 1/2 the fermion wavefunction is localized towards the UV
and for values c < 1/2 the fermion wavefunction is localized towards the
IR. For c = 1/2 the fermion wavefunction would be flat.

sition for the components Aµ and A5 read [79]

Aµ(x, z) =
∞∑
n=0

A(n)
µ (x)f

(n)
A,(s,s′)(z) , (6.16)

A5(x, z) =
∞∑
n=0

A
(n)
5 (x)f

(n)
A5,(s,s′)(z) . (6.17)

Looking at the gauge boson action and bulk equation of motion we want these
eigenfunctions to satisfy the following differential equations [84]

z∂5

(
1

z
∂5f

(n)
A,(s,s′)(z)

)
= −m2

nf
(n)
A,(s,s′)(z) , (6.18)

∂5

(
z∂5

(
1

z
f
(n)
A5,(s,s′)(z)

))
= −m2

n,5f
(n)
A5,(s,s′)(z) , (6.19)

as well as the orthonormality conditions∫ 1/T

1/k

dz
1

kz
f
(n)
A,(s,s′)(z)f

(m)
A,(s,s′)(z) = δnm , (6.20)∫ 1/T

1/k

dz
1

kz
f
(n)
A5,(s,s′)(z)f

(m)
A5,(s,s′)(z) = δnm . (6.21)
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Again we can interpret the the above integral as defining a scalar product on this
space. With this identification one can show that the differential operators above are
hermitian operators. This guarantees that the eigenfunctions f (n)

A(5),(s,s′) exist, form a
complete (orthogonal) set and the corresponding eigenvalues (mA

n,(5))
2 are positive.

The BCs of Aµ, A5 now translate to conditions on the f (n)
A(5),(s,s′)s. We will add a

subscript f (n)
A(5),(s,s′), s, s

′ ∈ {+,−} to indicate the different choices. Remember that
f
(n)
A,(s,s′) and f

(n)
A5,(s,s′) have opposite BCs, but we will specify by (s, s′) the BCs for

Aµ. This means f (n)
A5,(−,−) refers to the KK wavefunction of A5 with (−,−) = (+,+)5

BCs. Explicit expressions for the KK wavefunctions and KK masses are given in the
Appendix B. Note that if we have a solution for f (n)

A,(s,s′) we can for mn ̸= 0 construct
a solution for f (n)

A5,(s,s′) by f (n)
A5,(s,s′)(z) =

1
mn
∂5f

(n)
A,(s,s′)(z) and set generally mn,5 = mn.

Plugging this expansion in the action we get

S =

∫
d4x

∞∑
n=0

(
1

2
An,µ

(
ηµν∂2 −

(
1− 1

ξ

)
ηµληρν∂λ∂ρ + ηµνm2

n

)
An,ν

+
1

2
An,5

(
−∂2 − ξm2

n

)
An,5

)
. (6.22)

One can see that we now have an infinite spectrum of 4D massive gauge boson
fields and an infinite spectrum of 4D massive scalar fields each with a different
mass. Comparing this to 4D theories (like the Higgs mechanism) we see that the
KK modes of A5 provide the longitudinal polarizations of the massive gauge bosons
Aµ. In unitary gauge ξ → ∞ these scalars are removed from the theory. This of
course is not true for a possible zero mode with mn = 0. Again it turns out that a
zero mode for Aµ only exists in the case of (+,+) BCs and because A5 has opposite
BCs there is no corresponding scalar. Thus the zero mode consists only of a single
massless gauge boson. Alternatively, for (−,−) = (+,+)5 BCs there is no zero mode
of Aµ but one of A5. The low energy theory thus contains only a massless scalar A5.
Looking at the KK wavefunction for the zero fields we find

f
(0)
A,(+,+)(z) =

√
k

log
(
k
T

) , (6.23)

f
(0)
A5,(−,−)(z) = Tz

√
2k3

k2 − T 2
. (6.24)

Equipped with this knowledge, one way to model the SM is to choose a bulk group
SU(3)c×SU(2)L×U(1)Y and assign each field (+,+) BCs such that only the Aµ’s
have zero modes, which can be identified with the SM gauge fields. Then the A5’s
have (+,+) = (−,−)5 BCs and thus there are no additional scalars in the theory.

But this is not the only way to generate the SM fields. As we have seen in
Chapter 5, we can assign different BCs to different components of the gauge field
in gauge group space. By giving (+,+) BCs to only some components of a general
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bulk gauge group G, there will not be a Aµ zero mode for every component of G,
but only of a subgroup H. This has (at least) two interesting applications. First, if
it is possible to realize H = GSM, but still start with a larger group G in the bulk,
one also reproduced the SM gauge field at low energies, allowing for the realization
of a GUT in this context [97], with the GUT group G and an alternative breaking
mechanism instead of the usual Higgs mechanism. This will be further explored in
Chapter 10. Second, by starting with a bulk gauge group G one can deliberately
assign (−,−) BCs to some components such that there are some scalar zero modes
from A5. If one can choose the BCs such that the quantum numbers of these scalars
are the same as the quantum numbers of the Higgs doublet, these A5’s can play the
role of the SM Higgs. This possibility will be further explored in Chapter 9.

Going back to general considerations of RS gauge fields, we can also determine the
relation between the 5D gauge coupling g5 and the 4D gauge couplings of SM fields.
For this one has to look at the covariant derivative acting on fermion or scalar fields,
perform a KK decomposition of all fields involved, integrate out the extra dimension
and look at the zero mode fields. Exemplary, we do this here for an abelian gauge
field acting on fermions with a LH zero mode. Starting point is the following part
of the action

S ⊇
∫

d4x

∫ 1/T

1/k

dz

(
1

kz

)4

Ψ̄ (iγµDµ)Ψ

⊇ g5

∫
d4x

∫ 1/T

1/k

dz

(
1

kz

)4

Ψ̄γµΨAµ , (6.25)

which results from (5.15) with the covariant derivative. Doing a KK expansion one
finds the following terms for some of the lowest modes

S ⊇
∫

d4x

(
g5

[∫ 1/T

1/k

dz

(
1

kz

)4 [
f
(0)
ψL

(z)
]2
f
(0)
A (z)

]
Ψ̄

(0)
L γµΨ

(0)
L A(0)

µ

+ g5

[∫ 1/T

1/k

dz

(
1

kz

)4 [
f
(0)
ψL

(z)
]2
f
(1)
A (z)

]
Ψ̄

(0)
L γµΨ

(0)
L A(1)

µ + ...

)
.

(6.26)

Although each gauge boson KK mode will have the same 5D gauge coupling g5
due to gauge invariance, the resulting observed 4D gauge couplings depend on the
overlap integrals between the KK profiles and thus on their localization. The zero
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mode 4D gauge coupling is given by [89]

g ≡ g5

[∫ 1/T

1/k

dz

(
1

kz

)4 [
f
(0)
ψL

(z)
]2
f
(0)
A (z)

]

= g5

√
k

log
(
k
T

) [∫ 1/T

1/k

dz

(
1

kz

)4 [
f
(0)
ψL

(z)
]2]

= g5

√
k

log
(
k
T

) . (6.27)

Since the gauge boson zero mode wavefunction is flat the integral over the extra
dimension reduces to the normalization of the fermion profiles. This will not be true
for the first and higher KK modes of the gauge boson, leading to couplings which
depend on the localization of the fermions along the extra dimension. They will be
discussed further in Part V, where we also use the relation above to convert from
5D to 4D couplings when needed.

7 AdS/CFT correspondence

Apart from the KK decomposition there exist another method to relate the 5D RS
theory to a 4D one: holography [78, 85]. This is directly motivated by the AdS/CFT
correspondence [98], which states that a 5D gravitational theory in anti de-Sitter
space (AdS) is dual to a strongly coupled 4D conformal field theory (CFT). But
one can also be see this more directly in the following way: We adopt the point of
view of a 4D observer located on the Planck brane. In terms of a functional integral
we need to integrate out the bulk and IR brane degrees of freedom while keeping
the values of the fields at the UV brane. In this way one finds a weakly interacting
theory with local gauge invariance H0, which is the symmetry on the UV brane.
This sector is then weakly coupled to a 4D strongly interacting sector (CFT) with
global symmetry G, the bulk gauge symmetry. Through the presence of the IR
brane the CFT confines at the TeV scale. Furthermore, if the IR brane symmetry
H1 is a true subgroup of G the global symmetry is spontaneously broken down to
H1. In this way we can construct a "holographic dictionary" between quantities in
the 5D and quantities in the 4D theory, for which we list a few in Table 7.1 [82]. The
relation between this interpretation and the KK picture is the following. The KK
states, which are of order TeV, are the mass states resulting from the admixture of
the massive resonances of the strong sector with the fields of the elementary sector.

Additionally, the holographic interpretation allows one also to relate RS theories
to Composite Higgs scenarios (see Chapter 2). In general, the Higgs will be localized
towards the IR brane implying that it is a composite particle of the 4D CFT. This
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5D theory 4D theory
5D bulk gauge symmetry G 4D global symmetry G of strong sector

UV symmetry H0 weakly coupled 4D gauge symmetry
IR symmetry H1 breaking of G to H1 in composite sector

fields localized towards the UV brane mostly elementary fields
fields localized towards the IR brane mostly composite fields

motion along z rescaling 4D coordinates
... ...

Table 7.1: Overview of the AdS/CFT dictionary

picture becomes even more illuminating, if one considers GHU, see Chapter 9. In
this way the Higgs can be identified as the pNGB associated with the coset G/H1.
We can also comment on the compositness of other particles. In general, as we will
see in Chapter 14, the higher the mass of a fermion the more it will localized towards
the IR brane. Since the top quark is the heaviest of all the fermions, it is localized
the most towards the IR brane, thus being the most composite fermion. For more
information see e.g. [78, 85].

8 5D Propagators and Vertices

A key ingredient of any QFTs are the Feynman rules. In this chapter we derive the
propagators and vertices for scalars, fermions and gauge bosons for every possible
BC. In general, there are two approaches to this. First, one can also do KK decom-
position for the propagators with the same KK wavefunctions as for the fields itself.
In this way one gets am infinite series over 4D propagators, with their masses given
by the respective KK masses. Here we opt for the second approach and work in the
full 5D space. This has the advantage to result in a closed form for the propagators,
which simplifies some of the renormalization techniques in Part IV considerably.

8.1 5D Propagators

In this section we give the propagators for scalar, fermion and gauge fields extending
the works of [99, 100, 89]. We start with a scalar field ϕ, with general BCs, described
by the action (5.2). As we noted in Chapter 5, having chosen any BCs we can freely
integrate by parts, resulting in1

S =

∫
d4x

∫ 1/T

1/k

dz
1

2k3z3

[
ϕ

(
−∂2 + k3z3∂z

(
1

k3z3
∂z

)
− 1

k2z2
m2

)
ϕ

]
. (8.1)

1We will also use ∂z = ∂5 to explicitly show on which coordinate the derivative is acting.
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Denoting the propagator by2 ⟨ϕ(x, z)ϕ(x′, z′)⟩ = ∆ϕ(x, z;x
′, z′) = iGϕ(x, z;x

′, z′)
the following differential equation follows

1

k3z3

(
−∂2 + k3z3∂z

(
1

k3z3
∂z

)
− 1

k2z2
m2

)
Gϕ(x, z;x

′, z′) = δ(4)(x−x′)δ(z−z′) .

(8.2)

The BCs on the field ϕ now translate to analogous BCs. For the 4D coordinates
x, x′ we can do a Fourier transform like usual, but because of the metric dependence
on the fifth coordinate z this will not be useful for z, z′. We use in this thesis the
following 4D Fourier transformation

Gϕ(x, x
′; z, z′) =

∫
d4p

(2π)4
e−ip(x−x

′)Gϕ,p(z, z
′), δ(4)(x−x′) =

∫
d4p

(2π)4
e−ip(x−x

′) .

(8.3)

Thus we work with the so called position/momentum space propagators. Doing this
transformation, the differential equation becomes

1

k3z3

(
p2 + k3z3∂z

(
1

k3z3
∂z

)
− 1

k2z2
m2

)
Gϕ,p(z, z

′) = δ(z − z′) . (8.4)

Notice that the momentum independent part of this differential operator is the same
as for the KK decomposition in (6.2), thus we get directly the following solution

Gϕ,p(z, z
′) =

∞∑
n=0

f
(n)
ϕ (z)

1

p2 − (mϕ
n)2

f
(n)
ϕ (z′) . (8.5)

It is useful to have an explicit expression for the propagator, which can be obtained
by solving (8.4) directly. The solution is also given in terms of Bessel functions,
explicitly we find (see Appendix C)

Gϕ,p(u, u
′) =

π(ku)d/2(ku′)d/2

2k(AD −BC)
(A Jα(pu)+BYα(pu)) (C Jα(pu

′)+DYα(pu
′)) .

(8.6)

Here u = min(z, z′), u′ = max(z, z′), α =
√

4 + m2

k2
and the coefficients A,B,C,D

are given in Appendix C for every possible BC.
We can do a similar analysis for a fermion ψ. Denoting the propagator by〈
ψξ(x, z)ψ̄ξ̄(x

′, z′)
〉
= ∆ψ,ξξ̄(x, z;x

′, z′) = iGψ,ξξ̄(x, z;x
′, z′) we get the following dif-

ferential equation from (5.15)(
1

kz

)4 [
/p+ iγ5∂z − i

2

z
γ5 − c

z

]
Gψ,p(z, z

′) = δ(z − z′) , (8.7)

2Throughout this thesis all expectation values are time–ordered.
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where we already went to Fourier space. Using the projectors P± = 1
2
(1∓ iγ5), the

Dirac structure can be simplified by the following ansatz

Gψ,p(z, z
′) = P+

[
S+
p (z, z

′) + /pV
+
p (z, z′)

]
+ P−

[
S−
p (z, z

′) + /pV
−
p (z, z′)

]
=

(
S+
p σµpµV

+
p

σ̄µpµV
−
p S−

p

)
. (8.8)

Explicit expressions for the closed forms of these functions are given in Appendix C
for all possible BC.

Now onto the gauge bosons. Denoting the propagator by
〈
Aµ(x, z)Aν(x

′, z′)
〉
=

∆A,µν(x, z;x
′, z′) = −iGA,µν(x, z;x

′, z′) and ⟨A5(x, z)A5(x
′, z′)⟩ = ∆5(x, z;x

′, z′) =
iG5(x, z;x

′, z′) we get the following differential equations from (5.32)(
1

kz

)[(
kz∂z

1

kz
∂z + p2

)(
ηµν − pµpν

p2

)
+

(
kz∂z

1

kz
∂z +

p2

ξ

)(
pµpν

p2

)]
GA,p,νλ(z, z

′) = δµλδ(z − z
′) , (8.9)(

1

kz

)[
p2 + ξ∂zkz∂z

1

kz

]
G5,p(z, z

′) = δ(z − z′) , (8.10)

where we again did a Fourier transformation and split the differential operator into
its different tensor structures. The ansatz

GA,p,νλ = G0
A,p(z, z

′)

(
ηνλ −

pνpλ
p2

)
+G0

A, p√
ξ
(z, z′)

(
pνpλ
p2

)
, (8.11)

G5,p =
1

ξ
Gi
A, p√

ξ
(z, z′) , (8.12)

simplifies the tensor structure of (8.9) and explicit expressions of G0,i
A,p(z, z

′) can be
found in Appendix C.

Using (5.44), we can also derive the ghost propagator. Denoting the propagator
by ⟨c(x, z)c̄(x′, z′)⟩ = ∆c(x, z;x

′, z′) = iGc(x, z;x
′, z′) the differential equation reads

1

kz

(
p2 + ξkz∂z

(
1

kz
∂z

))
Gc,p(z, z

′) = δ(z − z′) , (8.13)

which is solved by

Gc,p(z, z
′) =

1

ξ
G0
A, p√

ξ
(z, z′) . (8.14)

8.2 5D Interactions

In this section we give look at some of the possible interactions in RS models. We
focus on the interactions used in Part IV. As a starting point we will consider the
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RS version of scalar Quantum electrodynamics (QED), for which the action reads

S =

∫
d4x

∫ 1/T

1/k

dz

(
1

kz

)3

[ηµν(Dµϕ)
∗(Dνϕ)− (Dzϕ)

∗(Dzϕ)] . (8.15)

From this the coupling to the vector part Aµ of the gauge boson follows as

S ⊇
∫

d4x

∫ 1/T

1/k

dz

(
1

kz

)3

ηµν
[
igAµ (ϕ

∗ (∂νϕ)− (∂νϕ
∗)ϕ) + g2AµAνϕ

∗ϕ
]
. (8.16)

Note that this has the same form as the 4D scalar QED except for the extra z
integral.

The main theory we consider here is that of a RS non-abelian gauge theory coupled
to a RS fermion. The fermion action reads

S =

∫
d4x

∫ 1/T

1/k

dz

(
1

kz

)4

Ψ̄

(
iγµDµ + iγ5Dz − i

2

z
γ5 − c

z

)
Ψ . (8.17)

From which the interaction term coupling to the vector part Aµ follows as

S ⊇
∫

d4x

∫ 1/T

1/k

dz

(
1

kz

)4 [
gAaµΨ̄ (γµT a)Ψ

]
. (8.18)

Again this is the same as in 4D, except the extra integration over the extra dimen-
sion.

Lastly, we look at the self interactions between the gauge bosons. Their action
reads

S =

∫
d4x

∫ 1/T

1/k

dz

(
1

kz

)[
−1

4
ηµληνσF a

µνF
a
λσ +

1

2
ηµλF a

µ5F
a
λ5

]
+Sgf +Sgh , (8.19)

for which the cubic and quartic terms simplify to

S ⊇
∫

d4x

∫ 1/T

1/k

dz

(
1

kz

)[
− ηµληνσ

(
gfabc(∂λA

a
σ)A

b
µA

c
ν

+
1

4
g2fabcfadeAbµA

c
νA

d
λA

e
σ

)
+ ηµλ

(
gfabc(∂λA

a
5)A

b
µA

c
5

− gfabc(∂zAaλ)AbµAc5 +
1

2
g2fabcfadeAbµA

c
5A

d
λA

e
5

)]
. (8.20)

Whereas the first bracket has the same form as for a non-abelian gauge theory in
4D, there are additional terms involving the A5.

The last interaction we need is the ghost vertex, which stems from the following
action

S ⊇
∫
x

∫
z

(
1

kz

)
c̄a
(
−∂µDac

µ + ξkz∂z

(
1

kz
Dac
z

))
cc . (8.21)

Again we see the similarities with its 4D equivalent for the interactions with the Aµ
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8.3 Feynman rules

The Feynman rules following from the propagators and interactions given above can
be derived in a similar manner as in 4D. Additionally, to integrating over internal
momenta one should also integrate over internal z-positions. Using the methods
of [6] we find the following rules. First we list the propagators

p

(z1, µ1, a1) (z2, µ2, a2)= ∆a1a2
A,p,µ1µ2

(z1, z2) (8.22)

p

(z1, a1) (z2, a2) = ∆a1a2
5,p (z1, z2) (8.23)

p

(z1, a1) (z2, a2) = ∆a1a2
c,p (z1, z2) (8.24)

p

(z1, α1, a1) (z2, α2, a2)= ∆a1a2
ψ,p,α1α2

(z1, z2) (8.25)

p

(z1) (z2) = ∆ϕ,p(z1, z2) (8.26)

Next we give the vertices for RS scalar QED

p1

p4

p2

p3

(ν1) (ν2)

z
= 2ig2ην1ν2

(
1

kz

)3

(8.27)

p3

p1
p2

(ν1)z = ig(p3 + p2)
ν1

(
1

kz

)3

(8.28)

We move now on to interactions with fermions. The fermion-Aµ vertex for a non-
abelian gauge theory is given by

p3

p2
p1

(ξ)

(ξ̄)

(µ, a)z = igγµ
ξ̄ξ
ta
(

1

kz

)4

(8.29)
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Now we can focus on the non-abelian structure itself. We can split the vertices of
the RS Yang-Mills part into three groups. First there are two vertices involving only
Aµ

p1

p2
p3

(µ1, a1)

(µ2, a2)

(µ3, a3)z =

gfa1a2a3
(

1

kz

)[
ηµ1µ2(p1 − p2)µ3 + ηµ2µ3(p2 − p3)µ1

+ηµ3µ1(p3 − p1)µ2
]

≡ P a1a2a3
µ1µ2µ3

(p1, p2, p3) (8.30)

p3

p1

p4

p2

(µ3, a3)

(µ1, a1)

(µ4, a4)

(µ2, a2)

z
=

−ig2
(

1

kz

)[
fa1a2a5fa3a4a5(ηµ1µ3ηµ2µ4 − ηµ1µ4ηµ2µ3)

+fa1a3a5fa2a4a5(ηµ1µ2ηµ3µ4 − ηµ1µ4ηµ2µ3)

+fa1a4a5fa2a3a3(ηµ1µ2ηµ3µ4 − ηµ1µ3ηµ2µ4)
]

≡ Na1a2a3a4
µ1µ2µ3µ4

(8.31)

Second, there are in total three vertices involving A5

p1

p2
p3

(µ1, a1)

(a2)

(a3)z = gfa1a2a3
(

1

kz

)
(p2 − p3)µ1

≡ Qa1a2a3
µ1

(p2, p3) (8.32)

p1

p2
p3

(µ1, a1)

(µ2, a2)

(a3)z = −igηµ1µ2fa1a2a3
(

1

kz

)(
∂(a1)z − ∂(a2)z

)
(8.33)

p3

p1

p4

p2

(a3)

(µ1, a1)

(a4)

(µ2, a2)

(z) = ig2ηµ1µ2
(

1

kz

)[
fa1a3a5fa2a4a5+fa1a4a5fa2a3a5

]
(8.34)
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Here ∂(a1)z is a z-derivative acting on the propagator attached to the leg with the
gauge index a1. Lastly, there is one vertex involving the ghosts

p3

p2
p1

(a3)

(a1)

(µ2, a2)z = −gfa1a2a3
(

1

kz

)
pµ21 (8.35)

Note there are also vertices between A5 and the fermions/scalars which are not listed
here, as they will not play a role in the renormalization of the gauge couplings.

9 Gauge-Higgs Unification

We noted in Chapter 6 that the zero mode of the fifth component of a 5D gauge field
A

(0)
5 is a massless 4D scalar. To identify this component with the SM Higgs is known

as Gauge-Higgs Unification (GHU) [101, 102, 103]. But we know that the Higgs is
not massless, or more explicitly that it has a potential, which allows for a non-trivial
minimum. The fact that A(0)

5 has no potential and is massless is a consequence of
locality and 5D gauge invariance, but this is only valid at tree level. At the one-
loop level a potential for A(0)

5 can arise from non-local operators. This is because of
the finite interval for the extra dimension, similar to the Casimir effect [102]. This
potential will be finite, since it arises from non-local operators for which no local
counterterms could cancel a possible divergence. Thus A(0)

5 will be massless at tree-
level and acquires a finite mass radiatively. It has been shown that this also works in
warped extra dimensions [64, 65, 104]. In this context the AdS/CFT correspondence
allows us to identify the A(0)

5 with a pNGB in the 4D dual. Here the bulk gauge
group corresponds to global symmetry of the CFT, which is spontaneously broken
at the TeV scale by the IR brane. The associated Nambu-Goldstone boson (NGB) is
the A(0)

5 . If the gauge symmetry of the elementary sector (the UV brane symmetry)
only gauges a real subgroup of the global symmetry, the global symmetry is explicitly
broken and the A(0)

5 acquires a finite mass. Similar to the QCD pion the A(0)
5 can

be viewed as a composite state of the strong dynamics and thus does not receive
corrections above the TeV scale. Moreover, in the 5D theory this potential is in fact
calculable, by decomposing all fields in their KK modes and resumming the series of
one-loop diagrams induced by the virtual exchange of them [79, 84]. This will then
give a VEV to the zero mode A(0)

5 . But this in turn changes the KK wavefunctions
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of the fermion and gauge fields. The KK decomposition can be written as

Φ(x, z) =
∞∑
n=0

Φ(n)(x)f (n)(z, h) (9.1)

Aâ5(x, z) = A
(0),â
5 (x)f

(0)
h (z) +

∞∑
n=0

A
(n),â
5 (x)f

(n)
h (z, h) , (9.2)

where Φ is a generic fermion or gauge boson field and A
(0),â
5 are the zero modes of

the components in the coset which get a VEV h =
〈
(A

(0),â
5 A

(0),â
5 )1/2

〉
. The VEV

dependent KK wavefunctions f (n)(z, h) satisfy the (±) BCs specified in Chapter 5.
To calculate the VEV one needs to solve the coupled equations of the wavefunctions
and generated potential, which is very involved. Fortunately, there exists a gauge
transformation which removes the VEV from the bulk [105]

AAMT
A → ΩAAMT

AΩ† − i

g5
∂MΩΩ† , (9.3)

Ψ→ ΩΨ , (9.4)

with the Wilson line Ω(z) defined as

Ω(z) = exp

(
−ig5

〈
A

(0),â
5

〉
T â
∫ z

1/k

dz′f
(0)
h (z′)

)
. (9.5)

This removes the VEV from the differential equations of the KK profiles such that
we can use the wavefunctions derived previously. What changes are the BCs. Note
that Ω

(
z = 1

k

)
= 1, so the UV brane transforms trivially, but on the IR the trans-

formation is given by

Ω

(
z =

1

T

)
= exp

−i
〈
A

(0),â
5

〉
f

√
2T â

, f =
2T

g5
√
k
, (9.6)

where we defined the Higgs decay constant f . Thus the KK masses mn, which follow
from the IR BC will change too.

Using these modified masses it is now considerably easier to solve for the generated
Coleman-Weinberg potential

V =
Nr

2

∑
n

∫
d4p

(2π)4
log
(
p2 +m2

n(h)
)
. (9.7)

Nr is the number of degrees of freedom for each level of the KK tower (with Nr = 3
for gauge bosons, Nr = −4 for fermions) and mn(h) are the VEV dependent KK
masses. It is useful to regulate the integral and, since the result will be finite,
its values does not depend on the regularization scheme. To calculate the infinite
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sum one can use the spectral function ρ which zeros are given by ρ(m2
n) = 0. The

integrand will then have poles at the position of the masses and by going to the
complex plane, deforming the contour and using the residue theorem the sum can
be converted into an integral, resulting in [105]

V =
Nr

(4π)d/2Γ(d/2)

∫
dq qd−1 log

(
ρr(−q2)

)
. (9.8)

One can now show that the spectral function takes the form [105]

ρr(−q2) = 1 + Fr(−q2) sin2

(
λrh

f

)
, (9.9)

where λr is numerical factor depending on the representation of the fields. In general
the potential will then take the form

Veff = Vgauge + Vfermion , (9.10)

with the gauge and fermion potential taking e.g. for SO(5) the form [79]

Vgauge = α sin2

(
h

f

)
, (9.11)

Vfermion = β1 sin
2

(
h

f

)
+ β2 sin

4

(
h

f

)
. (9.12)

For suitable coefficients α, βi this can then give a non-trivial minimum h, which in
turn then leads to EWSB.
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Part III

Gauge-Higgs Grand Unification
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10 Grand Unified Theories in
Randall-Sundrum Set-Ups

In Chapter 6 we saw an interesting aspect of gauge fields in RS set-ups: Assigning
different BCs to different components of 5D bulk gauge fields based on a bulk gauge
symmetry G leads to a reduced gauge symmetry H at low energies [97]. To show
that this allows for a GUT model, let us choose G = SU(5) [106, 107, 108] and
compare this with the Georgi–Glashow SU(5) model (see Chapter 3) as an example
of 4D GUTs. One way to obtain the SM symmetry at low energies is to choose
H0 = SU(5) as the UV brane symmetry and H1 = GSM as the IR brane symmetry
such that H = SU(5) ∩GSM = GSM. In terms of the BCs of the vector part of the
5D gauge field this can be written as

Aµ =


(++) (++) (+−) (+−) (+−)
(++) (++) (+−) (+−) (+−)
(+−) (+−) (++) (++) (++)
(+−) (+−) (++) (++) (++)
(+−) (+−) (++) (++) (++)

 . (10.1)

The diagonal blocks and the diagonal generator T 24 have the same commutation
relations as in the Georgi–Glashow model and, since they have (+,+) BCs, their
zero modes can be identified with the SM gauge fields. There are also off diagonal
5D fields with (+,−) BCs. They have the same quantum numbers as the X/Y
gauge bosons. Since their BCs are (+,−) = (−,+)5 they neither have a vector field
zero mode nor a scalar zero mode. Note that by doing this we also have a different
breaking mechanism compared to the Higgs mechanism, which is usually used in
4D GUTs. But this set-up also implies that the masses of the first KK modes of
the (+,−) fields are of the order O(TeV) and not around the GUT scale as in the
Georgi–Glashow model. This would then lead to excessive proton decays in sharp
contrast with observation. One way to avoid this is to impose an additional baryon
number symmetry, but we will see in the next chapter, that such symmetries can
naturally arise in certain models.

To include fermions in such a model one can use the same SU(5) representations
as the Georgi–Glashow model in Chapter 3 and choose the BCs such that the zero
modes are the same LH and RH fields as in the SM. The theory then also contains
KK states of these fermions.

The last field which needs to be added is the Higgs doublet. One simple way to do
this, is to add a 4D localized scalar field on the IR brane, instead of a 5D bulk gauge
field. Since the symmetry on the IR brane is H1 = GSM and not G = SU(5) one is
not forced to include a SU(5) multiplet as in the Georgi–Glashow model. One can
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simply take a doublet with the same quantum numbers as the SM Higgs. Thus this
naturally solves the doublet–triplet splitting problem: there is not triplet to begin
with. Another way to incorporate the Higgs doublet is to use the concepts of GHU
which will be explored in the next chapter.

Since the group structure is the same as in the Georgi–Glashow model one also
finds the same tree–level relations (3.18) between the three gauge couplings. This
relation holds for the 5D gauge couplings as well as for the zero mode gauge couplings
defined in (6.27), as they are rescaled by a universal factor independent of the
gauge group structure. Like in 4D renormalization effects have to be considered
to accurately predict how the measured low energy gauge couplings are related to
the common high scale value. As RS models have, additionally to the zero modes,
also KK excitations of them, the RGE might differ considerably. Moreover, the
effective cut-off of RS models is at the TeV scale and it is not clear if the usual 4D
renormalization techniques can be use to go above this scale. This thesis studies in
detail the renormalization of gauge couplings in RS scenarios in Part IV.

Of course there are many more aspects one can analysis in this model, and the
same mechanisms can also be applied to other possible GUT groups like SO(10) or
E6, but here we will not pursue this further and instead extend the unification to
also include the Higgs via the methods of GHU.

11 SU(6) Gauge-Higgs Grand Unification

During the last chapters we saw that two different types of unification are possible in
RS scenarios: The unification of the Higgs and 4D gauge fields into a 5D gauge field
(GHU) and the unification of the SM interactions in a single gauge group (GUT).
Moreover, these types of unification are not mutually exclusive allowing to to both in
one single model: This is known as a Gauge-Higgs Grand Unified Theory (GHGUT).
Like in GHU, this is possible by minimally extending the GUT group to incorporate
the Higgs doublet. For example, one can extend the GUT group SU(5) to a gauge
group SU(6), or SO(10) to SO(11). GHGUT have been studied based on various
groups in warped [109, 110, 111] as well as flat [112, 113, 114, 115, 116] extra
dimensions, but to illustrate the important points we focus here on the minimal
SU(6), put forward in [1]. There the following breaking pattern, extending the
breaking pattern of the last chapter, was achieved: The UV brane symmetry is
H0 = SU(5) and the IR brane symmetry H1 = GSM. Again this implies that the
low energy gauge symmetry is H = SU(5) ∩ GSM = GSM. In terms of the BCs of
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the vector part of the 5D gauge field this can be written as

Aµ =


(++) (++) (+−) (+−) (+−) (−−)
(++) (++) (+−) (+−) (+−) (−−)
(+−) (+−) (++) (++) (++) (−−)
(+−) (+−) (++) (++) (++) (−−)
(+−) (+−) (++) (++) (++) (−−)
(−−) (−−) (−−) (−−) (−−) (−−)


IR−model

. (11.1)

Note that the upper left block can be identified with the SU(5) group of (10.1), but
this structure features additional fields with (−,−) BCs in the last row/column. Of
these new gauge fields only the lower right one will play a role in this thesis: It is a
single gauge field Z ′

µ and corresponds to a gauge group U(1)X and we will study its
mixing with the Z in Chapter 16. Moreover, since (−,−) = (+,+)5, these additional
fields correspond to scalar zero modes in the A5 components. Looking at the trans-
formation properties of these fields under the SM gauge group one finds that the
top right and bottom left components transform as (1,2)1/2 such that it is possible
to identify this component with the Higgs doublet. Moreover, this model predicts
two additional scalar fields: one scalar leptoquark transforming as (3,1)−1/3 and a
scalar singlet transforming as (1,1)0. These can have important phenomenological
consequences, for example in [117] it was shown that many of the flavor anomalies
and the anomalies in the measurement of the muon (g − 2)µ can be explained by
a leptoquark with exactly these quantum numbers. Additionally, it is well known
that new scalar singlets are useful contributors to electroweak baryogenesis (see e.g.
[118]).

In contrast to the model of the last chapter, we do not need to add the Higgs
on the IR brane, as it is already included in the 5D gauge fields. But this also
means that we are not forced to choose GSM as the IR symmetry, allowing for an
alternative breaking pattern. Choosing H0 = GSM and H1 = SU(5) also leads to
H = GSM ∩ SU(5) = GSM. In terms of the BCs of the vector part of the 5D bulk
gauge field this can be written as

Aµ =


(++) (++) (−+) (−+) (−+) (−−)
(++) (++) (−+) (−+) (−+) (−−)
(−+) (−+) (++) (++) (++) (−−)
(−+) (−+) (++) (++) (++) (−−)
(−+) (−+) (++) (++) (++) (−−)
(−−) (−−) (−−) (−−) (−−) (−−)


UV−model

. (11.2)

The field content will be the same as before, with the only difference that off diagonal
fields, corresponding to the X/Y bosons, have (−,+) instead of (+,−) BCs, in both
cases not giving a zero mode. But as we will see in Chapter 13 these models have
very different RGEs. Labeling these according to the brane which is broken to GSM ,
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they are

IR–model : H0 = SU(5), H1 = GSM =⇒ H = GSM ,

UV–model : H0 = GSM, H1 = SU(5) =⇒ H = GSM .

In Chapter 13 it is shown that the IR–model requires unification of the gauge cou-
plings at the IR scale (TeV), whereas the unification scale for the UV–model can be
much higher.

In [1] it has also been shown that one can reproduce the spectrum of SM fermions
by a minimal set of 5D fermions consisting of the lowest representation of SU(6).
By choosing the BCs accordingly, they decompose under SU(5) and GSM in the
following form

20→10 = q′L(3,2)1/6 ⊕ (3∗,1)−2/3 ⊕ e′cL(1,1)1
10∗ = (3∗,2)−1/6 ⊕ uR(3,1)1/3 ⊕ (1,1)−1,

15→10 = qL(3,2)1/6 ⊕ (3∗,1)−2/3 ⊕ ecL(1,1)1
5 = d′R(3,1)−1/3 ⊕ l′cR(1,2)1/2,

6→5 = dR(3,1)−1/3 ⊕ lcR(1,2)1/2
1 = νcL(1,1)0,

1→1 = ν ′cL (1,1)0 . (11.3)

The fields which have a LH or RH zero mode correspond to SM fields and are
labeled with their usual SM symbols in (11.3). Note that there are additional fields,
which do not have a LH or RH zero modes as the correspond to (+,−) or (−,+)
BCs. Some of them are also labeled with the SM symbols with an additional prime.
They have a special role, which we will now explain. Since fermion zero modes are
massless, the SM fields have to acquire their mass by some mechanism. As in the SM
this will be provided by the Higgs doublet, which acquires a VEV (see Chapter 9).
But, as the Higgs doublet is part of the 5D gauge field, its interactions are given by
the covariant derivative acting on the fermion fields (see Chapter 14). This implies
that only fields in the same SU(6) multiplet can be connected via the Higgs. As an
example let us see how the mass of the up–quark is generated. The A5 Higgs will
lead to an interaction term between the uR and the q′L. Ideally we would like to
identify the q′L with the SM quark doublet qL, but the field q′L has no zero mode1.
The solution is now to connect the q′L with qL in the 15, which does contain a zero
mode. This can be done for example by a brane mass on the UV or IR brane, which
implies that the KK modes will be linear combinations of both fields [96]. In that
way the resulting zero mode can be coupled to uR via the Higgs doublet. Once the
Higgs doublet acquires its VEV this gives a mass to the uR like in the SM. This
mechanism will be further explored in Chapter 14.

Thus this model contains all the necessary SM fields and in [1] it has been shown
that one can get the correct Higgs VEV and the correct masses for all SM particles

1Note that this is due to the GHU aspect of GHGUT and not due to the GUT part, see e.g. the
fermion incarnation of [65]
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including neutrino masses. This thesis, together with upcoming papers, e.g. [119],
investigate this model further. In Part IV the groundwork for the renormalization
and thus for the evolution of the gauge couplings is laid out. In Part V and the
upcoming paper [119] flavor phenomenology is studied in more detail and the model
is confronted with EWPT.

Let us focus again on the GUT aspect of this SU(6) GHGUT model. Like in
Chapter 10 the first KK modes of the X/Y bosons in both the IR– and UV–model
have masses of the order O(TeV). This is not nearly heavy enough to suppress
dangerous proton decay. As has been demonstrated in [1], this model features a
hidden baryon number symmetry, rendering the proton stable. Thus there is no
issue with having these KK states at such low energies. Furthermore, the doublet–
triplet splitting problem is not a problem in this model, although one can identify
the scalar leptoquark with the corresponding SU(5) triplet of the Higgs doublet.
Again, since baryon number is conserved, also the leptoquark does not mediate any
baryon number violating decays, allowing it to be light. For more details on this see
[1]. If one takes SU(5) symmetric boundary masses the masses of the down–quark
and electron would be degenerate as was the case in 4D GUT (see (3.14)). But if
one opts for brane masses on the brane which only has GSM as it its symmetry, the
brane masses can be chosen independently giving different masses. Alternatively,
one can add gauge kinetic terms to split them (see [119] for details on both).

In total, we see that this minimal SU(6) GHGUT solves many of the GUT prob-
lems presented in Chapter 3. What remains to be studied are the predictions for the
measured low energy gauge couplings. As in the last chapter, the relations (3.18)
hold at tree–level at the unification scale, but how the couplings run in this SU(6)
GHGUT model will be studied in the next part.
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Part IV

Renormalization of
Randall-Sundrum Models and

Unification in SU(6) Gauge-Higgs
Grand Unification
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This part discusses the one-loop renormalization of gauge couplings in RS models.
After an introduction, which highlights the key difficulties in trying to properly
account for loop diagrams in the determination of a renormalized gauge coupling,
different methods proposed in the literature are examined. Their validity domain as
well as advantages and disadvantages are discussed and the methods are compared
to each other. At the end the most promising method is investigated throughly and
applied to study the unification of gauge couplings in GHGUTs.

12 Evolution of gauge couplings in
Randall-Sundrum models

12.1 Challenges with Renormalization

This chapter introduces the key features of renormalization in (warped) 5D theories
and what difficulties can arise in the process of renormalization itself. First, it has
to be clarified precisely what the object of interest is. What has been studied at
colliders is the coupling of the SM fields, which is not the same as the coupling of
the full 5D field in extra dimensional theories. One can identify the SM fields with
the zero modes of the KK decomposition of a 5D field with and thus the coupling of
this zero mode as defined in (6.27) corresponds to the measured coupling. Of course
gauge invariance implies that the 5D gauge coupling of each KK mode is equal at
tree level, but this might no longer be true if one considers loop effects. This has
already been seen in the case of the Gauge-Higgs mass. Although the Gauge-Higgs
mass is zero at tree-level due to gauge invariance, at loop-level a finite potential is
generated. The first methods discussed in this part, will therefore explicitly single
out the zero mode and calculate loops to its propagator.

An alternative way to relate the 4D and 5D pictures is to use the holographic
dictionary. The SM fields are here identified with the 5D field value at the Planck
brane. Calculating loops to this Planck brane field will be discussed in the method
in Section 12.5.

We will focus here on methods which directly work with the 5D RS set-up, but
there are also approaches using deconstruction [120, 121]. In [121] it is argued, that
this method is equivalent to the method in Section 12.3.

The start of all methods is the 5D action

S ⊇
∫

d4x

∫ 1/T

1/k

dz
√
GGMNGPQ

(
− 1

4g25
FMPFNQ

)
, (12.1)

where we normalized the 5D gauge field such that the 5D gauge coupling g5 is
included in the kinetic terms of the gauge fields. It turns out that the process of
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renormalization can also induce brane localized terms of the form

S ⊇
∫

d4x

∫ 1/T

1/k

dz
√
GGMNGPQ

(
λk
4
δ

(
z − 1

k

)
+
λT
4
δ

(
z − 1

T

))
FMPFNQ

⊇
∫

d4x

[
λk
4
Fµν

(
x,

1

k

)
F µν

(
x,

1

k

)
+

(
T

k

)
λT
4
Fµν

(
x,

1

T

)
F µν

(
x,

1

T

)]
.

(12.2)

Note that the full 5D action is not renormalizable and the naive cut-off is of the
order T ∼ O(TeV). In fact, also the KK picture is only a good description for
low energies and this means the zero mode gauge coupling g can only be properly
defined for low energies. Note that the coupling has a mass dimension

[
g−2
5

]
= 1

and thus diverges linearly with the cut-off Λ. In flat extra dimensions this is the
well-known power-law divergence [122, 123]. At low energies the coupling evolves
with the SM RGE evolution and thus changes logarithmically, but at the TeV scale
this power-law divergence kicks in and spoils predictivity. Surprisingly, this will not
be true for all observables in RS models, because of the warping along the extra
dimension. There will then be an effective cut-off depending on the position along
the extra dimension: On the UV brane the cut-off is of the order k ∼ O(MPl) and
on the IR plane T ∼ O(TeV). Thus it is in principle possible to still talk about a
high scale unification as was first noted in [124] using Pauli-Villars (PV) fields as a
regulator.

This problem can also be seen in a different way. Since renormalization considers
UV effects of arbitrary high energies in principle all KK modes in a KK decom-
position have to be included in the calculation. Each mode is a 4D field and thus
contributes logarithmically to the running of the gauge coupling. Summing then over
all modes gives again power-law corrections. Naively, this is also true for RS models,
but here we can also look at the 4D theory from a holographic perspective [86]. Since
the theory is dual to a CFT weakly coupled to an elementary sector, the couplings
are expected to still run logarithmically. As an analogy one can take the running of
the electric charge in the SM: Although the (electrically charged) quarks confine due
to QCD, the running of the electric charge is still logarithmically. The resolution of
the discrepancy between these two interpretations is presented in the next chapter
using PV fields and it is shown that the running is indeed logarithmically.

Furthermore, we will find that the logarithmic divergencies in RS can be absorbed
by renormalizing the boundary terms λk/T , with the mass dimensions

[
λk/T

]
= 0. By

naive dimensional analysis their values are given by λk/T ∼ 1
16π2 at their respective

energy scales. Since they are suppressed by a loop factor compared to coupling g5
we only need to include the boundary terms at tree level in our calculation.

Before looking at loop effects, let us take a closer look at the tree–level value for
the gauge coupling. The tree–level gauge coupling is given by (6.27)

g2 =
g25k

log
(
k
T

) . (12.3)
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Since the gauge coupling g depends logarithmically on the TeV scale T this might
be interpreted as a coupling run down to the scale T from a Planckian value. That
this interpretation has some merits is confirmed by looking at the CFT dual of the
theory [125]. Here (12.3) describes the corrections to a 4D gauge boson propagtor
from the conserved CFT currents coupled to this gauge boson [126]. In the RS
picture this can be computed at tree–level and in this context this "running" is
referred to as tree–level running.

In the following chapters we look at loop contributions to this coupling in RS
set–ups and how one can regularize and renormalize the resulting expressions.

12.2 Renormalization using Pauli-Villars Fields

We consider first scalar QED with a 5D massless scalar field ϕ in flat extra dimen-
sion [86]. One can do a KK decompostition similar to the one described in Chapter 6,
but the eigenfunctions in flat space will be much simpler sine and cosine functions.
All KK modes contribute in loops to the zero mode gauge boson propagator and
thus to the photon self energy Πµν(p

2) =
(
p2ηµν − pµpν

)
Π(p2). These corrections

are diverging and can be regulated by introducing a 5D PV field Φ with bulk-mass
Λ. Doing a KK decomposition of these fields results also in a tower of KK modes
with masses shifted by an amount ∼ Λ. Λ then regulates two types of divergencies
in the self-energy

Π(0) ∝
∑
n

∫
d4p

[
1

(p2 − (mϕ
n)2)2

− 1

(p2 − (mΦ
n )

2)2

]
. (12.4)

The first divergence is the diverging momentum integration, as one encounters also
in 4D, and the second one is the infinite sum over all KK modes. Above ∼ Λ we can
pair up modes of each field cancelling both divergences. The remaining KK modes
lead to a power-law divergence at the TeV scale [86]

Π(0) ≃ bϕ
8π2

ΛR . (12.5)

Here bϕ = 1
3

is the β-function coefficient for a 4D scalar and R is the size of the
extra dimension.

This can be contrasted with the result one obtains in RS scenarios. The KK
modes of the PV are not all shifted by an amount ∼ Λ. This will only be true for
the zero mode, all higher KK modes stay approximately equal. Thus the self energy
is dominated by the contribution of the zero mode and only for large values Λ ≃ k
are corrections from the KK modes relevant. Since for high energies the warping
becomes irrelevant these corrections will again follow a power-law behavior [124]

Π(0) ≃ bϕ
8π2

log
(µ
Λ

)
− bϕ

64π2

Λ2

k2
(πkR) . (12.6)
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Since the photon is massless we introduced an infrared cut-off µ. The zero mode
contribution is thus the same contribution as one expects from a massless 4D scalar
field. For the SM gauge fields embedded in a RS space this means that the coupling
evolution is logarithmically and approximately the same as in the SM. This allows
one to study high scale unification, similar to 4D GUTs also in this theory [124,
127, 128]. But the extension of this PV regularization to non-abelian gauge groups
and fermion fields is not straight forward. As in 4D the gauge invariant application
of PV to non-abelian gauge bosons is more involved and beyond the scope of this
thesis, but for fermions a more fundamental issue arises. We have seen in Chapter 6
that a bulk mass for fermions does not change the mass of a zero mode, but only
the localization of the zero mode profiles. This implies that the PV field does not
decouple in the limit Λ → ∞. Thus we will not pursue this method further and
investigate another scheme in the next section.

12.3 Renormalization using a
5D-Position-Dependent Cut-Off

Another regularization method which also works for non-abelian gauge fields has
been put forward in [89] by using a cut-off procedure. As explained above the warp-
ing changes energy scales along the extra dimension. This motivates a position-
dependent cut-off of the momentum by Λ/(kz) at the position z in the bulk. On the
UV brane (z = 1/k) the cut-off is Λ ∼ MPl. This then gets gradually reduced to a
value of ΛT/k ∼ O(TeV) at the IR brane (z = 1/T ). Equivalently, one can cut-off
the z integration at a value Λ/(kq) for a given internal momentum q. This can be
seen as an effective IR brane which moves closer to the UV brane for increasing
momentum. But it turns out this also captures less and less contributions from the
propagators in the loop. The correct way to proceed is to renormalize the propaga-
tors to this effective brane, which is done best by resolving the differential equation
with Λ/(kq) as the IR brane position [89]. We follow the approach of [89] using the
background field method [6] for a non-abelian gauge field. Splitting the 5D gauge
field in a background value AM and quantum fluctuations AM the quadratic part of
the action can be calculated by similar manipulations (gauge fixing, integration by
parts, etc.) as in the last part. One finds [89]

S =

∫
d4x

∫ 1/T

1/k

dz
1

kz

[
− 1

2g2

(
AAµ
[
−(D2)ABηµν +

(
1− 1

ξ

)
(DµDν)AB

]
ABν

+ ηµνzAAµDAC
z

(
1

z
DCE
z AEν

)
+ 2FA,µνfABCABµACν

)
+

1

2g2

[
AA5
(
−(D2)AB

)
AB5 + ξAA5DAC

z

(
zDCE

z

(
1

z
AE5
))]

+
1

g2
c̄A
(
−(D2)AE + ξzDAC

z

(
1

z
DCE
z

))
cE
]
. (12.7)
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Here DM is the covariant derivative and FA,µν the field strength tensor both using
the constant background field AM . From this one can derive the one-loop effective
action Γ(1) by integrating out the fluctuating quantum fields. As in 4D the resulting
functional determinants can be expanded in the background field and the quadratic
term can be given in terms of three diagrams [6]. For example the diagram involving
FA,µν reads

←−
p −→

q

p+q←−−

←−
p

z z′
= −1

2
(4CrC(j))

∫
d4p

(2π)4
AAµ (−p)(p2ηµν − pµpν)AAν (p)

×
∫

d4q

(2π)4

∫ Λ/(kq)

1/k

dz

kz

∫ Λ/(kq)

1/k

dz′

kz′
G0
A,q(z, z

′)G0
A,q+p(z

′, z) ,

(12.8)

where C(j) = 2 for vectors (Aµ) and zero for scalars (A5) and Cr is the Dynkin index
for the representation of the field in the loop. This is similar to the result in 4D
with the propagators 1

q2
replaced by the 5D propagators Gq(z, z

′) and an integration
over the extra dimensional position of the internal vertices. In fact one can split the
integral in two, by inserting the corresponding 4D propagators

←−
p −→

q

p+q←−−

←−
p

z z′
= −1

2
(4CrC(j))

∫
d4p

(2π)4
AAµ (−p)(p2ηµν − pµpν)AAν (p)

×
∫

d4q

(2π)4
1

q2(p+ q)2

× q2(p+ q)2
∫ Λ/(kq)

1/k

dz

kz

∫ Λ/(kq)

1/k

dz′

kz′
G0
A,q(z, z

′)G0
A,q+p(z

′, z) .

(12.9)

The first lines are exactly the same integral as in 4D and could be calculated with
standard 4D regularization techniques if the last line would not depend on the
integration variable q. The last line is a dimensionless quantity and captures the
5D aspect. As we need to take p → 0 for the vacuum expectation value, we can
already set p = 0 in this integral and we will denote its value by I(Λ, q). It turns
out that the dependence on q is very weak, in fact I0(Λ) ≡ I(Λ, q = 0) is a good
approximation for q ≪ k. In this approximation one can pull I0(Λ) out of the q
integral and what remains gives the same contribution to the β-function as in 4D.
Including also the other diagrams for the fields Aµ, A5 and the ghosts c gives the
following 1-loop β-function for the 4D gauge coupling g

β(g) = − g3

4π2
C2(G)

(
11

3
I
(Aµ)
0 (Λ)− 1

6
I
(A5)
0 (Λ)

)
. (12.10)

67



Here, C2(G) is the quadratic Casimir operator, I(Aµ)
0 is the contribution from Aµ and

the ghosts c, which have the same propagators, and I(A5)
0 using the A5 propagators.

For Λ ≲ k we have I(Aµ)
0 (Λ) ≈ 1 and I

(A5)
0 (Λ) ≈ 0, thus the evolution of the β-

function is similar to the 4D case.
There are several issues with this regularization scheme. First, the parameter Λ,

introduced to regulate the divergence, is still present in the final equation and it is
unclear how to interpret this result. Second, there are problems, when one applies
this analysis to the fermion case. Extending the results from [89] to fermions we get
the following diverging parts of the effective action

iΓ(1)[A] ⊇ i 1

2g2

∫
d4p

(2π)4
AAµ (−p)AAν (p)

(
ηµνp2 − pµpν

)
+ iI

(Ψ,V )
0 (Λ)

(
8

3

)
1

(4π)2
1

ϵ

1

2

∫
d4p

(2π)4
AAµ (−p)AAν (p)

(
ηµνp2 − pµpν

)
+ iI

(Ψ,S)
0 (Λ)

(
−1

4

)
1

(4π)2
1

ϵ

1

2

∫
d4p

(2π)4
AAµ (−p)AAν (p)

(
ηµνp2 + 0

)
.

(12.11)

Here, the first line is the tree level contribution and the next two are the divergent
contributions from the one-loop diagrams. The second line is what one finds also in
4D multiplied by a factor

I
(Ψ,V )
0 (Λ) = q2(p+ q)2

∫ Λ/(kq)

1/k

dz

(kz)4

∫ Λ/(kq)

1/k

dz′

(kz′)4

1

2

[
V +
q (z, z′)V +

q+p(z
′, z) + V −

q (z, z′)V −
q+p(z

′, z)
]
. (12.12)

Note that this term comes from the off-diagonal elements in (8.8), but there is also
a term coming from the diagonal ones, which results in the last line of (12.11) with
the factor

I
(Ψ,S)
0 (Λ) = |q||p+ q|

∫ Λ/(kq)

1/k

dz

(kz)4

∫ Λ/(kq)

1/k

dz′

(kz′)4

1

2

[
S+
q (z, z

′)S−
q+p(z

′, z) + S−
q (z, z

′)S+
q+p(z

′, z)
]
. (12.13)

Note that we find that in general I(Ψ,S)0 (Λ) ̸= 0 such that the last line is (12.11) is
in fact a real contribution. This term is not present in 4D, where gauge invariance
implies that these terms cancel. Moreover, the last line in (12.11) gives a contri-
bution, which is not gauge invariant. In fact, to cancel its divergence one has to
add non gauge invariant counterterms to the action. In [89] only gauge bosons have
been considered and it was concluded that this position-dependent cut-off does not
break gauge invariance. In contrast we find here that when considering fermions
one indeed breaks gauge invariance with this regularization procedure. As in 4D
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one should look for a regulator which does not break gauge invariance, like dimen-
sional regularization. If this can also be applied to the 5D case will be explored in
the next chapter.

12.4 Renormalization using Dimensional
Regularization

In this chapter we investigate how one can use dimensional regularization to regulate
the infinities arising in 5D loops. This was done in the KK picture by [126, 129, 130],
which we will review here. Again we look at scalar QED with a 5D scalar field ϕ.
Doing a KK decomposition one can use dimensional regularization to get the one-
loop scalar correction

Π(p2, µ) = −µd−4
∑
n

∫ 1

0

dx(2x−1)2
∫

ddq

(2π)d
1

(q2 + (mϕ
n)2 − x(1− x)p2)2

. (12.14)

d = 4 − 2ϵ is the regularization parameter of dimensional regularization and µ the
corresponding regularization scale. Though the 4D integral is easy to perform, the
problem here is the infinite sum over KK modes. The trick is to change the sum
into a complex integration using the residue theorem [126, 129, 130]. For example∑

n

1

p2 +m2
n

=

∫
C

dz

2πi

1

p2 + z2
P (z) . (12.15)

Here C is a closed contour that encloses all KK masses and P (z) can be given by
P (z) = N ′(z)

N(z)
, where N(z) is a function which has zeros at z = mn. Deforming the

contour allows one to perform this integral and expanding around ϵ = 0 gives [126]

Π(p2, µ) =
bϕ

16π2

[
− 1

ϵ
+ log

(√
−p2√
kT

)
+ log

(√
−p2
µ

)

+ 3

∫ 1

0

dyy
√

1− y2 log

(
N

(
iy
√
−p2
2

))

+
γE
2

+ log(4π)− 8

3

]
, (12.16)

with bϕ = 1
3
. Note that the exact form changes slightly with the chosen BC. In [130]

this result was extended to also include fermions and gauge bosons.
As has been pointed out in [126], (12.16) is only valid for momenta p ≲ O(TeV),

since the zero-mode becomes strongly coupled above the TeV scale. Expanding
(12.16) for low momenta gives

Π(p2, µ) ≃ bϕ
8π2

[
log

(
k

T

)
+ log

(√
−p2
k

)
− 1

4
log
(µ
k

)
− 1

4
log
(µ
T

)]
. (12.17)
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With this object the evolution of the coupling can only be studied up to the TeV.
To go to higher energies one needs to study the gauge coupling using a different
observable. This is the approach of the method in the next section. Additionally,
the interpretation of the logarithms in (12.17) is not entirely clear. In principle
they can be viewed as running effects starting on the Planck brane [126], but again
strictly speaking the formula is only applicable for lower energies. Alternatively, the
origin of these logarithms is naturally explained by the method in the next section.

12.5 Renormalization using Planck-Brane
Correlators

In [131, 132] it was realized that there are other useful observables besides the ones
derived from the zero mode, namely observables defined via the so called Planck
brane correlator

←−
p

←−
p

( 1
k
) ( 1

k
) =

∫
d4xeip·x

〈
Aµ(x, 1/k)Aν(0, 1/k)

〉
. (12.18)

This essetntially is the full 5D propagator for the gauge field with start- and end-
points on the Planck brane. It is more directly inspired by the AdS/CFT corre-
spondence (see Chapter 7) compared to the KK picture. Fields located on the UV
brane are elementary and the bulk and IR brane correspond to composite states.
Furthermore, one can define a gauge coupling g(p2) using this correlator via

←−
p

←−
p

( 1
k
) ( 1

k
) ≡ i

g2(p2)

p2
ηµν + ... , (12.19)

where we suppressed gauge dependent parts. At low energies the 5D propagator
is given predominately by the propagator of the zero mode, so the gauge coupling
defined in (12.19) is equal to the zero mode gauge coupling at low energies. But
because the start and end points are on the Planck brane this definition is even valid
for energies p≫ O(TeV). In this section we follow the discussions in [131, 132] and
extend on it.

First let us look what the tree level contribution to this gauge coupling is. Through-
out this section we are interested in the regime T ≪ p ≪ k and we will Wick
rotate all results, as opposed to directly work in euclidean signature as was done
in [131, 132]. For simplicity we also employ to work in Feynman gauge (ξ = 1).
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Using the euclidean propagator from (8.11) one finds [132]

←−
p

( 1
k
) ( 1

k
) = −ig25G0

A,p

(
1

k
,
1

k

)
ηµν . (12.20)

Comparing this with the definition (12.19) we see that the gauge coupling is given
by

g2(p2)

p2
= −g25G0

A,p(1/k, 1/k) ≈
g25
p

K1

(
p
k

)
K0

(
p
k

) ≃ g25k

log
(

2k
p

) 1

p2
. (12.21)

Note that for energies p≫ T the value of the gauge coupling is independent from the
behavior near TeV brane. This will also be true at the loop level. The result is the
tree level running seen from the point of view of a Planck brane observer [125]. Up to
small corrections in the matching scale, this agrees with the findings of Section 12.1
[131, 132]. The Planck brane correlator gives an explanation for the large logarithms
encountered also in the KK picture. At low energies the coupling is given by the
Planck brane coupling "run down" to an energy ∼ TeV. It is also worth noting
that this term is uncalculable, but since its contribution is universal to all gauge
couplings it will cancel in differences and not influence unification.

Next we look at Planck brane correlator at one-loop for different fields. Starting
with contributions from massive scalar with mass m < k, there are two diagrams to
consider

L(1)
µν = ←−

p −→
q

p+q←−−

←−
p

z z′
, L(2)

µν = ←−
p

q←−

←−
p

z . (12.22)

To regulate these expressions we work in d = 4−2ϵ dimensions. Using the euclidean
version of the Feynman rules from Section 8.3 and dropping the purely longitudinal
components we get

L(1)
µν = −ig45

∫
ddq

(2π)d

∫ 1/T

1/k

dz

(kz)d−1

∫ 1/T

1/k

dz′

(kz′)d−1
G0
A,p(1/k, z)(2q + p)µ

Gϕ,q(z, z
′)Gϕ,p+q(z

′, z)(2q + p)νG
0
A,p(z

′, 1/k), (12.23)

L(2)
µν = 2ig45ηµν

∫
ddq

(2π)d

∫ 1/T

1/k

dz

(kz)d−1
G0
A,p(1/k, z)Gϕ,q(z, z)G

0
A,p(z, 1/k) .

(12.24)

To calculate these integrals we focus first on the external propagators. They have
one endpoint on the Planck brane and for T ≪ p≪ k they are given by

G0
A,p(1/k, z) ≈ −

(kz)d/2−1

p

Kd/2−1(pz)

Kd/2−2

(
p
k

) . (12.25)
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Since Kν(y) ∼
√

π
2y
exp(−y), (12.25) is suppressed for values pz ≫ 1. Thus the

support for the z-integrals is mainly given by the region 1
k
< z < 1

p
. In fact one finds

that the main contribution to these integrals comes from the region where pz ≪ 1
is the smallest and thus for a fixed p, from z values near the Planck brane.

Next we look at the internal loop propagators. As in 4D, the main contribution
to the running from the momentum integrals comes from the regions around the
external momentum p. Since we take p ≪ k the dominant contributions should
come from loop momenta l with l ≪ k. Loop momenta greater than the Planck
scale give only rise to analytic structures, i.e. terms analytic in the momentum p,
which we will drop here. Note that this is an implicit choice of scheme, but, if used
consistently throughout, cannot effect the result for the low energy gauge coupling.
Since we concluded the main contribution for the integrals comes for values z, z′
near the Plannck brane this implies lz, lz′ ≪ 1 for the loop momenta. Expanding
the propagators in this limit one finds

Gϕ,q(z, z
′) ≃ −(kz)d/2−α(kz′)d/2−α 2k(α− 1)

p2 +
(
1− 2

d

)
m2

. (12.26)

Here α =
√

(d/2)2 +m2/k2 and m is the mass of the scalar field. Again we see that
the exact dynamics on the IR brane are irrelevant. Moreover one can argue that the
propagator in this limit is dominated by a single pole at a mass m2

d ≡
(
1− 2

d

)
m2.

This allows for a connection to the KK picture. For m = 0 the contribution is
essentially given by the zero mode. Although we consider energies p≫ T , only this
modes has a significant overlap with the Planck brane. Due to the AdS5 curvature,
the higher KK modes are localized towards the IR brane and are suppressed at the
Planck brane. For m ̸= 0 the situation is similar. We can identify one KK mode
with mass md, which behaves like a zero mode, i.e. it is the only one with a non
negligible overlap with the UV brane. In both cases there is only one single mode
which has a significant overlap with the UV brane, and thus the running will turn
out to be logarithmic rather than power law like.

Explicitly the above integrals simplify to

L(1)
µν = −ig45

∫
ddq

(2π)d
(2q + p)µ(2q + p)ν

(q2 +m2
d)((p+ q)2 +m2

d)[
2k(α− 1)

p

∫ ∞

1/k

dz(kz)d/2−2αKd/2−1(pz)

Kd/2−2

(
p
k

) ]2 , (12.27)

L(2)
µν = −2ig45ηµν

∫
ddq

(2π)d
1

q2 +m2
d2k(α− 1)

p

∫ ∞

1/k

dz(kz)d−1−2α

(
Kd/2−1(pz)

Kd/2−2

(
p
k

) )2
 . (12.28)

Although the full propagators mix the dependence on momentum and the extra di-
mension non-trivially, by the virtue of the expansion above we can separate the two.
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Moreover, the momentum integrals have reduced to simple 4D one–loop integrals
for a 4D scalar with mass md. Expanding the z–integrals in pz, p/k ≪ 1, one finds
for the leading terms

L(1)
µν

∣∣
z−int

=

[
2k(α−1)

p

∫ ∞

1/k

dz(kz)d/2−2αKd/2−1(pz)

Kd/2−2

(
p
k

) ]2≃(1

p

Kd/2−1

(
p
k

)
Kd/2−2

(
p
k

))2

,

(12.29)

L(2)
µν

∣∣
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=

2k(α−1)
p2

∫ ∞

1/k

dz(kz)d−1−2α

(
Kd/2−1(pz)

Kd/2−2

(
p
k

) )2
≃(1

p

Kd/2−1

(
p
k

)
Kd/2−2

(
p
k

))2

.

(12.30)

Adding the two diagrams to the tree level contribution results in the one loop gauge
coupling

g2(p2)

p2
=
g25
p

Kd/2−1

(
p
k

)
Kd/2−2

(
p
k

) [1− g25 pKd/2−1

(
p
k

)
Kd/2−2

(
p
k

) Π(p2)

]
, (12.31)

where the vacuum polarization Π(p2) is the result from the 4D momentum integrals
as in the 4D case

Π(p2) =
Γ(2− d/2)
(4π)d/2

∫ 1

0

dx(2x− 1)2
[
x(1− x)p2 +m2

d

]d/2−2
. (12.32)

Like in 4D the result is diverging in the limit d→ 4 and needs to be renormalized.
The functional dependence on p

k
of the Bessel functions suggests that this corre-

sponds to a brane localized term on the UV brane. In fact the boundary term of
(12.2) for the UV brane gives a contribution [131, 132]

g2(p2)

p2
⊇ −g45λkp2

(
1

p

Kd/2−1

(
p
k

)
Kd/2−2

(
p
k

))2

, (12.33)

and thus has the right form to cancel the divergencies of (12.32). This means one
only needs to renormalize λk to get a finite answer. Doing this the gauge coupling,
after resumming the result, is given by [131, 132]

1

g2(p2)
=

log
(
k
p

)
g25k

+ λk(µ)−
1

48π2
log

(
p2

µ2

)
, (12.34)

where we took m = 0 for simplicity. The interpretation of the logarithmic term is
again simple in this method: it corresponds to running of the brane coupling λk(µ).

Next we investigate how this result changes if one chooses different BC for the
scalar field. From our analysis above we have an intuitive view what effects the
running. Only fields with a non–negligible overlap with the UV brane contribute to
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the running and the dynamics on the IR brane is irrelevant. Thus a (+,−) mode
should give the same result as the above (+,+) mode. Since the (−,+) and (−,−)
modes are per definition zero at the UV brane they will give no contribution to the
running. An explicit calculation confirms that this is indeed the case.

This analysis can be extended to fields with other spins. First, we focus on fermion
fields and start with a field with (+,+) BC, which has a LH zero mode. We know
that the localisation of the zero mode and thus the overlap with the Planck brane
depends on the bulk mass parameter c and later we will split our analysis into
different cases depending on the value of c. There is only one diagram contributing
at one-loop

Lµν = ←−
p −→

q

p+q←−−

←−
p

z z′
. (12.35)

Using the Feynman rules from Section 8.3 this evaluates to

Lµν = −ig45
∫

ddq

(2π)d

∫ 1/T

1/k

dz

(kz)d

∫ 1/T

1/k

dz′

(kz′)d
G0
A,p(1/k, z)

Tr[γµGψ,p+q(z, z
′)γνGψ,q(z

′, z)]G0
A,p(z

′, 1/k) . (12.36)

Using the Dirac structure of the fermion propagator (8.8) the trace can be simplified
to traces over gamma matrices

Lµν = −ig45
∫

ddq

(2π)d

∫ 1/T

1/k

dz

(kz)d

∫ 1/T

1/k

dz′

(kz′)d
G0
A,p(1/k, z)[

Tr(γµγν)S̃(z, z′) + pλ(p+ q)ρTr
(
γλγµγργν

)
Ṽ (z, z′)

]
G0
A,p(z

′, 1/k) .

(12.37)

Here we already dropped a term which is anti-symmetric in the indices µ, ν as this
will vanish when contracted with the resulting momentum structure p2ηµν − pµpν .
The functions S̃ and Ṽ are given by

Ṽ (z, z′) =
V +
p+q(z, z

′)V +
q (z′, z) + V −

p+q(z, z
′)V −

q (z′, z)

2
, (12.38)

S̃(z, z′) =
S+
p+q(z, z

′)S−
q (z

′, z) + S−
p+q(z, z

′)S+
q (z

′, z)

2
. (12.39)

Now we can use the the same arguments as in the scalar case for the integral (12.37)
and we expand the fermion propagators in lz, lz′ ≪ 1 for a generic loop momenta
l. One finds that V − and S± scale like lα, α ≥ 0 and thus give only rise to ana-
lytic structures which we will drop in this scheme. The remaining V + has to be
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approximated differently for different values of c

V +
p (z, z′) ≃

−
2k(c− 1

2)
p2

(kz)
d
2
−c(kz′)

d
2
−c for c > 1/2

− (2k)2c

(p2)c+1/2

Γ(1/2+c)
Γ(1/2−c)(kz)

d
2
−c(kz′)

d
2
−c for − 1/2 < c < 1/2

. (12.40)

For c < −1
2

the function V + scales like lα, α ≥ 0 and thus gives only rise to analytic
structures. Like in the scalar case, the expansion allows us to disentangle the position
and momentum integrals. Starting with the easier case c > 1

2
the z integration result

is

Lµν
∣∣c> 1

2
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(12.41)

Note that this is the same structure as in the scalar case and thus can be renormalized
by the localized boundary term. The momentum integral simplifies to

Lµν
∣∣c> 1

2

q−int
= g45 Tr

(
γλγµγργν

)1
2

∫
ddq

(2π)d
pλ(p+ q)ρ
q2(p+ q)2

. (12.42)

Again this is the same integral as one encounters is 4D, with the exception of an
extra factor of 1

2
, which can be explained by the fact that the zero mode corresponds

to a Weyl fermion. Now onto the case of c < 1
2
, the z integration gives

Lµν
∣∣c< 1

2
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=
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, (12.43)

and the corresponding momentum integral reads

Lµν
∣∣c< 1

2

q−int
= g45 Tr

(
γλγµγργν

)1
2

∫
ddq

(2π)d
pλ(p+ q)ρ

[q2(p+ q)2]c+
1
2

. (12.44)

We see that the z–integral has a different structure compared to the scalar and the
other fermion case above. Since it has an additional fractional power of the mo-
mentum, this is not renormalizable with the simple UV boundary term from (12.2).
Luckily, the momentum integral only gives structures which are analytic in the mo-
mentum and thus no renormalization is required.

Finally, the case for c = 1/2 can be constructed from the two cases above by
noting that the propagators are continuous in c. After the z–integration, but before
the momentum integral, we can safely take the limit c → 1/2 as the integrand is
still continuous. Doing this we find that the running for c = 1/2 is the same as for
c > 1/2.
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To summarize the running induced by a 5D fermion is like that of a 4D (LH) Weyl
fermion if it is an UV localized fermion (c ≥ 1

2
) and it does not contribute if it is an

IR localized fermion (c < 1
2
).

Now we can extend these results to other BCs. Starting with the case (−,−) =
(+,+)R, which corresponds to a RH zero mode. Instead of V + only V − contributes
to the running, for which c < −1

2
gives a UV localized zero mode and c > −1

2

an IR localized one. Correspondingly, we find that the (−,−) fermion contributes
like a 4D (RH) Weyl fermion for c ≤ −1

2
and there is no contribution for c > −1

2
.

Furthermore, as for the scalar case the BC on the IR brane is irrelevant and the
results for (+.−) BCs are the same as for (+,+) and the results for (−.+) are the
same as for (−.−).

Finally, the analysis can also be applied to gauge fields in the loop. Looking at
a gauge boson with (+,+) BC we first focus on the contribution coming from the
vector part Aµ. Again we work in the Feynman gauge (ξ = 1) also for the internal
propagators. There are two diagrams contributing

L(1)
µν = ←−

p −→
q

p+q←−−

←−
p

z z′
, L(2)

µν = ←−
p

q←−

←−
p

z , (12.45)

which are explicitly given by

L(1),ab
µν = ig45

∫
ddq

(2π)d

∫ 1/T

1/k

dz

(kz)d−3

∫ 1/T

1/k

dz′
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G0
A,p(1/k, z)P

a1a2a
λ1λ2µ

(p+ q,−q,−p)G0
A,p+q(z, z

′)ηλ1ρ1

P a1a2b
ρ1ρ2ν

(−p− q, q, p)G0
A,q(z

′, z)ηλ2ρ2G0
A,p(z

′, 1/k) , (12.46)

L(2),ab
µν = ig45

∫
ddq

(2π)d

∫ 1/T

1/k

dz

(kz)d−3
G0
A,p(1/k, z)N

accb
µλ1λ2ν

G0
A,q(z, z)η

λ1λ2G0
A,p(z

′, 1/k) . (12.47)

Again we expand the propagators for loop momenta l in the regime lz, lz′ ≪ 1
finding

G0
A,q(z, z

′) ≃ −
2k(d

2
− 2)

q2
. (12.48)

This allows us to perform the momentum and z integration separately, with the z
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integration given by
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(12.49)
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(12.50)

Again these integrals allow for renormalization via the boundary action and one
finds that the momentum integrals are also the same as in 4D. Since in Feynman
gauge (ξ = 1) the ghost propagator is the same as for Aµ the same analysis also
holds for the ghost diagram

L(3)
µν = ←−

p −→
q

p+q←−−

←−
p

z z′
. (12.51)

In total this means that Aµ and the ghosts c contribute as in a 4D non-abelian gauge
theory. Before we look at the scalar part A5, let us first discuss what happens to the
contribution of Aµ and c for different BCs. As for the other fields the IR brane is
irrelevant and thus a field with (+,−) BCs gives the same contribution as one with
(+,+) BC. Like in the cases before (−,−) and (−,+) fields are zero at the Planck
brane and will not contribute the the running.

Now looking at scalar parts involving loops of A5 we start with the BCs (−,−) =
(+,+)5. For example there is the diagram

L(4)
µν = ←−

p −→
q

p+q←−−

←−
p

z z′
, (12.52)

which gives

L(4)
µν = ig45

∫
ddq

(2π)d

∫ 1/T

1/k

dz

(kz)d−3

∫ 1/T

1/k

dz′

(kz′)d−3
G0
A,p(1/k, z)Q

aa1a2
µ (p+ q,−q)

Gi
A,p+q(z, z

′)Qba1a2
ν (−p− q, q)Gi

A,q(z
′, z)G0

A,p(z
′, 1/k) . (12.53)

As before we expand the propagators for loop momenta l in the regime lz, lz′ ≪ 1

Gi
A,q(z, z

′) ≃ 2(kz)(kz′)(1− (kz(′))d−4)

k(d− 4)
. (12.54)

77



Different than the other cases these propagators have no momentum poles and thus
will not give any contribution to the running. Similarly, fields with (−,+), (+,−)
and (+,+) will not contribute. Thus, at one loop, the A5 can be completely dis-
missed in the evolution of the gauge coupling.

13 Unification in SU(6) Gauge-Higgs
Grand Unified Theories

Having discussed different renormalization techniques in the last chapter, we can
apply them to the study of unification in GHGUT models. For this we choose the
method of the Planck brane correlator, since it allows one to study the running of
the couplings up to the Planck scale. We apply this analysis to the minimal SU(6)
model from Chapter 11, but it can be easily adopted for other models. The SU(6)
model comes in two incarnations: One UV-model and one IR-model, which differ in
their breaking to the SM group (see Chapter 11). Depending on the incarnation the
evolution of the coupling constants will be very different and this will give us useful
insights on the conditions of any GHGUT.

Before presenting the results let us take a moment to reflect on our expectations
from the breaking structure and from holographic considerations. In the IR-model
SU(6) is broken to GSM on the IR brane and to SU(5) on the UV brane. Holo-
graphically this corresponds to a strong sector, which is invariant under a global
SU(6) symmetry, with a gauged SU(5) subgroup. At the scale T ∼ TeV this group
is broken further down to GSM. Turning this around above the TeV scale the full
SU(5) gauge group is recovered. Thus above the TeV scale there will be no differ-
ential running and consequently the couplings have to unify before that. But, below
the TeV scale the running is SM–like, which is not enough to unify at the TeV scale
(see Figure 3.1). We conclude that this model is not consistent with the observed
low energy values for the three gauge couplings. Turning now to the UV-model,
SU(6) is broken to GSM on the UV brane and to SU(5) on the IR brane. In the
holographic picture this corresponds to gauging the GSM subgroup of SU(6), and
this gauge group is not broken down further at the TeV scale. In contrast to the
case above, GSM will thus also be the gauge group above the TeV scale and there
is a non trivial differential running, allowing the couplings to unify at one point. In
the following we will calculate if this actually happens. In the following we focus
on the running above the TeV scale and neglect the running between mZ and the
TeV scale, since this has only a relatively small effect on the numerical values of the
gauge couplings.

First we look at the calculation for the IR-model. Beginning with the contribution
from the vector part of the 5D gauge field, we know from our results in Section 12.5
that all fields with (+,+) and (+,−) BCs contribute. From (11.1) we see that these
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are the components of the gauge field, which contain the SM gauge boson, ((+,+)
BCs), and the components of the gauge field, which contain the X/Y gauge bosons
((+,−) BCs). As seen in Section 12.5 they both contribute like corresponding 4D
fields even though the X/Y have no zero mode. Note also that the SM gauge bosons
together with the X/Y bosons form a complete SU(5) multiplet, which means that
there will be contribution to the differential running from these gauge bosons. The
effect of the scalar part of the 5D gauge fields is very simple. In Section 12.5 we
concluded that no matter how the BCs are, they do not contribute. Thus the fields
containing the SM Higgs as well as the scalar leptoquark and singlet can be ignored.
Since the model does not contain any scalar fields, the last thing to look at are the
fermion fields. Here we encounter a problem since all fermion fields in the SU(6)
model from Chapter 11 are connected via brane masses. We leave the extension of
the methods of Section 12.5 to fermions connected via brane masses to a future work,
but we believe that they will have a small effect and not change the result of this
analysis considerably. This is based on the fact that the fermions of the same BC
form again complete representations of SU(5) implying that they will not contribute
to the differential running. Here we take the fields containing the SM fermions as
they have in general the largest overlap with the UV brane. In Section 12.5 we
have seen that only fields which are UV localized contribute to the running. To
reproduce the fermion masses (see Chapter 14) we need to take the SU(5) multiplet
of tR, Q3

L = (tL, bL)
T and τR to be IR localized, whereas the rest are UV localized.

Thus the contribution will be the same as in the SM without the tR, Q3
L = (tL, bL)

T

and τR fermions. In total we find the following running couplings

α−1
3 (µ) = α−1

3 (mZ)−
b3
2π

log

(
µ

mZ

)
, b3 = −

46

3
, (13.1)

α−1
2 (µ) = α−1

2 (mZ)−
b2
2π

log

(
µ

mZ

)
, b2 = −

46

3
, (13.2)

α−1
1 (µ) = α−1

1 (mZ)−
b1
2π

log

(
µ

mZ

)
, b1 = −

46

3
. (13.3)

Note that all three coefficients have the same value, which is the result of all con-
tributing fields forming SU(5) multiplets. Thus there is no differential running and
the unification has to be at the TeV scale. This matches our expectation from
above, rendering this model inconsistent with the observed low energy values of the
gauge couplings. We can illustrate this inconsistency by using the SM values and
the above runnings to extrapolate the couplings to higher energies. This is depicted
in Figure 13.1. The fact that these lines are not on top of each other, reflects the
fact that unification is not possible in this scenario.

Next, we investigate how this changes in the UV-model. The fields with the SM
gauge bosons still have (+,+) BCs, but the BCs of the fields containing the X/Y
bosons are now (−,+). This means they have zero overlap with the Planck brane
and according to Section 12.5 do not contribute to the running. Like in the case for
the IR-model the scalar components of the 5D gauge fields do not contribute in this
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Figure 13.1: Running of the three SM couplings α3, α2, α1 at one-loop according to
the IR-model (13.1)–(13.3) (red) and SM (3.8)–(3.10) (black, dashed).
The initial values are given by (1.10). Note the inconsistency of the
IR model: Above the TeV scale there should be only one unified gauge
coupling, the three curves should be on top of each other, which does
not happen due to the large difference in the measured low energy gauge
couplings. See text for details.

model either. This means, concerning the gauge sector, the evolution of the gauge
couplings is like in the SM. There is also no difference in the fermion sector between
the models. Thus we take the running of the first few SM fermions and exclude
tR, Q

3
L = (tL, bL)

T and τR. In total this results in the following running couplings

α−1
3 (µ) = α−1

3 (mZ)−
b3
2π

log

(
µ

mZ

)
, b3 = −8 , (13.4)

α−1
2 (µ) = α−1

2 (mZ)−
b2
2π

log

(
µ

mZ

)
, b2 = −

13

3
, (13.5)

α−1
1 (µ) = α−1

1 (mZ)−
b1
2π

log

(
µ

mZ

)
, b1 = 3 . (13.6)

Since all three coefficients are different, two couplings each are equal at some energy.
If this happens in one single point, can be determined by running the measured
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low energy couplings with the above equations to higher energies. One finds the
behavior depicted in Figure 13.2. As seen in this figure the three couplings do not
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Figure 13.2: Running of the three SM couplings α3, α2, α1 at one-loop according
to UV-model (13.4)–(13.6) (red) and SM (3.8)–(3.10) (black, dashed).
The initial values are given by (1.10). See text for details.

meet exactly in one point. In fact the degree of mismatch is comparable to the
one in the SM. This is not surprising since the differential running is (almost) the
same in the UV-model and in the SM. In both cases the SM gauge fields are the
main contribution to the running and in both cases the fermions form complete
SU(5) multiplets dropping out of the differential running. The only difference is the
Higgs, which contributes only in the SM, but its contribution is small. As described
in Chapter 3 the meeting points in the SM case are too far apart to accurately
account for the observed low energy gauge couplings. The same is true for the
UV-model presented here. We can quantify this as in Chapter 3 by postdicting
sin2(θW )(mZ), using (13.4)–(13.6) we find sin2(θW )(mZ) = 0.203. Comparing this
to the value sin2(θW )(mZ) = 0.23120 from measurement and the original Georgi–
Glashow SU(5) postdiction sin2(θW )(mZ) = 0.207 [7], our value is off by an amount
of 10% compared to the measurement and on a similar level as the Georgi–Glashow
SU(5) value.

One way to improve the unification is to add brane localized gauge kinetic terms
for each SM field on the UV brane. Since the UV brane symmetry is GSM the
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coefficients of each of these terms can be chosen independently such that the unifi-
cation can be achieved exactly and consistent with the observed low energy gauge
couplings, but a deeper understanding of their origins would be preferable. We leave
the investigation of this possibility for a future work.
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Part V

Flavor Phenomenology and
Precision Tests in Gauge-Higgs

Grand Unified Theories
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Having discussed the unification of gauge couplings in the last part we focus in this
part on selected phenomenological topics. In particular we study some consequences
of EWSB in GHGUT. Starting with fermions it is shown how the hierarchies of the
SM fermion masses can naturally arise in the 5D set-up. Since this mechanism is dif-
ferent compared to the SM one, this might change some of the FCNCss significantly,
as they are naturally suppressed in the SM by the GIM mechanism. In Chapter 15 it
is shown that there exists an analogous mechanism in RS set–ups and the important
contributions in GHGUT are presented. In the last chapter, the effect of EWSB on
gauge fields is discussed. Again, since the nature of EWSB in GHGUT and SM are
different, this might change some relations involving the W and Z-bosons. Here we
will calculate the effect of GHGUT on the oblique parameters S, T, U and compare
it with experimental results. In this part we will assume that the low energy gauge
couplings are given by their experimental values if needed. The work presented here
is part of a larger collaboration, whose result will appear in a future work [119].
On the one hand this means that there will be some overlap between the results
presented here and in [119] and on the other hand we will refer for further details
to [119].

14 Flavor Hierarchies

In this chapter the generation of fermion masses and the hierarchies in the CKM
matrix in GHGUT models are discussed. Note that this mechanism is similar as for
a bulk Higgs field [133, 134] just with a different nature of the Higgs. As an example
we work again with the SU(6) model of Chapter 11.

Although the masses can be calculated exactly by the procedure outlined in Chap-
ter 9, we will use here a more intuitive perturbative approach. We will not make
the gauge transformation to move the Higgs VEV to the IR brane, but instead work
with the regular KK expansion and investigate the effect of EWSB on the full KK
tower. We start by looking at the interaction of the Gauge-Higgs, which is part of
the covariant derivative, with fermions. The relevant part of the action is

S ⊇
∫

d4x

∫ 1/T

1/k

dz

(
1

kz

)4

Ψ̄
(
iγ5D5

)
Ψ

⊇ g5

∫
d4x

∫ 1/T

1/k

dz

(
1

kz

)4 [
iΨ̄RA

â
5T

âΨL + h.c.
]
. (14.1)

From this we see that only fermion fields which are in the same multiplet can be
connected via the Higgs doublet and get a mass via the Higgs VEV. Let us take as
an example the mass of the up quark. In the SU(6) model of Chapter 11 the right
handed up quark is contained in the the 20. After taking into account the group
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structure and doing a KK expansion (see Chapter 6) one finds for the lowest states
involving uR

S ⊇
∫

d4x

(
g5√
2
ūRH

cq′L

)[∫ 1/T

1/k

dz

(
1

kz

)4

f
(0)
h (z)f

(0)
Ψ20R

(z)f
(1)
Ψ20L

(z)

]
+h.c. , (14.2)

where we collected the components of the real Aâ5 into the complex Higgs doublet H
(see Appendix A). Note that the 4D operator in (14.2) is similar to usual 4D Yukawa
interaction term, except it involves q′L instead of qL. Because also the fermions are
unified in SU(6) multiplets in GHGUT, q′L has the same quantum numbers as qL,
but does not have a zero mode. The solution is to embed the qL in a different
multiplet, in this case the 15, and connect the two multiplets via a brane mass Mu.
The resulting (would be) zero mode can then be viewed as a linear combination of
q′L and qL and thus allows on the one hand to be connected to uR via the Higgs and
on the other hand to lie below the TeV scale (see Chapter 11). To illustrate the
most important concepts of GHU let us for the moment assume that q′L does have
a zero mode with zero mode wavefunction f

(0)
Ψ20L

(z) and discuss the effect of brane
masses afterwards. After the Higgs acquires its VEV one would get for the mass of
the up quark

mu =
g5v

2

[∫ 1/T

1/k

dz

(
1

kz

)4

f
(0)
h (z)f

(0)
Ψ20L

(z)f
(0)
Ψ20R

(z)

]
≈ g∗v

2
√
2
f(c20)f(−c20) , (14.3)

where g∗ = g5
√
k. Note that also the KK states get a mass contribution from the

Higgs VEV, but since they also have KK masses of the order TeV this effect is
negligible for them. Furthermore, the expansion leads to mixing between the zero
mode and all higher KK states and to get the true mass of the zero mode one has
to diagonalize this infinite mass matrix. Taking then only the zero mode, as we do
here, gives the up quark mass up to an order O((v/T )2). An exact result can be
achieved as outlined in Chapter 9.

What appears as Yukawa coupling in 4D is in GHU given by the gauge coupling
g5 and the overlap between fermion wavefunctions and the Higgs wavefunction. The
Higgs wavefunction is localized towards the IR brane, but the Fermion localization
changes with the c-parameter c20 as explained in Chapter 6. The more the fermion
wavefunctions are localized towards the IR the greater their mass. In fact the mass
is proportional to the flavor functions f(±c20). For c20 > 1

2
or c20 < −1

2
which

corresponds to the LH and RH components to be UV localized respectively, the
flavor functions f(±c20) are suppressed resulting in an up quark mass which is much
smaller than the EW scale. Alternatively, for −1

2
< c20 <

1
2

the flavor functions
f(±c20) are of the order O(1) and can give rise to large fermion masses. In this way
a large hierarchy of fermion masses can be generated by small changes in the value
of the c–parameter, thereby offering a solution to the flavor puzzle. In general, we
can reproduce the SM by localizing fermions with small masses more towards to the
UV brane and fermions with large masses more towards the IR brane [95, 94].
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This result can be extended to the actual case where q′L and qL are connected via
a brane mass Mu. For simplicity we take an IR brane mass here, for UV masses see
[119]. The up quark mass in this case can be given by

mu =
g∗v

2
√
2
f(c15)M

∗
uf(−c20) . (14.4)

Note that there will then also be mixing between the kinetc terms of qL and q′L,
known as kinetic mixing. Canonically normalizing these terms changes (14.4) by a
factor Kq. The same arguments about the localization as given above are true, but
now there are two c–parameters c20 and c15 to adjust giving more flexibility. This
flexibility can then be used to choose the parameters c20, c15, c6, c1 such that correct
fermion masses for u, d, e, νe can be achieved.

Having discussed how one can successfully generate the masses of one generation
we can now extend this analysis to three generations to explain the the flavor struc-
ture. As the Higgs itself can only couple fields in the same multiplet, the terms
which actually mixes different generations are the brane masses. Again we work
with the example of the up type quarks. In general the brane mass Mu will then be
a 3× 3 matrix in generation space and we will take its entries to be anarchic to the
flavor structure. Equation (14.4) will then turn in a matrix equation

mu =
g∗v

2
√
2
fc15M

∗
uf−c20 , (14.5)

where fc15 = diag(f(c115), f(c
2
15), f(c315)), f−c20 = diag(f(−c120), f(−c220), f(−c320)) are

diagonal matrices. The ci15/20 are the c–parameters of the different generations.
Hierarchies in this matrix can be achieved by hierarchies in the flavor functions
f(c), which in turn can be achieved by O(1) values for c. Note again that one has to
include the effect of kinetic mixing, but the 3× 3 matrix Kq is close to the identity
and thus its effect is generally small [119].

The mass matrix of (14.5) can then be diagonalized as in the SM by the unitary
matrices Uu,L, Uu,R and the hierarchies of mu translate to the hierarchies of the
rotation matrices [134]

Uu,L ∼


1

f1c15
f2c15

f1c15
f3c15

f1c15
f2c15

1
f2c15
f3c15

f1c15
f3c15

f2c15
f3c15

1

 , Uu,R ∼


1

f1−c20

f2−c20

f1−c20

f3−c20
f1−c20

f2−c20

1
f2−c20

f3−c20
f1−c20

f3−c20

f2−c20

f3−c20

1

 , (14.6)

where f i±c15/20 are the components of the flavor function matrices. Similarly, one
finds for the rotation matrices of the down quark

Ud,L ∼


1

f1c15
f2c15

f1c15
f3c15

f1c15
f2c15

1
f2c15
f3c15

f1c15
f3c15

f2c15
f3c15

1

 , (14.7)
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from which follows, to first order, the following CKM matrix

VCKM ∼


1

f1c15
f2c15

f1c15
f3c15

f1c15
f2c15

1
f2c15
f3c15

f1c15
f3c15

f2c15
f3c15

1

 . (14.8)

Comparing this with the measured hierarchies of the SM in equation (1.37) one can
see that the by choosing

f 1
c15

f 2
c15

∼ λ,
f 2
c15

f 3
c15

∼ λ2,
f 1
c15

f 3
c15

∼ λ3 , (14.9)

the hierarchies in the CKM matrix can be reproduced. By choosing the other c–
parameters appropriately one can also get the hierarchies in the quark masses. For
further details and a discussion of the other fermion masses as well as of the PMNS
matrix we refer to [119]

15 Flavor Changing Neutral Currents in
Randall-Sundrum Models

As the nature of the fermion masses and of the CKM matrix is considerably different
compared to the SM, this could allow for large FCNCs. In the SM, there are no
FCNCs at tree–level as the only field, which allows for a flavor change, is the W -
boson. At loop level the W -boson can mediate FCNCs, for example in the following
diagrams

W−

W+
s̄

d

d̄

s
ν

W−

µ−

γ

e−

(15.1)

Let us take a closer look the first diagram, the box diagram, which leads to K–K̄
mixing, and see how this process changes in RS set–ups. In the SM all three up–type
quarks are allowed to propagate in between, the vertex for each of these possibilities
is proportional to the corresponding entry in the CKM matrix. Expanding in the
fermion masses, one finds that the first order term, which is independent of the
masses, vanishes when one sums over all three up–type fermions, as a consequence
of the unitarity of the CKM matrix. This is the well–known SM GIM mechanism
which suppresses these kinds of diagrams. The next term depends then on the
difference of the quark masses divided by the W mass, such that it would vanish for
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equal masses. Thus the most important contribution to these processes stems from
the top quark as it is considerably heavier than the other two.

The situation changes in RS models. Although the CKM matrix is still unitary,
one has to take the into account the overlap integrals between the fermion and gauge
boson wavefunctions. This can then lead to tree-level diagrams for these processes.
For example for K–K̄ mixing we can consider the following diagram

G(n)

d

s̄

d̄

s

(15.2)

The strength of the interaction between the j-th and k-th generation is determined
by

gjk ∼ g5
∑
i

(U †)ji

[∫ 1/T

1/k

dz

(
1

kz

)4

f
(n)
G (z)f

(0)
Ψi

(z)f
(0)
Ψi

(z)

]
U ik , (15.3)

where U is the matrix for the rotation to the mass basis. Let us first consider the zero
mode which corresponds to the SM gluon. Since the wavefunction f (0)

G (z) is constant
the overlap integral reduces to the normalization of the fermion wavefunction (6.10)

gjk ∼ g5
∑
i

(U †)ji

[∫ 1/T

1/k

dz

(
1

kz

)4

f
(0)
Ψi

(z)f
(0)
Ψi

(z)

]
U ik = g5

∑
i

(U †)jiU ik . (15.4)

The unitarity of the rotation matrix U implies that off-diagonal entries vanish for
this diagram and consequently, the gluon itself leads to no FCNCs at tree level. In
contrast, the wavefunction of the first KK mode of the gluon G(1) does depend on
the position along the extra dimension and thus the off-diagonal elements do not
vanish. Weather these lead to dangerous FCNCs depends on the value of the overlap
integral (15.3). Now, the nature of RS space implies that the wavefunctions of KK
modes are IR localized and, since the light zero modes are UV localized, the overlap
integral will be very suppressed. This will be true for any FCNCs and is, in analogy
with the SM GIM mechanism, called RS–GIM mechanism [135, 136]. We also see
that, like in the SM, this mechanism is broken by the top as its large mass implies
a larger IR localization (see Chapter 14). Higher KK modes will be even more
IR localized and have additionally higher masses. Thus in tree-level diagrams the
dominant contribution comes from the first KK modes. On top of the contribution
of the gluon, also the KK modes of Z-boson and the photon have to included. One
finds that the largest contribution comes from the KK gluon as the strong coupling
is the largest of the three coupling constants.

Additionally, one has to consider higher dimensional operators. The EFT scale
with which they are suppressed depends on the position along the extra dimension.
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For the IR brane it would correspond to a TeV scale and thus the suppression might
be too small. Luckily, the RS–GIM mechanism also ensures that the effect of these
operators on FCNCs is small. The EFT cut-off depends on the localization of the
fermions and again since light fermions are UV localized the cut-off will be much
higher.

It will turn out that constraints coming from K–K̄ mixing will be much smaller
compared to the process µ → eγ, which we will discuss below. Thus we will not
go into more details of the calculation here, but a detailed analysis will be found in
[119], together with a discussion on other meson mixings.

We move on to discuss the second type of process, µ→ eγ, which will appear at
loop level in RS. In the SM it is induced through penguin diagrams, like the second
diagram in (15.1). Like before it is suppressed by the SM GIM mechanism this time
following from the the unitary PMNS matrix. The first order term is proportional
to the mass differences of the neutrinos compared to the W mass. As neutrinos are
very light and thus their mass differences very small, this process is almost absent
in the SM (BR(µ → eγ) ≈ 10−40), which implies that any significant observation
would be a clear signal of BSM physics.

Now, in RS scenarios one can also have KK neutrino states and KK W -bosons
propagating in the loop. As the suppression grows with the mass of the KKW -boson
we can focus on the (would be) zero mode, which corresponds to the SM W -boson.
Note that we can not ignore the KK states of the neurtinos as their masses are of
the order TeV and the diagram is proportional to their mass difference.

Note that in general the interaction of zero mode fermions with their KK states is
not diagonal in flavor space such that also the Higgs and Z-boson can contribute to
this process. Additionally, in SU(6) GHGUT also the scalar leptoquark contributes.
In summary, the following diagrams have to be considered

ν(n)

W−

µ−

γ

e−
Z

l(n)

µ−

γ

e−

H

l(n)

µ−

γ

e−
LQ

q(n)

µ−

γ

e−

q(n)

LQ

µ−

γ

e−

(15.5)

Like for K–K̄ mixing the suppression of these diagrams comes from the RS-GIM
mechanism. The interaction strength is given by the overlap between a fermion
zero mode and of one fermion KK mode together with the bosonic particle in the
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loop. As the zero mode fermions are UV localized and the KK states IR localized
the corresponding integral will be small. Again this is in general broken by the top
quark which is IR localized. In the following we investigate if the suppression is
large enough to satisfy the current experimental constraints.

Using the Ward identities the general structure of these diagrams is given by [137]

Mµ = ūp′i
σµνqν
mµ

(CLPL + CRPR)up , (15.6)

where p, p′, q are the momenta of the muon, electron and photon respectively. From
this the decay width for the flavour violating process can be given by

Γ(µ→ eγ) =
(m2

µ −m2
e)

3(|CL|2 + |CR|2)
16πm5

µ

. (15.7)

This decay width has to be compared to the dominating µ → eνν̄ decay with
the decay width Γ(µ → eνν̄) = m5

µG
2
F/192π

3. The branching ratio for the flavor
violating µ→ eγ is thus

Br(µ→ eγ) =
12π2(|CL|2 + |CR|2)

(GFm2
µ)

2
. (15.8)

The most stringent constraint on this branching ratio comes from the MEG experi-
ment [138]

Br(µ→ eγ) = 4.2× 10−13 , (15.9)

at the 90% confidence level. In the upcoming years it will receive an update from
MEG II [139] with a projected sensitivity of

Br(µ→ eγ) = 6× 10−14 . (15.10)

The full calculation of this process has been done in collaboration with the authors
of [119] and the results are plotted in Figure 15.1

As one can see in Figure 15.1, µ → eγ gives an excellent observable to constrain
the parameter space. With the current measurement, this puts the IR scale to
T = 1/R′ ≳ 10TeV.

16 Electroweak Precision Parameters in
Randall-Sundrum Models

In this chapter we study in more detail the effect of EWSB in GHGUT on the gauge
boson states. We will pay special attention on the implications on electroweak pre-
cision parameters, namely the oblique parameters S, T, U . These oblique corrections
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Figure 15.1: Lepton flavor violation constraints: (left) current and future constraints
on µ → eγ decay (right) relative size of the leptoquark (blue), Higgs
(red) and Z-boson (green) loop contributions. The W -boson contribu-
tion is negligible and not shown. We used the definition 1/R′ ≡ T to
better compare with [119] in the future.

have already been studied in several models of warped extra dimensions, for exam-
ple in the context of brane fermions [140], IR brane localized Higgs scenarios with
and without custodial symmetry [141, 142, 90], bulk Higgs scenarios [143], and also
GHU models with custodial symmetry [65], but none of these apply directly to our
model. In the following, we show an explicit calculation for the oblique parameters
in our model, but the obtained results apply also to other GHU scenarios without
custodial symmetry.

16.1 Gauge Boson Masses

Like for fermions the exact mass states can be calculated via the method in Chap-
ter 9. For this one would rotate the Higgs VEV on the brane and solve again for the
KK wavefunctions now with modified BCs coming from the Higgs. For illustrative
purposes, we choose a perturbative approach here. To start, the mass of the gauge
bosons comes from the following term in the action (5.29)

S ⊃ 1

2

∫
d4x

∫ 1/T

1/k

dz
(

1

kz

)
ηµνFµ5Fν5

⊃ 1

2

∫
d4x

∫ 1/T

1/k

dz
(

1

kz

)
DµA5D

µA5 . (16.1)

Once the Higgs acquires its VEV this results in masses/mixings between the different
gauge bosons. For easier comparison with the SM masses we can already rotate the
fields exactly like in the SM to get the W -, Z-bosons and the photon field, which
we also denote by A. Note that this is possible since all these fields have (+,+)
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BCs and as a consequence the KK wavefunctions of these fields will also be given
by the expressions given in Chapter 6. For now we only do a KK decomposition of
the Higgs as described in (9.1) and leave the fields Wµ, Zµ, Z

′
µ as 5D fields. Inserting

the Higgs VEV one finds

S ⊃ 1

k
log

(
k

T

)∫
d4x

∫ 1/T

1/k

dz
(

1

kz

)[
1

2

(
g2Zv

2

4

)
ZµZ

µ +

(
g2Wv

2

4

)
WµW

µ

+
1

2

(
g2Xv

2

36

)
Z ′
µZ

′,µ +
1

2

(
−gZgXv

2

6

)
ZµZ

′,µ
] [
f
(0)
h (z)

]2
. (16.2)

Here gi, i ∈ {Z,W,X} are the 4D gauge couplings, as defined in (6.27), which
explains the factor 1

k
log
(
k
T

)
. The additional numerical factors in the brackets come

from the group generators. For gZ , gW we use their measured values at low energies,
thus they are related by gZ = gW/ cos(θW ), with the weak mixing angle θW . Z ′

µ

corresponds to the gauge boson of U(1)X (see Chapter 11) with coupling strength
gX . As the value of this coupling has to be determined by the RGE evolution we
leave an exact account of this for a future work. Conservatively, we use here gX = gZ
for calculations, as gZ is the largest of the electroweak couplings.

Apart from the mass terms of the 5D W and Z fields, which will result in mass
terms for the zero modes, there is also a mass term for the Z ′

µ and a mixing term
between Z and Z ′

µ.1 Consequently, the Z field used here is not the physical field.
Since in our perturbative approach there will be mixing between the zero modes
and their KK states, this is also true for the W -boson. Thus, to get the physical
fields one has to do an additional field rotation to the mass basis. This will change
the relations between parameters of the W - and Z-bosons compared to the SM,
which can be summarized by the oblique parameters S, T, U . In the next sections
we calculate the corrections to these parameters, deriving the gauge boson mass
eigenstates along the way.

16.2 Deriving the effective Lagrangian

To connect to the electroweak parameters we need to match our model onto an 4D
effective theory. The most general 4D Lagrangian for the electroweak gauge bosons
is given by [140]

L =− 1

4

(
1− Π′

γγ(0)
)
FµνF

µν − 1

2
(1− Π′

WW (0))WµνW
µν

− 1

4
(1− Π′

ZZ(0))ZµνZ
µν +

sW cW
2

Π′
γZ(0)FµνZ

µν

+
(
m2
W +ΠWW (0)

)
W+
µ W

−,µ +
1

2

(
m2
Z +ΠZZ(0)

)
ZµZ

µ . (16.3)

1The mass terms only play a role if there is a massless zero modes. For higher KK states this
mass contribution gets overshadowed by the much greater KK mass. Note that Z ′

µ has no zero
mode, but still the mixing of it with Zµ has to be taken into account.
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Here mW,Z are the SM masses at tree level and sW = sin(θW ) and cW = cos(θW )
are the sine and cosine of the weak mixing angle θW , respectively. The vacuum
polarization amplitudes Π(0) and their derivatives Π′(0) = ∂

∂q2
Π|q2=0 incorporate

the effects of BSM physics, with the fermion vertices normalized to their (tree–
level) SM values. We consider the case of oblique corrections in which all vertex
corrections are equal and can therefore be absorbed in the common gauge boson
polarizations Π. This is in general not the case in RS scenarios, but the RS–GIM
mechanism ensures that the differences are small [90]. An exception to this could
be IR localized fermions, and their effects, for example of the Zbb̄ coupling, have
to be considered independently. In fact, as will be shown in [119], we find that the
coupling of IR localized fermions are in line with the current constraints. Thus we
focus only on the common oblique part and neglect the differences between fermions.

In RS models the coefficients Π can be computed to first order in a tree–level
calculation by integrating over the extra dimension. All effects result from the fact
that EWSB in GHU mixes the gauge bosons with their KK states and, in the case
of the Z-boson, also mixes the Z-boson with the Z ′ associated with U(1)X (see
above). In this section we will explicitly derive the corrections for EWPT from the
Z-boson, with the calculation for the W -boson proceeding similarly. Then in the
next section we compare the corrections coming from the Z- and W -bosons with
the current bounds on the oblique parameters S, T and U .

Because the wavefunction of the photon zero mode is flat, it gives no contribution,
i.e. Π′

γγ(0) = Πγγ(0) = 0, and in this model there is no kinetic mixing between the
Z-boson and the photon at tree level, Π′

γZ(0)=0.
Doing a KK decomposition of the 5D fields Z and Z ′ as given by (6.16), including

the terms from (16.2) we find

S ⊃
∫

d4x

(∑
n

[
− 1

4
Z(n)
µν Z

(n),µν − 1

4
Z ′,(n)
µν Z ′,(n),µν +

1

2
m2
n,(+,+)Z

(n)
µ Z(n),µ

+
1

2
m2
n,(−,−)Z

′,(n)
µ Z ′,(n),µ

]
+
∑
n,m

[
1

2
fnm

(
g2Zv

2

4

)
Z(n)
µ Z(m),µ

+
1

2
fXXnm

(
g2Xv

2

36

)
Z ′,(n)
µ Z ′,(m),µ +

1

2
fXnm

(
−gZgXv

2

6

)
Z(n)
µ Z ′,(m),µ

])
.

(16.4)

Here we defined fnm as the overlap between the n–th and m–th wavefunctions of
the Z field with the Higgs wavefunction

fmn =
1

k
log

(
k

T

)∫ 1/T

1/k

dz

(
1

kz

)
f
(n)
Z (z)f

(m)
Z (z)

[
f
(0)
h (z)

]2
, (16.5)

and fXnm, fXXnm are similar overlaps with one and two Z wavefunctions replaced with
Z ′ wavefunctions respectively. The mn,(+,+) are the KK masses of the Z field, which
has (+,+) BCs andmn,(−,−) are the KK masses of the Z ′ field, which has (−,−) BCs.
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We will calculate the oblique parameters to first order in (v/T )2 and to this order the
most relevant terms come from the zero and first modes of each field, as the higher
overlap integrals quickly diminish. Note that only Z has a zero mode, which implies
m0,(+,+) = 0 and thus the term quadratic in Z(0) is given solely by f00(g

2
Zv

2/4).
Since f00 = 1, we can identify this expression with the SM relation m2

Z ≡ g2Zv
2/4.

Furthermore, the first KK masses are given by m(+,+) ≡ m1,(+,+) ≈ 2.45 T and
m(−,−) ≡ m1,(−,−) ≈ 3.83 T (see Appendix B). Thus to first order in our calculation
we can neglect the diagonal terms from EWSB on the higher KK mode masses, as
they are of order v2. With this the above expression simplifies to

S ⊃
∫

d4x

[
− 1

4
Z(0)
µν Z

(0),µν − 1

4
Z(1)
µν Z

(1),µν − 1

4
X(1)
µν X

(1),µν

+
1

2

(
Z

(0)
µ Z

(1)
µ Z

′,(1)
µ

) m2
Z f01m

2
Z −fX01

gZgXv
2

12

f01m
2
Z m2

(+,+) −fX11
gZgXv

2

12

−fX01
gZgXv

2

12
−fX11

gZgXv
2

12
m2

(−,−)


Z(0),µ

Z(1),µ

Z ′,(1),µ

].
(16.6)

From this one can determine the mass basis of these fields to order (vR′)2. Denoting
the mass eigenstate of the physical Z-boson by Z0 one finds the following relevant
part of the action:

S ⊃
∫

d4x

[
− 1

4
Z0,µνZ

µν
0 +

1

2
m2
Z

(
1−f 2

01

m2
Z

m2
(+,+)

−
(
fX01
)2 g2Xv

2

36m2
(−,−)

)
Z0,µZ

µ
0

]
.

(16.7)

Additionally, one has to correctly normalize the fermion interaction terms to their
SM values. As an example, let us take the interaction with a LH electron. In the
gauge basis this interaction reads2

S ⊃

√
1

k
log

(
k

T

)
gZcL

∫
d4x

∫ 1/T

1/k

dz

(
1

kz

)4

ēLγ
µeLZµ

⊃ gZcL

∫
d4x

(
ē
(0)
L γµe

(0)
L Z(0)

µ λ0 + ē
(0)
L γµe

(0)
L Z(1)

µ λ1 + ...

)
, (16.8)

where cL = T 3 − Qs2W is the same linear combination of the third component of
weak isospin and electric charge as in the SM and we defined the overlap functions

λn =

√
1

k
log

(
k

T

)∫ 1/T

1/k

dz

(
1

kz

)4 [
f (0)
eL

(z)
]2
f
(n)
Z (z) . (16.9)

2We neglect here the rotation of the electron to the mass basis, which is a small effect at this
order in (vR′)
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Note that λ0 = 1 and we find with some numerical approximations

λ1 ≈
N1m(+,+)

T 2

 0.05

0.48− 0.35c
f 2(c)− 1(m(+,+)

T

)2
log
(

2k
m(+,+)

)
 , (16.10)

where N1 ∝ m(+,+) is the normalization of the first KK wavefunction as given in
Appendix B. In general λ1 depends on the c–parameter of the fermion. For the
UV localized fermions we consider here, the c dependent term will be negligible and
thus λ1 independent of c. This justifies the assumptions of obliqueness we did in the
beginning.

There is a corresponding overlap λXn for the Z ′
µ, but because (−,−) fields are even

more IR localized compared to (+,+) fields the overlap will be very suppressed and
thus negligible for our analysis here.

Rotating to the mass basis gives for the interaction with the physical Z-boson

S = gZcL

∫
d4x

[(
1− λ1f01

m2
Z

m2
(+,+)

)
ē
(0)
L γµe

(0)
L Z0,µ + ...

]
. (16.11)

Thus to normalize the interaction to the SM value we can rescale the field as

Z0,µ →

(
1− λ1f01

m2
Z

m2
(+,+)

)−1

Z0,µ . (16.12)

In total this gives then the action

S ⊃
∫

d4x

[
− 1

4

(
1−

(
−2λ1f01

m2
Z

m2
(+,+)

))
Z0,µνZ

µν
0

+
1

2
m2
Z

(
1 +

(
−f 2

01 + 2λ1f01
) m2

Z

m2
(+,+)

−
(
fX01
)2 g2Xv

2

36m2
(−,−)

)
Z0,µZ

µ
0

]
.

(16.13)

Comparing this with (16.3), we can read off

Π′
ZZ(0) = −2λ1f01

m2
Z

m2
(+,+)

, (16.14)

ΠZZ(0) = m2
Z

[(
−f 2

01 + 2λ1f01
) m2

Z

m2
(+,+)

−
(
fX01
)2 g2Xv

2

36m2
(−,−)

]
. (16.15)

Doing a similar calculation for the W -boson results in

Π′
WW (0) = −2λ1f01

m2
W

m2
(+,+)

, (16.16)

ΠWW (0) = m2
W

(
−f 2

01 + 2λ1f01
) m2

W

m2
(+,+)

. (16.17)
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16.3 S, T, U parameters

Rescaling the Π’s by ΠWW = g2Π11,ΠZZ = g2ZΠ33, etc., we can use the standard
definitions of the S, T, U parameters [55]

S = 16π(Π′
33(0)− Π′

3Q(0)) , (16.18)

T =
4π

s2W c
2
Wm

2
Z

(Π11(0)− Π33(0)) , (16.19)

U = 16π(Π′
11(0)− Π′

33(0)) . (16.20)

To avoid confusion between the oblique parameter T and the RS IR scale parameter
T we rename the latter to R′ ≡ 1/T in this section. Thus to leading order in (vR′)2

we obtain

S =
4πv2

m2
(+,+)

(−2λ1f01) , (16.21)

T =
4πv2

4c2Wm
2
(+,+)

(
f 2
01 − 2λ1f01

)
+

4πv2

36s2W c
2
Wm

2
(−,−)

(
fX01
)2 g2X
g2Z

, (16.22)

U = 0 . (16.23)

Note that S, T are both positive since λ1f01 < 0, which is the case for all other RS
scenarios (except when the fermions are on the IR brane [140]). The result depends
on the coupling gX , which has to be calculated by running down the unified coupling
from the unifying scale. To compare with the experimental constraint we use here
again conservatively gX = gZ and leave the exact analysis of the running for a future
work. Note that slight variations of this value will not change the result drastically
since the contribution of the Z ′,(1) is only about 10% that of Z(1).

From (16.10) it follows to leading order, for the UV localized fermions we consider
here, λ1 ∼ − 1√

L
, with L = log(R′k) the logarithm of the warp factor. In fact it is

convenient to use the same formula to estimate the scaling of f01, by realizing that
the integral can be recovered by replacing the Higgs wavefunction in (16.5) with a
LH zero mode fermion wavefunction with c = −1/2. This leads to f01 ∼

√
L and

one can show that similarly fX01 ∼
√
L, but with a smaller numerical coefficient.

Together, these imply S ∼ L0 and T ∼ L1 to leading order, as in the brane Higgs
scenarios without custodial symmetry [90]. In fact one could use the above formula
for a brane localized Higgs by replacing in (16.5) the Higgs wavefunction by a delta
function on the IR brane. However, in brane Higgs scenarios one can no longer
neglect the contribution of higher KK modes, as their overlap with the Higgs is not
decreasing [144]. Taking this into account, we find that the constraints in GHU are
significantly weaker. More quantitatively, in our scenario, the T (S) parameter gets
reduced by a factor approximately 0.4 (0.8) with respect to non–custodial brane
Higgs scenarios.

The experimental bounds on the S and T parameters and their correlation matrix
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are given by [145]

S = 0.04± 0.08,

T = 0.08± 0.07,
ρ =

(
1.00 0.92
0.92 1.00

)
, (16.24)

where in the global fit the parameter U is set to zero. Using these bounds, we give
in Figure 16.1 the regions allowed at 68%, 95%, and 99% confidence level (CL) in
the S−T plane. On the left we plotted the corrections to the S, T parameters from
GHU as given by (16.21) and (16.22) for different values of 1/R′. On the right the
corrections from a standard Brane–Higgs scenario according to the formulas in [90]
are plotted for comparison. As one can see from the position and values of the blue
dots, the constraint from GHU on the scale 1/R′ is in general less than from the
Brane–Higgs case. In GHU the RS contributions from (16.21) and (16.22) pass the

xx










1/R'

GHU

U = 0

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

S

T

99% CL

95% CL

68% CL

xx











1/R'

BH

U = 0

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

S

T

99% CL

95% CL

68% CL

Figure 16.1: Regions allowed at 68%, 95%, and 99% confidence level (CL) in the
S − T plane with U = 0 (mt,ref. = 172.5GeV, mH,ref. = 125GeV) [145].
The blue line represents the contributions in our GHU (left) and in
a Brane–Higgs (BH) scenario [90] (right) for 1/R′ ∈ [2, 10]TeV and
k = 1018 GeV. Note that both models are without custodial protection.
1/R′ increases in the direction of the arrow and the blue dots represent
the values 1/R′ = 2, 3, 4, 5, 10TeV. See text for details.

CL thresholds at
1

R′ > 3.2TeV (99%CL) , (16.25)

1

R′ > 3.4TeV (95%CL) , (16.26)

1

R′ > 3.9TeV (68%CL) . (16.27)
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Comparing these with the results from Chapter 15, we see that the constraints
coming from flavor observables are much more stringent. We can also note that for
moderately large values of 1/R′ ∼ 4 − 5TeV the fit of the oblique parameters S, T
is improved compared to the SM.
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Part VI

Conclusions and Outlook
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RS models are one of the most exciting directions for BSM physics. In this thesis,
we have seen that they offer solutions to many open questions of the SM, which
include the HP and the flavor puzzle. Moreover, these extra dimensional models
allow for a new approach to the unification of the interactions and an interesting
account of the nature of the Higgs boson in the context of GHU. In particular, we
studied a fascinating new SU(6) GHGUT model [1], which combines GHU aspects
with a GUT.

After giving an overview over the SM and GUTs in Part I, we reviewed in Part II
the theory of general RS models. Here we laid the groundwork for our analysis, and,
extending the literature, derived the propagators for 5D scalar, fermion, gauge and
ghost fields for arbitrary BCs in generalized AdSd+1. This part closed with a brief
introducing to the concepts of GHU.

In Part III an account of GUT theories in RS models in was given, such that
we could review afterwards, how GHU and GUT are successfully combined to a
GHGUT in warped extra dimensions. We gave a short overview over the recently
developed SU(6) GHGUT [1] as a benchmark for the analysis in the following parts.

Equipped with this knowledge, a detailed study of renormalization techniques in
RS scenarios has been performed in Part IV. We carved out the advantages and
disadvantages of several methods and settled on one approach, which allows for a
consistent study of unification above the TeV scale. The contributions of scalar,
fermion, gauge fields as well as ghost fields have been worked out, going beyond
what was done the literature. In Chapter 13 these results were applied for the first
time to two incarnations of SU(6) GHGUTs, where the importance of the breaking
patterns on the boundaries was seen. It has been shown that one of these scenarios
offers a unification of gauge couplings with a similar postdiction of the weak mixing
angle as the original Georgi–Glashow SU(5) model.

Complementary to this, in Part V a study of selected phenomenological aspects of
SU(6) GHGUT has been presented. It was reviewed that RS models offer a natural
way to explain the hierarchies in the fermion masses as well as the hierarchies in
the CKM matrix. Moreover, we saw that RS models have an analog of the SM
GIM mechanism, the RS–GIM mechanism, which suppresses FCNCs. We looked
at diagrams for these processes coming from KK particles and studied the flavor
violating process µ → eγ in detail. Here the results of simple RS theories have
been extended by the new contribution of a scalar leptoquark to be applicable to
SU(6) GHGUTs, therby allowing to determine constraints on the IR scale. Lastly,
we studied in detail how the KK states in GHGUT models influence the EWPT
observables. It has been shown that GHU models can improve on the standard RS
scenarios, with the Higgs on the IR brane. We also found that, with moderately
large values of the IR scale, the fit compared to the SM can be improved.

There are several interesting directions for which further research would be desir-
able. First the SU(6) GHGUT model of [1] predicts additionally to the SM particles
also a scalar leptoquark and a scalar singlet. A next goal could be to study if they
explain the present flavor anomalies, the muon (g − 2)µ anomalies and EW baryo-
genesis.
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Furthermore, the renormalization of RS models should be explored further. The
method of the Planck brane correlator needs to be extended to also include mixing
between fermions via brane masses to be applicable to realistic GHGUTs. Addi-
tionally, as these theories are dual to four dimensional broken CFTs, one could
study renormalization in a concrete UV model of Composite Higgs theories as a
complementary project and compare the results with the ones obtained here.

The topics of Part V are currently further investigated and extended, and will
appear in an upcoming paper [119]. There, further constraints coming from FCNCs
are presented and discussed. One could also perform the analysis of Chapter 16 to
all orders of (v/T ) by rotating the Higgs VEV on the IR brane and calculating exact
expressions for the KK wavefunctions with this modified boundary condition. This
could then be compared with the expressions derived in this thesis.
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A Notation and Conventions

In this thesis the following convenient representation for the gamma matrices [96, 79]

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 =

(
i1 0
0 −i1

)
, (A.1)

with the usual Pauli matrices σi = −σ̄i (see below) and σ0 = σ̄0 = −1, such that{
γa, γb

}
= 2ηab1, where (ηab) = diag(+1,−1,−1,−1,−1) are used. We can also

define projection operators as P± = 1
2
(1∓ iγ5).

The generators of SU(2)L and SU(3)c are given by T i = σi/2 and ta = λa/2, with
the Pauli matrices σi and Gell–Mann matrices λa defined as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.2)

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 . (A.3)

For SU(6) we use the following generators TA, A = 1, ..., 35, which we list in blocks
with the dimensions 2, 3 and 1 for the rows and columns

T 1−3 =
1

2

 σ1−3

0
0

 , T 4−11 =
1

2

 0
λ1−8

0

 ,

T 24 =
1

2


√

3/5

−
√
4/15

0

 ,

T 35 =
1

2


√

1/15 √
1/15

−
√
5/3

 . (A.4)
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The remaining generators T 12−23 and T 25−34 have exactly two non-zero entries for
every entry in every off–diagonal block in the same pattern as can be seen by λ4−7.
Important for this thesis is the combination

28∑
â=25

Aâ5T
â =

1

2

 0
A25

5 + iA26
5

A27
5 + iA28

5

0
A25

5 − iA26
5 A27

5 − iA28
5 0

 , (A.5)

which can be identified with the complex Higgs doublet from (1.22).

B KK Wavefunctions and Masses

In this chapter we list the KK wavefunctions for scalars, fermions and gauge fields
for general BCs.

B.1 Scalar

The scalar KK wavefunctions satisfy the differential equation (6.2) and the appro-
priate BCs from (5.6). Without boundary operators, a zero mode only exists for a
bulk mass m = 0 and (+,+) BCs and is given

f
(0)
ϕ,(+,+)(z) =

√
2k3

k2 − T 2
. (B.1)

The higher KK modes (n ≥ 1) can be described by

f
(n)
ϕ,(s,s′)(z) = N (s,s′)

n z2

(
Jα

(
mϕ
n,(s,s′)z

)
− A

(s)
n

C
(s)
n

Yα

(
mϕ
n,(s,s′)z

))
, (B.2)

where (s, s′) are the UV and IR BCs respectively, and the normalization constant
N

(s,s′)
n can be determined from (6.3). Furthermore, the KK masses can be determined

from the equation

A(s)
n D(s′)

n −B(s′)
n C(s)

n = 0 . (B.3)
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Here, we defined the BC dependent coefficients

A(+)
n = Jα−1

(
mϕ
n

k

)
− (α− 2)

k

mϕ
n

Jα

(
mϕ
n

k

)
, A(−)

n = Jα

(
mϕ
n

k

)
,

C(+)
n = Yα−1

(
mϕ
n

k

)
− (α− 2)

k

mϕ
n

Yα

(
mϕ
n

k

)
, C(−)

n = Yα

(
mϕ
n

k

)
,

B(+)
n = Jα−1

(
mϕ
n

T

)
− (α− 2)

T

mϕ
n

Jα

(
mϕ
n

T

)
, B(−)

n = Jα

(
mϕ
n

T

)
,

D(+)
n = Yα−1

(
mϕ
n

T

)
− (α− 2)

T

mϕ
n

Yα

(
mϕ
n

T

)
, D(−)

n = Yα

(
mϕ
n

T

)
, (B.4)

where α =
√
4 +

(
m
k

)2. For m = 0 the masses of the first KK modes are approxi-
mately given by

mϕ
1,(+,+) = 3.83T, mϕ

1,(+,−) = 5.14T,

mϕ
1,(−,+) = 3.83T, mϕ

1,(−,−) = 5.14T . (B.5)

B.2 Fermion

The fermionic KK wavefunctions satisfy the differential equation (6.8) and the ap-
propriate BCs from (5.21). The LH component has a zero mode for (+,+) BCs and
the RH component for (−,−) = (+,+)R BC, these are given by

f
(0)
ΨL,(+,+)(z) =

√
Tf(+c)(kz)2(Tz)−c , (B.6)

f
(0)
ΨR,(−,−)(z) =

√
Tf(−c)(kz)2(Tz)+c , (B.7)

with the flavor function

f(c) =

√
1− 2c

1−
(
T
k

)1−2c . (B.8)

The higher KK modes (n ≥ 1) are given by

f
(n)
ΨL,(s,s′)(z) = N (s,s′)

n z
5
2 (Jc+1/2

(
mΨ
n,(s,s′)z

)
− A

(s)
n

C
(s)
n

Yc+1/2

(
mΨ
n,(s,s′)z

)
) , (B.9)

and f (n)
ΨR,(s,s′)(z) can be constructed from f

(n)
ΨL,(s,s′)(z) by switching the BCs and also

flipping c → −c. The normalization constant is given by (6.10). Furthermore, the
KK masses can be determined from the equation

A(s)
n D(s′)

n −B(s′)
n C(s)

n = 0 . (B.10)
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Here, we defined the BC dependent coefficients as

A(+)
n = Jc−1/2

(
mΨ
n

k

)
, A(−)

n = Jc+1/2

(
mΨ
n

k

)
,

C(+)
n = Yc−1/2

(
mΨ
n

k

)
, C(−)

n = Yc+1/2

(
mΨ
n

k

)
,

B(+)
n = Jc−1/2

(
mΨ
n

T

)
, B(−)

n = Jc+1/2

(
mΨ
n

T

)
,

D(+)
n = Yc−1/2

(
mΨ
n

T

)
, D(−)

n = Yc+1/2

(
mΨ
n

T

)
. (B.11)

In general the KK masses depend on the c–parameter but they are always of the
order O(T ), for c = 0 the masses of the first KK modes are approximately given by

mΨ
1,(+,+) = 3.14T, mΨ

1,(+,−) = 1.57T,

mΨ
1,(−,+) = 1.57T, mΨ

1,(−,−) = 3.14T . (B.12)

B.3 Gauge Boson

The gauge boson KK wavefunctions satisfy the differential equation (6.18) and the
appropriate BCs from (5.37). The vector part Aµ has a zero mode for (+,+) BCs
and the scalar part A5 for (−,−) = (+,+)5 BCs, which are given by

f
(0)
A,(+,+)(z) =

√
k

log
(
k
T

) , (B.13)

f
(0)
A5,(−,−)(z) = Tz

√
2k3

k2 − T 2
. (B.14)

The higher KK modes (n ≥ 1) have the KK wavefunctions

f
(n)
A,(s,s′)(z) = N (s,s′)

n z(J1(m
A
n,(s,s′)z)−

A
(s)
n

C
(s)
n

Y1(m
A
n,(s,s′)z)) , (B.15)

f
(n)
A5,(s,s′)(z) = N (s,s′)

n z(J0(m
A
n,(s,s′)z)−

A
(s)
n

C
(s)
n

Y0(m
A
n,(s,s′)z)) , (B.16)

where the normalization constant N (s,s′)
n is given by (6.20). Furthermore, the KK

masses can be determined from the equation

A(s)
n D(s′)

n −B(s′)
n C(s)

n = 0 . (B.17)
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Here we defined the BC dependent coefficients as

A(+)
n = J0

(
mA
n

k

)
, A(−)

n = J1

(
mA
n

k

)
,

C(+)
n = Y0

(
mA
n

k

)
, C(−)

n = Y1

(
mA
n

k

)
,

B(+)
n = J0

(
mA
n

T

)
, B(−)

n = J1

(
mA
n

T

)
,

D(+)
n = Y0

(
mA
n

T

)
, D(−)

n = Y1

(
mA
n

T

)
. (B.18)

The KK masses of the first KK modes are approximately given by

mA
1,(+,+) = 2.45T, mA

1,(+,−) = 0.25T,

mA
1,(−,+) = 2.40T, mA

1,(−,−) = 3.83T . (B.19)

We also give explicitly the normalization of the first KK wavefunction, as we need
it in Chapter 16

N1 = −
πm1,(+,+)Y0

(m1,(+,+)

k

)√
2 log k

T

2

√
Y0

(m1,(+,+)
k

)2

Y0

(m1,(+,+)
T

)2 − 1

. (B.20)

C 5D Propagators in d-dimensions

In this chapter we give the solutions for the differential equations for the propagators
of scalars, fermions and gauge bosons for all possible BCs. As we use these propa-
gators in Section 12.5, we need to determine them for AdSd+1, where d = 4− 2ϵ is
an arbitrary dimension. Note that we already factored out a factor ±i according to
the definitions in Chapter 8.

C.1 Scalar

In d dimensions the differential equation (8.4) for the propagator of a scalar with
(s, s′) BCs becomes(

1

kz

)d−1(
p2 + zd−1∂z

(
1

zd−1
∂z

)
− m2

k2z2

)
Gp(z, z

′) = δ(z − z′) . (C.1)
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To solve this equation it is useful to split the propagator into two parts

Gp(z, z
′) =

{
G<
p (z, z

′) for z < z′

G>
p (z, z

′) for z > z′
. (C.2)

Solving this explicitly we find

G<
p (z, z

′) =
π(kz)d/2(kz′)d/2

2k(AD −BC)
(A Jα(pz) +BYα(pz)) (C Jα(pz

′) +DYα(pz
′)) ,

(C.3)

G>
p (z, z

′) =
π(kz)d/2(kz′)d/2

2k(AD −BC)
(C Jα(pz) +DYα(pz)) (A Jα(pz

′) +BYα(pz
′)) ,

(C.4)

where α =
√(

d
2

)2
+
(
m
k

)2 and the BC dependent coefficients A(s), B(s), C(s′), D(s′)

are given by

A(+) = −Yα−1

(p
k

)
− k

p

(
d

2
− α

)
Yα

(p
k

)
, A(−) = −Yα

(p
k

)
,

B(+) = Jα−1

(p
k

)
+
k

p

(
d

2
− α

)
Jα

(p
k

)
B(−) = Jα

(p
k

)
,

C(+) = −Yα−1

( p
T

)
− T

p

(
d

2
− α

)
Yα

( p
T

)
, C(−) = −Yα

( p
T

)
,

D(+) = Jα−1

( p
T

)
+
T

p

(
d

2
− α

)
Jα

( p
T

)
, D(−) = Jα

( p
T

)
. (C.5)

We also need the Wick rotated versions of the propagators, which are easily obtained
by resolving the differential equation with the replacement p2 → −q2(

1

kz

)d−1(
−q2 + zd−1∂z

(
1

zd−1
∂z

)
− c

z2

)
Gq(z, z

′) = δ(z − z′) . (C.6)

This equation is solved by modified Bessel functions and the general solution is given
by

G<
q (z, z

′) = −(kz)d/2(kz′)d/2

k(AD −BC)
(An Iα(qz) +BKα(qz)) (C Iα(qz

′) +DKα(qz
′)) ,

(C.7)

G>
q (z, z

′) = −(kz)d/2(kz′)d/2

k(AD −BC)
(C Iα(qz) +DKα(qz)) (A Iα(qz

′) +BKα(qz
′)) ,

(C.8)
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where the BC dependent coefficients A(s), B(s), C(s′), D(s′) are given by

A(+) = Kα−1

( q
k

)
− k

q

(
d

2
− α

)
Iα

( q
k

)
, A(−) = −Kα

( q
k

)
,

B(+) = Iα−1

( q
k

)
+
k

q

(
d

2
− α

)
Iα

( q
k

)
, B(−) = Iα

( q
k

)
,

C(+) = Kα−1

( q
T

)
− T

q

(
d

2
− α

)
Kα

( q
T

)
, C(−) = −Kα

( q
T

)
,

D(+) = Iα−1

( q
T

)
+
T

q

(
d

2
− α

)
Iα

( q
T

)
, D(−) = Iα

( q
T

)
. (C.9)

C.2 Fermion

In d dimensions the differential equation (8.7) for the propagator of a fermion with
(s, s′) = (−s,−s′)R BCs becomes

(
1

kz

)d(
/p+ iγ5

(
∂z −

d

2z

)
− c

z

)
Gp(z, z

′) = δ(z − z′) . (C.10)

Using the ansatz (8.8) the coupled differential equations for the components are
solved by

S+(z, z′) = −
(
∂z −

d

2z
− c

z

)
V −(z, z′) , (C.11)

S−(z, z′) =

(
∂z −

d

2z
+
c

z

)
V +(z, z′) , (C.12)

if V ± satisfy the differential equations[
∂2z −

d

z
∂z +

−c2 + c+ d(d+2)
4

z2
+ p2

]
V −(z, z′) = (kz)dδ(z − z′) , (C.13)[

∂2z −
d

z
∂z +

−c2 − c+ d(d+2)
4

z2
+ p2

]
V +(z, z′) = (kz)dδ(z − z′) . (C.14)

Note that V − can be constructed out of a solution for V + by switching the BCs and
using the replacement c→ −c. Thus we focus on the solution for V + for which we
split again

V +
p (z, z′) =

{
V +,<
p (z, z′) for z < z′

V +,>
p (z, z′) for z > z′

. (C.15)
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We find the solutions

V +,<
p (z, z′) =

π(kz)
d+1
2 (kz′)

d+1
2

2k(AD −BC)

(
A J 1

2
+c(pz) +BY 1

2
+c(pz)

)(
C J 1

2
+c(pz

′) +DY 1
2
+c(pz

′)
)
,

(C.16)

V +,>
p (z, z′) =

π(kz)
d+1
2 (kz′)

d+1
2

2k(AD −BC)

(
C J 1

2
+c(pz) +DY 1

2
+c(pz)

)(
A J 1

2
+c(pz

′) +BY 1
2
+c(pz

′)
)
,

(C.17)

where the BC dependent coefficients A(s), B(s), C(s′), D(s′) are given by

A(+) = −Y− 1
2
+c

(p
k

)
, A(−) = −Y 1

2
+c

(p
k

)
,

B(+) = J− 1
2
+c

(p
k

)
, B(−) = J 1

2
+c

(p
k

)
,

C(+) = −Y− 1
2
+c

( p
T

)
, C(−) = −Y 1

2
+c

( p
T

)
,

D(+) = J− 1
2
+c

( p
T

)
, D(−) = J 1

2
+c

( p
T

)
. (C.18)

We also need the Wick rotated versions of the propagators, which are easily obtained
by resolving the differential equation with the replacement p2 → −q2(

1

kz

)d−1
(
−q2 + ∂2z −

d

z
∂z +

−c2 − c+ d(d+2)
4

z2

)
Gq(z, z

′) = δ(z − z′) . (C.19)

Using the same methods as before one finds

V +,<
q (z, z′) = −(kz)

d+1
2 (kz′)

d+1
2

k(AD −BC)

(
A I 1

2
+c(qz) +BK 1

2
+c(qz)

)(
C I 1

2
+c(qz

′) +DK 1
2
+c(qz

′)
)
,

(C.20)

V +,>
q (z, z′) = −(kz)

d+1
2 (kz′)

d+1
2

k(AD −BC)

(
C I 1

2
+c(qz) +DK 1

2
+c(qz)

)(
A I 1

2
+c(qz

′) +BK 1
2
+c(qz

′)
)
,

(C.21)

where the BC dependent coefficients A(s), B(s), C(s′), D(s′) are given by

A(+) = K− 1
2
+c

( q
k

)
, A(−) = −K 1

2
+c

( q
k

)
,

B(+) = I− 1
2
+c

( q
k

)
, B(−) = I 1

2
+c

( q
k

)
,

C(+) = K− 1
2
+c

( q
T

)
, C(−) = −K 1

2
+c

( q
T

)
,

D(+) = I− 1
2
+c

( q
T

)
, D(−) = I 1

2
+c

( q
T

)
. (C.22)
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C.3 Gauge Boson

In d dimensions the differential equation (8.9) for the vector and scalar part of the
gauge boson propagator as well as the differential equation (8.13) for the ghost
propagator, all with (s, s′) = (−s,−s′)5 BCs, become(

1

kz

)d−3
(
ηµνp2−

(
1− 1

ξ

)
pµpν+ηµν (kz)d−3 ∂z

(
1

kz

)d−3

∂z

)
Gp,νλ(z, z

′)=δµλδ(z − z
′) ,

(C.23)(
1

kz

)d−3
(
p2 + ξ∂z (kz)

d−3 ∂z

(
1

kz

)d−3
)
Gp(z, z

′) = δ(z − z′) , (C.24)

(
1

kz

)d−3
(
p2 + ξ (kz)d−3 ∂z

((
1

kz

)d−3

∂z

))
G(c)
p (z, z′) = δ(z − z′) , (C.25)

where we suppressed gauge group indices. Using the ansatz (8.11) for the gauge
bosons and (8.14) for the ghosts the differential equations are solved if the function
Gm
p (z, z

′) satisfies the differential equation[
∂2z −

d− 3

z
∂z + p2 − (d− 3)m2

z2

]
Gm
p (z, z

′) = (kz)d−3δ(z − z′) . (C.26)

Again it is useful to split the propagators into

Gm
p (z, z

′) =

{
Gm,<
p (z, z′) for z < z′

Gm,>
p (z, z′) for z > z′

. (C.27)

For m = 0, i the solutions are particularly simple and given by

G0,<
p (z, z′) =

π(kz)
d
2
−1(kz′)

d
2
−1

2k(AD−BC)

(
A J d

2
−1(pz)+BY d

2
−1(pz)

)(
C J d

2
−1(pz

′)+DY d
2
−1(pz

′)
)
,

(C.28)

G0,>
p (z, z′) =

π(kz)
d
2
−1(kz′)

d
2
−1

2k(AD−BC)

(
C J d

2
−1(pz)+DY d

2
−1(pz)

)(
A J d

2
−1(pz

′)+BY d
2
−1(pz

′)
)
,

(C.29)

Gi,<
p (z, z′) =

π(kz)
d
2
−2(kz′)

d
2
−2

2k(AD−BC)

(
A J d

2
−2(pz)+BY d

2
−2(pz)

)(
C J d

2
−2(pz

′)+DY d
2
−2(pz

′)
)
,

(C.30)

Gi,>
p (z, z′) =

π(kz)
d
2
−2(kz′)

d
2
−2

2k(AD−BC)

(
C J d

2
−2(pz) +DY d

2
−2(pz)

)(
A J d

2
−2(pz

′)+BY d
2
−2(pz

′)
)
,

(C.31)
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where the BC dependent coefficients A(s), B(s), C(s′), D(s′) are given by

A(+) = −Y d
2
−2

(p
k

)
, A(−) = −Y d

2
−1

(p
k

)
,

B(+) = J d
2
−2

(p
k

)
, B(−) = J d

2
−1

(p
k

)
,

C(+) = −Y d
2
−2

( p
T

)
, C(−) = −Y d

2
−1

( p
T

)
,

D(+) = J d
2
−2

( p
T

)
, D(−) = J d

2
−1

( p
T

)
. (C.32)

We also need the Wick rotated versions of the propagators, which are easily obtained
by resolving the differential equation with the replacement p2 → −q2(

1

kz

)d−3(
−q2 + ∂2z −

d

z
∂z −

(d− 3)m2

z2

)
Gm
q (z, z

′) = δ(z − z′) . (C.33)

This is solved by modified Bessel functions and the general solution is given by

G0,<
q (z, z′) = −(kz)

d
2
−1(kz′)

d
2
−1

k(AD−BC)

(
A I d

2
−1(qz)+BK d

2
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)(
C I d
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−1(qz

′)+DK d
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−1(qz
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)
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(C.34)

G0,>
q (z, z′) = −(kz)
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d
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(C.35)
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(C.36)
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(C.37)

where the BC dependent coefficients A(s), B(s), C(s′), D(s′) are given by
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( q
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