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Abstract 

Lateralization is a fundamental characteristic of many behaviors and the organization of the 

brain, and atypical lateralization has been suggested to be linked to various brain-related 

disorders such as autism and schizophrenia. Right-handedness is one of the most prominent 

markers of human behavioural lateralization, yet its neurobiological basis remains to be 

determined. Here, we present a large-scale analysis of handedness, as measured by 

self-reported direction of hand preference, and its variability related to brain structural and 

functional organization in the UK Biobank (N = 36,024). A multivariate machine learning 

approach with multi-modalities of brain imaging data was adopted, to reveal how well brain 

imaging features could predict individual’s handedness (i.e., right-handedness vs. 

non-right-handedness) and further identify the top brain signatures that contributed to the 

prediction. Overall, the results showed a good prediction performance, with an area under the 

receiver operating characteristic curve (AUROC) score of up to 0.72, driven largely by 

resting-state functional measures. Virtual lesion analysis and large-scale decoding analysis 

suggested that the brain networks with the highest importance in the prediction showed 

functional relevance to hand movement and several higher-level cognitive functions including 

language, arithmetic, and social interaction. Genetic analyses of contributions of common 

DNA polymorphisms to the imaging-derived handedness prediction score showed a 

significant heritability (h
2
=7.55%, p <0.001) that was similar to and slightly higher than that 

for the behavioural measure itself (h
2
=6.74%, p <0.001). The genetic correlation between the 

two was high (rg=0.71), suggesting that the imaging-derived score could be used as a 

surrogate in genetic studies where the behavioural measure is not available. This large-scale 

study using multimodal brain imaging and multivariate machine learning has shed new light 

on the neural correlates of human handedness. 

 

Keywords: brain asymmetry; handedness; lateralization; machine learning; UK Biobank  
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Introduction 

Lateralization is a fundamental characteristic of many behaviours and cognitive 

functions in human beings (Karolis et al., 2019; Kong et al., 2022; McManus 2022; Toga & 

Thompson, 2003). Among them, the most researched and prominent example of lateralization 

is human handedness laterality. Many tests have been proposed for assessing one’s 

handedness, including the Edinburgh Handedness Inventory for hand preference test (Oldfield, 

1971) and the Annett pegboard for asymmetry of hand skill (Annett, 1970). In the general 

population roughly 90% of people are right-handed, and 10% left-handed (de Kovel & 

Francks, 2019; Peters et al., 2006; Papadatou-Pastou et al., 2020; Kong et al., 2021). As a 

striking example of lateralization, handedness has drawn great attention in fields including 

psychology, psychiatry, neuroscience, and human evolution. For example, handedness has 

been claimed to be associated with personality (Mascie-Taylor, 1981), cognitive skills such as 

language (Corballis, 2003), and psychiatric disorder such as attention deficit hyperactivity 

disorder (ADHD) (Nastou et al., 2022) and depression (Logue et al., 2015; cf. Packheiser et 

al., 2021). Non-right-handedness has also been suggested to be linked to early life factors (de 

Kovel & Francks, 2019; Kong et al., 2021) and various neurodevelopmental and psychiatric 

disorders, such as autism (Markou et al., 2017) and schizophrenia (Hirnstein & Hugdahl, 

2014). However, these data are mostly correlational, and the neurobiological basis of 

handedness remains elusive.  

In general, variation in handedness is thought to reflect differences in the functional and 

structural organization of the human brain (Toga & Thompson, 2003). This idea has been 

tested many times, particularly in the context of recent advances in neuroimaging methods. 

Results on the association between handedness and brain measures have mostly been 

equivocal, likely due to limited effect sizes of each single imaging modality in the context of 

relatively small samples, as well as differences in scanning and image processing. Structurally, 

while some studies reported significant associations (Germann et al., 2019; Guadalupe et al., 

2014; Marie et al., 2015), others reported that handedness has little to do with gray matter 

asymmetries in volume, cortical thickness, surface areas, or sulcal depth (Kong et al., 2018; 

Maingault et al., 2016). In terms of white matter anatomy, structural connectivity of some 

intra- (e.g., superior longitudinal fasciculus) and inter-hemispheric (i.e., corpus callosum) 

pathways seems to differ between left- and right-handers, but inconsistent evidence also exists 

(Budisavljevic et al., 2020). Functionally, various differences in brain activity related to motor 

control have been observed between left- and right-handers (Tzourio-Mazoyer et al., 2021). It 
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has also been proposed that leftward language hemispheric lateralization was closely linked to 

the evolution of population-level right-handedness (Corballis, 2003), although studies have 

found that the relationship in terms of inter-individual variation is weak and complex 

(Mazoyer et al., 2014). Besides the motor control and language-related lateralization, task 

fMRI has indicated that handedness is related to lateralization of the core face perception 

network (i.e., the fusiform face area) and pointed to different neural mechanisms underlying 

face processing in left- and right-handers, suggesting a broader and complex underlying 

process regulating brain lateralization (Frässle et al., 2016).  

Recently, thanks to the large-scale and high-quality UK Biobank dataset, researchers 

have begun to study potential brain-handedness associations using larger sample sizes. One 

study using this sample (N >40,000) clarified the relationship between handedness and overall 

brain skew (torque in the horizontal and vertical planes (Kong et al., 2021), and another study 

of cortex-wide asymmetries (N >31,000) showed significant (but small) differences between 

left-handers and right-handers in regions important for hand control, language, vision, and 

working memory (Sha et al., 2021). A resting-state fMRI study in the UK Biobank (N 

=~9,000) showed significant association with functional connectivity between pairs of 

resting-state networks, particularly for the left and right (homologous) language networks 

(Wiberg et al., 2019). However, it is important to note that these previous large-scale studies 

used univariate approaches, without attempting to integrate information from both structural 

and functional measures (indeed two of them only investigated structural measures). The 

effect sizes of the associations revealed in these studies were low (e.g., Cohen’s d <0.10 or 

correlation r <0.10) (Kong et al., 2021; Sha et al., 2021; Wiberg et al., 2019). While these 

large-scale neurobiological studies in the UK Biobank have indicated various neural 

correlates of handedness with a degree of precision and statistical reliability that was 

previously not possible, the small effect sizes suggest that a large-scale survey that integrates 

various modalities of brain imaging data and assembles the small effects may be a major step 

forward for establishing a more robust brain-behavior association and understanding the 

neurobiological basis of handedness.  

In principle, machine learning techniques might allow us to build multivariate predictive 

models for behaviour which are able to capture effects of high-dimensional features and 

multimodalities of brain imaging data (Bzdok and Meyer-Lindenberg, 2018; Li et al., 2022; 

Marek et al., 2022). In other words, by applying machine learning to big data comprising 

brain and behavioural measures, we could clarify whether and to what extent models of brain 
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imaging data can predict individual behaviour, such as handedness preference. Moreover, 

such predictive models could also enhance our understanding of the neurobiology of 

behaviour by identifying the most important features, as well as the networks consisting of 

these features, in the prediction. In addition, a predictive model could provide an 

imaging-derived score which could serve as a proxy of a behavioural measure, for example to 

enable future large-scale cognitive neuroimaging genetics studies when only brain imaging 

data but no behavioural data was collected.  

Towards this goal, Panta et al. provided an initial attempt to classify handedness with 

structural MRI data from less than 200 participants, and achieved a prediction accuracy of up 

to 80% (Panta et al., 2021). With a newly proposed BigFLICA decomposition method which 

integrates data compression techniques and linked independent component analysis approach, 

Gong et al. identified a multimodal mode (a.k.a., independent component) which showed a 

correlation of r = 0.23 with handedness in the UK Biobank (N = 14,503) (Gong et al., 2021). 

The present study aimed to explicitly model the associations between handedness, as 

measured by self-reported direction of hand preference, and multimodal brain variables using 

a machine learning approach, and represents the largest-ever analysis of handedness and its 

variability related to brain structural and functional organization, using the UK Biobank (N = 

36,024). We used a machine learning approach with multiple modalities of brain imaging data 

to investigate the relationship between handedness and the human brain, and to further 

identify key features that are associated with handedness (i.e., right-handedness vs. non-right 

handedness). In addition, we made use of the best predictive model and derived a continuous 

score as a metric of probability of each individual being right-handed, and confirmed that 

such an imaging-derived handedness score could be useful for follow-up studies on the 

biology of handedness.  

 

Materials and Methods 

Dataset 

Data were obtained from the UK Biobank as part of research application 16066. This is a 

general adult population cohort. The data collection in the UK Biobank, including the consent 

procedure, has been described elsewhere (Alfaro-Almagro et al., 2018; Bycroft et al., 2018; 

Sudlow et al., 2015). Informed consent was obtained for all participants, and the UK Biobank 

received ethical approval from the National Research Ethics Service Committee North West - 

Haydock (reference 11/NW/0382). For this study, we used data from the February 2020 
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release and excluded the withdrawn participants as announced by the UK Biobank in August 

2021.  A subset of participants was included in this study for whom the handedness and 

brain imaging data were available, and in total, this subset had 36,024 participants. The 

median age of these participants was 64 years, range 45-81 years, and 19,171 (53%) subjects 

were female. 

 

Brain Imaging Modalities  

All of the brain imaging features used in the analyses were derived and made available 

from the neuroimage processing pipeline of the UK Biobank (Alfaro-Almagro et al., 2018; 

Miller et al., 2016). These features included the following imaging modalities: 

Structure MRI: Features in this category were derived from the parcellation of the 

cortex using the Desikan-Killiany atlas and Freesurfer (Fischl, 2012). These features were 

area, volume, and mean thickness of regions in the Desikan-Killiany atlas in both 

hemispheres. We did not use each hemisphere’s total cortical surface area or overall mean 

cortical thickness in our analysis. 

Diffusion MRI Skeleton: This modality contains several diffusion metrics in each area 

of the brain based on tract-skeleton processing on fractional anisotropy (FA) images in a 

standard white-matter skeleton space. Such metrics were fractional anisotropy, intra-cellular 

volume fraction (ICVF), isotropic free water volume fraction (ISOVF), mean diffusivity, 

anisotropy mode (MO), and orientation dispersion (OD). 

Resting-State fMRI: This modality is based on blood-oxygen signals in the brain. These 

signals are considered as measures of the brain’s intrinsic activities and can be used to 

estimate the functional level of connectivity between different brain regions (Canario et al., 

2021; Kong et al., 2017). As described by (Alfaro-Almagro et al., 2018), features were 

extracted and provided in a form of components from independent component analysis 

(Hyvärinen & Oja, 2000); two numbers of independent components (ICs) are used, namely 25 

and 100. Components that were identified as artefacts were removed by the UK Biobank team; 

in total, 21 and 55 ICs remained, respectively (Alfaro-Almagro et al., 2018). Features were of 

the following types: Component Amplitudes, fluctuation amplitudes (node temporal 

standard deviation) for each component/node; Full Correlation Matrix, correlation-based 

functional connectivity between each pair of ICs; Partial Correlation Matrix, correlation 

between residues of two independent components after regressing out the other components.  
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Table 1 summarizes the brain imaging features discussed above together with their 

references in the UK Biobank. 

Table 1. Groups of features used for training multivariate machine learning models. Each group contains 

a different number of features, and its UK Biobank reference is indicated.  

Feature Group Number of Features UK Biobank Reference 

Structure MRI (S) 198 Category 192 

Diffusion MRI Skeleton (D) 432 Category 134 

rfMRI Component Amplitudes (CA-25) 21 Field 25754 

rfMRI Component Amplitudes (CA-100) 55 Field 25755 

rfMRI Full Correlation Matrix (FC-25) 210 Field 25750 

rfMRI Full Correlation Matrix (FC-100) 1485 Field 25751 

rfMRI Partial Correlation Matrix (PC-25) 210 Field 25752 

rfMRI Partial Correlation Matrix (PC-100) 1485 Field 25753 

 

Controlled Variables 

We also considered features that might potentially confound the associations with 

handedness. This group of features included biological sex, age, and genetic information (i.e., 

the top 10 principal components (PCs) that describe genetic variability in the dataset). It also 

contained several imaging related variables: imaging assessment center, three 

scanner-positions, signal-to-noise in T1 and rfMRI, dMRI outlier slices detected and 

corrected, and rfMRI head motion. We transformed the categorical variable for ‘imaging 

assessment center’ into a set of binary dummy variables using one-hot encoding, resulting in a 

different feature for each center. Table 2 summarizes these controlled variables as well as their 

corresponding UK Biobank references.  

Table 2. Controlled features and their UK Biobank references. 

Controlled Feature Group UK Biobank Reference 

Sex f.31.0.0 

Age f.21003.2.0 

Genetic PCs f.22009.0.[0-10] 
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Imaging assessment center f.54.2.0 

Scanner-position-{x, y, z} f.2575[6-8].2.0 

Signal-to-noise in T1 f.25734.2.0 

dMRI outlier slices detected and corrected f.25746.2.0 

Resting-State fMRI head motion f.25741.2.0 

Resting-State Signal to Noise f.25744.2.0 

 

Handedness 

Handedness was assessed based on responses to the question: “Are you right- or 

left-handed?” with 4 response options: “right-handed”, “left-handed”, “use both right and left 

equally”, and “prefer not to answer”. Those who preferred not to answer were excluded from 

further analysis. Around 89% of the participants were right-handed (N = 32,090), while 9% 

were left-handed (N = 3,374), and 2% were mixed-handed (N = 560). UK Biobank provides 

handedness information as a categorical attribute with values 0, 1, and 2 being right-handed, 

left-handed, and mixed-handed respectively; the question was posed via a testing screen when 

visiting an assessment center. Given the limited sample size of the left- and mixed-handers, in 

our analysis, we combined left- and mixed-handers into one group, called non-right-hander 

(Non-RH). Note that this is mainly for maximizing the sample size of the smaller group in the 

classification, while the left-handers and the mixed-handers sometimes were suggested to 

have different neuronal and functional correlates (e.g., Annett and Moran, 2006; 

Badzakova-Trajkov et al., 2011; cf. Hirnstein and Hugdahl, 2014). For a small group of 

individuals (N = 216) having indicated different handedness preference at different visits, we 

took the most recent measure and thus labelled 84 as right-handers, 132 as non-right-handers. 

We also ran separate prediction models after excluding people reported as mixed-handed or 

inconsistently in multiple assessment visits, and the results remained similar.  

 

Machine Learning Model 

Because our handedness variable contains two possible values, namely Non-RH and RH, 

our learning problem is a binary classification problem. More precisely, we trained logistic 

regression models to predict handedness based on the aforementioned brain imaging-derived 

features. 
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In particular, for each participant 𝑖, we have features (𝒙(𝑖):= {𝑥1
(𝑖)
,… , 𝑥𝑑

(𝑖)
}) and the 

participant’s handedness binary label (𝑦(𝑖) = {0,1}) where 1 indicates being non-right-handed. 

Let N be the number of participants and 𝜎:ℝ → [0,1] be the sigmoid function and 

𝒙(𝑖) ↦ ℎ(𝒙(𝑖)):= 𝛽0 + ∑
𝑗=1

𝑑

𝛽𝑗𝑥𝑗
(𝑖)

. Predicted probability of being non-right-handed (Non-RH) 

for each individual 𝑖 using logistic regression is 𝜎(ℎ(𝒙(𝑖))). Our goal is to estimate the 

parameters {𝛽0, … , 𝛽𝑑} of the model such that  

argmin
{𝛽0,…,𝛽𝑑}

−
1

𝑁
∑
𝑖=1

𝑁

𝑤(𝑖)[𝑦(𝑖)𝑙𝑜𝑔(𝜎(ℎ(𝒙(𝑖))) + (1 − 𝑦(𝑖))𝑙𝑜𝑔(1 − 𝜎(ℎ(𝒙(𝑖)))] +
1

𝐶
∑
𝑗=1

𝑑

𝛽𝑗
2 

where the first term corresponds to the negative weighted log likelihood of the Bernoulli 

distribution and the second term corresponds to the 𝑙2 regularization. 𝑤(𝑖) is the weight of 

each i-th participant, while C is the hyperparameter (positive real number) penalizing the 

complexity of the model (i.e., the smaller the value, the higher the penalty). We applied 

MinMaxScaler from scikit-learn (version 0.22.2.post1; https://scikit-learn.org/) (Pedregosa et 

al., 2011), normalizing each covariate to be between zero and one. The default optimizer 

implemented in scikit-learn was used to train the logistic regression model. We set the 

maximum number of optimization iterations at 1000. We also set class_weight=balanced, 

assigning 𝑤(𝑖)’s to the inverse of the class frequency to which the participant belongs. In 

other words, participants from the non-right-hander group had larger 𝑤𝑖’s than those from the 

right-hander group, in order to maintain balance at the group level. 

 

Model evaluation and optimization 

We used the area under the receiver operating characteristic curve (AUROC) to evaluate 

the models, computed using scikit-learn. We performed nested cross-validation to estimate the 

AUROC. Unlike standard cross-validation, nested cross-validation has outer and inner loops; 

the outer loop is responsible for estimating the generalization of our handedness models, 

while the inner loop is for finding suitable values of hyperparameters; We used 

BayesianSearchCV from the scikit-optimize package (Head et al., 2020, version 0.7.4) for 

hyperparameter optimization. Figure 1 shows the procedures of nested cross-validation. We 

used 10 fold for the outer loop and 5 fold for the inner loop; we set BayesianSearchCV to 

sample 5 configurations sequentially.  
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Figure 1. Nested cross-validation procedure. We perform the procedure to find the value of the regularization 

hyperparameter and estimate the generalization error (AUROC) of the logistic regression model.  

 

Methods for Feature Importance Analysis  

One aim of this study is to identify the most important imaging features for handedness 

prediction. A common approach to quantify feature importance is to analyze the weights of 

the features learned by the model. However, previous work (Haufe et al., 2014; Kriegeskorte 

& Douglas, 2019) has argued that interpreting weights from linear models could be 

misleading, e.g., (Haufe et al., 2014) showed a setting in which a model learned a large 

weight to suppress noise in the data, rather than simply indicating the importance of a given 

feature. 

Another approach is to quantify the importance of each feature by the change in AUROC 

when excluding that feature, before retraining the model. This approach is similar to the 

virtual lesion approach (Etzel et al., 2013; Kong et al., 2020b) in neuroscience, or backward 

feature selection (Guyon & Elisseeff, 2003), or the leave-one-covariate-out approach in 

machine learning (Lei et al., 2018). For feature importance analysis in the present study, we 

focused on functional connectivity derived from resting-state fMRI, as this modality showed 

the largest contribution to handedness prediction (see the Results). The features used in the 

prediction model were functional connectivity measures between ICs, but we were primarily 

interested in identifying the ICs themselves that were most important for handedness 

prediction, not per se the functional connectivities between them. Therefore, separately for 
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each IC, we excluded all connectivity measures with that IC before retraining the model and 

recording the change in AUROC (Figure 2).  

 

Figure 2. Schematic to illustrate the virtual lesion approach to determine the importance of a given 

resting state fMRI-derived independent component (IC) in the prediction model. To determine the importance 

of IC-1, functional connectivity measures (shown as lines) that are not related to IC-1 are excluded before 

re-training the model to predict the dependent variable (handedness in our case). The larger the difference in 

AUROC between the model trained with and without these features, the more important IC-1 is for predicting the 

dependent variable. 

To present a functional interpretation of the most important features in the prediction, a 

data-driven decoding analysis was conducted based on a large-scale neuroimaging database 

(https://neurosynth.org/; version 0.7). Specifically, the “decoder” function from the 

Neurosynth package was used (Yarkoni et al., 2011). Neurosynth uses text-mining techniques 

to detect frequently used terms as proxies for functional concepts of interest in thousands of 

papers from the neuroimaging literature: Terms that occur at a high frequency in a given study 

are associated with all activation coordinates in that publication, allowing for automated 

term-based meta-analysis. The decoding analysis ranked the terms in the database by 

assessing how strongly the meta-analysis map of each functional term correlated with a given 

map of interest (i.e., in our case the maps for the IC features of interest). There were 590 

selected cognitive terms after excluding anatomical (e.g., “hippocampus”), psychiatric (e.g., 

“autism”), pathological (e.g., “alzheimer”), and non-specific (e.g., “tasks”) terms (Karolis et 

al., 2019). Cognitive terms with a correlation coefficient larger than 0.15 were included in the 

visualization.  

 

Application of the Prediction Model to Imaging Genetics 
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As an illustration of application of the prediction model, we ran an additional analysis 

using the predicted probability score derived from the best model (i.e., imaging-derived 

handedness score). Here we focused on the heritability of handedness, and the genetic 

correlation between the imaging-derived score and the actual handedness behavioural label. 

Heritability is a measure ranging from 0 to 1 which indicates the extent to which variation in a 

trait is influenced by the combined effects of genetic variation over the genome, in this case 

as captured by common single-nucleotide polymorphisms (SNPs) genotyped in the sample 

(Vinkhuyzen et al., 2013). Genetic correlation measures the extent to which variability in a 

pair of traits is influenced by the same genetic variations over the genome. In this study, we 

hypothesized that the imaging-derived handedness score would show similar heritability to 

that for the actual handedness, and that the two variables would show high genetic 

correlation.  

To this aim, genotype data from the UK Biobank were used. In brief, in the UK Biobank, 

550,192 autosomal, directly genotyped SNPs with minor allele frequencies (MAF) > 0.01, 

genotyping rate >0.95, and Hardy-Weinberg equilibrium (HWE) p>1×10−6 were used to 

build a genetic relationship matrix (GRM) using GCTA (version 1.26.0) (Yang et al., 2011). 

We excluded samples with a genotyping rate of <98% and a kinship coefficient higher than 

0.025 based on this GRM, resulting in a sample size of 30,682 participants. Genome-based 

restricted maximum likelihood (GREML) analyses using GCTA were performed to estimate 

the SNP-heritabilities for the imaging-derived handedness score as well as the actual 

handedness label, after residualizing for the covariate effects of sex, age, square of z-score of 

age (z_age2), the first ten PCs capturing genome-wide genetic structure (Bycroft et al., 2018), 

genotyping array, and several technical variables related to imaging: imaging assessment 

center (binary), scanner position parameters (continuous X/Y/Z), signal/contrast-to-noise ratio 

in T1 (continuous), and in-scanner head motion. Bivariate analysis (Lee et al., 2012) were 

also run in GCTA, to investigate the SNP-based genetic correlation between the handedness 

measures.   

 

Results 

Unimodal Models 

As baseline for later multimodal analyses, we first trained unimodal logistic regression 

models on features from each brain imaging modality separately. Table 3 shows that features 

derived from different brain imaging modalities resulted in various prediction performances, 
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with the rfMRI showing the best results. In particular, among these unimodal models, the 

model trained with the partial correlation matrix features derived from 100 independent 

components (PC-100) achieved the highest AUROC at 0.7243 (SD 0.0158) (Table 3).  

Table 3. Prediction performance of handedness classifiers trained on different sets of brain imaging 

features. The AUROC of each row is the average of 10 outer-loop statistics from the nested cross validation. 

Check marks indicate whether the group of features were included in the prediction modeling. Controlled = 

confounding variables as mentioned in the Methods; structure = brain structural MRI; diffusion = diffusion MRI; 

rfmri = resting-state fMRI; CA = component amplitude; FC = full correlation-based functional connectivity; PC = 

partial correlation-based functional connectivity.   

 

 

The second best unimodal model was the one trained with features from the full 

correlation matrix features (FC-100) with the same number of components with AUROC at 

0.7001 (SD 0.0152). Following these two first models are models that were trained on partial 

and full correlation matrix features extracted from 25 rfMRI independent components (PC-25 

and FC-25 respectively); these models’ AUROCs were 0.6655 (SD 0.0099) and 0.6556 (SD 

0.0137) respectively.  

In contrast, models trained on the other groups of features, namely component amplitude 

features derived from the rfMRI modality, or diffusion measures, or structure measures, 

showed AUROC below 0.6. In particular, the least predictive group of features for handedness 

prediction was the group of structural measures (S), having AUROC at only 0.5539 (SD 

0.075), while the controlled group attained AUROC at 0.5525 (SD 0.0120). Taken together, 

these results suggest that functional measures seem to be more relevant to the inter-individual 
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variations in handedness, at least based on the current set of imaging-derived phenotypes 

released by the UK Biobank.  

 

Multimodal Models 

We trained models with a combination of features from different modalities. Given that 

the results of the previous section demonstrated that the models trained on features derived 

from 100 rfMRI components was always better than using 25 rfMRI components, we focused 

here on the combination of features from the partial and full correlation matrix extracted from 

100 independent components. PC-100 and FC-100 indicate the functional connectivity 

features calculated using partial correlation and full correlation approaches respectively. Thus, 

we used features from either one or the other of these two versions in a single analysis, but 

not both.   

As shown in Table 3, the top-performing multimodal model was the model trained on a 

combination of features derived from the imaging modalities we considered. These features 

included structure features, diffusion measures, and the rfMRI modality’s partial correlation 

matrix with 100 independent components. This model achieved AUROC at 0.7231 (SD 

0.0206), which was slightly lower than the unimodal model being trained only on the rfMRI 

partial correlation matrix features (PC-100). When using the same combination of features 

except substituting the features from the partial correlation matrix (PC-100) with the ones 

from the full correlation matrix (FC-100), we observed a marginal decrease (Table 3).   

These results suggest that functional connectivity features derived from resting-date 

fMRI provide most/all of the information about handedness, relative to brain imaging features 

from other modalities.  In addition, to examine whether controlled variables could impact the 

prediction, we extended the top-performing multimodal model’s features set with the 

following potential confounding variables (Table 3): age, sex, imaging information (i.e., 

scanner positions, assessment center, SNRs, head motions), and genetics (via top 10 

genotype-based ancestry PCs). Incorporating such variables only slightly increased AUROC 

further to 0.7234 (SD 0.0174) (Table 3). 

 

Model Interpretation 

We present the results of the virtual lesion analysis (as described in Methods for Feature 

Importance Analysis). We used this analysis to quantify the importance of each rfMRI IC in 
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PC-100 for handedness prediction. Together with the importance of each IC, we also present 

associated brain areas and cognitive terms of a number of important ICs.  

Figure 3’s highlighted area shows the first 10 independent components ranked in 

ascending order by the difference of their AUROCs compared to the reference setting (all 

features of PC-100). We see that these AUROCs are substantially lower than the one obtained 

by using all the PC-100 features. In this case, the least predictive setting is the one that 

excludes features related to IC-18 whose AUROC is at 0.7089 (SD 0.0135); thus, IC-18 

seems to contain the most relevant information about handedness among all IC’s. The second 

least predictive setting is when IC-12 linked features were removed whose average AUROC 

is 0.7093 (SD 0.0092). The rest of Figure 3 shows that the AUROCs of these virtual lesion 

models gradually increase and eventually become on par or slightly higher than the reference 

configuration. 

 

Figure 3. AUROC of models trained after excluding the features linked to each IC (x- axis). Small dots 

are AUROC values from the outer loop of the nested cross validation, and the large dots are their average for each 

IC. The larger difference between the average of the reference model (horizontal dashed line); the more important 

each IC is. Highlighted area indicates the first 10 models for which the AUROC drops the most. 

 

Figure 4 shows the top 10 functional networks related to the features important for the 

handedness prediction revealed in the virtual lesion analysis. Interestingly, the most important 

network (IC-18) showed large overlap with the motor cortex, and the decoding analysis 

showed clear functional relevance to hand movement. Three other brain networks (IC-20, 

IC-2, and IC-32) showed similar functional relevance to either hand movement or 

somatosensory roles. The network of IC-9 showed significant correlation with 

language-related functions including comprehension. We found four other top networks 

showing strong right-lateralization (i.e., IC-33, IC-26, IC-11, IC-12), which mainly involved 
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functions such as social interaction, arithmetic, and the default model network. Another 

network (IC-39) included the frontal eye field and showed relevance to visuospatial attention. 

 

Figure 4. The top 10 brain networks based on the importance scores obtained by the virtual lesion 

approach. Cognitive terms revealed in the decoding analysis are shown next to each brain map. Font size indicates 

the strength of the correlation between the brain map and the activation map relevant to each cognitive term.  

 

As a control analysis, we also ran the same decoding analysis for the 10 networks with 

the lowest contributions to handedness prediction (In Supplement, Figure S1). The majority of 

these features involved early visual or auditory functions: six of them (IC-41, IC-16, IC-52, 

IC-8, IC-48, and IC-1) showed association with the primary and the ventral visual systems, 

one with auditory (IC-22), one with reward (IC-38), one for working memory (IC-37), and 

one with no annotated cognitive terms (IC-54).  

 

Genetic Overlap between Imaging-Derived Handedness Score and Actual Handedness 

While the performance of the prediction model was not perfect, we found that the 

imaging-derived handedness score showed a heritability (h
2
=7.55%, se=2.12%, p = 0.000072) 

that was similar to, and slightly higher than the actual handedness measure (h
2
 = 6.74%, 
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se=2.1%, p = 0.00090). Moreover, the imaging-derived handedness score showed high 

genetic correlation with the actual measure (rg=0.71, se=0.19, p = 0.00019). These results 

indicate considerable genetic overlap between the imaging-derived handedness score and the 

actual behavioural measure. 

 

Discussion 

Here, we present the largest-ever analysis of handedness in relation to both structural and 

functional brain organization, making use of data from the UK Biobank (N = 36024). A 

machine learning approach with multiple modalities of brain imaging data was used to assess 

whether and to what extent brain imaging data could predict an individual’s handedness (i.e., 

right-handedness versus non-right handedness). Overall, the results showed a good prediction 

performance, with an AUROC score of up to 0.72. Quantifying the importance of each 

independent component (IC) using the virtual lesion approach, we found that the top 

components describe intrinsic functional networks for hand movement and higher-level 

cognitive functions such as language comprehension, arithmetic, and social interaction. 

Further genetic analyses of the imaging-derived handedness score using the prediction model 

showed similar heritability to the actual handedness measure, as well as high genetic 

correlation between the two.  

 

Handedness and Multimodal Brain Imaging 

For years, there has been great interest in the relationship between handedness and the 

brain, but mostly a small sample size and/or one single imaging modality was used (see 

Introduction). These existing studies were usually based on univariate approaches, such as 

correlation and generalized linear models. While these studies indeed provided new insights 

in the neurobiological basis of handedness, the effect sizes of these univariate analyses were 

usually low (Kong et al., 2018; Kong et al., 2020a). In a recently published study, Sha and 

colleagues mapped cortical morphometry differences (i.e., thickness and surface area 

asymmetry) associated with handedness in the UK Biobank, and revealed a number of 

significant clusters, all of which also showed small effect sizes (Cohen’s d < 0.1) (Sha et al., 

2021). In the present study, we for the first time took advantage of multimodal imaging data 

in the UK Biobank, and combined it with a multivariate machine learning approach to explore 

how and to what extent the brain imaging data could predict an individual's handedness. 

Overall, the best model resulted in a good prediction performance with an AUROC of up to 
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0.72. In addition, we found that the prediction accuracy was similar after controlling for the 

confounding factors such as age, sex, potential heterogeneity in brain imaging, head motion 

during scanning, and population structure, suggesting that predictive modeling is largely 

insensitive to such factors.  

In line with this, in the unimodal modeling analysis, we found that models based on the 

functional connectivity measures showed much higher performance 

(AUROC=0.6556-0.7243), compared with those based on structural measures of gray matter 

(AUROC=0.5539) and white matter (AUROC=0.5755). In fact the latter models performed 

only slightly higher than chance level (AUROC=0.5). These results are broadly consistent 

with previous findings of small effect sizes for univariate associations between handedness 

and highly localized grey matter measures (Sha et al., 2021), while measures of relatively 

large regions as defined in the Desikan atlas (as used in the present study) have also shown a 

lack of association with handedness in another large-scale study via the ENIGMA (Enhancing 

Neuro-Imaging Genetics through Meta-Analysis) consortium (Kong et al., 2018).  

More intriguingly, the virtual lesion approach and the decoding analysis suggest that the 

brain networks for cognitive functions including language-related functions, visuospatial 

attention, arithmetic, and social interaction and the default mode network, along with the 

networks for handedness movement (for details see Fig. 4), were most related to handedness. 

These results seem to be in line with recent findings that handedness-related differences were 

found in brain regions/networks for hand control, language, and visual functions (Sha et al., 

2021; Wiberg et al., 2019). The present study provides new evidence supporting such 

associations, but also suggests novel links of handedness with brain networks for number 

processing and social functions, and the default mode network. Together, these results suggest 

that analysis of multivariate machine learning modelling of brain imaging measures could 

provide a more comprehensive picture of neurobiological basis of handedness.  

 

Handedness and Brain Imaging Genetics 

Previous studies have shown that genetic variation contributes modestly to handedness, 

with heritability estimates ranging from 3% for SNP-based heritability in the UK Biobank 

(N > 108,000) (Ge et al., 2017), to 25% in twin studies (Medland et al., 2009). A recent study 

in the UK Biobank suggested that some genetic loci associated with handedness are 

associated with individual variation in cortical structural asymmetries that showed significant 

differences in left-handers (Sha et al., 2021). Here, we found that the imaging-derived 
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handedness score showed similar heritability to the actual behavioural measure (around 7%). 

More interestingly, we found that the imaging-derived handedness score showed high genetic 

correlation with the handedness behavioural measure (rg = 0.71), suggesting considerable 

overlap in the underlying genetic variation. Compared with the modest performance of the 

handedness prediction model, the high genetic correlation between the predicted score and the 

actual handedness measure suggests that the imaging-derived score largely retains the 

variance in handedness that is due to genetic factors.  

Moreover, with handedness as an example trait of interest, our results suggest that a 

predictive model approach based on brain data could provide a proxy of behavioural 

observations for future large-scale imaging genetics studies. Hand preference itself is 

relatively easy to measure in large samples (e.g., the sample size of the largest genome-wide 

association study to date was over 1.7 million) (Cuellar-Partida et al., 2021). Nonetheless, the 

approach adopted here could be particularly useful when large-scale brain imaging data has 

already been collected e.g., in a psychiatry department, without much relevant behavioural 

data such as handedness. For instance, in the ENIGMA consortium (Thompson et al., 2020), 

tens of thousands of MRI images have been collated via multi-site collaboration (e.g., Grasby 

et al., 2020), but relatively few sites have collected comparable indexes of individual’s 

cognition and behavior, which limits large-scale studies linking human cognition, brain and 

genes. In addition, it is interesting in the future to explore the links of the imaging-derived 

handedness score with other behavioural variables that informs brain laterality when such 

variables are available.  

 

Limitations and Future Directions 

It is important to note that the assessment of hand preference in the UK Biobank was by 

a simple question (i.e., “Are you right- or left-handed?”) and thus is less than ideal. Simple 

assessments such as this have been shown to capture an inherent dichotomy in hand 

preference that is also revealed by more quantitative, multi-term questionnaires (Ransil and 

Schachter 1994). However, the results may have been different if using performance-based 

hand skill measures or multi-item handedness ratings which further reflect the strength of 

hand preference (Crow et al., 1998). People using both hands equally may form a somewhat 

distinct category with respect to behavioural and brain correlates (Badzakova-Trajkov et al., 

2011). We also ran a separate prediction model after excluding people having reported as 

mixed-handed, and obtained very similar results in both prediction performance (0.7360 
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versus the original 0.7243) and the importance of the ICs (r = 0.62, p = 5.73e-07). Similarly, 

functions suggested by the decoding analyses of the top IC networks showed much overlap 

with those in the main analyses, which included functions including hand movement, 

language-related functions, calculation, social interaction and visuospatial functions. These 

results suggested that the present results were mainly contributed by the differences between 

the left- and right-handers. In addition, when possible, future studies should investigate the 

reliability and robustness of the results, e.g., via the ENIGMA Laterality working group 

(Thompson et al., 2020; Kong et al., 2020a).  

This study has several points that could be improved to possibly achieve a better 

prediction performance for hand preference. First, lateralization has been observed widely in 

the cognitive, emotional, and language systems. Task fMRI for these domains could provide 

useful information to enhance the prediction. However, in the UK Biobank, only a few tasks 

were included for fMRI experiments. We would expect that further task-related phenotypes 

could provide useful information for the prediction. New phenotype discovery approaches 

which integrate decomposition algorithms and multimodal features could also be considered 

(Gong et al., 2021).  

Secondly, it should be noted that the structure and diffusion features were atlas-based 

while the rfMRI features were data-driven (the latter from ICA). As most of the predictive 

power for handedness in this study was derived from the rfMRI measures, with minimal 

contributions from the other modalities, the utility of a multi-modal approach was not clearly 

illustrated in this specific application. However, using a vertex-based (atlas-free) approach for 

computing structure symmetries, Sha et al. (2021) recently found a number of cortical 

regional asymmetries that associate with hand preference, which were generally smaller and 

more focal than the Desikan-Killiany atlas regions as used in the present study. Future work 

should investigate whether atlas-free approaches to structure and diffusion features can help 

to further improve handedness prediction in combination with rfMRI measures.  

Lastly, assembling models (e.g., random forest) and more complex machine learning 

approaches such as artificial neural networks could provide better prediction performance; 

however, one potential challenge in that setting is extracting scientific insight from these 

complex models. One could overcome such an interpretability challenge by utilizing recent 

developments in explanation methods (Samek et al., 2019), e.g., Layer-wise Relevance 

Propagation (Bach et al., 2015), that can produce explanation for predictions from these 

complex models. In addition, polygenic scores for handedness (Cuellar-Partida et al., 2021; 
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Wiberg et al., 2019) and early life factors associated with handedness (de Kovel & Francks, 

2019), could also be considered. 

 

Conclusion 

In sum, we present the largest-ever analysis of handedness in relation to multimodal 

brain imaging features, by applying multivariate machine learning approaches in the UK 

Biobank. Overall, the results showed a good prediction performance, with an AUROC score 

of up to 0.7243 (SD 0.0158); the most predictive features were related to functional 

connectivity of the brain networks derived from resting-state functional MRI. Our virtual 

lesion analysis and decoding analysis for ranking the importance of the brain networks in the 

handedness prediction revealed networks relevant for hand movement as well as for 

higher-level cognitive functions such as language-related functions (except for visual 

processing of words), arithmetic, and social interaction. While these results are correlational 

and based on older adults, new possibilities on the neural and cognitive correlates of 

handedness development were suggested. Further genetic analyses of the imaging-derived 

handedness score using the prediction model showed similar heritability to the actual 

handedness measure, and also showed high genetic correlation with the actual measure, 

suggesting that the imaging-derived score largely maintained the heritable variance in 

handedness.   
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Table 3. Prediction performance of handedness classifiers trained on different sets of brain imaging 

features. The AUROC of each row is the average of 10 outer-loop statistics from the nested cross validation. 

Check marks indicate whether the group of features were included in the prediction modeling. Controlled = 

confounding variables as mentioned in the Methods; structure = brain structural MRI; diffusion = diffusion MRI; 

rfmri = resting-state fMRI; CA = component amplitude; FC = full correlation-based functional connectivity; PC = 

partial correlation-based functional connectivity. 
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