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a b s t r a c t 

Lateralization is a fundamental characteristic of many behaviors and the organization of the brain, and atypical 

lateralization has been suggested to be linked to various brain-related disorders such as autism and schizophrenia. 

Right-handedness is one of the most prominent markers of human behavioural lateralization, yet its neurobio- 

logical basis remains to be determined. Here, we present a large-scale analysis of handedness, as measured by 

self-reported direction of hand preference, and its variability related to brain structural and functional organiza- 

tion in the UK Biobank ( N = 36,024). A multivariate machine learning approach with multi-modalities of brain 

imaging data was adopted, to reveal how well brain imaging features could predict individual’s handedness (i.e., 

right-handedness vs. non-right-handedness) and further identify the top brain signatures that contributed to the 

prediction. Overall, the results showed a good prediction performance, with an area under the receiver operating 

characteristic curve (AUROC) score of up to 0.72, driven largely by resting-state functional measures. Virtual 

lesion analysis and large-scale decoding analysis suggested that the brain networks with the highest importance 

in the prediction showed functional relevance to hand movement and several higher-level cognitive functions 

including language, arithmetic, and social interaction. Genetic analyses of contributions of common DNA poly- 

morphisms to the imaging-derived handedness prediction score showed a significant heritability (h 2 = 7.55%, p 

< 0.001) that was similar to and slightly higher than that for the behavioural measure itself (h 2 = 6.74%, p < 0.001). 

The genetic correlation between the two was high (r g = 0.71), suggesting that the imaging-derived score could be 

used as a surrogate in genetic studies where the behavioural measure is not available. This large-scale study 

using multimodal brain imaging and multivariate machine learning has shed new light on the neural correlates 

of human handedness. 
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Lateralization is a fundamental characteristic of many behaviours

nd cognitive functions in human beings ( Karolis et al., 2019 ;

ong et al., 2020a ; McManus 2022 ; Toga and Thompson, 2003 ). Among

hem, the most researched and prominent example of lateralization is

uman handedness laterality. Many tests have been proposed for as-

essing one’s handedness, including the Edinburgh Handedness Inven-

ory for hand preference test ( Oldfield, 1971 ) and the Annett pegboard
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or asymmetry of hand skill ( Annett, 1970 ). In the general population

oughly 90% of people are right-handed, and 10% left-handed ( de Kovel

nd Francks, 2019 ; Peters et al., 2006 ; Papadatou-Pastou et al., 2020;

ong et al., 2021 ). As a striking example of lateralization, handedness

as drawn great attention in fields including psychology, psychiatry,

euroscience, and human evolution. For example, handedness has been

laimed to be associated with personality ( Mascie-Taylor, 1981 ), cogni-

ive skills such as language ( Corballis, 2003 ), and psychiatric disorder

uch as attention deficit hyperactivity disorder (ADHD) ( Nastou et al.,
22 
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022 ) and depression ( Logue et al., 2015 ; cf. Packheiser et al., 2021 ).

on-right-handedness has also been suggested to be linked to early

ife factors ( de Kovel and Francks, 2019 ; Kong et al., 2021 ) and var-

ous neurodevelopmental and psychiatric disorders, such as autism

 Markou et al., 2017 ) and schizophrenia ( Hirnstein and Hugdahl, 2014 ).

owever, these data are mostly correlational, and the neurobiological

asis of handedness remains elusive. 

In general, variation in handedness is thought to reflect differences in

he functional and structural organization of the human brain ( Toga and

hompson, 2003 ). This idea has been tested many times, particularly in

he context of recent advances in neuroimaging methods. Results on the

ssociation between handedness and brain measures have mostly been

quivocal, likely due to limited effect sizes of each single imaging modal-

ty in the context of relatively small samples ( Kong and Francks, 2022 ),

s well as differences in scanning and image processing. Structurally,

hile some studies reported significant associations ( Germann et al.,

019 ; Guadalupe et al., 2014 ; Marie et al., 2015 ), others reported that

andedness has little to do with gray matter asymmetries in volume,

ortical thickness, surface areas, or sulcal depth ( Kong et al., 2018 ;

aingault et al., 2016 )( Carrion-Castillo, 2020 ). In terms of white matter

natomy, structural connectivity of some intra- (e.g., superior longitudi-

al fasciculus) and inter-hemispheric (i.e., corpus callosum) pathways

eems to differ between left- and right-handers, but inconsistent evi-

ence also exists ( Budisavljevic et al., 2020 ). Functionally, various dif-

erences in brain activity related to motor control have been observed

etween left- and right-handers ( Tzourio-Mazoyer et al., 2021 ). It has

lso been proposed that leftward language hemispheric lateralization

as closely linked to the evolution of population-level right-handedness

 Corballis, 2003 ), although studies have found that the relationship in

erms of inter-individual variation is weak and complex ( Mazoyer et al.,

014 ). Besides the motor control and language-related lateralization,

ask fMRI has indicated that handedness is related to lateralization of the

ore face perception network (i.e., the fusiform face area) and pointed

o different neural mechanisms underlying face processing in left- and

ight-handers, suggesting a broader and complex underlying process

egulating brain lateralization ( Frässle et al., 2016 ). 

Recently, thanks to the large-scale and high-quality UK Biobank

ataset, researchers have begun to study potential brain-handedness as-

ociations using larger sample sizes. One study using this sample ( N

 40,000) clarified the relationship between handedness and overall

rain skew (torque in the horizontal and vertical planes ( Kong et al.,

021 ), and another study of cortex-wide asymmetries ( N > 31,000)

howed significant (but small) differences between left-handers and

ight-handers in regions important for hand control, language, vision,

nd working memory ( Sha et al., 2021 ). A resting-state fMRI study in

he UK Biobank ( N =∼9000) showed significant association with func-

ional connectivity between pairs of resting-state networks, particularly

or the left and right (homologous) language networks ( Wiberg et al.,

019 ). However, it is important to note that these previous large-scale

tudies used univariate approaches, without attempting to integrate in-

ormation from both structural and functional measures (indeed two of

hem only investigated structural measures). The effect sizes of the as-

ociations revealed in these studies were low (e.g., Cohen’s d < 0.10 or

orrelation r < 0.10) ( Kong et al., 2021 ; Sha et al., 2021 ; Wiberg et al.,

019 ). While these large-scale neurobiological studies in the UK Biobank

ave indicated various neural correlates of handedness with a degree of

recision and statistical reliability that was previously not possible, the

mall effect sizes suggest that a large-scale survey that integrates various

odalities of brain imaging data and assembles the small effects may be

 major step forward for establishing a more robust brain-behavior as-

ociation and understanding the neurobiological basis of handedness. 

In principle, machine learning techniques might allow us to build

ultivariate predictive models for behavior which are able to capture ef-

ects of high-dimensional features and multimodalities of brain imaging

ata ( Bzdok and Meyer-Lindenberg, 2018 ; Li et al., 2022 ; Marek et al.,

022 ). In other words, by applying machine learning to big data com-
2 
rising brain and behavioural measures, we could clarify whether and to

hat extent models of brain imaging data can predict individual behav-

or, such as handedness preference. Moreover, such predictive models

ould also enhance our understanding of the neurobiology of behav-

or by identifying the most important features, as well as the networks

onsisting of these features, in the prediction. In addition, a predictive

odel could provide an imaging-derived score which could serve as a

roxy of a behavioural measure, for example to enable future large-scale

ognitive neuroimaging genetics studies when only brain imaging data

ut no behavioural data was collected. 

Towards this goal, Panta et al. provided an initial attempt to classify

andedness with structural MRI data from less than 200 participants,

nd achieved a prediction accuracy of up to 80% ( Panta et al., 2021 ).

ith a newly proposed BigFLICA decomposition method which inte-

rates data compression techniques and linked independent component

nalysis approach, Gong et al. identified a multimodal mode (a.k.a., in-

ependent component) which showed a correlation of r = 0.23 with

andedness in the UK Biobank ( N = 14,503) ( Gong et al., 2021 ). The

resent study aimed to explicitly model the associations between hand-

dness, as measured by self-reported direction of hand preference, and

ultimodal brain variables using a machine learning approach, and rep-

esents the largest-ever analysis of handedness and its variability related

o brain structural and functional organization, using the UK Biobank

 N = 36,024). We used a machine learning approach with multiple

odalities of brain imaging data to investigate the relationship between

andedness and the human brain, and to further identify key features

hat are associated with handedness (i.e., right-handedness vs. non-right

andedness). In addition, we made use of the best predictive model and

erived a continuous score as a metric of probability of each individ-

al being right-handed, and confirmed that such an imaging-derived

andedness score could be useful for follow-up studies on the biology

f handedness. 

aterials and methods 

atasets 

Data were obtained from the UK Biobank as part of research appli-

ation 16,066. This is a general adult population cohort. The data col-

ection in the UK Biobank, including the consent procedure, has been

escribed elsewhere ( Alfaro-Almagro et al., 2018 ; Bycroft et al., 2018 ;

 Sudlow et al., 2015 )). Informed consent was obtained for all partici-

ants, and the UK Biobank received ethical approval from the National

esearch Ethics Service Committee North West - Haydock (reference

1/NW/0382). For this study, we used data from the February 2020

elease and excluded the withdrawn participants as announced by the

K Biobank in August 2021. A subset of participants was included in

his study for whom the handedness and brain imaging data were avail-

ble, and in total, this subset had 36,024 participants. The median age

f these participants was 64 years, range 45–81 years, and 19,171 (53%)

ubjects were female. 

rain imaging modalities 

All of the brain imaging features used in the analyses were derived

nd made available from the neuroimage processing pipeline of the UK

iobank ( Alfaro-Almagro et al., 2018 ;( Miller et al., 2016 ) ). These fea-

ures included the following imaging modalities: 

Structure MRI: Features in this category were derived from the par-

ellation of the cortex using the Desikan-Killiany atlas and Freesurfer

 Fischl, 2012 ). These features were area, volume, and mean thickness

f regions in the Desikan-Killiany atlas in both hemispheres. We did not

se each hemisphere’s total cortical surface area or overall mean cortical

hickness in our analysis. 

Diffusion MRI Skeleton: This modality contains several diffusion

etrics in each area of the brain based on tract-skeleton processing on
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Table 1 

Groups of features used for training multivariate machine learning mod- 

els. Each group contains a different number of features, and its UK Biobank 

reference is indicated. 

Feature Group 

Number of 

Features 

UK Biobank 

Reference 

Structure MRI (S) 198 Category 192 

Diffusion MRI Skeleton (D) 432 Category 134 

rfMRI Component Amplitudes (CA-25) 21 Field 25,754 

rfMRI Component Amplitudes (CA-100) 55 Field 25,755 

rfMRI Full Correlation Matrix (FC-25) 210 Field 25,750 

rfMRI Full Correlation Matrix (FC-100) 1485 Field 25,751 

rfMRI Partial Correlation Matrix (PC-25) 210 Field 25,752 

rfMRI Partial Correlation Matrix (PC-100) 1485 Field 25,753 

Table 2 

Controlled features and their UK Biobank references. 

Controlled Feature Group UK Biobank Reference 

Sex f.31.0.0 

Age f.21003.2.0 

Genetic PCs f.22009.0.[0–10] 

Imaging assessment center f.54.2.0 

Scanner-position-{x, y, z} f.2575[6–8].2.0 

Signal-to-noise in T1 f.25734.2.0 

dMRI outlier slices detected and corrected f.25746.2.0 

Resting-State fMRI head motion f.25741.2.0 

Resting-State Signal to Noise f.25744.2.0 
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(  
ractional anisotropy (FA) images in a standard white-matter skeleton

pace. Such metrics were fractional anisotropy, intra-cellular volume

raction (ICVF), isotropic free water volume fraction (ISOVF), mean dif-

usivity, anisotropy mode (MO), and orientation dispersion (OD). 

Resting-State fMRI: This modality is based on blood-oxygen signals

n the brain. These signals are considered as measures of the brain’s

ntrinsic activities and can be used to estimate the functional level

f connectivity between different brain regions ( Canario et al., 2021 ;

ong et al., 2017 ). As described by ( Alfaro-Almagro et al., 2018 ), fea-

ures were extracted and provided in a form of components from in-

ependent component analysis ( Hyvärinen and Oja, 2000 ); two num-

ers of independent components (ICs) are used, namely 25 and 100.

omponents that were identified as artefacts were removed by the UK

iobank team; in total, 21 and 55 ICs remained, respectively ( Alfaro-

lmagro et al., 2018 ). Features were of the following types: Component

mplitudes , fluctuation amplitudes (node temporal standard deviation)

or each component/node; Full Correlation Matrix , correlation-based

unctional connectivity between each pair of ICs; Partial Correlation

atrix , correlation between residues of two independent components

fter regressing out the other components. 

Table 1 summarizes the brain imaging features discussed above to-

ether with their references in the UK Biobank. 

ontrolled variables 

We also considered features that might potentially confound the as-

ociations with handedness. This group of features included biologi-

al sex, age, and genetic information (i.e., the top 10 principal com-

onents (PCs) that describe genetic variability in the dataset). It also

ontained several imaging related variables: imaging assessment center,

hree scanner-positions, signal-to-noise in T1 and rfMRI, dMRI outlier

lices detected and corrected, and rfMRI head motion. We transformed

he categorical variable for ‘imaging assessment center’ into a set of bi-

ary dummy variables using one-hot encoding, resulting in a different

eature for each center. Table 2 summarizes these controlled variables

s well as their corresponding UK Biobank references. 
3 
andedness 

Handedness was assessed based on responses to the question: “Are

ou right- or left-handed? ” with 4 response options: “right-handed ”,

left-handed ”, “use both right and left equally ”, and “prefer not to

nswer ”. Those who preferred not to answer were excluded from

urther analysis. Around 89% of the participants were right-handed

 N = 32,090), while 9% were left-handed ( N = 3374), and 2% were

ixed-handed ( N = 560). UK Biobank provides handedness information

s a categorical attribute with values 0, 1, and 2 being right-handed,

eft-handed, and mixed-handed respectively; the question was posed via

 testing screen when visiting an assessment center. Given the limited

ample size of the left- and mixed-handers, in our analysis, we com-

ined left- and mixed-handers into one group, called non-right-hander

Non-RH). Note that this is mainly for maximizing the sample size of

he smaller group in the classification, while the left-handers and the

ixed-handers sometimes were suggested to have different neuronal

nd functional correlates (e.g., Annett and Moran, 2006 ; Badzakova-

rajkov et al., 2011 ; cf. Hirnstein and Hugdahl, 2014 ). For a small group

f individuals ( N = 216) having indicated different handedness prefer-

nce at different visits, we took the most recent measure and thus la-

elled 84 as right-handers, 132 as non-right-handers. We also ran sepa-

ate prediction models after excluding people reported as mixed-handed

r inconsistently in multiple assessment visits, and the results remained

imilar. 

achine learning model 

Because our handedness variable contains two possible values,

amely Non-RH and RH, our learning problem is a binary classifica-

ion problem. More precisely, we trained logistic regression models to

redict handedness based on the aforementioned brain imaging-derived

eatures. 

In particular, for each participant 𝑖 , we have features ( 𝒙 ( 𝑖 ) ≔

 𝑥 
( 𝑖 ) 
1 , … , 𝑥 

( 𝑖 ) 
𝑑 
} ) and the participant’s handedness binary label ( 𝑦 ( 𝑖 ) =

 0 , 1 } ) where 1 indicates being non-right-handed. Let N be the num-

er of participants and 𝜎 ∶ R → [ 0 , 1 ] be the sigmoid function and 𝒙 ( 𝑖 ) ↦

 ( 𝒙 ( 𝑖 ) ) ≔ 𝛽0 + 

𝑑 ∑
𝑗=1 

𝛽𝑗 𝑥 
( 𝑖 ) 
𝑗 

. Predicted probability of being non-right-handed

Non-RH) for each individual 𝑖 using logistic regression is 𝜎( ℎ ( 𝒙 ( 𝑖 ) ) ) . Our

oal is to estimate the parameters { 𝛽0 , … , 𝛽𝑑 } of the model such that 

argmin 
{ 𝛽0 , …,𝛽𝑑 } 

− 

1 
𝑁 

𝑁 ∑

𝑖 =1 
𝑤 

( 𝑖 ) [ 𝑦 ( 𝑖 ) log ( 𝜎( ℎ ( 𝒙 ( 𝑖 ) ))) + (1 − 𝑦 ( 𝑖 ) ) log (1 − 𝜎( ℎ ( 𝒙 ( 𝑖 ) )))] 

+ 

1 
𝐶 

𝑑 ∑

𝑗=1 
𝛽2 
𝑗 

here the first term corresponds to the negative weighted log likelihood

f the Bernoulli distribution and the second term corresponds to the 𝑙 2 
egularization. 𝑤 

( 𝑖 ) is the weight of each i th participant, while C is the

yperparameter (positive real number) penalizing the complexity of the

odel (i.e., the smaller the value, the higher the penalty). We applied

inMaxScaler from scikit-learn (version 0.22.2.post1; https://scikit-

earn.org/ ) ( Pedregosa et al., 2011 ), normalizing each covariate to be

etween zero and one. The default optimizer implemented in scikit-

earn was used to train the logistic regression model. We set the

aximum number of optimization iterations at 1000. We also set

lass_weight = balanced , assigning 𝑤 

( 𝑖 ) ’s to the inverse of the class fre-

uency to which the participant belongs. In other words, participants

rom the non-right-hander group had larger 𝑤 𝑖 ’s than those from the

ight-hander group, in order to maintain balance at the group level. 

odel evaluation and optimization 

We used the area under the receiver operating characteristic curve

AUROC) to evaluate the models, computed using scikit-learn. We per-

https://scikit-learn.org/
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Fig. 1. Nested cross-validation procedure. We 

perform the procedure to find the value of the reg- 

ularization hyperparameter and estimate the gen- 

eralization error (AUROC) of the logistic regression 

model. 
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ormed nested cross-validation to estimate the AUROC. Unlike standard

ross-validation, nested cross-validation has outer and inner loops; the

uter loop is responsible for estimating the generalization of our handed-

ess models, while the inner loop is for finding suitable values of hyper-

arameters; We used BayesianSearchCV from the scikit-optimize pack-

ge ( Head et al., 2020 , version 0.7.4) for hyperparameter optimization.

ig. 1 shows the procedures of nested cross-validation. We used 10 fold

or the outer loop and 5 fold for the inner loop; we set BayesianSearchCV

o sample 5 configurations sequentially. 

ethods for feature importance analysis 

One aim of this study is to identify the most important imaging fea-

ures for handedness prediction. A common approach to quantify fea-

ure importance is to analyze the weights of the features learned by the

odel. However, previous work ( Haufe et al., 2014 ; Kriegeskorte and

ouglas, 2019 ) has argued that interpreting weights from linear models

ould be misleading, e.g., ( Haufe et al., 2014 ) showed a setting in which

 model learned a large weight to suppress noise in the data, rather than

imply indicating the importance of a given feature. 

Another approach is to quantify the importance of each feature

y the change in AUROC when excluding that feature, before retrain-

ng the model. This approach is similar to the virtual lesion approach

 Etzel et al., 2013 ; Kong et al., 2020b ) in neuroscience, or backward fea-

ure selection ( Guyon and Elisseeff, 2003 ), or the leave-one-covariate-

ut approach in machine learning ( Lei et al., 2018 ). For feature im-

ortance analysis in the present study, we focused on functional con-

ectivity derived from resting-state fMRI, as this modality showed the

argest contribution to handedness prediction (see the Results). The fea-

ures used in the prediction model were functional connectivity mea-

ures between ICs, but we were primarily interested in identifying the

Cs themselves that were most important for handedness prediction, not

er se the functional connectivities between them. Therefore, separately

or each IC, we excluded all connectivity measures with that IC before

etraining the model and recording the change in AUROC ( Fig. 2 ). 

To present a functional interpretation of the most important fea-

ures in the prediction, a data-driven decoding analysis was conducted

ased on a large-scale neuroimaging database ( https://neurosynth.org/ ;

ersion 0.7). Specifically, the “decoder ” function from the Neurosynth

ackage was used ( Yarkoni et al., 2011 ). Neurosynth uses text-mining

echniques to detect frequently used terms as proxies for functional con-
4 
epts of interest in thousands of papers from the neuroimaging litera-

ure: Terms that occur at a high frequency in a given study are asso-

iated with all activation coordinates in that publication, allowing for

utomated term-based meta-analysis. The decoding analysis ranked the

erms in the database by assessing how strongly the meta-analysis map

f each functional term correlated with a given map of interest (i.e.,

n our case the maps for the IC features of interest). There were 590

elected cognitive terms after excluding anatomical (e.g., “hippocam-

us ”), psychiatric (e.g., “autism ”), pathological (e.g., “alzheimer ”), and

on-specific (e.g., “tasks ”) terms ( Karolis et al., 2019 ). Cognitive terms

ith a correlation coefficient larger than 0.15 were included in the vi-

ualization. 

pplication of the prediction model to imaging genetics 

As an illustration of application of the prediction model, we ran an

dditional analysis using the predicted probability score derived from

he best model (i.e., imaging-derived handedness score). Here we fo-

used on the heritability of handedness, and the genetic correlation be-

ween the imaging-derived score and the actual handedness behavioural

abel. Heritability is a measure ranging from 0 to 1 which indicates the

xtent to which variation in a trait is influenced by the combined ef-

ects of genetic variation over the genome, in this case as captured by

ommon single-nucleotide polymorphisms (SNPs) genotyped in the sam-

le ( Vinkhuyzen et al., 2013 ). Genetic correlation measures the extent

o which variability in a pair of traits is influenced by the same ge-

etic variations over the genome. In this study, we hypothesized that

he imaging-derived handedness score would show similar heritability

o that for the actual handedness, and that the two variables would show

igh genetic correlation. 

To this aim, genotype data from the UK Biobank were used. In

rief, in the UK Biobank, 550,192 autosomal, directly genotyped SNPs

ith minor allele frequencies (MAF) > 0.01, genotyping rate > 0.95,

nd Hardy-Weinberg equilibrium (HWE) p > 1 × 10 − 6 were used to

uild a genetic relationship matrix (GRM) using GCTA (version 1.26.0)

 Yang et al., 2011 ). We excluded samples with a genotyping rate of

 98% and a kinship coefficient higher than 0.025 based on this GRM, re-

ulting in a sample size of 30,682 participants. Genome-based restricted

aximum likelihood (GREML) analyses using GCTA were performed

o estimate the SNP-heritabilities for the imaging-derived handedness

core as well as the actual handedness label, after residualizing for the

https://neurosynth.org/
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Fig. 2. Schematic to illustrate the virtual lesion approach to determine the importance of a given resting state fMRI-derived independent component (IC) 

in the prediction model. To determine the importance of IC-1, functional connectivity measures (shown as lines) that are not related to IC-1 are excluded before 

re-training the model to predict the dependent variable (handedness in our case). The larger the difference in AUROC between the model trained with and without 

these features, the more important IC-1 is for predicting the dependent variable. 

Table 3 

Prediction performance of handedness classifiers trained on different sets of brain imaging features. The AUROC of each row is the average of 10 outer-loop 

statistics from the nested cross validation. Check marks indicate whether the group of features were included in the prediction modeling. Controlled = confounding 

variables as mentioned in the Methods; structure = brain structural MRI; diffusion = diffusion MRI; rfmri = resting-state fMRI; CA = component amplitude; FC = full 

correlation-based functional connectivity; PC = partial correlation-based functional connectivity. 

Controlled Structure Diffusion 

rfMRI AUROC 

CA-25 FC-25 PC-25 CA-100 FC-100 PC-100 Mean SD Min Max 

√
0.5525 0.0120 0.5223 0.5681 √
0.5539 0.0075 0.5432 0.5642 √
0.5755 0.0144 0.5490 0.5982 √
0.5775 0.0134 0.5551 0.5980 √
0.6556 0.0137 0.6223 0.6732 √
0.6655 0.0099 0.6423 0.6793 √
0.5900 0.0164 0.5595 0.6184 √
0.7001 0.0152 0.6808 0.7294 √
0.7243 0.0158 0.6944 0.7437 √ √ √
0.6086 0.0161 0.5813 0.6400 √ √ √
0.7004 0.0218 0.6660 0.7400 √ √ √
0.7204 0.0141 0.7016 0.7436 √ √ √ √
0.7037 0.0146 0.6826 0.7301 √ √ √ √
0.7231 0.0206 0.6845 0.7471 √ √ √ √ √
0.7234 0.0174 0.6862 0.7422 
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ovariate effects of sex, age, square of z-score of age (z_age2), the first

en PCs capturing genome-wide genetic structure ( Bycroft et al., 2018 ),

enotyping array, and several technical variables related to imaging:

maging assessment center (binary), scanner position parameters (con-

inuous X/Y/Z), signal/contrast-to-noise ratio in T1 (continuous), and

n-scanner head motion. Bivariate analysis ( Lee et al., 2012 ) were also

un in GCTA, to investigate the SNP-based genetic correlation between

he handedness measures. 

esults 

nimodal models 

As baseline for later multimodal analyses, we first trained unimodal

ogistic regression models on features from each brain imaging modal-

ty separately. Table 3 shows that features derived from different brain

maging modalities resulted in various prediction performances, with

he rfMRI showing the best results. In particular, among these unimodal

odels, the model trained with the partial correlation matrix features
5 
erived from 100 independent components (PC-100) achieved the high-

st AUROC at 0.7243 (SD 0.0158) ( Table 3 ). 

The second best unimodal model was the one trained with features

rom the full correlation matrix features (FC-100) with the same number

f components with AUROC at 0.7001 (SD 0.0152). Following these two

rst models are models that were trained on partial and full correlation

atrix features extracted from 25 rfMRI independent components (PC-

5 and FC-25 respectively); these models’ AUROCs were 0.6655 (SD

.0099) and 0.6556 (SD 0.0137) respectively. 

In contrast, models trained on the other groups of features, namely

omponent amplitude features derived from the rfMRI modality, or dif-

usion measures, or structure measures, showed AUROC below 0.6. In

articular, the least predictive group of features for handedness pre-

iction was the group of structural measures (S), having AUROC at

nly 0.5539 (SD 0.075), while the controlled group attained AUROC

t 0.5525 (SD 0.0120). Taken together, these results suggest that func-

ional measures seem to be more relevant to the inter-individual varia-

ions in handedness, at least based on the current set of imaging-derived

henotypes released by the UK Biobank. 
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Fig. 3. AUROC of models trained after excluding the features linked to each IC (x- axis). Small dots are AUROC values from the outer loop of the nested cross 

validation, and the large dots are their average for each IC. The larger difference between the average of the reference model (horizontal dashed line); the more 

important each IC is. Highlighted area indicates the first 10 models for which the AUROC drops the most. 
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ultimodal models 

We trained models with a combination of features from different

odalities. Given that the results of the previous section demonstrated

hat the models trained on features derived from 100 rfMRI components

as always better than using 25 rfMRI components, we focused here on

he combination of features from the partial and full correlation matrix

xtracted from 100 independent components. PC-100 and FC-100 indi-

ate the functional connectivity features calculated using partial correla-

ion and full correlation approaches respectively. Thus, we used features

rom either one or the other of these two versions in a single analysis,

ut not both. 

As shown in Table 3 , the top-performing multimodal model was the

odel trained on a combination of features derived from the imaging

odalities we considered. These features included structure features,

iffusion measures, and the rfMRI modality’s partial correlation ma-

rix with 100 independent components. This model achieved AUROC at

.7231 (SD 0.0206), which was slightly lower than the unimodal model

eing trained only on the rfMRI partial correlation matrix features (PC-

00). When using the same combination of features except substituting

he features from the partial correlation matrix (PC-100) with the ones

rom the full correlation matrix (FC-100), we observed a marginal de-

rease ( Table 3 ). 

These results suggest that functional connectivity features derived

rom resting-date fMRI provide most/all of the information about hand-

dness, relative to brain imaging features from other modalities. In addi-

ion, to examine whether controlled variables could impact the predic-

ion, we extended the top-performing multimodal model’s features set

ith the following potential confounding variables ( Table 3 ): age, sex,

maging information (i.e., scanner positions, assessment center, SNRs,

ead motions), and genetics (via top 10 genotype-based ancestry PCs).

ncorporating such variables only slightly increased AUROC further to

.7234 (SD 0.0174) ( Table 3 ). 

odel interpretation 

We present the results of the virtual lesion analysis (as described

n Methods for Feature Importance Analysis). We used this analysis to

uantify the importance of each rfMRI IC in PC-100 for handedness pre-

iction. Together with the importance of each IC, we also present asso-

iated brain areas and cognitive terms of a number of important ICs. 

Fig. 3 ’s highlighted area shows the first 10 independent components

anked in ascending order by the difference of their AUROCs compared

o the reference setting (all features of PC-100). We see that these AU-

OCs are substantially lower than the one obtained by using all the PC-

00 features. In this case, the least predictive setting is the one that ex-
6 
ludes features related to IC-18 whose AUROC is at 0.7089 (SD 0.0135);

hus, IC-18 seems to contain the most relevant information about hand-

dness among all IC’s. The second least predictive setting is when IC-

2 linked features were removed whose average AUROC is 0.7093 (SD

.0092). The rest of Fig. 3 shows that the AUROCs of these virtual le-

ion models gradually increase and eventually become on par or slightly

igher than the reference configuration. 

Fig. 4 shows the top 10 functional networks related to the fea-

ures important for the handedness prediction revealed in the virtual le-

ion analysis. Interestingly, the most important network (IC-18) showed

arge overlap with the motor cortex, and the decoding analysis showed

lear functional relevance to hand movement. Three other brain net-

orks (IC-20, IC-2, and IC-32) showed similar functional relevance to

ither hand movement or somatosensory roles. The network of IC-9

howed significant correlation with language-related functions includ-

ng comprehension. We found four other top networks showing strong

ight-lateralization (i.e., IC-33, IC-26, IC-11, IC-12), which mainly in-

olved functions such as social interaction, arithmetic, and the default

odel network. Another network (IC-39) included the frontal eye field

nd showed relevance to visuospatial attention. 

As a control analysis, we also ran the same decoding analysis for the

0 networks with the lowest contributions to handedness prediction (In

upplement, Figure S1). The majority of these features involved early

isual or auditory functions: six of them (IC-41, IC-16, IC-52, IC-8, IC-48,

nd IC-1) showed association with the primary and the ventral visual

ystems, one with auditory (IC-22), one with reward (IC-38), one for

orking memory (IC-37), and one with no annotated cognitive terms

IC-54). 

enetic overlap between imaging-derived handedness score and actual 

andedness 

While the performance of the prediction model was not perfect, we

ound that the imaging-derived handedness score showed a heritability

h 2 = 7.55%, se = 2.12%, p = 0.000072) that was similar to, and slightly

igher than the actual handedness measure (h 2 = 6.74%, se = 2.1%,

 = 0.00090). Moreover, the imaging-derived handedness score showed

igh genetic correlation with the actual measure (r g = 0.71, se = 0.19,

 = 0.00019). These results indicate considerable genetic overlap be-

ween the imaging-derived handedness score and the actual behavioural

easure. 

iscussion 

Here, we present the largest-ever analysis of handedness in relation

o both structural and functional brain organization, making use of data
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Fig. 4. The top 10 brain networks based on the 

importance scores obtained by the virtual le- 

sion approach. Cognitive terms revealed in the de- 

coding analysis are shown next to each brain map. 

Font size indicates the strength of the correlation 

between the brain map and the activation map rel- 

evant to each cognitive term. 
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S  
rom the UK Biobank ( N = 36,024). A machine learning approach with

ultiple modalities of brain imaging data was used to assess whether

nd to what extent brain imaging data could predict an individual’s

andedness (i.e., right-handedness versus non-right handedness). Over-

ll, the results showed a good prediction performance, with an AUROC

core of up to 0.72. Quantifying the importance of each independent

omponent (IC) using the virtual lesion approach, we found that the

op components describe intrinsic functional networks for hand move-

ent and higher-level cognitive functions such as language comprehen-

ion, arithmetic, and social interaction. Further genetic analyses of the

maging-derived handedness score using the prediction model showed

imilar heritability to the actual handedness measure, as well as high

enetic correlation between the two. 

andedness and multimodal brain imaging 

For years, there has been great interest in the relationship between

andedness and the brain, but mostly a small sample size and/or one

ingle imaging modality was used (see Introduction). These existing

tudies were usually based on univariate approaches, such as corre-

ation and generalized linear models. While these studies indeed pro-

ided new insights in the neurobiological basis of handedness, the ef-

ect sizes of these univariate analyses were usually low ( Kong et al.,

018 , 2022 ; Carrion-Castillo, 2020 ). In a recently published study, Sha

nd colleagues mapped cortical morphometry differences (i.e., thick-

ess and surface area asymmetry) associated with handedness in the

K Biobank, and revealed a number of significant clusters, all of which

lso showed small effect sizes (Cohen’s d < 0.1) ( Sha et al., 2021 ). In

he present study, we for the first time took advantage of multimodal

maging data in the UK Biobank, and combined it with a multivariate

achine learning approach to explore how and to what extent the brain

maging data could predict an individual’s handedness. Overall, the best

odel resulted in a good prediction performance with an AUROC of up

o 0.72. In addition, we found that the prediction accuracy was similar

fter controlling for the confounding factors such as age, sex, poten-

ial heterogeneity in brain imaging, head motion during scanning, and
7 
opulation structure, suggesting that predictive modeling is largely in-

ensitive to such factors. 

In line with this, in the unimodal modeling analysis, we found that

odels based on the functional connectivity measures showed much

igher performance (AUROC = 0.6556–0.7243), compared with those

ased on structural measures of gray matter (AUROC = 0.5539) and

hite matter (AUROC = 0.5755). In fact the latter models performed

nly slightly higher than chance level (AUROC = 0.5). These results are

roadly consistent with previous findings of small effect sizes for uni-

ariate associations between handedness and highly localized gray mat-

er measures ( Sha et al., 2021 ), while measures of relatively large re-

ions as defined in the Desikan atlas (as used in the present study) have

lso shown a lack of association with handedness in another large-scale

tudy via the ENIGMA (Enhancing Neuro-Imaging Genetics through

eta-Analysis) consortium ( Kong et al., 2018 ). 

More intriguingly, the virtual lesion approach and the decoding anal-

sis suggest that the brain networks for cognitive functions including

anguage-related functions, visuospatial attention, arithmetic, and so-

ial interaction and the default mode network, along with the networks

or handedness movement (for details see Fig. 4 ), were most related to

andedness. These results seem to be in line with recent findings that

andedness-related differences were found in brain regions/networks

or hand control, language, and visual functions ( Sha et al., 2021 ;

iberg et al., 2019 ). The present study provides new evidence sup-

orting such associations, but also suggests novel links of handedness

ith brain networks for number processing and social functions, and

he default mode network. Together, these results suggest that analysis

f multivariate machine learning modeling of brain imaging measures

ould provide a more comprehensive picture of neurobiological basis of

andedness. 

andedness and brain imaging genetics 

Previous studies have shown that genetic variation contributes mod-

stly to handedness, with heritability estimates ranging from 3% for

NP-based heritability in the UK Biobank (N > 108,000) ( Ge et al.,
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017 ), to 25% in twin studies ( Medland et al., 2009 ). A recent study

n the UK Biobank suggested that some genetic loci associated with

andedness are associated with individual variation in cortical struc-

ural asymmetries that showed significant differences in left-handers

 Sha et al., 2021 ). Here, we found that the imaging-derived handed-

ess score showed similar heritability to the actual behavioural measure

around 7%). More interestingly, we found that the imaging-derived

andedness score showed high genetic correlation with the handedness

ehavioural measure ( r g = 0.71), suggesting considerable overlap in the

nderlying genetic variation. Compared with the modest performance of

he handedness prediction model, the high genetic correlation between

he predicted score and the actual handedness measure suggests that the

maging-derived score largely retains the variance in handedness that is

ue to genetic factors. 

Moreover, with handedness as an example trait of interest, our re-

ults suggest that a predictive model approach based on brain data could

rovide a proxy of behavioural observations for future large-scale imag-

ng genetics studies. Hand preference itself is relatively easy to measure

n large samples (e.g., the sample size of the largest genome-wide asso-

iation study to date was over 1.7 million) ( Cuellar-Partida et al., 2021 ).

onetheless, the approach adopted here could be particularly useful

hen large-scale brain imaging data has already been collected e.g., in a

sychiatry department, without much relevant behavioural data such as

andedness. For instance, in the ENIGMA consortium ( Thompson et al.,

020 ), tens of thousands of MRI images have been collated via multi-site

ollaboration (e.g., Grasby et al., 2020 ), but relatively few sites have col-

ected comparable indexes of individual’s cognition and behavior, which

imits large-scale studies linking human cognition, brain and genes. In

ddition, it is interesting in the future to explore the links of the imaging-

erived handedness score with other behavioural variables that informs

rain laterality when such variables are available. 

imitations and future directions 

It is important to note that the assessment of hand preference in

he UK Biobank was by a simple question (i.e., “Are you right- or left-

anded? ”) and thus is less than ideal. Simple assessments such as this

ave been shown to capture an inherent dichotomy in hand preference

hat is also revealed by more quantitative, multi-term questionnaires

 Ransil and Schachter 1994 ). However, the results may have been dif-

erent if using performance-based hand skill measures or multi-item

andedness ratings which further reflect the strength of hand prefer-

nce ( Crow et al., 1998 ). People using both hands equally may form a

omewhat distinct category with respect to behavioural and brain corre-

ates ( Badzakova-Trajkov et al., 2011 ). We also ran a separate prediction

odel after excluding people having reported as mixed-handed, and

btained very similar results in both prediction performance (0.7360

ersus the original 0.7243) and the importance of the ICs ( r = 0.62,

 = 5.73e-07). Similarly, functions suggested by the decoding analyses

f the top IC networks showed much overlap with those in the main anal-

ses, which included functions including hand movement, language-

elated functions, calculation, social interaction and visuospatial func-

ions. These results suggested that the present results were mainly con-

ributed by the differences between the left- and right-handers. In addi-

ion, when possible, future studies should investigate the reliability and

obustness of the results, e.g., via the ENIGMA Laterality working group

 Thompson et al., 2020 ; Kong et al., 2022 ). 

This study has several points that could be improved to possibly

chieve a better prediction performance for hand preference. First, lat-

ralization has been observed widely in the cognitive, emotional, and

anguage systems. Task fMRI for these domains could provide useful

nformation to enhance the prediction. However, in the UK Biobank,

nly a few tasks were included for fMRI experiments. We would expect

hat further task-related phenotypes could provide useful information

or the prediction. New phenotype discovery approaches which inte-
8 
rate decomposition algorithms and multimodal features could also be

onsidered ( Gong et al., 2021 ). 

Secondly, it should be noted that the structure and diffusion fea-

ures were atlas-based while the rfMRI features were data-driven (the

atter from ICA). As most of the predictive power for handedness in this

tudy was derived from the rfMRI measures, with minimal contribu-

ions from the other modalities, the utility of a multi-modal approach

as not clearly illustrated in this specific application. However, using a

ertex-based (atlas-free) approach for computing structure symmetries,

ha et al. (2021) recently found a number of cortical regional asymme-

ries that associate with hand preference, which were generally smaller

nd more focal than the Desikan-Killiany atlas regions as used in the

resent study. Future work should investigate whether atlas-free ap-

roaches to structure and diffusion features can help to further improve

andedness prediction in combination with rfMRI measures. 

Lastly, assembling models (e.g., random forest) and more complex

achine learning approaches such as artificial neural networks could

rovide better prediction performance; however, one potential chal-

enge in that setting is extracting scientific insight from these complex

odels. One could overcome such an interpretability challenge by uti-

izing recent developments in explanation methods ( Samek, 2019 ), e.g.,

ayer-wise Relevance Propagation ( Bach et al., 2015 ), that can pro-

uce explanation for predictions from these complex models. In ad-

ition, polygenic scores for handedness ( Cuellar-Partida et al., 2021 ;

iberg et al., 2019 ) and early life factors associated with handedness

 de Kovel and Francks, 2019 ), could also be considered. 

onclusion 

In sum, we present the largest-ever analysis of handedness in relation

o multimodal brain imaging features, by applying multivariate machine

earning approaches in the UK Biobank. Overall, the results showed a

ood prediction performance, with an AUROC score of up to 0.7243 (SD

.0158); the most predictive features were related to functional connec-

ivity of the brain networks derived from resting-state functional MRI.

ur virtual lesion analysis and decoding analysis for ranking the im-

ortance of the brain networks in the handedness prediction revealed

etworks relevant for hand movement as well as for higher-level cogni-

ive functions such as language-related functions (except for visual pro-

essing of words), arithmetic, and social interaction. While these results

re correlational and based on older adults, new possibilities on the neu-

al and cognitive correlates of handedness development were suggested.

urther genetic analyses of the imaging-derived handedness score using

he prediction model showed similar heritability to the actual handed-

ess measure, and also showed high genetic correlation with the actual

easure, suggesting that the imaging-derived score largely maintained

he heritable variance in handedness. 
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