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S1. GPP products

® VPM

The Vegetation Photosynthesis Model (VPM) is a light use efficiency (LUE) model which
has been tested over a variety of land cover types at CO2 eddy flux tower sites (1-6). The
GPP product we used in this paper is driven by the MODIS 8-day 500 m surface
reflectance product (MODO9A1 C6), the MODIS 8-day 1 km Land surface temperature
product (MOD11A2 C5), the MODIS land cover product (MCD12A2 C5), and the
shortwave radiation and air temperature from the NCEP-DOE Reanalysis 2 dataset. The
VPM (version 2.0) estimates GPP by using the product of absorbed photosynthetic active
radiation by the chlorophyll (APAR,y,;, calculated by fPAR., % PAR) and the light use
efficiency (LUE, ¢,):

GPP = &, X APARy, (A1)
FPAR.y; =a x (EVI—0.1) (A2)

Where the factor a = 1.25, and 0.1 in Eg. A2 is used to adjust EVI baseline (7, 8). The
EVI is calculated from the MODO9A1 product and passed a rigorous quality check and
gap-filling procedure (9). The LUE (g,) is reduced from a maximum light use efficiency
(go) by the temperature scalar (T 4;4,-) @and a water scalar (W 414

&g =& X Tscatar X Wscatar (A3)

Detailed information about the model parameter estimation were documented in previous
publications (1, 4, 10).

The GPP product at 8-day temporal resolution and 500 m spatial resolution was
reprojected and aggregated into 0.5 degree (latitude and longitude). The annual GPP is
calculated as the sum of each 8-day GPP over a Julian year, and the interannual variation
of GPP is calculated below:

AV = \/Z?_l(GPPi — GPP)? (A4)

n

Where GPP; and GPP represent the annual GPP for year i and average annual GPP for
year 2000 to 2011, respectively. n is the total number of years.

® MPI-BGC (MTE)

The MPI-BGC estimates GPP by upscaling global in situ CO2 eddy flux observations with
climate data and remote sensing fraction of absorbed photosynthetic active radiation
(FAPAR) using a Model Tree Ensemble approach (11, 12). This dataset has a spatial
resolution of 0.5° x0.5°. This monthly dataset was first aggregated into annual sum and
then the 1AV over the period of 2000 to 2011 was calculated to match with other GPP
products.

® MOD17



The MODIS GPP product (MOD17) employs a light use efficiency (LUE) approach to
calculate GPP. The PSN model used in the MOD17 GPP product uses MODIS fPAR
product as the fraction of PAR absorbed by vegetation for photosynthesis. MOD17 also
uses vapor pressure deficit (VPD) as the water limitation of LUE and uses variable
maximum LUE for individual biome types, which are determined by MODIS land cover
map (MCD12). The MOD17 product (MOD17A2 C55) during 2000-2011 was
downloaded from Numerical Terradynamic Simulation Group
(http://www.ntsg.umt.edu/project/mod17#data-product) at the University of Montana.
MOD17 GPP at 1-km spatial resolution and 8-day temporal resolution and was aggregated
into 0.5 degree (latitude/longitude) to calculate annual GPP.

® TRENDY-V4

The TRENDY project compared simulation results from dynamic global vegetation
models (DGVMs) under the same climate forcing data, with an objective to investigate
the trend in net biome production (NBP) over the period 1980 to 2010 (13). The GPP
simulation from 2000 to 2011 from the latest version TRENDY-V4 were used in our study.
The model simulation is based on two experiments: S2, CO2 and climate, S3, CO2, climate
and land use. In our study, the S2 simulation with variable CO2 and climate forcing are
used because not all models provide S3 simulations. Eleven models (CLM4.5 (14), ISAM
(15), JSBACH (16), JULES (17), LPJ (18), LPJ-GUESS (19), LPX (20), OCN (21),
ORCHIDEE (22), VEGAS (23), and VISIT (24)) from the TRNEDY project were used to
calculate the inter-annual variability (IAV) of GPP for the period 2000 to 2011 (Fig. S1-
S3). The spatial resolution of CLIMA4.5 is 2.5° x1.875°, JSBACH is ~1.875° x1.875°,
JULES is 1.875° x1.25°, OCN and LPX are 1° x1°. These annual GPP means and IAVs
are calculated at the original resolution and spatially interpolated to 0.5° x0.5° using
cubic interpolation method.

S2. Evapotranspiration and potential evapotranspiration dataset

Evapotranspiration datasets from the model tree ensemble (MTE) (Jung et al. (12)), MODIS
ET (27) (MOD16A3 C5), and 10 TREDNY models are used in our study (ET from LPJ is not
used due to a data problem---abnormally low ET in tropical reigons). The MTE method
integrates the eddy flux tower measured ET with remote sensing satellite images and
meteorological data using a machine-learning algorithm (11). The MOD16A3 product
calculates ET based on the Penman-Monteith algorithm (28) and was recently improved (27).
We downloaded the potential evapotranspiration (PET) and evapotranspiration (ET) from
Numerical Terradynamic Simulation Group website at the University of Montana
(http://www.ntsg.umt.edu/project/mod16). The PET and ET datasets were annual sums at 1
kmx1 km spatial resolution and we aggregated to 0.5° x0.5°. ET from TRENDY-V4 were also
interpolated into 0.5° x0.5° spatial resolution. All ET datasets from 2000 to 2011 were used.




S3. Climate dataset

The GPCC V7 global precipitation at 0.5° x0.5° is used in our analysis (29). This dataset has
a monthly precipitation value from 1901 to 2013. The downward shortwave radiation was
obtained from CRUNCEP V4 (http://dods.extra.cea.fr/data/p529viov/cruncep/) with a monthly
sum and a spatial resolution of 0.5° x0.5°. The monthly mean temperature was from CRU TS
3.23 (30) (https://crudata.uea.ac.uk/cru/data/hrg/cru_ts 3.23/) and also has a 0.5°x0.5°
spatial resolution. All the monthly climate datasets are aggregated to annual sums. The aridity
index is calculated using GPCC precipitation over PET from MOD16 for the period 2000 to
2011. The classification scheme of the aridity regions based on aridity index is from UNEP
(31) and can be found in Table S1. Because CRUNCEP V4 does not provide radiation after
2010, the climate correlation is calculated using data from 2000 to 2010.

S4. Aggregation of MODIS land cover map

In order to get the annual land cover map at 0.5° x0.5° spatial resolution, we aggregate the
MCD12C1 C5 product spatially. The aggregation is based on the average of area percentage
of each biome type, therefore the output also includes percentage of each biome type for each
grid cell. To make sure we can compare the SIF and GPP within each land cover type, we set
a threshold to extract the grid cells with ‘pure’ land cover types. We set the threshold from 50%
to 100%. With the increase of this threshold, the number of mixed pixels also increased and
the available pixels decreased (Fig. S4). In this study, we used the 80% threshold, and only two
biome types have less than 100 gridcells.

S5. Rationale of GPP ensemble using SIF as a reference

Recent studies have successfully retrieved SIF from satellites, and these SIF retrievals showed
very good correlation with GPP from flux tower upscaled models and light use efficiency
models (32). This close relationship between GPP and SIF is found to be higher within each
biome type at monthly scale using data from both global simulation and in situ observations
(33, 34). The Soil Canopy Observation of Photochemistry and Energy fluxes (SCOPE) model
is a process-based model which can also simulate energy exchange within photosynthesis
process, including SIF (35). Using this SCOPE model, recent studies investigated the
relationship between GPP and SIF (36, 37). SlFyied (defined as SIF/APAR, absorbed
photosynthetically active radiation) shows a good linear correlation with photochemical yield
(defined as GPP/APAR) when APAR is higher than 400 to 600 pmol m~2s~1. However, this
linear relationship varies with Vemax. If we assume the similar Vemax Within each biome type,
SIF should have a good correlation with GPP at moderate or high light conditions relevant to
satellite observations.



S6. Comparing GPP ensemble using SIF as a temporal proxy and spatial proxy

Because of the close relationship between SIF and GPP within each biome type, SIF can be
used as a reference to evaluate the performance of various models in GPP estimation. To reduce
uncertainties of SIF from GOME-2, we proposed two strategies to reduce uncertainties:
monthly SIF is averaged either temporally to yearly average, or spatially within each biome
types; and we then use temporally averaged SIF as spatial representative or the spatially
averaged SIF as temporal representative of photosynthetic activity. The weights for each model
from these two approaches are given in Figs. S5, S6. When using SIF as a temporal reference
for each biome, the difference between each individual model is rather small (Table S2), and
most models have relatively high correlation. This implies most models can simulate the
seasonal variation of GPP relatively well. However, when using SIF as a spatial reference
within each biome, the difference between each individual model is relatively large (Table S3),
and many models have relatively low correlation coefficients. In addition, the interannual
difference of the weight is very small (short error bar in Fig. S5), proving the method is
relatively stable.

S7. Interannual variation of SIF

SIF data from the satellite have relative high noise because of the high spectral requirement for
the sensor. For the GOME-2 dataset, the reported error for monthly mean gridded data are ~
0.1-0.4 mW m?2 nmt sr! (26). This reported error is contributed from several sources: (1) the
error for each individual SIF measurement, which is affected by the radiance noise,
atmospheric conditions; (2) different observing conditions (view angle), sampling locations
and time; (3) cloud contaminations; (4) various systematic errors. When calculating the
interannual variation, the contribution from 2-4 is limited and is ignored in our analysis.

We use the following scheme to calculate the interannual variation of SIF:

1) For each gridcell each month, not only the aggregated SIF value (average of all valid SIF
retrieval) is given, the GOME-2 SIF product also gives the number of individual SIF
measurements used to aggregate the gridcell and the standard deviation of all retrievals.
The uncertainty of this gridcell for month i (o;) will be the standard deviation of all
retrievals (regarded as the uncertainty of each individual measurement) divided by v/n,
where n is the number of measurements used for aggregation. Therefore, we can get the
uncertainty of SIF for each gridcell for each month.

2) From the SIF value and uncertainty for each month, we will further calculate the SIF mean
and uncertainties for each year. Assuming for each gridcell, the uncertainty of SIF for
month i (g;) follows a normal distribution (g; € N(0, 0;)), where o; is the uncertainty
which we calculated in the previous step, the uncertainty of annual average SIF for year j
(gj) will also follow a normal distribution:



/ 12 _2\

i=10i
g EN \O'—lz / (A5)
3) To calculate the actual 1AV of SIF, we need to eliminate the uncertainty induced variability

for each year (g; € N(O, 0]-)) from the calculated variability (o.,;) for each gridcell. We

found a very similar pattern of ¢; across different years. Because of the additivity of
variance, the calculated 1AV of SIF (o.,;) can be explained by the real 1AV of SIF (0,4y)
and error of observation (6,,,,,):

Ocar® = Opav® + Oann” (A6)

where the error of observation (o) is calculated as follows:

2015 -2
2 _ |&j=20079j

Oann™ = 9 (A7)

The spatial patterns of o, and o,,, are shown in Fig. S10.

S8. Decompose ET variation from precipitation variation and potential
evapotranspiration variation

Using the Budyko framework, similar with equation (7) in the methods, we can also get the ET
sensitivity to PET (Eo) change:

OET 1 n _n+1
3P = —T = (AI"+ 1) n (A8)
E, N\
(1 +(F) )
OET 1 L mw
= =AM+ 1) (A9)
0

En\"\ ™
(1 +(3) )
Therefore, ET variability can be decomposed into ET variability caused by precipitation

variability (ETp), and ET variability caused by PET variability (ETg,).

OET
ETP = W X IAVP (AlO)
O0ET
ETEO = a_EO X IAVEO (Al 1)

We calculate the ET, and ETg, using different n values (0.5, 1, 2) to infer the ET change

from change in precipitation and change in Eo. Results are shown in Fig. S15.



S9. Verification of the stability and robustness of the weighted ensemble method

To verify the stability and robustness of the weighted ensemble method to model inputs, we
use 13 out of 14 models as input and test the variation of the annual GPP and GPP s.d. for both
unweighted average method and the weighted ensemble method. Each time, we drop one model
from the 14 models and use the rest 13 models as input. The GPP for each year is calculated as
the average of the 13 model estimates for this year or using the ensemble method described in
the method section. The annual GPP and GPP s.d. is then calculated from the output of each
year by both methods. By repeating this process for 14 times, we can get all the possible
combination of using 13 models as inputs. The variations of the annual GPP and GPP s.d. from
14 times run for both methods are regarded as the methods stability (Fig. S17).
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Fig. S1. Spatial patterns of annual mean GPP from 3 data-driven models, and 11 DGVMs from
the Trendy v4 project. Maps were created using Matlab R2016a
(http://www.mathworks.com/products/matlab/).
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Fig. S2. Latitudinal pattern (1° bands) of annual GPP. The blue area represents the range of
the DGVMs from the Trendy v4 project (CLM4.5, ISAM, JSBACH, JULES, LPJ, LPJ-GUESS,
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driven models (VPM, MTE, and MODL17).
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Fig. S3. Spatial patterns of inter-annual variability (standard deviation, s.d.) of GPP from the 3
data-driven models and the 11 DGVMs from the Trendy v4 project. Maps were created using
Matlab R2016a (http://www.mathworks.com/products/matlab/).
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Matlab R2016a (http://www.mathworks.com/products/matlab/).
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orders. The error bars represent the standardized deviation (s.d.) across 5 years (2007~2011).
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dotted line represent 1-order, 2-order and 4-order weighted ensemble.
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Fig. S16. oy /0op estimated from 12 ET models and the GPCC precipitation for 2000-2011.
Maps were created using Matlab R2016a (http://www.mathworks.com/products/matlab/).
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Table S1. Classification scheme of aridity regions based on aridity index (Al). Aridity index is
defined by FAO and the classification is inherited from UNEP Drylands are defined as Al <
0.65.

ARIDITY INDEX  ARIDITY CLASS

<0.05 Hyper arid
0.05-0.2 Arid
0.2-05 Semi-arid
0.5-0.65 Sub-humid
>0.65 Humid

Table S2. The biome area weighted correlation between GPP and SIF (score;) using SIF as a
temporal reference.
MODELS 2007 2008 2009 2010 2011

VPM 091 090 094 087 0.88
MOD 0.87 090 088 090 0.85
MPI 094 096 093 094 0.9
CLMA4.5 087 091 0.77 0.89 0.89
ISAM 087 092 082 0.88 0.90
JSBACH 0.86 0.89 088 0.87 0.91
JULES 082 089 083 0.84 0.88
LPJ 087 092 087 087 0091
LPJG 083 086 0.79 0.82 0.82
LPX 084 085 0.78 085 0.82
OCN 084 089 081 0.85 0.89
ORCHIDEE | 0.78 081 0.71 0.81 0.77
VEGAS 081 084 0.73 080 0.77
VISIT 089 087 082 0.86 0.87



Table S3. The biome area weighted correlation between GPP and SIF (score;) using SIF as a

spatial reference.
MODELS

2007

2008

2009

2010

2011

VPM
MOD
MPI

0.71 074 074 0.76 0.74
059 063 063 0.66 0.63
0.60 063 062 0.66 0.64

CLMA4.5 042 041 041 042 0.39

ISAM

0.55 0.57 057 059 0.58

JSBACH 051 051 051 059 0.53

JULE
LPJ
LPJG
LPX
OCN

S 047 045 047 051 0.48
041 043 043 041 040
051 052 052 054 0.51
059 062 059 0.62 0.59
0.65 0.67 0.66 0.68 0.67

ORCHIDEE | 050 0.51 0.51 052 0.51
VEGAS 0.56 0.57 058 0.62 0.59
VISIT 028 028 030 0.28 0.27
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