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Abstract: 

Feedforward deep convolutional neural networks 
(DCNNs) are matching and even surpassing human 
performance on object recognition. This performance 
suggests that activation of a loose collection of image 
features could support the recognition of natural object 
categories, without dedicated systems to solve specific 
visual subtasks. Recent findings in humans however, 
suggest that while feedforward activity may suffice for 
sparse scenes with isolated objects, additional visual 
operations ('routines') that aid the recognition process 
(e.g. segmentation or grouping) are needed for more 
complex scenes. Linking human visual processing to 
performance of DCNNs with increasing depth, we here 
explored if, how, and when object information is 
differentiated from the backgrounds they appear on. To 
this end, we controlled the information in both objects 
and backgrounds, as well as the relationship between 
them by adding noise, manipulating background 
congruence and systematically occluding parts of the 
image. Results indicated less distinction between object- 
and background features for more shallow networks. For 
those networks, we observed a benefit of training on 
segmented objects (as compared to unsegmented 
objects). Overall, deeper networks trained on natural 
(unsegmented) scenes seem to perform implicit 
'segmentation' of the objects from their background, 
possibly by improved selection of relevant features. 
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Introduction 

When performing an object recognition task, the visual 
input elicits a feedforward drive that rapidly extracts 
basic image features through feedforward connections 
(Lamme & Roelfsema, 2000). For sparse scenes with 
isolated objects, this set of features might be enough for 
successful recognition. For more complex scenes, 
however, the jumble of visual information ('clutter') may 

be so great that object recognition cannot rely on having 
access to a reliable set of features, effectively working 
as pre-segmented objects. For those images, extra 
visual operations ('visual routines') that aid the 
recognition process, such as scene segmentation and 
perceptual grouping, might require the feedforward 
activity to be modulated by recurrent loops of activity 
(Roelfsema, 2006; Groen et al., 2018). 

While this view seems to suggest that object 
recognition only depends on the features that belong to 
the object, many studies have shown that features from 
the background can also influence the recognition 
process. For example, objects appearing in a congruent 
background are detected more accurately and quickly 
than objects in an incongruent environment (Davenport 
& Potter 2004), and many computational models of 
object recognition use features both from the object and 
from the background (Riesenhuber & Poggio 1999). 

In the current study, we explore how the number of 
layers (depth) in a DCNN influences object 
segmentation and how this compares to human vision. 
We use deep residual networks (ResNets; He, Zhang, 
Ren & Sun, 2016) to systematically manipulate network 
depth, because they can be up-scaled by adding their 
basic building blocks without altering the architecture in 
another way. We presented seven DCNNs (with 
increasing depth) and 38 human participants with 
images of segmented and unsegmented objects. To 
investigate the influence of features from the 
background on object recognition, we generated stimuli 
in which objects were placed on top of congruent or 
incongruent scenes. Thereby we ask to what extent 
DCNNs exhibit the same sensitivity to scene properties 
(i.e. context) as human observers. To complement our 
findings, we further explore the role of segmentation on 
learning by training ResNets on a dataset with 
segmented objects, and a dataset in which objects were 
embedded in a scene. 
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Experiment 1: background congruence 

Methods 

Stimuli Images of 27 different object categories were 
generated by placing cut-out objects from the ImageNet 
validation set onto white (segmented), congruent and 
incongruent backgrounds.  There were ten exemplars 
for every category, and backgrounds were sampled 
from the SUN2012 database (512x512 pixels, full-
color). For each category, three congruent backgrounds 
were selected using the five most common places 
where this object was found within the database. Three 
incongruent backgrounds were manually chosen. 

Participants and networks 38 participants (9 males) 
aged between 18 and 30 years (M = 22.03, SD = 3.02) 
took part in the experiment. To investigate the effect of 
depth on scene segmentation in DCNNs, tests were  
conducted on ResNets with increasing number of layers 
(10, 18, 34, 50, 101, 152), using the fb.resnet.torch 
implementation by Gross & Wilber (2016). Input images 
from the ImageNet dataset (Russakovsky et al., 2015) 
were 224x224 randomly cropped from a resized image 
using the scale and aspect ratio augmentation of 
Szegedy et al. (2015). Downsampling was done by 
stride-2 convolutions in the 3x3 layer of the first block in 
each stage (instead of the first 1x1 convolution) and 
weight decay was applied to all weights and biases 
(instead of just the weights of the convolution layers). 
ResNet-10 was trained on ImageNet with 1 GPU. We 
used pre-trained versions for the other ResNets.  

Human performance 

A repeated-measures ANOVA, with factor Background 
differentiated accuracy across the three conditions, 
F(2,74) = 366.2, p < .001, η2par = .91 (Figure 1D). 
Participants made fewer errors for segmented objects 
than for the congruent, t(37) = 15.655, p <.001, and 
incongruent condition,  t(37) = 27.6, p < .001. 
Additionally, participants made fewer errors for 
congruent than for incongruent, t(37) = 9.376, p < .001 
(Bonferroni corrected). Overall, results indicate that 
when a scene is glanced briefly (32 ms), objects are not 
(always) completely segregated from their background 
and semantic consistency information influences object 
perception. 

Network performance 

For human participants, results indicated that features 
from the background influenced object perception. Do 
DCNNS show a similar pattern and how is this 
influenced by network depth? 

Experiment 1 showed both a substantial overlap and 
difference in performance between human participants 
and DCNNs. Both were better in recognizing an object 

on a congruent versus an incongruent background. 
However, whereas human participants performed best 
in the segmented condition, DCNNs performed equally 
well (or better) for the congruent condition. 
Performance for the incongruent condition was lowest. 
This effect was particularly strong for more shallow 
networks. 

To further investigate the degree to which the 
networks are using features from the object and/or 
background, we systematically occluded different parts 
of the image and evaluated the changes in activation of 
the correct class, before the softmax activation function 
(Zeiler & Fergus, 2014). We quantified the importance 
of features in the object vs. background by averaging 
the change across pixels belonging either to the object 
or the background. For this analysis, positive values 
indicate that pixels are helping classification (higher 
values indicating a higher importance). For example, 
figure 3A shows that the network is localizing the object 
in the scene, as the activity drops significantly when the 
object (china cabinet in this example) is occluded.  

To evaluate whether deeper networks are better at 
localizing the objects in the scene, while ignoring 
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irrelevant background information, we computed the 
relative drop in performance when pixels of the 

background vs. pixels of the object were occluded. 
Results indicated a larger influence of background 
pixels on classification for more shallow networks, for 
all conditions. For those models, pixels from the object 
had a larger impact as well, for the segmented and 
congruent condition. 

Experiment 2: Training 

Next, we investigated how training is influenced by 
network depth. If deeper networks indeed implicitly 
learn to segment object from background, we expect 
them to show a smaller difference in learning speed, 
when trained with segmented vs. unsegmented stimuli 
(as compared to shallow networks). 

 Methods 

Stimuli To train the models, images from 10 categories 
were selected from ImageNet. We used 10 categories 
to obtain a reasonable mixture of ease of computing 
and performance gradients that show a substantial 
difference from untrained to trained. With the selected 
images, we generated two training sets: one in which 
the objects were segmented, and one with the original 
images (objects embedded in scenes). Objects were 
segmented using a DCNN trained on the MS COCO 
dataset (Lin et al. 2014), using the Mask R-CNN method 
(He, Gkioxari, Dollár & Girshick, 2017). Images with 
object probability scores lower than 0.98 were 
discarded, to minimize the risk of selecting wrongly 
classified or low quality images. Images were resized to 
128x128 pixels. In total, the set contained ~9000 
images, 80% was used for training, 20% was used for 
validation. 

Networks As in experiment 1, we used ResNets with 
increasing number of layers (6, 10, 18, and 34). Deeper 
networks generated overfitting problems and were not 
included. 

Network convergence 

Accuracy of the ResNets was evaluated after each 
epoch (100 total) on the validation set. Results indicated 
a higher classification accuracy in the early stages of 
training for the networks trained on segmented objects, 
compared to those trained on unsegmented objects 
(Figure 4A). Additionally, these networks converged 
(accuracy constant >10 epochs) in less epochs. In later 
epochs, accuracy between the two types of networks 
was similar. Shallow networks trained on segmented 
stimuli converged earlier than those trained on 
unsegmented stimuli. The difference in epochs until 
convergence decreased as the network depth 
increased. These results confirm that networks need to 
learn to segment objects from their background for 
optimal performance. 

Discussion  

Classic models of grouping and segmentation presume 
an explicit process in which certain elements of an 
image are grouped, whilst other are segregated from 
each other, by a labelling process. Our results from 
behavioral experiments with segmented and 
unsegmented objects indicate that recognition can take 
place without an explicit segmentation step. 
Furthermore, we show that segmentation can, and for 
DCNNs does, arise implicitly as a function of network 
depth. 
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Different accounts of object recognition in scenes 
propose different loci for contextual effects (Oliva & 
Torralba, 2007). It has been argued that a bottom-up 
visual analysis is sufficient to discriminate between 
basic level object categories, after which context may 
influence this process in a top-down manner, by priming 
relevant semantic representations, or by constraining 
the search space of most likely objects (e.g. Bar, 2003). 
The current results show that context features may 
impact object recognition in a bottom-up fashion, even 
for objects in a spatially incongruent location. 

Instead of being an ultra-deep feedforward network, 
the brain might employ recurrent connections for object 
recognition in complex natural environments. The 
interpretation that deeper networks are better at object 
recognition, because they are capable of limiting their 
analysis to (mostly) the object –when necessary– is 
consistent with the idea that deeper networks are 
solving the challenges that are resolved by recurrent 
computations in the brain (Liao & Poggio, 2016). 

Conclusion 

We investigated the extent to which object and context 
information, and the interplay between them, impacts 
object recognition for both DCNNs and human 
observers. Combined, the current findings show that 
with an increase in network depth there is better 
selection of the features that belong to the object 
category. This process is similar, at least in terms of its 
outcome, to figure-ground segmentation in humans and 
might be one of the ways in which scene segmentation 
is implemented in the brain. 

Acknowledgments 
We thank Yannick Vinkesteijn for help with data 
collection (human participants). 

References 

Bar, M. (2003). A cortical mechanism for triggering top-
down facilitation in visual object recognition. Journal of 
cognitive neuroscience, 15(4), 600-609. 

 

Groen, I.I.A., Jahfari, S., Seijdel, N., Ghebreab, S., 
Lamme, V.A.F., & Scholte, H.S. (2018). Scene 
complexity modulates degree of feedback activity 
during object detection in natural scenes. PLoS 
computational biology, 14(12), e1006690. 

 

Gross S, Wilber M. Training and investigating residual 
nets. (2016). Facebook AI Research, CA [Online] 
Available: http://torch.ch/blog/2016/02/04/resnets.html 

 

He, K., Zhang, X., Ren, S., & Sun, J. (2016) Deep 
residual learning for image recognition. Proceedings of 
the IEEE conference on computer vision and pattern 
recognition (pp. 770–778).  

 

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). 
Mask r-cnn. In Proceedings of the IEEE international 
conference on computer vision (pp. 2961-2969). 

 

Lamme, V.A.F., & Roelfsema, P.R. (2000). The distinct 
modes of vision offered by feedforward and recurrent 
processing. Trends in neurosciences, 23(11),571-579 

 

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., 
Ramanan, D., ... & Zitnick, C.L. (2014). Microsoft coco: 
Common objects in context. In European conference 
on computer vision (pp. 740-755). 

 

Liao, Q., & Poggio, T. (2016). Bridging the gaps 
between residual learning, recurrent neural networks 
and visual cortex. arXiv preprint arXiv:1604.03640.  

 

Oliva, A., & Torralba, A. (2007). The role of context in 
object recognition. Trends in cognitive sciences, 
11(12), 520-527. 

 

Riesenhuber, M., & Poggio, T. (1999). Are cortical 
models really bound by the “binding problem”?. 
Neuron, 24(1), 87-93. 

 

Roelfsema, P.R. (2006). Cortical algorithms for 
perceptual grouping. Annual Review of Neuroscience, 
29,203-227. 

 

Russakovsky, O., Deng, J., Su, H., Krause, J., 
Satheesh, S., Ma, S., ... & Berg, A.C. (2015). Image-
net large scale visual recognition challenge. Interna-
tional journal of computer vision, 115(3), 211-252. 

 

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., 
Anguelov, D., ... & Rabinovich, A. (2015). Going 
deeper with convolutions. Proceedings of the IEEE 
conference on computer vision and pattern 
recognition (pp. 1-9). 

 

Zeiler M.D., & Fergus, R. (2014). Visualizing and 
understanding convolutional networks. European 
Conference on Computer Vision (pp. 818–833). 

1062


