date: 2022-08-15T08:54:03Z pdf:PDFVersion: 1.7 pdf:docinfo:title: Soil Moisture Control of NO Turnover and N2O Release in Nitrogen-Saturated Subtropical Forest Soils xmp:CreatorTool: LaTeX with hyperref access_permission:can_print_degraded: true subject: Acid forest soils in South China experience a chronically elevated input of atmospheric nitrogen (N), turning them into hot spots for gaseous N emissions. Soil moisture is known to be a major controller for the partitioning of gaseous N loss to nitric (NO) and nitrous oxide (N2O), which may be of particular relevance in the monsoonal climate of South China. To study this partitioning in more detail, we determined gas phase kinetics of NO and N2O release during laboratory dry-out of acidic surface soils from the headwater catchment TieShanPing (TSP), situated close to Chongqing, SW China. Soils were sampled from two hydrologically distinct environments, a well-drained hill slope (HS), and a periodically flooded groundwater discharge zone (GDZ). Production and consumption of NO were studied in an automated flow-through system purged with NO-free or NO-spiked air. Production rates peaked at 21% and 18% water filled pore space (WFPS) in HS and GDZ soils, respectively, suggesting nitrification as the dominant process of NO formation in both landscape units. In HS soils, maximum production and consumption occurred at the same WFPS, whereas GDZ soils displayed maximum NO consumption at higher WFPS than maximum production, suggesting that denitrification is an important NO sink in GDZ soils. Net N2O release was largest at 100% WFPS and declined steadily during drying. Integrated over the entire range of soil moisture, potential NO-N loss outweighed potential N2O-N loss, suggesting that N-saturated, acid forest soil is an important NO source. dc:format: application/pdf; version=1.7 pdf:docinfo:creator_tool: LaTeX with hyperref access_permission:fill_in_form: true pdf:encrypted: false dc:title: Soil Moisture Control of NO Turnover and N2O Release in Nitrogen-Saturated Subtropical Forest Soils modified: 2022-08-15T08:54:03Z cp:subject: Acid forest soils in South China experience a chronically elevated input of atmospheric nitrogen (N), turning them into hot spots for gaseous N emissions. Soil moisture is known to be a major controller for the partitioning of gaseous N loss to nitric (NO) and nitrous oxide (N2O), which may be of particular relevance in the monsoonal climate of South China. To study this partitioning in more detail, we determined gas phase kinetics of NO and N2O release during laboratory dry-out of acidic surface soils from the headwater catchment TieShanPing (TSP), situated close to Chongqing, SW China. Soils were sampled from two hydrologically distinct environments, a well-drained hill slope (HS), and a periodically flooded groundwater discharge zone (GDZ). Production and consumption of NO were studied in an automated flow-through system purged with NO-free or NO-spiked air. Production rates peaked at 21% and 18% water filled pore space (WFPS) in HS and GDZ soils, respectively, suggesting nitrification as the dominant process of NO formation in both landscape units. In HS soils, maximum production and consumption occurred at the same WFPS, whereas GDZ soils displayed maximum NO consumption at higher WFPS than maximum production, suggesting that denitrification is an important NO sink in GDZ soils. Net N2O release was largest at 100% WFPS and declined steadily during drying. Integrated over the entire range of soil moisture, potential NO-N loss outweighed potential N2O-N loss, suggesting that N-saturated, acid forest soil is an important NO source. pdf:docinfo:subject: Acid forest soils in South China experience a chronically elevated input of atmospheric nitrogen (N), turning them into hot spots for gaseous N emissions. Soil moisture is known to be a major controller for the partitioning of gaseous N loss to nitric (NO) and nitrous oxide (N2O), which may be of particular relevance in the monsoonal climate of South China. To study this partitioning in more detail, we determined gas phase kinetics of NO and N2O release during laboratory dry-out of acidic surface soils from the headwater catchment TieShanPing (TSP), situated close to Chongqing, SW China. Soils were sampled from two hydrologically distinct environments, a well-drained hill slope (HS), and a periodically flooded groundwater discharge zone (GDZ). Production and consumption of NO were studied in an automated flow-through system purged with NO-free or NO-spiked air. Production rates peaked at 21% and 18% water filled pore space (WFPS) in HS and GDZ soils, respectively, suggesting nitrification as the dominant process of NO formation in both landscape units. In HS soils, maximum production and consumption occurred at the same WFPS, whereas GDZ soils displayed maximum NO consumption at higher WFPS than maximum production, suggesting that denitrification is an important NO sink in GDZ soils. Net N2O release was largest at 100% WFPS and declined steadily during drying. Integrated over the entire range of soil moisture, potential NO-N loss outweighed potential N2O-N loss, suggesting that N-saturated, acid forest soil is an important NO source. pdf:docinfo:creator: Ronghua Kang, Thomas Behrendt, Jan Mulder and Peter Dörsch meta:author: Ronghua Kang meta:creation-date: 2022-08-15T02:52:41Z created: 2022-08-15T02:52:41Z access_permission:extract_for_accessibility: true Creation-Date: 2022-08-15T02:52:41Z Author: Ronghua Kang producer: pdfTeX-1.40.21 pdf:docinfo:producer: pdfTeX-1.40.21 pdf:unmappedUnicodeCharsPerPage: 0 dc:description: Acid forest soils in South China experience a chronically elevated input of atmospheric nitrogen (N), turning them into hot spots for gaseous N emissions. Soil moisture is known to be a major controller for the partitioning of gaseous N loss to nitric (NO) and nitrous oxide (N2O), which may be of particular relevance in the monsoonal climate of South China. To study this partitioning in more detail, we determined gas phase kinetics of NO and N2O release during laboratory dry-out of acidic surface soils from the headwater catchment TieShanPing (TSP), situated close to Chongqing, SW China. Soils were sampled from two hydrologically distinct environments, a well-drained hill slope (HS), and a periodically flooded groundwater discharge zone (GDZ). Production and consumption of NO were studied in an automated flow-through system purged with NO-free or NO-spiked air. Production rates peaked at 21% and 18% water filled pore space (WFPS) in HS and GDZ soils, respectively, suggesting nitrification as the dominant process of NO formation in both landscape units. In HS soils, maximum production and consumption occurred at the same WFPS, whereas GDZ soils displayed maximum NO consumption at higher WFPS than maximum production, suggesting that denitrification is an important NO sink in GDZ soils. Net N2O release was largest at 100% WFPS and declined steadily during drying. Integrated over the entire range of soil moisture, potential NO-N loss outweighed potential N2O-N loss, suggesting that N-saturated, acid forest soil is an important NO source. Keywords: soil moisture; acid subtropical forest soil; flow-through incubation system; optimum soil moisture; NO; N2O; production and consumption access_permission:modify_annotations: true dc:creator: Ronghua Kang description: Acid forest soils in South China experience a chronically elevated input of atmospheric nitrogen (N), turning them into hot spots for gaseous N emissions. Soil moisture is known to be a major controller for the partitioning of gaseous N loss to nitric (NO) and nitrous oxide (N2O), which may be of particular relevance in the monsoonal climate of South China. To study this partitioning in more detail, we determined gas phase kinetics of NO and N2O release during laboratory dry-out of acidic surface soils from the headwater catchment TieShanPing (TSP), situated close to Chongqing, SW China. Soils were sampled from two hydrologically distinct environments, a well-drained hill slope (HS), and a periodically flooded groundwater discharge zone (GDZ). Production and consumption of NO were studied in an automated flow-through system purged with NO-free or NO-spiked air. Production rates peaked at 21% and 18% water filled pore space (WFPS) in HS and GDZ soils, respectively, suggesting nitrification as the dominant process of NO formation in both landscape units. In HS soils, maximum production and consumption occurred at the same WFPS, whereas GDZ soils displayed maximum NO consumption at higher WFPS than maximum production, suggesting that denitrification is an important NO sink in GDZ soils. Net N2O release was largest at 100% WFPS and declined steadily during drying. Integrated over the entire range of soil moisture, potential NO-N loss outweighed potential N2O-N loss, suggesting that N-saturated, acid forest soil is an important NO source. dcterms:created: 2022-08-15T02:52:41Z Last-Modified: 2022-08-15T08:54:03Z dcterms:modified: 2022-08-15T08:54:03Z title: Soil Moisture Control of NO Turnover and N2O Release in Nitrogen-Saturated Subtropical Forest Soils xmpMM:DocumentID: uuid:e7a4ab79-14cd-4b6b-a318-f6f67f8eaacd Last-Save-Date: 2022-08-15T08:54:03Z pdf:docinfo:keywords: soil moisture; acid subtropical forest soil; flow-through incubation system; optimum soil moisture; NO; N2O; production and consumption pdf:docinfo:modified: 2022-08-15T08:54:03Z meta:save-date: 2022-08-15T08:54:03Z Content-Type: application/pdf X-Parsed-By: org.apache.tika.parser.DefaultParser creator: Ronghua Kang dc:subject: soil moisture; acid subtropical forest soil; flow-through incubation system; optimum soil moisture; NO; N2O; production and consumption access_permission:assemble_document: true xmpTPg:NPages: 15 pdf:charsPerPage: 3771 access_permission:extract_content: true access_permission:can_print: true meta:keyword: soil moisture; acid subtropical forest soil; flow-through incubation system; optimum soil moisture; NO; N2O; production and consumption access_permission:can_modify: true pdf:docinfo:created: 2022-08-15T02:52:41Z